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Motivation

Community detection in social or biological networks in the
sparse regime with a small average degree.

Adamic Glance ’05
Performance analysis of spectral algorithms on a toy model
(where the ground truth is known!).
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A model: the stochastic block model



The sparse stochastic block model

A random graph model on n nodes with three parameters,
a,b, c ≥ 0.

total population
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+1 or −1 uniformly at
random.
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The sparse stochastic block model

A random graph model on n nodes with three parameters,
a,b, c ≥ 0.

Independently for each
pair (u, v):

if σu = σv = +1, draw
the edge w.p. a/n.
if σu 6= σv , draw the
edge w.p. b/n.
if σu = σv = −1, draw
the edge w.p. c/n.

a/n, b/n, c/n.



Community detection problem

Reconstruct the underlying communities (i.e. spin
configuration σ) based on one realization of the graph.
Asymptotics: n→∞
Sparse graph: the parameters a,b, c are fixed.
notion of performance:
w.h.p. strictly less than half of the vertices are misclassified
= positively correlated partition.
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A first attempt: looking at degrees

Degree in community +1 is:
D+ ∼ Bin

(n
2 − 1, a

n

)
+ Bin

(n
2 ,

b
n

)
We have

E[D+] ≈ a + b
2

, and Var(D+) ≈ a + b
2

.

and similarly, in community −1:

E[D−] ≈ c + b
2

, and Var(D−) ≈ c + b
2

.

Clustering based on degrees should ’work’ as soon as:

(E[D+]− E[D−])2 � max(Var(D+),Var(D−))

i.e. (ignoring constant factors)

(a− c)2 � b + max(a, c).
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Is it any good?

Data: A the adjacency matrix of the graph.
We define the mean column for each community:

A+ =
1
n



a
...
a
b
...
b


, and A− =

1
n



b
...
b
c
...
c


The variance of each entry is ≤ max(a,b, c)/n.
Pretend the columns are i.i.d., spherical Gaussian and k = n...



Clustering a mixture of Gaussians

Consider a mixture of two spherical Gaussians in Rn with
respective means m1 and m2 and variance σ2.
Pb: given k samples ∼ 1/2N (m1, σ

2) + 1/2N (m2, σ
2), recover

the unknown parameters m1, m2 and σ2.



Doing better than naive algorithm

If ‖m1 −m2‖2 � nσ2, then the densities ’do not overlap’ in Rn.

Projection preserves variance σ2. So projecting onto the line
formed by m1 and m2 gives 1-dim. Gaussian variables with no
overlap as soon as ‖m1 −m2‖2 � σ2. We gain a factor of n.
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Algorithm for clustering a mixture of Gaussians

Each sample is a column of the following matrix:

A = (A1,A2, . . . ,Ak ) ∈ Rn×k

Consider the SVD of A:

A =
n∑

i=1

λiuivT
i , ui ∈ Rn, vi ∈ Rk , λ1 ≥ λ2 ≥ . . .

Then the best approximation for the direction (m1,m2) given by
the data is u1.

Project the points from Rn onto this line and then do clustering.
Provided k is large enough, this ’works’ as soon as:
‖m1 −m2‖2 � σ2.



Back to our clustering problem

Data: A the adjacency matrix of the graph.
The mean columns for each community are:

A+ =
1
n



a
...
a
b
...
b


, and A− =

1
n



b
...
b
c
...
c


The variance of each entry is ≤ max(a,b, c)/n.



Heuristics for community detection

The naive algorithm should work as soon as

‖A+ − A−‖2 � n
max(a,b, c)

n︸ ︷︷ ︸
Var

(a− b)2 + (b − c)2 � n max(a,b, c)

Spectral clustering should allow you a gain of n, i.e.

(a− b)2 + (b − c)2 � max(a,b, c)

Our previous analysis shows that clustering based on degrees
works as soon as

(a− c)2 � max(a,b, c).

When a = c, no information given by the degrees.
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The sparse symmetric stochastic block model

A random graph model on n nodes with two parameters,
a,b ≥ 0.

Independently for each
pair (u, v):

if σu = σv , draw the
edge w.p. a/n.
if σu 6= σv , draw the
edge w.p. b/n.

a/n, b/n, a/n.

Heuristic: spectral should work as soon as (a− b)2 � a + b
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Efficiency of Spectral Algorithms

Boppana ’87, Condon, Karp ’01, Carson, Impagliazzo ’01,
McSherry ’01, Kannan, Vempala, Vetta ’04...

