Some remarks on the Cassinian metric

Parisa Hariri

parisa.hariri@utu.fi

University of Turku

CHIFIN2016 February 9, 2016, Aalto University

Contents of the talk

- Definitions
- Inequalities between the Cassinian and other metrics
- A formula for $s_{\mathbb{B}^2}$

This talk is based on joint paper, with

• R. Klén, M. Vuorinen, X. Zhang.

We are interested in metrics (in subdomains of \mathbb{R}^n), which behave like the hyperbolic metric in the case n = 2. We

- study "Cassinian metric" which was introduced by Z. Ibragimov in [I].
- compare it with different hyperbolic type metrics
- study particular case of triangular ratio metric in the unit disc.

Turun yliopisto University of Turk Let G be a proper subdomain of \mathbb{R}^n , $n \ge 2$. The triangular ratio metric in G for $x, y \in G$ is defined by

$$s_G(x, y) = \sup_{z \in \partial G} \frac{|x - y|}{|x - z| + |z - y|} \in [0, 1].$$

Turun yliopisto University of Turki Let *G* be a proper subdomain of \mathbb{R}^n , $n \ge 2$. The Cassinian metric in *G* for $x, y \in G$ is defined by

$$c_G(x, y) = \sup_{z \in \partial G} \frac{|x - y|}{|x - z||z - y|}$$

Turun yliopisto University of Turk

Definitions III

The distance ratio metric j_G for $x, y \in G$ is defined as

$$j_G(x, y) = \log\left(1 + \frac{|x-y|}{\min\{d(x), d(y)\}}\right),$$

where $d(x) = d(x, \partial G)$ is the Euclidean distance from x to ∂G .

Turun yliopisto University of Turk

Inequalities between the Cassinian and other metrics I

Lemma

(1) The function $f(x) = x^{-1} \log(1+x)$ is decreasing on (0, ∞). (2) Let a > 0. The function $g(x) = \frac{\log ax}{a - \frac{1}{x}}$ is increasing on $(0, \infty)$.

> Turun yliopisto University of Turki

Inequalities between the Cassinian and other metrics II

(3) The function

$$h(x) = \frac{\log \frac{1+x}{1-x}}{\frac{1}{1-x} - \frac{1}{1+x}}$$

is decreasing on (0, 1). (4) Let $x \in (0, 1)$. The function

$$f(b) = \frac{\log\left(1 + \frac{b}{1-x}\right)}{\log\left(1 + \frac{b}{(1-x)(b+1-x)}\right)},$$

is increasing on (0, 2).

Parisa Hariri Some remarks on the Cassinian metric

Turun vliopisti

Inequalities between the Cassinian and other metrics III

Theorem

For all $x, y \in \mathbb{B}^n$ we have

$$j_{\mathbb{B}^n}(x,y) \leq a \log(1 + c_{\mathbb{B}^n}(x,y)),$$

where

$$a = \frac{\log\left(\frac{1+\alpha}{1-\alpha}\right)}{\log\left(\frac{1+2\alpha-\alpha^2}{(1-\alpha^2)}\right)} \approx 1.3152$$

and $\alpha \in (0, 1)$ is the solution of the equation

$$(1+t^2)\log \frac{1+t}{1-t} + (t^2-2t-1)\log \frac{1+2t-t^2}{1-t^2} = 0.$$

Turun yliopisto University of Turku

Inequalities between the Cassinian and other metrics IV

For a domain $G \subsetneq \mathbb{R}^n$ we define the quantity

$$\hat{c}_G(x,y) = \frac{|x-y|}{|x-z||z-y|},$$

where $x, y \in G \subsetneq \mathbb{R}^n$ and

 $z \in \partial G \cap S^{n-1}(x, d(x))$ s.t |z - y| is minimal, if $d(x) \le d(y)$, $z \in \partial G \cap S^{n-1}(y, d(y))$ s.t |z - x| is minimal, if d(y) < d(x).

Clearly for all domains *G* and for all points $x, y \in G$ there holds $\hat{c}_G(x, y) \leq c_G(x, y)$.

