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Goal of the talk

I Is σ(A) computable for A ∈ B(`2(N))

I To explain what different theories say about it

I This is a simplified layman overview

I Then I focus on Towers of Algorithms and
on the Solvability Complexity Index,

I J. Ben-Artzi, A. Hansen, O. Nevanlinna , M. Seidel
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Definition of a Tower

PROBLEM

Ω: primary set, e.g B(`2(N))
Λ: evaluation set, e.g. fij : A 7→< Aei , ej > for A ∈ B(`2(N))
M: metric space
Ξ: problem function Ω→M, such as σ(A) for A ∈ B(`2(N))

TOWER

Ξ(A) = limnk→∞ Γnk (A)
Γnk (A) := limnk−1→∞ Γnk ,nk−1

(A)
.....
.....
.....
Γnk ,.,n2(A) := limn1→∞ Γnk ,.,n2,n1(A)



Matrices first

A ∈ B(Cn) solve for πA(z) = 0

I n ≤ 3 : generally convergent rational iteration exists
(McMullen 1987)

I n ≤ 5 : a tower of generally convergent rational iterations
(Doyle, McMullen 1989)

I n > 5 : no such towers (Doyle, McMullen 1989)
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Matrices continues

radicals, z 7→ |z | available, then convergent iterations exist for
solving roots of polynomials

input finite: the complex coefficients of the polynomial



Computabilities...

”Turing view”: problem computable if a computing device exists
which solves the problem

Computation in the limit and higher hierarchies

BSS (Blum, Shub, Smale) R-machine model

IBC (infromation based complexity) uses BSS, ”tractability”

constructivism, computability on Z and within computable
numbers



Any compact can be spectrum

Represent compact K ⊂ C from outside:

K =
⋂

Kn

where
· · · ⊂ Kn+1 ⊂ Kn ⊂ · · ·

and testing z /∈ Kn ”easy”



Any compact can be spectrum, so look at Julia sets

We first look at the Julia set J for the quadratic polynomial
z2 + 4.

Consider the question
z ∈ J ?

Then the corresponding question for the spectrum σ(A) is

λ ∈ σ(A) ?

The natural formulation of these questions is, can you decide
whether the answer is yes or no?



2.1 Julia set J for z2 + 4

Let
p(z) = z2 + 4

Iterate
zn+1 = p(zn)

If zn →∞ then z0 /∈ J .
Note that if |zk | > 1 +

√
5 for some k , then |zk+1| > 2|zk | and

then zn →∞.
For this p(z) the Julia set is homeomorphic to a Cantor set.
Observe that C \ J is open.

S. Smale and coworkers: J is not decidable
(”semidecidable”)



Computation in the limit...

Output as follows:

if |zk | ≤ 1 +
√

5 , then Out(k) = 1
if |zk | > 1 +

√
5, then Out(k) = 0.

So depending on the initial value we obtain sequences of the form

1, 1, . . . , 1, 0, 0, 0 . . .

and
1, 1, 1, . . .

In either case the limit exists; and then you (would) know



Similar question for the spectrum in abstract Banach
algebra

Consider the subalgebra generated by just one element a (say, in
Banach algebra A). Then the spectrum within the subalgebra is
fill(σ(a)).
If we are allowed to produce polynomials of a and compute their
norms but inverting is not allowed, then:

The question
λ /∈ fill(σ(a))

is semidecidable as follows:

If answer positive: finite termination with sure answer, while

if negative, you will never know (the one you look after does not
exist)



What exists is easier to find!

Conclude: Think positive, construct the resolvent

C \ fill(σ(A))→ B(X )

λ 7→ (λ− A)−1

instead!

Get a multicentric holomorphic calculus - but not during this
talk...



Computation in the limit

Example

Let A be diagonal operator in `2(N) such that aii ∈ {0, 1}.
Input information: read one diagonal element in time, in a fixed
enumeration.
Then

I σ(A) ∈ {0, 1}: this we can build in the ”machine” based on
the problem description

I σess(A) 6= ∅: this can also be build in

I 1 ∈ σ(A): this cannot be be computed except at the limit

I 1 ∈ σess(A) this needs ”two limits”, i.e. a ”tower”
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How to get the answers

1 ∈ σ(A)

I define function for each n

Γn(A) = 1, if
n∑

i=1

aii > 0,

0, otherwise

and set
Γ(A) = lim

n→∞
Γn(A).

Then, answer is ”yes”, when Γ(A) = 1

I Using quantifiers: ∃n (
∑n

i=1 aii > 0)
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Another example

We define A ∈ B(`2(N)) using diagonal blocks:

A =
∞⊕
j=1

Ak(j)

where Ak are k × k-matrices with number 1’s in the corners, like

A3 =

1 0 1
0 0 0
1 0 1


and k(j) ≥ 2 is some sequence. Thus, A is algebraic,
σ(A) = σess(A) = {0, 2}.



Constructivism, computability

I The operator

A =
∞⊕
j=1

Ak(j)

is effectively determined if one can determine the sequence
{k(j)} recursively.

I But,

I then one can ”tailor” a computing machine which computes
the spectrum in a finite number of operations
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Constructivism, computability 2

I The operator

B =
∞⊕
j=1

βjAk(j)

is effectively determined if one can determine the sequence
{k(j)} recursively and the coefficient sequence {βj} is a
computable sequence of reals.