Theorem

Suppose that for sufficiently large K and K ′,

(a− b)2

a + b
≥ (�)K + K ′ ln (a + b) ,

then ’trimming+spectral+greedy improvement’ outputs a
positively correlated (almost exact) partition w.h.p.

Coja-Oghlan ’10
Heuristic based on analogy with mixture of Gaussians:

(a− b)2 � a + b



Another look at spectral algorithms

Take a finite, simple, non-oriented graph G = (V ,E).
Adjacency matrix : symmetric, indexed on vertices, for u, v ∈ V ,

Auv = 1({u, v} ∈ E).

Low rank approximation of the adjacency matrix works as soon
as

(a− b)2 � a + b



Another look at spectral algorithms

Take a finite, simple, non-oriented graph G = (V ,E).
Adjacency matrix : symmetric, indexed on vertices, for u, v ∈ V ,

Auv = 1({u, v} ∈ E).

Low rank approximation of the adjacency matrix works as soon
as

(a− b)2 � a + b



Spectral analysis

Assume that a→∞, and a− b ≈
√

a + b so that a ∼ b.

A =
a + b

2
1√
n

1T
√

n
+

a− b
2

σ√
n
σT
√

n
+ A− E[A]

a+b
2 is the mean degree and degrees in the graph are very

concentrated if a � ln n. We can construct

A− a + b
2n

J =
a− b

2
σ√
n
σT
√

n
+ A− E[A]
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Spectrum of the noise matrix

The matrix A− E[A] is a symmetric random matrix with
independent centered entries having variance ∼ a

n .
To have convergence to the Wigner semicircle law, we need to
normalize the variance to 1

n .

ESD
(

A− E[A]√
a

)
→ µsc(x) =

{ 1
2π

√
4− x2, if |x | ≤ 2;

0, otherwise.



Naive spectral analysis

To sum up, we can construct:

M =
1√
a

(
A− a + b

2n
J
)

= θ
σ√
n
σT
√

n
+

A− E[A]√
a

,

with θ = a−b√
2(a+b)

.

We should be able to detect signal as soon as

θ > 2⇔ (a− b)2

2(a + b)
> 4
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We can do better!

A lower bound on the spectral radius of M = θ σ√
n
σT
√

n + W :

λ1(M) = sup
‖x‖=1

‖Mx‖ ≥ ‖M σ√
n
‖

But

‖M σ√
n
‖2 = θ2 + ‖W σ√

n
‖2 + 2〈W ,

σ√
n
〉

≈ θ2 +
1
n

∑
i,j

W 2
ij

≈ θ2 + 1.

As a result, we get

λ1(M) > 2⇔ θ > 1⇔ (a− b)2 > 2(a + b).
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Baik, Ben Arous, Péché phase transition

Rank one perturbation of a Wigner matrix:

λ1(θσσT + W )
a.s→
{
θ + 1

θ if θ > 1,
2 otherwise.

Let σ̃ be the eigenvector associated with λ1(θuuT + W ), then

|〈σ̃, σ〉|2 a.s→
{

1− 1
θ2 if θ > 1,

0 otherwise.

Watkin Nadal ’94, Baik, Ben Arous, Péché ’05
Newman, Rao ’14
For SBM with a,b →∞,

θ2 =
(a− b)2

2(a + b)
> 1
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When a,b →∞ spectral is optimal

SBM with n = 2000, average degree 50 and (a−b)2

2(a+b) = 2.
Random matrix theory predicts λ1 = 51, λ2 = 15 and noise at
|λ3| < 14.14



Decreasing the average degree

SBM with n = 2000, average degree 10 and (a−b)2

2(a+b) = 2.
Random matrix theory predicts λ1 = 11, λ2 = 6.7 and noise at
|λ3| < 6.3



Problems when the average degree is small

SBM with n = 2000, average degree 3 and (a−b)2

2(a+b) = 2.
Random matrix theory predicts λ1 = 4, λ2 = 3.67 and noise at
|λ3| < 3.46



Problems when the average degree is finite

High degree nodes: a star with degree d has eigenvalues
{−
√

d ,0,
√

d}.
In the regime where a and b are finite, the degrees are
asymptotically Poisson with mean a+b

2 . The adjacency

matrix has Ω

(√
ln n

ln ln n

)
eigenvalues.

Low degree nodes: instead of the adjacency matrix, take
the (normalized) Laplacian but then isolated edges
produce spurious eigenvalues.
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Problems when the average degree is small

Same graph after trimming.