Turun yliopisto University of Turku

Inequalities between the Cassinian and other metrics V

Theorem

For all $x, y \in \mathbb{B}^n$ we have

$$j_{\mathbb{B}^n}(x,y) \leq \hat{c}_{\mathbb{B}^n}(x,y).$$

Moreover, the right hand side cannot be replaced with $\lambda \hat{c}_{\mathbb{B}^n}(x, y)$ for any $\lambda \in (0, 1)$.

Inequalities between the Cassinian and other metrics VI

Corollary

For all $x, y \in \mathbb{B}^n$ we have

$$j_{\mathbb{B}^n}(x,y) \leq c_{\mathbb{B}^n}(x,y).$$

Moreover, the right hand side cannot be replaced with $\lambda c_{\mathbb{B}^n}(x, y)$ for any $\lambda \in (0, 1)$.

Theorem

Let $a = \alpha + i\beta$, $\alpha, \beta > 0$, be a point in the unit disk. If |a - 1/2| > 1/2, then $s_{\mathbb{R}^2}(a, \bar{a}) = |a|$ and otherwise

$$s_{\mathbb{B}^2}(a,ar{a})=rac{eta}{\sqrt{(1-lpha)^2+eta^2}}.$$

Proof. From the definition of the triangular ratio metric it follows that

$$s_{\mathbb{B}^2}(a, \bar{a}) = rac{|a - \bar{a}|}{|a - z| + |\bar{a} - z|} = rac{2 \operatorname{Im}(a)}{|a - z| + |\bar{a} - z|}$$

Turun yliopisto University of Turki

A formula for $s_{\mathbb{B}^2}$ II

For $y = a, x = \bar{a}$

Turun yliopisto University of Turku for some point z = u + iv. In order to find z we consider the ellipse

$$E(c) = \{w : |a - w| + |\bar{a} - w| = c\}$$

and require that (1) $E(c) \subset \overline{\mathbb{B}}^2$, (2) $E(c) \cap \partial \mathbb{B}^2 \neq \emptyset$ and the *x*- coordinate of the point of contact of E(c) and the unit circle is unique. Both requirements (1) and (2) can be met for a suitable choice of *c*. The major and minor semiaxes of the ellipse are c/2 and $\sqrt{(c/2)^2 - \beta^2}$, respectively. The point of contact can be obtained by solving the system

> Turun yliopisto University of Turku

A formula for $s_{\mathbb{B}^2}$ IV

$$\begin{cases} x^2 + y^2 = 1\\ \frac{(x-\alpha)^2}{(c/2)^2 - \beta^2} + \frac{y^2}{(c/2)^2} = 1. \end{cases}$$

Solving this system yields a quadratic equation for *x* with the discriminant

$$D = 64(c^2 - 4\beta^2)(\alpha^2 c^2 + \beta^2(c^2 - 4)).$$

The uniqueness requirement for x requires that D = 0and hence

$$c=rac{2eta}{\sqrt{lpha^2+eta^2}}.$$

In this case

A formula for $s_{\mathbb{B}^2}$ V

$$x=\frac{1}{32\beta^2}8\alpha c^2=\frac{\alpha}{\alpha^2+\beta^2}$$

Consider first the case when $\frac{\alpha}{\alpha^2+\beta^2} = 1$. These points define the circle |w - 1/2| = 1/2 and we have $\frac{\alpha}{\alpha^2+\beta^2} > 1$ if and only if |w - 1/2| < 1/2. In the case $\frac{\alpha}{\alpha^2+\beta^2} > 1$ the contact point is z = (1, 0), by symmetry, whereas in the case $\frac{\alpha}{\alpha^2+\beta^2} < 1$ the point is

$$z = (x, \sqrt{1-x^2}) = \left(\frac{\alpha}{\alpha^2 + \beta^2}, \frac{\sqrt{(\alpha^2 + \beta^2)^2 - \alpha^2}}{\alpha^2 + \beta^2}\right)$$

