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We study how local constraints enforce global regularities

This is a common phenomenon is sciences. For example,

formation of crystals:

Atoms attach to each other in a limited number of ways

=⇒ periodic arrangement of the atoms



Our goal is to understand fundamental underlying

principles that connect local rules to the global regularities

observed in the structures.

Our setup: multidimensional symbolic dynamics (=tilings)



Configurations are infinite d-dimensional grids of symbols.



For a fixed finite shape D, we observe the D-patterns in the

configuration.
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For a fixed finite shape D, we observe the D-patterns in the

configuration.



A quantity to measure local complexity: the pattern

complexity

P (c,D) = # of D-patterns in c.



If this quantity is small, for some D, global regularities ensue.

The relevant low complexity threshold:

P (c,D) ≤ |D|



Global regularity of interest is periodicity: Configuration is

periodic if it is invariant under a non-zero translation.



Open problem 1: Nivat’s conjecture

Consider d = 2 and rectangular D.

Conjecture (Nivat 1997) If P (c,D) ≤ |D| for some rectangle

D then c is periodic.



Open problem 1: Nivat’s conjecture

Consider d = 2 and rectangular D.

Conjecture (Nivat 1997) If P (c,D) ≤ |D| for some rectangle

D then c is periodic.

This would extend the one-dimensional case d = 1:

Morse-Hedlund theorem: Let c ∈ AZ and n ∈ N. If c has at

most n distinct subwords of length n then c is periodic.



Best known bound in 2D:

Theorem (Cyr, Kra): If P (c,D) ≤ 1
2 |D| for some rectangle D

then c is periodic.

Case of narrow rectangles:

Theorem (Cyr, Kra): If D is a rectangle of height at most 3

and P (c,D) ≤ |D| then c is periodic.
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In 3D and higher dimensional cases the conjecture is false

Non-periodic c

D is n× n× n cube

P (c,D) = 1 + n2 + n2 < n3 = |D| for large n.



We can prove an asymptotic version in 2D:

Theorem (Kari, Szabados): If P (c,D) ≤ |D| for infinitely

many different size rectangles D then c is periodic.



We can prove an asymptotic version in 2D:

Theorem (Kari, Szabados): If P (c,D) ≤ |D| for infinitely

many different size rectangles D then c is periodic.

Or stated as contrapositive: If c is not periodic then

P (c,D) > |D| for all sufficiently large rectangles D.
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Interpret C as the binary configuration c with

c(i) = ∗ ⇐⇒ i ∈ C.
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(−T )-patterns of c contain exactly one symbol ∗.

P (c,−T ) = | − T |

(Also P (c, T ) = |T | as any tiling for T is also a tiling for −T .)
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If X is the set of all tilings by T then

P (X,T ) = |T |

where P (X,T ) is the number of T -patterns in c ∈ X.

Set X is a low complexity subshift of finite type (SFT).



Periodic tiling problem (Lagarias and Wang 1996): If T

admits a tiling C, does it necessarily admit a periodic tiling ?



Periodic tiling problem (Lagarias and Wang 1996): If T

admits a tiling C, does it necessarily admit a periodic tiling ?

Known results:

• Yes if |T | is a prime number (Szegedy 1998).

• Yes in 2D

– if T is 4-connected (Beauquier and Nivat 1991),

– in general (Bhattacharya 2016).



Both the Nivat’s conjecture and the Periodic tiling

problem concern periodicity under complexity constraint

P (c,D) ≤ |D|.

We are interested in analogous questions generally.

• Algorithmic question: given at most |D| patterns of

shape D, does there exist a configuration with only these

given D-patterns ? (=emptyness problem of a given low

complexity subshift of finite type)

• Periodicity: If there exists a configuration whose

D-patterns are among the given ≤ |D| ones, does there

necessarily exist such a configuration that is periodic ?



We study configurations using algebra, so we first replace

symbols by integers:
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• If P (c,D) < |D| then there is an (integer) vector orthogonal

to all D-patterns of c.

