Community detection with the non-backtracking operator

Marc Lelarge

INRIA-ENS

Aalto University, Helsinki, October 2016

《曰》 《聞》 《臣》 《臣》 三臣 …

Motivation

Community detection in social or biological networks in the sparse regime with a small average degree.

Adamic Glance '05

Performance analysis of spectral algorithms on a toy model (where the ground truth is known!).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Motivation

Community detection in social or biological networks in the sparse regime with a small average degree.

Adamic Glance '05

Performance analysis of spectral algorithms on a toy model (where the ground truth is known!).

A model: the stochastic block model

◆□ → ◆□ → ∢ Ξ → ∢ Ξ → ◆ □ →

A random graph model on *n* nodes with three parameters, $a, b, c \ge 0$.

A random graph model on n nodes with three parameters, $a, b, c \ge 0$.

Assign each vertex spin +1 or -1 uniformly at random.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A random graph model on n nodes with three parameters, $a, b, c \ge 0$.

- Independently for each pair (u, v):
 - if $\sigma_u = \sigma_v = +1$, draw the edge w.p. a/n.
 - if $\sigma_u \neq \sigma_v$, draw the edge w.p. b/n.
 - if $\sigma_u = \sigma_v = -1$, draw the edge w.p. c/n.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Reconstruct the underlying communities (i.e. spin configuration *σ*) based on one realization of the graph.
- Asymptotics: $n \to \infty$
- Sparse graph: the parameters *a*, *b*, *c* are fixed.
- notion of performance:
 - w.h.p. strictly less than half of the vertices are misclassified = positively correlated partition.

(日) (日) (日) (日) (日) (日) (日)

- Reconstruct the underlying communities (i.e. spin configuration *σ*) based on one realization of the graph.
- Asymptotics: $n \to \infty$
- Sparse graph: the parameters *a*, *b*, *c* are fixed.
- notion of performance:
 - w.h.p. strictly less than half of the vertices are misclassified = positively correlated partition.

(日) (日) (日) (日) (日) (日) (日)

- Reconstruct the underlying communities (i.e. spin configuration *σ*) based on one realization of the graph.
- Asymptotics: $n \to \infty$
- Sparse graph: the parameters *a*, *b*, *c* are fixed.
- notion of performance:
 - w.h.p. strictly less than half of the vertices are misclassified = positively correlated partition.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Reconstruct the underlying communities (i.e. spin configuration *σ*) based on one realization of the graph.
- Asymptotics: $n \to \infty$
- Sparse graph: the parameters *a*, *b*, *c* are fixed.
- notion of performance:
 - w.h.p. strictly less than half of the vertices are misclassified = positively correlated partition.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

A first attempt: looking at degrees

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

A first attempt: looking at degrees

Degree in community +1 is:
$$D_{+} \sim Bin\left(\frac{n}{2} - 1, \frac{a}{n}\right) + Bin\left(\frac{n}{2}, \frac{b}{n}\right)$$
We have
$$\mathbb{E}[D_{+}] \approx \frac{a+b}{2}, \text{ and } Var(D_{+}) \approx \frac{a+b}{2}.$$
and similarly, in community -1:
$$\mathbb{E}[D_{-}] \approx \frac{c+b}{2}, \text{ and } Var(D_{-}) \approx \frac{c+b}{2}.$$

Clustering based on degrees should 'work' as soon as:

$$(\mathbb{E}[D_+] - \mathbb{E}[D_-])^2 \succ \max(Var(D_+), Var(D_-))$$

i.e. (ignoring constant factors)

$$(a-c)^2 \succ b + \max(a,c).$$

A first attempt: looking at degrees

Degree in community +1 is:

$$D_+ \sim Bin\left(\frac{n}{2} - 1, \frac{a}{n}\right) + Bin\left(\frac{n}{2}, \frac{b}{n}\right)$$