I Then,

I the spectrum is computable.



Constructivism, computability 2

I The operator

B =
∞⊕
j=1

βjAk(j)

is effectively determined if one can determine the sequence
{k(j)} recursively and the coefficient sequence {βj} is a
computable sequence of reals.

I Then,

I the spectrum is computable.



Constructivism, computability 2

I The operator

B =
∞⊕
j=1

βjAk(j)

is effectively determined if one can determine the sequence
{k(j)} recursively and the coefficient sequence {βj} is a
computable sequence of reals.

I Then,

I the spectrum is computable.



Constructivism, computability 3

I In this theory effectively described bounded self-adjoint
operators have computable spectra

I but

I there exists an effectively determined bounded non-selfadjoint
operator which has a noncomputable real as an eigenvalue.
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Computability; towers

We assume:

I algorithm given for a class of operators A = (aij) ∈ B(`2(N))

I can be adaptive but only based on what it has already
computed

I input enters by reading one element aij at a time

Example

Then for each such fixed algorithm one can ”tailor” a sequence
{k(j)} such that the algorithm keeps the number 1 as a candidate
for the spectrum for the operator

A =
∞⊕
j=1

Ak(j)
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Example continues

In fact, the algorithm would be made to see a finite matrix
consisting of diagonal blocks Ak(j) and a block having just one
nonzero element 

1 · · ·
·
·
·


Thus,

I just one limit would give wrong answer

I but limits on two levels work
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Idea of a tower for the example

Let A = A∗ ∈ B(`2(N)) and denote by γm,n(t) the smallest
singular value of the n ×m- matrix Anm(t) representing

Pn(A− tI )

when restricted to the range of Pm: Pm`2(N).



Example continues

Applied to

A =
∞⊕
j=1

Ak(j)

the matrices Anm(t) shall consist of a finite number of square
blocks and possibly one rectangle which for fixed m and all large
enough n is of the form

1− t 0 0 ·
0 −t 0 ·
· · −t ·
·
1
0
·





Proto for the tower at the Example

Since 1 appears, the rectangle has full rank at t = 1.

I For example

(
1− t 0 1

0 −t 0

)1− t 0
0 −t

1 0

 =

(
(1− t)2 + 1 0

0 t2

)

I Denote Γm,n(A) = {t ∈ R : γ(t) = 0}. Then we have with
two quantifiers

∀m ∃nm {n > nm =⇒ Γm,n(A) = {0, 2}}

I In particular, we may set Γm(A) = limn→∞ Γm,n(A) so that

I Γ(A) = limm→∞ Γm(A) = {0, 2} = σ(A).
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From Proto to a true tower one needs to have
I approximate version of γm,n which can be performed with a

finite number of arithmetic operations and radicals to give
Γm,n(A)

I suitable assumptions (e.g. A bounded and self-adjoint ) that
guarantee the existence of the limits

Γm(A) = lim
n→∞

Γm,n(A)

I and those of

Γ(A) = lim
m→∞

Γm(A) = σ(A).

I Limits in the Hausdorff distance between compact sets in C

distH(K ,M) = max{sup
z∈K

inf
w∈M

|z − w |, sup
w∈M

inf
z∈K
|z − w |}
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Definition of SCI

k = height of tower

SCI = min k of towers solving the problem for arbitrary A ∈ Ω



SCI = 3 for bounded operators, Ξ = σ(A)

I a tower of height 3 works for all A ∈ B(`2(N))

I we have a construction which shows that three limits are
needed in general
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SCI=2, subsets of B(`2(N)), for σ(A)

I Self-adjoint operators A∗ = A, and further

I A is similar to normal: A = TNT−1 where N is normal with a
known constant C such that ‖T‖‖T−1‖ ≤ C (but the
decomposition is not known), so that

‖(λ− A)−1‖ ≤ C

dist(λ, σ(A))
.

I there is a known function g such that for λ /∈ σ(A)

‖(λ− A)−1‖ ≤ 1/g(dist(λ, σ(A))).
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Dispersion known, again lowers the index

Dispersion: there is a known function f : N→ N such that

max{‖(I − Pf (n))APn‖, ‖PnA(I − Pf (n))‖} → 0, as n→∞

For example, if bandwidth = d one has f (n) = n + d .

If f is known for A, then SCI = 2

and if both resolvent control g and dispersion function f are
known, then SCI=1.



SCI=1 for σ(A) with A ∈ B(`2(N)) compact

So, this is the situation in which computing eigenvalues of finite
sections An = (aij)i ,j≤n and studing their limit behavior is ok.



Computing the essential spectrum σess(A)

Again A ∈ B(`2(N))

I If we only know that A is bounded , then SCI=3.

I If additionally both f and g are known, then SCI=2

I if we know that A is compact, then SCI=0, since
σess(A) = {0}.
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Schrödinger as an example

Let
H = −∆ + V where V : Rd → C.

I If V is bounded and in a certain total variation space. The
evaluation functions are pointwise evaluations x 7→ V (x).
Then SCI ≤ 2.

I If V is continuous, |V (x)| → ∞ as ‖x‖ → ∞ and its values
are in a sector with opening less than π and including the
positive real axis, then the resolvent of H is compact and
SCI=1.
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