Indeed: the number P (c,D) of distinct vectors is less than the

dimension |D| of the linear space.
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21 1 1 1 1 11 2 2 2 2 2 1

121 1 1 1 1 12 2 2 2 2 1

• If P (c,D) < |D| then there is an (integer) vector orthogonal

to all D-patterns of c.

• Even if P (c,D) = |D| we can add a suitable rational

constant to c to make the vectors linearly dependent. Also

then an orthogonal vector exists.

This is OK: we are free to choose the numerical encoding.
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The orthogonal vector is a filter whose convolution with c is the

zero configuration. We say it annihilates configuration c.



1 1 1 1 11 1 12 2 2 2 2 2

1 1 1 1 1 11 1 12 2 2 2 2

1 1 1 1 1 11 12 2 2 2 2 2

1 1 1 1 1 112 2 2 2 2 2 1

21 1 1 1 1 11 2 2 2 2 2 1

121 1 1 1 1 12 2 2 2 2 1

Conclusion: If P (c,D) ≤ |D| then symbols can be represented

as integers in such a way that some non-trivial integer filter

annihilates c.



To use algebraic geometry, we next represent c as a power

series (negative exponents included).

1 1 12 2

1 1 12 2

1 1 12 2

1 1 12 2

1 1 12 2

c←→
∑

(i1,...,id)∈Zd

c(i1, . . . , id)x
i1
1 . . . xid

d



To use algebraic geometry, we next represent c as a power

series (negative exponents included).

x y00 2x y01 x y02x y0-1
2x y0-2

x y11 2x y12
x y1-2 x y10

2x y1-1

x y22
2x y2-3 x y2-3 x y21

2x y20

x y-1-1 2x y-10 x y-11x y-1-2 2x y-12

x y-2-2 2x y-2-1 x y-20
x y-222x y-21

c←→
∑

(i1,...,id)∈Zd

c(i1, . . . , id)x
i1
1 . . . xid

d



To use algebraic geometry, we next represent c as a power

series (negative exponents included).

x y00 2x y01 x y02x y0-1
2x y0-2

x y11 2x y12
x y1-2 x y10

2x y1-1

x y22
2x y2-3 x y2-3 x y21

2x y20

x y-1-1 2x y-10 x y-11x y-1-2 2x y-12

x y-2-2 2x y-2-1 x y-20
x y-222x y-21

+ + + +

+ + + +

+ + + +

+ + + +

+ + + +

...+ +...

+...

+...

+...

+...

...+

...+

...+

...+

c←→
∑

(i1,...,id)∈Zd

c(i1, . . . , id)x
i1
1 . . . xid

d



c←→
∑

(i1,...,id)∈Zd

c(i1, . . . , id)x
i1
1 . . . xid

d

Notations:

• X = (x1, . . . , xd)

• For I = (i1, . . . , id) ∈ Z
d we denote by

XI = xi1
1 . . . xid

d

the monomial that represents cell I.
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(i1,...,id)∈Zd

c(i1, . . . , id)x
i1
1 . . . xid

d =
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c(X)

Notations:

• X = (x1, . . . , xd)

• For I = (i1, . . . , id) ∈ Z
d we denote by

XI = xi1
1 . . . xid

d

the monomial that represents cell I.



c(X) =
∑

I∈Zd

c(I)XI

The configuration is now a power series c(X) that is

• integral (=all coefficients are integers), and

• finitary (=finite number of distinct coefficients)



c(X) =
∑

I∈Zd

c(I)XI

Multiplying c(X) by monomial XJ gives translation by J ∈ Z
d:

XJ · c(X) =
∑

I∈Zd

c(I)XI+J

So c(X) is J-periodic if and only if XJ · c(X) = c(X), i.e.,

(XJ − 1)c(X) = 0



c(X) =
∑

I∈Zd

c(I)XI

Multiplying c(X) by a (Laurent) polynomial f(X) is a

convolution, corresponding to filtering operation.

We say that f(X) annihilates c(X) if f(X)c(X) = 0.



c(X) =
∑

I∈Zd

c(I)XI

• Zero polynomial f(X) = 0 annihilates every configuration –

it is the trivial annihilator.