 We have

$$\mathbb{E}[D_+] pprox rac{a+b}{2}, ext{ and } Var(D_+) pprox rac{a+b}{2}.$$

and similarly, in community -1:

$$\mathbb{E}[D_-] pprox rac{c+b}{2}, ext{ and } Var(D_-) pprox rac{c+b}{2}.$$

Clustering based on degrees should 'work' as soon as:

$$(\mathbb{E}[D_+] - \mathbb{E}[D_-])^2 \succ \max(Var(D_+), Var(D_-))$$

i.e. (ignoring constant factors)

$$(a-c)^2 \succ b + \max(a,c).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Data: *A* the adjacency matrix of the graph. We define the mean column for each community:

The variance of each entry is $\leq \max(a, b, c)/n$. Pretend the columns are i.i.d., spherical Gaussian and k = n...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Clustering a mixture of Gaussians

Consider a mixture of two spherical Gaussians in \mathbb{R}^n with respective means \mathbf{m}_1 and \mathbf{m}_2 and variance σ^2 . Pb: given *k* samples $\sim 1/2\mathcal{N}(\mathbf{m}_1, \sigma^2) + 1/2\mathcal{N}(\mathbf{m}_2, \sigma^2)$, recover the unknown parameters \mathbf{m}_1 , \mathbf{m}_2 and σ^2 .

Doing better than naive algorithm

If $\|\mathbf{m}_1 - \mathbf{m}_2\|^2 > n\sigma^2$, then the densities 'do not overlap' in \mathbb{R}^n .

Projection preserves variance σ^2 . So projecting onto the line formed by \mathbf{m}_1 and \mathbf{m}_2 gives 1-dim. Gaussian variables with no overlap as soon as $\|\mathbf{m}_1 - \mathbf{m}_2\|^2 \succ \sigma^2$. We gain a factor of *n*.

Doing better than naive algorithm

If $\|\mathbf{m}_1 - \mathbf{m}_2\|^2 > n\sigma^2$, then the densities 'do not overlap' in \mathbb{R}^n .

Projection preserves variance σ^2 . So projecting onto the line formed by \mathbf{m}_1 and \mathbf{m}_2 gives 1-dim. Gaussian variables with no overlap as soon as $\|\mathbf{m}_1 - \mathbf{m}_2\|^2 \succ \sigma^2$. We gain a factor of *n*.

Each sample is a column of the following matrix:

$$A = (\mathbf{A}_1, \mathbf{A}_2, \dots, \mathbf{A}_k) \in \mathbb{R}^{n \times k}$$

Consider the SVD of A:

$$\boldsymbol{A} = \sum_{i=1}^{n} \lambda_{i} \boldsymbol{\mathsf{u}}_{i} \boldsymbol{\mathsf{v}}_{i}^{\mathsf{T}}, \quad \boldsymbol{\mathsf{u}}_{i} \in \mathbb{R}^{n}, \, \boldsymbol{\mathsf{v}}_{i} \in \mathbb{R}^{k}, \, \lambda_{1} \geq \lambda_{2} \geq \dots$$

Then the best approximation for the direction $(\mathbf{m}_1, \mathbf{m}_2)$ given by the data is \mathbf{u}_1 .

Project the points from \mathbb{R}^n onto this line and then do clustering. Provided *k* is large enough, this 'works' as soon as: $\|\mathbf{m}_1 - \mathbf{m}_2\|^2 \succ \sigma^2$. Data: *A* the adjacency matrix of the graph. The mean columns for each community are:

$$A_{+} = \frac{1}{n} \begin{pmatrix} a \\ \vdots \\ a \\ b \\ \vdots \\ b \end{pmatrix} , \text{ and } A_{-} = \frac{1}{n} \begin{pmatrix} b \\ \vdots \\ b \\ c \\ \vdots \\ c \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

The variance of each entry is $\leq \max(a, b, c)/n$.