We now compute the focal sum c in both cases

Turun yliopisto University of Turk

$$\begin{cases} c = \frac{2\beta}{\sqrt{\alpha^2 + \beta^2}} = \frac{2 \operatorname{Im} a}{|a|}, & \text{if } |a - 1/2| \ge 1/2, \\ c = 2|a - (1, 0)| = 2\sqrt{\beta^2 + (1 - \alpha)^2}, & \text{if } |a - 1/2| \le 1/2. \end{cases}$$

Finally we see that

$$s_{\mathbb{B}^2}(a, \bar{a}) = rac{|a - \bar{a}|}{c} = |a|, \quad ext{if } |a - 1/2| \ge 1/2,$$

otherwise

$$s_{\mathbb{B}^2}(a,\bar{a}) = \frac{|a-\bar{a}|}{c} = \frac{\beta}{\sqrt{\beta^2 + (1-\alpha)^2}} = \frac{\mathrm{Im}\,a}{\sqrt{(1-\mathrm{Re}\,(a))^2 + (\mathrm{Im}\,(a))^2}}$$

Theorem

Let $x, y \in \mathbb{B}^n$ with |x| = |y| and $z \in \partial \mathbb{B}^n$ such that |y-z| < |x-z| and

$$\measuredangle(y,z,0)=\measuredangle(0,z,x)=\gamma.$$

Then $\cos \gamma = (|x - z| + |y - z|)/2$ and hence |y - z| < 1. Moreover, 0, *x*, *y*, *z* are concyclic.

Corollary

Let $D \subset \mathbb{B}^n$ be a domain and let $x, -x \in D$. Then

 $s_D(x,-x) \geq |x|.$

Lemma

Let B_1 be a disk with center (1/2, 0) and radius 1/2 and $x, y \in B_1$. Then

$$s_{\mathbb{B}^2}(x,y) \ge \frac{|x-y|}{\sqrt{1-|x|^2}+\sqrt{1-|y|^2}}$$

Here equality holds for $x, y \in \partial B_1$, |x| = |y|.

Lemma

Let
$$x, y \in \mathbb{B}^n$$
, $x \neq \pm y$ and $z = (x + y)/|x + y| \in \partial \mathbb{B}^n$. Let $x_1, y_1 \in \partial B^2((x + y)/2, |x - y|/2)$ be points with $|x_1 - y_1| = |x - y|$ and $|x_1| = |y_1|$. Then $x_1, y_1 \in \mathbb{B}^n$ and

$$|x-z|+|y-z| \le |x_1-z|+|y_1-z| = \sqrt{4+2(|x|^2+|y|^2)-4|x+y|}$$

and

$$|x-z||y-z| \le |x_1-z||y_1-z| = 1 + \frac{|x|^2 + |y|^2}{2} - |x+y|.$$

Turun yliopisto University of Turku

A formula for $S_{\mathbb{B}^2}$ XI

Theorem

Let $x, y \in \mathbb{B}^n$, $x \neq \pm y$ and $z = (x + y)/|x + y| \in \partial \mathbb{B}^n$. Let $x_1, y_1 \in \partial B^2((x + y)/2, |x - y|/2)$ be points with $|x_1 - y_1| = |x - y|$ and $|x_1| = |y_1|$. Then

$$s_{\mathbb{B}^{n}}(x,y) \geq s_{\mathbb{B}^{n}}(x_{1},y_{1}) = \frac{|x-y|}{\sqrt{4+2(|x|^{2}+|y|^{2})-4|x+y|}}$$
$$= \frac{|x-y|}{\sqrt{|x-y|^{2}+(2-|x+y|)^{2}}}$$

and

$$c_{\mathbb{B}^n}(x,y) \ge c_{\mathbb{B}^n}(x_1,y_1) = \frac{|x-y|}{1+\frac{|x|^2+|y|^2}{2}-|x+y|}.$$