• Binomial XI − 1 annihilates c(X) if and only if c(X) is

I-periodic.

• Annihilators of c(X) form an ideal:

– if f(X) and g(X) annihilate c(X), also f(X) + g(X)

annihilates it,

– if f(X) annihilates c(X) then also g(X)f(X) annihilates

it, for all g(X).



Define

Ann(c) = {f(X) ∈ C[X] | f(X)c(X) = 0}.

This is the polynomial ideal that contains all annihilators of c.



Define

Ann(c) = {f(X) ∈ C[X] | f(X)c(X) = 0}.

This is the polynomial ideal that contains all annihilators of c.

Remarks:

• We consider polynomials (not Laurent polynomials!) so that

we can directly rely on polynomial algebra. No problem:

any Laurent polynomial annihilator can be made into a

proper polynomial annihilator by multiplying it with

suitable monomial XI .

• We allow complex coefficients because we need algebraicly

closed field to apply Hilbert’s Nullstellensatz.

• Ann(c) is indeed an ideal of the polynomial ring C[X].



Ann(c) = {f(X) ∈ C[X] | f(X)c(X) = 0}

Our setup (=low complexity configuration) is an integral,

finitary c(X) that has some non-trivial integral annihilator

f(X) ∈ Ann(c) ∩ Z[X]



Ann(c) = {f(X) ∈ C[X] | f(X)c(X) = 0}

Plugging in numbers for variables: For any

Z = (z1, . . . , zd) ∈ C
d

we can compute the value f(Z) ∈ C of any polynomial

f(X) ∈ C[X].



Ann(c) = {f(X) ∈ C[X] | f(X)c(X) = 0}

To prove that Ann(c) contains “simple” polynomials we use

Nullstellensatz (Hilbert): Let g(X) be a polynomial.

Suppose that g(Z) = 0 for all Z in the variety

{Z ∈ C
d | f(Z) = 0 for all f ∈ Ann(c) }.

Then gk ∈ Ann(c) for some k ∈ N.



c(X) a finitary, integral power series

f(X) =
∑

I∈I

aIX
I its non-trivial integral annihilator polynomial

(aI 6= 0 for all I ∈ I)

Lemma: f(Xn) ∈ Ann(c) for every n ∈ N whose prime factors

are sufficiently large.
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c(X) a finitary, integral power series

f(X) =
∑

I∈I

aIX
I its non-trivial integral annihilator polynomial

(aI 6= 0 for all I ∈ I)

Lemma: f(Xn) ∈ Ann(c) for every n ∈ N whose prime factors

are sufficiently large.

Proof: a direct application of

f(X)p ≡ f(Xp) (mod pZ[X])

for prime factors p of n.



c(X) a finitary, integral power series

f(X) =
∑

I∈I

aIX
I its non-trivial integral annihilator polynomial

(aI 6= 0 for all I ∈ I)

Lemma: f(Xn) ∈ Ann(c) for every n ∈ N whose prime factors

are sufficiently large.

In particular, f(X1+iM ) are in Ann(c) for i = 0, 1, 2, . . . , where

M is the product of all small primes.



Let Z ∈ Cd be a common zero of Ann(c). Then
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Let Z ∈ Cd be a common zero of Ann(c). Then

f(Z1+iM ) = 0 for all i = 0, 1, 2, . . .

Then (proof omitted) g(Z) = 0 for

g(X) = X1
∏

I,J∈I
I 6=J

(XMI −XMJ).

Here:

• M is the constant from the Lemma (product of small

primes).

• I ⊆ Z
d is the support of polynomial f(X).



So all elements of the variety

{Z ∈ C
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are zeros of the polynomial
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So all elements of the variety

{Z ∈ C
d | f(Z) = 0 for all f ∈ Ann(c) }

are zeros of the polynomial

g(X) = X1
∏

I,J∈I
I 6=J

(XMI −XMJ).

Nullstellensatz =⇒ g(X)n ∈ Ann(c) for some n ∈ N.