Heuristics for community detection

The naive algorithm should work as soon as

$$\|A_{+} - A_{-}\|^{2} \succ n \underbrace{\frac{\max(a, b, c)}{n}}_{Var}$$
$$(a-b)^{2} + (b-c)^{2} \succ n \max(a, b, c)$$

Spectral clustering should allow you a gain of n, i.e.

$$(a-b)^2+(b-c)^2 \succ \max(a,b,c)$$

Our previous analysis shows that clustering based on degrees works as soon as

$$(a-c)^2 \succ \max(a, b, c).$$

When a = c, no information given by the degrees a = c, a = c

Heuristics for community detection

The naive algorithm should work as soon as

$$\|A_{+} - A_{-}\|^{2} \succ n \underbrace{\frac{\max(a, b, c)}{n}}_{Var}$$
$$(a-b)^{2} + (b-c)^{2} \succ n \max(a, b, c)$$

Spectral clustering should allow you a gain of *n*, i.e.

$$(a-b)^2+(b-c)^2 \succ \max(a,b,c)$$

Our previous analysis shows that clustering based on degrees works as soon as

$$(a-c)^2 \succ \max(a, b, c).$$

When a = c, no information given by the degrees a = c, a = c

Heuristics for community detection

The naive algorithm should work as soon as

$$\|A_{+} - A_{-}\|^{2} \succ n \underbrace{\frac{\max(a, b, c)}{n}}_{Var}$$
$$(a-b)^{2} + (b-c)^{2} \succ n \max(a, b, c)$$

Spectral clustering should allow you a gain of *n*, i.e.

$$(a-b)^2+(b-c)^2 \succ \max(a,b,c)$$

Our previous analysis shows that clustering based on degrees works as soon as

$$(a-c)^2 \succ \max(a, b, c).$$

When a = c, no information given by the degrees, a = b = b

The sparse symmetric stochastic block model

A random graph model on *n* nodes with two parameters, $a, b \ge 0$.

- Independently for each pair (u, v):
 - if $\sigma_u = \sigma_v$, draw the edge w.p. a/n.
 - if $\sigma_u \neq \sigma_v$, draw the edge w.p. b/n.

(日) (日) (日) (日) (日) (日) (日)

Heuristic: spectral should work as soon as $(a - b)^2 > a + b$

The sparse symmetric stochastic block model

A random graph model on *n* nodes with two parameters, $a, b \ge 0$.

- Independently for each pair (u, v):
 - if $\sigma_u = \sigma_v$, draw the edge w.p. a/n.
 - if $\sigma_u \neq \sigma_v$, draw the edge w.p. b/n.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Heuristic: spectral should work as soon as $(a - b)^2 > a + b$

Boppana '87, Condon, Karp '01, Carson, Impagliazzo '01, McSherry '01, Kannan, Vempala, Vetta '04...

Theorem

Suppose that for sufficiently large K and K',

$$\frac{(a-b)^2}{a+b} \geq (\succ) \mathcal{K} + \mathcal{K}' \ln (a+b),$$

then 'trimming+spectral+greedy improvement' outputs a positively correlated (almost exact) partition w.h.p.

Coja-Oghlan '10

Heuristic based on analogy with mixture of Gaussians:

$$(a-b)^2 \succ a+b$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Another look at spectral algorithms

Take a finite, simple, non-oriented graph G = (V, E). Adjacency matrix : symmetric, indexed on vertices, for $u, v \in V$,

 $A_{uv}=1(\{u,v\}\in E).$

Low rank approximation of the adjacency matrix works as soon as

・ コット (雪) (小田) (コット 日)

$$(a-b)^2 \succ a+b$$

Take a finite, simple, non-oriented graph G = (V, E). Adjacency matrix : symmetric, indexed on vertices, for $u, v \in V$,

 $A_{uv}=1(\{u,v\}\in E).$

Low rank approximation of the adjacency matrix works as soon as

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

$$(a-b)^2 \succ a+b$$

Assume that $a \to \infty$, and $a - b \approx \sqrt{a + b}$ so that $a \sim b$.

$$A = \frac{a+b}{2} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} + \frac{a-b}{2} \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}} + A - \mathbb{E}[A]$$

 $\frac{a+b}{2}$ is the mean degree and degrees in the graph are very concentrated if $a \succ \ln n$. We can construct

$$A - \frac{a+b}{2n}J = \frac{a-b}{2}\frac{\sigma}{\sqrt{n}}\frac{\sigma^{T}}{\sqrt{n}} + A - \mathbb{E}[A]$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Assume that $a \to \infty$, and $a - b \approx \sqrt{a + b}$ so that $a \sim b$.