Phase transition for a,b = O(1)

Theorem

τ =
(a− b)2

2(a + b)

If τ > 1, then positively correlated reconstruction is possible.
If τ < 1, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova ’11 based
on statistical physics arguments.

Non-reconstruction proved by Mossel, Neeman, Sly ’12.
Reconstruction proved by Massoulié ’13 and Mossel,
Neeman, Sly ’13.
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Regularization through the non-backtracking matrix

Let ~E = {u → v ; {u, v} ∈ E} be the set of oriented edges.
m = |~E | is twice the number of unoriented edges.
The non-backtracking matrix is an m ×m matrix defined by

Bu→v ,v→w = 1({u, v} ∈ E)1({v ,w} ∈ E)1(u 6= w)

e

f

e

f

u
v = x

y

B is NOT symmetric: BT 6= B. We denote its eigenvalues by
λ1, λ2, . . . with λ1 ≥ · · · ≥ |λm|.
Proposed by Krzakala et al. ’13.



Ihara-Bass’ Identity

Let D the diagonal matrix with Dvv = deg(v). We have

det(z − B) = (z2 − 1)|E |−|V |det(z2 − Az + D − Id)

If G is d-regular, then D = dId and,

σ(B) = {±1} ∪
{
λ : λ2 − λµ+ (d − 1) = 0 with µ ∈ σ(A)

}
.
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Non-Backtracking matrix of regular graphs

For a d-regular graph, λ1 = d − 1,

? Alon-Boppana bound : maxk 6=1<(λk ) ≥
√
λ1 − o(1).

? Ramanujan (non bipartite) : |λ2| =
√
λ1

? Friedman’s thm : |λ2| ≤
√
λ1 + o(1) if G random uniform.



Simulation for Erdős-Rényi Graph

Eigenvalues of B for an Erdős-Rényi graph G(n, λ/n) with
n = 500 and λ = 4.



Erdős-Rényi Graph

Eigenvalues of B: λ1 ≥ |λ2| ≥ . . ..

Theorem

Let λ > 1 and G with distribution G(n, λ/n). With high
probability,

λ1 = λ+ o(1)

|λ2| ≤
√
λ+ o(1).

Bordenave, Lelarge, Massoulié ’15



Simulation for Stochastic Block Model

Eigenvalues of B for a Stochastic Block Model with n = 2000,
mean degree a+b

2 = 3 and a−b
2 = 2.45



Stochastic Block Model

Eigenvalues of B: λ1 ≥ |λ2| ≥ . . ..

Theorem

Let G be a Stochastic Block Model with parameters a,b. If
(a− b)2 > 2(a + b), then with high probability,

λ1 =
a + b

2
+ o(1)

λ2 =
a− b

2
+ o(1)

|λ3| ≤
√

a + b
2

+ o(1).

Bordenave, Lelarge, Massoulié ’15



Test with real benchmarks



Test with real benchmarks

The Power Law Shop



The non-backtracking matrix on real data

from Krzakala, Moore, Mossel, Neeman, Sly, Zdeborovà ’13



Back to political blogging network data



Non-symmetric Stochastic Block Model

Consider the case where there is a small community of size pn
with p < 1/2, then the SNR is given by d(1− b)2 where d is the
average degree.
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Some extensions

For the labeled stochastic block model, we also conjecture a
phase transition. We have partial results and an optimal
spectral algorithm.

Saade, Krzakala, Lelarge, Zdeborovà, ’15,’16



Some extensions

The non-backtracking matrix is also working for the
degree-corrected SBM.
ongoing work with Gulikers and Massoulié.
We can adapt the non-backtracking matrix to deal with small
cliques.
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ongoing work with Caltagirone.



Some extensions

SBM with no noise b = 0 but with overlap.
Spectrum of the non-backtracking operator with n = 1200,
sn = 400 and a = 9 and 13. The circle has radius

√
a(2− 3s)

in each case.

Kaufmann, Bonald, Lelarge ’16



Non-backtracking vs adjacency

On the sparse stochastic block model with probability of
intra-edge a/n and inter-edge b/n.

The problem: if a,b →∞, then Wigner’s semi-circle law + BBP
phase transition but if a,b <∞ as n→∞, then Lifshitz tails.
The solution: the non-backtracking matrix on directed edges of
the graph: Bu→v ,v→w = 1({u, v} ∈ E)1({v ,w} ∈ E)1(u 6= w)
achieves optimal detection on the SBM.

THANK YOU!
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