Dividing g(X)n by a suitable monomial gives:

Theorem. Finitary, integral c(X) that has a non-trivial

annihilator is annihilated by a Laurent polynomial of the form

(1−XI1)(1−XI2) . . . (1−XIk).



Annihilator: (1−XI1)(1−XI2) . . . (1−XIk)

Binomials (1−XI) correspond to difference operators that

subtract from a configuration its own I-translation.

The theorem states that configuration c(X) can be annihilated

by a sequence of difference operations.



Annihilator: (1−XI1)(1−XI2) . . . (1−XIk)

Binomials (1−XI) correspond to difference operators that

subtract from a configuration its own I-translation.

The theorem states that configuration c(X) can be annihilated

by a sequence of difference operations.

If k = 1 then c(X) is periodic.

More generally, we can prove that c(X) is a sum of k (possibly

non-finitary) integral configurations that are periodic.

Corollary. c(X) = c1(X) + · · ·+ ck(X) where ci(X) is

Ii-periodic and integral (but not necessarily finitary).



Example. The 3D counter example

to Nivat’s conjecture is a sum of two periodic configurations. It

is annihilated by polynomial (1− y)(1− x).



Our approach to Nivat’s conjecture.

Suppose P (c,D) ≤ |D| for some rectangle D.

Then c has annihilating polynomial

f(X) = (1−XI1) . . . (1−XIk).

Take the one with smallest k.

If k = 1 then c is periodic, so assume that k ≥ 2.



Our approach to Nivat’s conjecture.

Suppose P (c,D) ≤ |D| for some rectangle D.

Then c has annihilating polynomial

f(X) = (1−XI1) . . . (1−XIk).

Take the one with smallest k.

If k = 1 then c is periodic, so assume that k ≥ 2.

Denote δi(X) = (1−XIi) and φi(X) = f(X)/δi(X).

Then φi(X)c(X) is annihilated by δi(X) so it is Ii-periodic. It is

not doubly periodic (since otherwise k could be reduced).



Viewing c(X) using filter φ1(X):

Non-periodic sequence of stripes in the direction I1.



Viewing c(X) using filter φ1(X):

W.l.g. the stripes are not horizontal

=⇒ at least X stripes are visible in every X × Y rectangle

=⇒ more than X different X × Y blocks in φ1(X)c(X)

(due to the one-dimensional Morse-Hedlund theorem)



Viewing c(X) using filter φ2(X):

Non-periodic sequence of stripes in a different direction I2.



Viewing c(X) using filter φ2(X):

Analogously: stripes not vertical =⇒ more than Y different

X × Y blocks in φ2(X)c(X).



Pick any X × Y pattern from φ1(X)c(X). . .



. . . and any X × Y pattern from φ2(X)c(X).



Directions I1 and I2 are different



Directions I1 and I2 are different

so both patterns can be seen (more or less) in the same position.



Directions I1 and I2 are different

so both patterns can be seen (more or less) in the same position.

=⇒ more than XY distinct pairs of patterns in same positions



For some constant r (=radius of filters φ1 and φ2), each

(X + 2r)× (Y + 2r) block of c(X) uniquely determines the

corresponding X × Y blocks in φ1(X)c(X) and φ2(X)c(X).

=⇒ c(X) has at least XY patterns of size (X + 2r)× (Y + 2r).



We get that

lim inf
D

P (c,D)

|D|
≥ 1.



We get that

lim inf
D

P (c,D)

|D|
≥ 1.

This can be improved further to:

Theorem. If c is a non-periodic 2D configuration then

P (c,D) ≤ |D| can hold only for finitely many rectangles D.



Theorem. If c is a non-periodic 2D configuration then

P (c,D) ≤ |D| can hold only for finitely many rectangles D.

Questions:

• What can one say for other shapes than rectangles ?

Perhaps an analogous result for convex shapes ?

• Can one use the periodic decomposition to address the

periodic tiling problem ? What about other low complexity

subshifts of finite type ?

• The original Nivat’s problem is still open. . .

Thank You
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