$$A = \frac{a+b}{2} \frac{1}{\sqrt{n}} \frac{1}{\sqrt{n}} + \frac{a-b}{2} \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}} + A - \mathbb{E}[A]$$

 $\frac{a+b}{2}$ is the mean degree and degrees in the graph are very concentrated if $a > \ln n$. We can construct

$$A - \frac{a+b}{2n}J = \frac{a-b}{2}\frac{\sigma}{\sqrt{n}}\frac{\sigma^{T}}{\sqrt{n}} + A - \mathbb{E}[A]$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Spectrum of the noise matrix

The matrix $A - \mathbb{E}[A]$ is a symmetric random matrix with independent centered entries having variance $\sim \frac{a}{n}$. To have convergence to the Wigner semicircle law, we need to normalize the variance to $\frac{1}{n}$.

$$\textit{ESD}\left(\frac{\textit{A}-\mathbb{E}[\textit{A}]}{\sqrt{a}}\right) \rightarrow \mu_{\textit{sc}}(\textit{x}) = \left\{ \begin{array}{ll} \frac{1}{2\pi}\sqrt{4-\textit{x}^2}, & \text{if } |\textit{x}| \leq 2; \\ 0, & \text{otherwise.} \end{array} \right.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

To sum up, we can construct:

$$M = \frac{1}{\sqrt{a}} \left(A - \frac{a+b}{2n} J \right)$$
$$= \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}} + \frac{A - \mathbb{E}[A]}{\sqrt{a}},$$

with $\theta = \frac{a-b}{\sqrt{2(a+b)}}$. We should be able to detect signal as soon as

$$\theta > 2 \Leftrightarrow \frac{(a-b)^2}{2(a+b)} > 4$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

To sum up, we can construct:

$$M = \frac{1}{\sqrt{a}} \left(A - \frac{a+b}{2n} J \right)$$
$$= \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}} + \frac{A - \mathbb{E}[A]}{\sqrt{a}},$$

with $\theta = \frac{a-b}{\sqrt{2(a+b)}}$. We should be able to detect signal as soon as

$$\theta > 2 \Leftrightarrow \frac{(a-b)^2}{2(a+b)} > 4$$

A lower bound on the spectral radius of $M = \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}} + W$:

$$\lambda_1(M) = \sup_{\|x\|=1} \|Mx\| \ge \|M\frac{\sigma}{\sqrt{n}}\|$$

But

$$\|M\frac{\sigma}{\sqrt{n}}\|^2 = \theta^2 + \|W\frac{\sigma}{\sqrt{n}}\|^2 + 2\langle W, \frac{\sigma}{\sqrt{n}}\rangle$$
$$\approx \theta^2 + \frac{1}{n}\sum_{i,j}W_{ij}^2$$
$$\approx \theta^2 + 1.$$

As a result, we get

 $\lambda_1(M) > 2 \Leftrightarrow \theta > 1 \Leftrightarrow (a-b)^2 > 2(a+b).$

A lower bound on the spectral radius of $M = \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^{T}}{\sqrt{n}} + W$:

$$\lambda_1(M) = \sup_{\|x\|=1} \|Mx\| \ge \|M\frac{\sigma}{\sqrt{n}}\|$$

But

$$\|\boldsymbol{M}\frac{\sigma}{\sqrt{n}}\|^2 = \theta^2 + \|\boldsymbol{W}\frac{\sigma}{\sqrt{n}}\|^2 + 2\langle \boldsymbol{W}, \frac{\sigma}{\sqrt{n}} \rangle$$
$$\approx \theta^2 + \frac{1}{n} \sum_{i,j} W_{ij}^2$$
$$\approx \theta^2 + 1.$$

