Introduction to MATLAB HOMEWORK 1/Accumulating savings with the fixed balance strategy

You make an investment of I = 500 EUR every 6 months. The investments are balanced between bonds and stocks so that the goal is to keep the bond-stock balance close to $\beta - (1 - \beta)$ (proportion β stocks, $1 - \beta$ bonds). How do your savings accumulate in 20 years with this strategy? Give some statistics (mean, deviance).

Make the following assumptions about the markets and your saving procedure:

• Let time t be discretized to 6 month time steps,

$$0 = t_0, t_1, t_2, \ldots$$

Discretize your savings in stocks as, and in bonds,

$$s = s_0, s_1, \ldots, b = b_0, b_1, \ldots,$$

correspondingly.

• Six month market movement. The value of your previous (upto time t_{i-1}) stock investment at time $t = t_i$ is

$$p_s s_{i-1},$$

where $p_s \sim N(\mu_s, \sigma_s^2)$ is random,

$$\mu_s = 1.04, \quad \sigma_s = 0.15.$$

Similarly, the value at time t_i for the previous bond investment is

$$p_b b_{i-1}, \quad p_b \sim N(\mu_b, \sigma_b^2), \quad \mu_s = 1.02, \quad \sigma_b = 0.02.$$

• Investment decision. At time t_i the entire investment I is done either to stocks or to bonds, depending in which way the balance will be closer to the desired bond-stock balance β , i.e., either

$$\begin{cases} s_i = p_s s_{i-1} + I \\ b_i = p_b b_{i-1}, \end{cases} \quad \text{or,} \quad \begin{cases} s_i = p_s s_{i-1} \\ b_i = p_b b_{i-1} + I. \end{cases}$$

Programming

• Write a function investmentrealization.m with which you can calculate one realization of the evolution of the investment

$$t\mapsto s(t), \ t\mapsto b(t), \ t\mapsto s(t)+b(t), \ t\in [0,20].$$

- Write m-file that calls investmentrealization, say 10000 times, and computes the statistics (mean, deviance) for the final bond and stock investment values. Variate β .
- Visualize you calculations.

Extra question (not obligatory):

How do the mean and the deviance change when β increases? What is the optimal β if you ask that your probability to lose money at the end (final value is less than 40×500 EUR) has to be at most 5%? Here, optimal means maximal mean.