University of Turk

Theorem

Let $x \in (0, 1)$, $y \in \mathbb{B}^2 \setminus \{0\}$, Im $y \ge 0$, with |y| = |x| and denote $\omega = \measuredangle(x, 0, y)$. Then the supremum in (**??**) is attained at $z = e^{i\theta}$ for

$$\boldsymbol{\theta} = \begin{cases} \frac{\omega}{2}, & \text{if } \sin \frac{\pi - \omega}{2} \ge |\boldsymbol{x}|, \\ \frac{\omega - \pi}{2} + \arcsin \frac{\sin \frac{\pi - \omega}{2}}{|\boldsymbol{x}|}, & \text{if } \sin \frac{\pi - \omega}{2} < |\boldsymbol{x}|. \end{cases}$$

Theorem

Suppose that *D* is a subdomain of \mathbb{B}^n . Then for $x, y \in D$ we have

$$2s_D(x,y) \le c_D(x,y).$$

In the case $D = \mathbb{B}^n$, the constant 2 in the left-hand side is best possible.

Proof.

By a simple geometric observation we see that

$$\inf_{w \in \partial \mathbb{B}^n} |x - w| |w - y| \le 1.$$
 (1)

In fact, for given $x, y \in \mathbb{B}^n$, let $x', y' \in \mathbb{B}^n$ be the points such that y' - x' = y - x and y' = -x'. Then the size of the maximal Cassinian oval C(x, y) with foci x, y which is contained in the closed unit ball is not greater than that of the maximal Cassinian oval C(x', y') with foci x', y', see the Figure 2.

> Turun yliopisto University of Turki

Main Result III

Figure : The maximal Cassinian oval C(x, y) is not larger than the maximal Cassinian oval C(x', y').

This implies that

$$\inf_{w \in \partial \mathbb{B}^n} |x - w| |w - y| \le \inf_{w \in \partial \mathbb{B}^n} |x' - w| |w - y'|$$
$$= 1 - \left(\frac{|x - y|}{2}\right)^2 \le 1.$$

Therefore, for $x, y \in D \subset \mathbb{B}^n$, we have that

$$\inf_{w \in \partial D} |x - w| |w - y| \le \inf_{w \in \partial \mathbb{B}^n} |x - w| |w - y| \le 1.$$
(2)

For $x = y \in D$, the desired inequality is trivial. For $x, y \in D$ with $x \neq y$, it follows from the inequality of

Turun yliopisto University of Turku arithmetic and geometric means and the inequality (2) that

$$\frac{c_D(x,y)}{2s_D(x,y)} = \frac{\inf_{\substack{w \in \partial D}} (|x-w|+|w-y|)}{2\inf_{\substack{w \in \partial D}} (|x-w||w-y|)}$$
$$\geq \frac{\inf_{\substack{w \in \partial D}} \sqrt{|x-w||w-y|}}{\inf_{\substack{w \in \partial D}} (|x-w||w-y|)}$$
$$= \frac{\sqrt{\inf_{\substack{w \in \partial D}} (|x-w||w-y|)}}{\inf_{\substack{w \in \partial D}} (|x-w||w-y|)}$$
$$\geq 1.$$

Turun yliopisto University of Turki

For the sharpness of the constant in the case of the unit ball, let $y = -x \rightarrow 0$. It is easy to see that both the inequality of arithmetic and geometric means and the inequality (1) will asymptotically become equalities. This completes the proof. \Box

Corollary

Let $D \subset \mathbb{R}^n$ be a bounded domain. Then, for $x, y \in D$,

$$c_D(x,y) \ge \frac{2}{\sqrt{n/(2n+2)}} diam(D) s_D(x,y).$$

References

- P. Hariri, R. Klén, M. Vuorinen, and X. Zhang: Some remarks on the Cassinian metric.- arXiv: 1504.01923 [math.CA] 11pp.
- Z. Ibragimov: The Cassinian metric of a domain in $\overline{\mathbb{R}}^n$. Uzbek Math. Journal, 1 (2009), 53–67.
- Z. Ibragimov, M. R. Mohapatra, S. K. Sahoo, and X.-H. Zhang: Geometry of the Cassinian metric and its inner metric. arXiv:1412.4035v2 [math.MG], 12pp.
- R. Klén, M. R. Mohapatra, and S. K. Sahoo: Geometric properties of the Cassinian metric. arXiv:1511.01298 [math.MG], 16pp.