As a result, we get

 $\lambda_1(M) > 2 \Leftrightarrow \theta > 1 \Leftrightarrow (a-b)^2 > 2(a+b).$

A lower bound on the spectral radius of $M = \theta \frac{\sigma}{\sqrt{n}} \frac{\sigma^T}{\sqrt{n}} + W$:

$$\lambda_1(M) = \sup_{\|x\|=1} \|Mx\| \ge \|M\frac{\sigma}{\sqrt{n}}\|$$

But

$$\|\boldsymbol{M}\frac{\sigma}{\sqrt{n}}\|^2 = \theta^2 + \|\boldsymbol{W}\frac{\sigma}{\sqrt{n}}\|^2 + 2\langle \boldsymbol{W}, \frac{\sigma}{\sqrt{n}} \rangle$$
$$\approx \theta^2 + \frac{1}{n} \sum_{i,j} \boldsymbol{W}_{ij}^2$$
$$\approx \theta^2 + 1.$$

As a result, we get

$$\lambda_1(M) > 2 \Leftrightarrow \theta > 1 \Leftrightarrow (a-b)^2 > 2(a+b).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ
Baik, Ben Arous, Péché phase transition

Rank one perturbation of a Wigner matrix:

$$\lambda_1(\theta\sigma\sigma^T + W) \stackrel{a.s}{\to} \begin{cases} \theta + \frac{1}{\theta} & \text{if } \theta > 1, \\ 2 & \text{otherwise.} \end{cases}$$

Let $\tilde{\sigma}$ be the eigenvector associated with $\lambda_1(\theta u u^T + W)$, then

$$|\langle \tilde{\sigma}, \sigma \rangle|^2 \stackrel{a.s}{\to} \left\{ \begin{array}{ll} 1 - \frac{1}{\theta^2} & ext{if } \theta > 1, \\ 0 & ext{otherwise.} \end{array} \right.$$

Watkin Nadal '94, Baik, Ben Arous, Péché '05 Newman, Rao '14 For SBM with $a, b \rightarrow \infty$

$$\theta^2 = \frac{(a-b)^2}{2(a+b)} > 1$$

Baik, Ben Arous, Péché phase transition

Rank one perturbation of a Wigner matrix:

$$\lambda_1(\theta\sigma\sigma^T + W) \stackrel{a.s}{\to} \begin{cases} \theta + \frac{1}{\theta} & \text{if } \theta > 1, \\ 2 & \text{otherwise.} \end{cases}$$

Let $\tilde{\sigma}$ be the eigenvector associated with $\lambda_1(\theta u u^T + W)$, then

$$|\langle \tilde{\sigma}, \sigma \rangle|^2 \stackrel{a.s}{\to} \left\{ \begin{array}{ll} 1 - \frac{1}{\theta^2} & ext{if } \theta > 1, \\ 0 & ext{otherwise.} \end{array} \right.$$

Watkin Nadal '94, Baik, Ben Arous, Péché '05 Newman, Rao '14 For SBM with $a, b \rightarrow \infty$,

$$\theta^2 = \frac{(a-b)^2}{2(a+b)} > 1$$

When $a, b \rightarrow \infty$ spectral is optimal

SBM with n = 2000, average degree 50 and $\frac{(a-b)^2}{2(a+b)} = 2$. Random matrix theory predicts $\lambda_1 = 51$, $\lambda_2 = 15$ and noise at $|\lambda_3| < 14.14$

Decreasing the average degree

SBM with n = 2000, average degree 10 and $\frac{(a-b)^2}{2(a+b)} = 2$. Random matrix theory predicts $\lambda_1 = 11$, $\lambda_2 = 6.7$ and noise at $|\lambda_3| < 6.3$

Problems when the average degree is small

SBM with n = 2000, average degree 3 and $\frac{(a-b)^2}{2(a+b)} = 2$. Random matrix theory predicts $\lambda_1 = 4$, $\lambda_2 = 3.67$ and noise at $|\lambda_3| < 3.46$

・ 《 鄙 》 《 臣 》 《 臣 》 (臣) のへ()・

■ High degree nodes: a star with degree *d* has eigenvalues $\{-\sqrt{d}, 0, \sqrt{d}\}$. In the regime where *a* and *b* are finite, the degrees are asymptotically Poisson with mean $\frac{a+b}{2}$. The adjacency matrix has $\Omega\left(\sqrt{\frac{\ln n}{\ln \ln n}}\right)$ eigenvalues.

Low degree nodes: instead of the adjacency matrix, take the (normalized) Laplacian but then isolated edges produce spurious eigenvalues.

- ロト・日本・日本・日本・日本・日本

- High degree nodes: a star with degree *d* has eigenvalues $\{-\sqrt{d}, 0, \sqrt{d}\}$. In the regime where *a* and *b* are finite, the degrees are asymptotically Poisson with mean $\frac{a+b}{2}$. The adjacency matrix has $\Omega\left(\sqrt{\frac{\ln n}{\ln \ln n}}\right)$ eigenvalues.
- Low degree nodes: instead of the adjacency matrix, take the (normalized) Laplacian but then isolated edges produce spurious eigenvalues.

シック・ 川 ・ 山 ・ 山 ・ ・ 山 ・ ・ 山 ・

Problems when the average degree is small

イロト イポト イヨト イヨト

Same graph after trimming.

Phase transition for
$$a, b = O(1)$$

$$\tau = \frac{(a-b)^2}{2(a+b)}$$

If $\tau > 1$, then positively correlated reconstruction is possible. If $\tau < 1$, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova '11 based on statistical physics arguments.

Non-reconstruction proved by Mossel, Neeman, Sly '12.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Reconstruction proved by Massoulié '13 and Mossel, Neeman, Sly '13.

Phase transition for
$$a, b = O(1)$$

$$\tau = \frac{(a-b)^2}{2(a+b)}$$

If $\tau > 1$, then positively correlated reconstruction is possible. If $\tau < 1$, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova '11 based on statistical physics arguments.

Non-reconstruction proved by Mossel, Neeman, Sly '12.

(日) (日) (日) (日) (日) (日) (日)

Reconstruction proved by Massoulié '13 and Mossel, Neeman, Sly '13.

Phase transition for
$$a, b = O(1)$$

$$\tau = \frac{(a-b)^2}{2(a+b)}$$

If $\tau > 1$, then positively correlated reconstruction is possible. If $\tau < 1$, then positively correlated reconstruction is impossible.

Conjectured by Decelle, Krzakala, Moore, Zdeborova '11 based on statistical physics arguments.

- Non-reconstruction proved by Mossel, Neeman, Sly '12.
- Reconstruction proved by Massoulié '13 and Mossel, Neeman, Sly '13.

Regularization through the non-backtracking matrix

Let $\vec{E} = \{u \rightarrow v; \{u, v\} \in E\}$ be the set of oriented edges. $m = |\vec{E}|$ is twice the number of unoriented edges. The non-backtracking matrix is an $m \times m$ matrix defined by

$$B_{u \to v, v \to w} = \mathbf{1}(\{u, v\} \in E)\mathbf{1}(\{v, w\} \in E)\mathbf{1}(u \neq w)$$

B is NOT symmetric: $B^T \neq B$. We denote its eigenvalues by $\lambda_1, \lambda_2, \ldots$ with $\lambda_1 \geq \cdots \geq |\lambda_m|$. Proposed by Krzakala et al. '13. Let *D* the diagonal matrix with $D_{vv} = \deg(v)$. We have $det(z - B) = (z^2 - 1)^{|E| - |V|} det(z^2 - Az + D - Id)$ If *G* is *d*-regular, then D = dId and, $\sigma(B) = \{\pm 1\} \cup \{\lambda : \lambda^2 - \lambda\mu + (d - 1) = 0 \text{ with } \mu \in \sigma(A)\}.$

Let *D* the diagonal matrix with $D_{vv} = \deg(v)$. We have $det(z - B) = (z^2 - 1)^{|E| - |V|} det(z^2 - Az + D - Id)$ If *G* is *d*-regular, then D = dId and, $\sigma(B) = (\pm 1) + \int (z^2 - b) u + (d - 1) = 0$ with $u \in \sigma(A)$

$$\sigma(B) = \{\pm 1\} \cup \left\{ \lambda : \lambda^2 - \lambda \mu + (d-1) = 0 \text{ with } \mu \in \sigma(A) \right\}$$

For a *d*-regular graph, $\lambda_1 = d - 1$,

- ★ Alon-Boppana bound : $\max_{k\neq 1} \Re(\lambda_k) \ge \sqrt{\lambda_1} o(1)$.
- $\star\,$ Ramanujan (non bipartite) : $|\lambda_2|=\sqrt{\lambda_1}$
- * Friedman's thm : $|\lambda_2| \le \sqrt{\lambda_1} + o(1)$ if *G* random uniform.

Simulation for Erdős-Rényi Graph

Eigenvalues of *B* for an Erdős-Rényi graph $G(n, \lambda/n)$ with n = 500 and $\lambda = 4$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Eigenvalues of *B*:
$$\lambda_1 \ge |\lambda_2| \ge \ldots$$

Let $\lambda > 1$ and G with distribution $G(n, \lambda/n)$. With high probability,

$$\lambda_1 = \lambda + o(1)$$

 $|\lambda_2| \leq \sqrt{\lambda} + o(1).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Bordenave, Lelarge, Massoulié '15

Simulation for Stochastic Block Model

Eigenvalues of *B* for a Stochastic Block Model with n = 2000, mean degree $\frac{a+b}{2} = 3$ and $\frac{a-b}{2} = 2.45$

Stochastic Block Model

Eigenvalues of *B*:
$$\lambda_1 \ge |\lambda_2| \ge \ldots$$

Theorem

Let G be a Stochastic Block Model with parameters a, b. If $(a-b)^2 > 2(a+b)$, then with high probability,

$$\lambda_1 = \frac{a+b}{2} + o(1)$$

$$\lambda_2 = \frac{a-b}{2} + o(1)$$

$$\lambda_3| \leq \sqrt{\frac{a+b}{2}} + o(1)$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Bordenave, Lelarge, Massoulié '15

Test with real benchmarks

If you can't get it right on this network, then go home.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Test with real benchmarks

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The Power Law Shop

The non-backtracking matrix on real data

from Krzakala, Moore, Mossel, Neeman, Sly, Zdeborovà '13

イロト イポト イヨト イヨト

-

Back to political blogging network data

Consider the case where there is a small community of size *pn* with p < 1/2, then the SNR is given by $d(1-b)^2$ where *d* is the average degree.

Phase diagram with $p^* = \frac{1}{2} - \frac{1}{2\sqrt{3}}$. Lelarge, Caltagirone & Miolane, '16 For the labeled stochastic block model, we also conjecture a phase transition. We have partial results and an optimal spectral algorithm.

・ コット (雪) (小田) (コット 日)

Saade, Krzakala, Lelarge, Zdeborovà, '15,'16

The non-backtracking matrix is also working for the degree-corrected SBM.

ongoing work with Gulikers and Massoulié.

We can adapt the non-backtracking matrix to deal with small cliques.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

ongoing work with Caltagirone.

SBM with no noise b = 0 but with overlap.

Spectrum of the non-backtracking operator with n = 1200, sn = 400 and a = 9 and 13. The circle has radius $\sqrt{a(2-3s)}$ in each case.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Kaufmann, Bonald, Lelarge '16

Non-backtracking vs adjacency

On the sparse stochastic block model with probability of intra-edge a/n and inter-edge b/n.

The problem: if $a, b \to \infty$, then Wigner's semi-circle law + BBP phase transition but if $a, b < \infty$ as $n \to \infty$, then Lifshitz tails. The solution: the non-backtracking matrix on directed edges of the graph: $B_{u \to v, v \to w} = 1(\{u, v\} \in E)1(\{v, w\} \in E)1(u \neq w)$ achieves optimal detection on the SBM.

THANK YOU!

Non-backtracking vs adjacency

On the sparse stochastic block model with probability of intra-edge a/n and inter-edge b/n.

The problem: if $a, b \to \infty$, then Wigner's semi-circle law + BBP phase transition but if $a, b < \infty$ as $n \to \infty$, then Lifshitz tails. The solution: the non-backtracking matrix on directed edges of the graph: $B_{u \to v, v \to w} = 1(\{u, v\} \in E)1(\{v, w\} \in E)1(u \neq w)$ achieves optimal detection on the SBM.

THANK YOU!