Maple Tutorial

to accompany
Partial Differential Equations: Analytical and Numerical Methods, 2nd edition
by Mark S. Gockenbach
(SIAM, 2010)

VY Introduction

In this introduction, | will explain the organization of this tutorial and give some
basic information about Maple and Maple worksheets. | will also give a preliminary
introduction to the capabilities of Maple.

V¥ About this tutorial

The purpose of this document is to explain the features of Maple that are useful
for applying the techniques presented in my textbook. This really is a tutorial
(not a reference), meant to be read and used in parallel with the textbook. For
this reason, | have structured the tutorial to have the same chapter and section
titles as the book. However, the purpose of the sections of this document is not
to re-explain the material in the text; rather, it is to present the capabilities of
Maple as they are needed by someone studying the text.

Therefore, for example, in Section 2.1 (Heat flow in a bar; Fourier's Law), | do not
explain any physics or modeling (the physics and modeling are in the text).
Instead, | explain the Maple command for integration, because Section 2.1 is the
first place in the text where the student is asked to integrate a function.
Because of this style of organization, some parts of the text have no counterpart
in this tutorial. For example, there is no Chapter 7, because by the time you
have worked through the first six chapters of the tutorial, you have learned all
the capabilities of Maple that you need to address the material in Chapter 7 of
the text. For the same reason, you will see that some individual sections are
missing; Chapter 5, for example, begins with Section 5.2.

| should point out that my purpose in writing this tutorial is not to show you
how to solve the problems in the text; rather, it is to give you the tools to solve
them. Therefore, | do not give you a worked-out example of every problem
type---if | did, your "studying" could degenerate to simply looking for an
example, copying it, and making a few changes. At crucial points, | do provide
some complete examples, since | see no other way to illustrate the power of
Maple than in context. However, there is still plenty for you to figure out for

_yourself.

Y About Maple

At the heart of Maple is a computer algebra system, that is, a system for doing

algebraic manipulations symbolically (and therefore exactly). However, Maple

also incorporates numerics, graphics, and text processing. Itis also a

programming environment. We will touch on all of these capabilities in this
tutorial.

¥ Maple worksheets

This document you are reading is called a Maple worksheet; it combines text
with Maple commands and their results, including graphics. (Here | assume that
you are reading this file in Maple, not as a printed document. If you are reading
a printed copy, you will have to ignore a few comments about how worksheets
are manipulated.) It consists of both text and Maple input and output, organized
in paragraphs. The input and output occur in execution groups, which | will
explain below. The most important thing to understand about a worksheet is
that it is interactive---at any time you can execute a Maple command and see
what it does. This makes a Maple worksheet a tremendous learning
environment: when you read an explanation of a Maple command, you can
_immediately try it out.

V¥ Getting help with Maple commands

Help on Maple commands is always available through the help menu. You can
also get help at the Maple prompt by using the "?" operator. | will explain this
_below.

V¥ Getting started with Maple

As mentioned above, Maple has many capabilities, such as the fact that one can
write programs made up of Maple commands. The simplest way to use Maple,
though, is as an interactive computing environment---essentially, a very fancy
graphing calculator. You enter a command and Maple executes it and returns
the result. Here is an example:

> 2+2;
|: 4 (1.5.1)

The ">" symbol is the Maple prompt; when the cursor is at the prompt, a Maple
command can be entered and executed. A command can occupy several lines,
and is terminated by a semicolon. The command is executed when you enter
the semicolon followed by return or enter. Return by itself just takes you to the
next line; the command will not be executed if it is not terminated by a semicolon.
If you wish to enter a Maple command, and the prompt is not present, you can
select "Execution Group" from the "Insert" menu, and a prompt will appear. (You
can choose to put the prompt below or above the current cursor position.) Like

many Maple worksheet commands, there are shortcuts for these commands.
Control-j insert an execution group below the current cursor position, while
control-k inserts one above the cursor.

When Maple finishes a command, it displays the output on the next line,
centered in the worksheet.

Now that you know how to enter commands and see the results, let's quickly go
over some of the most basic capabilities of Maple. First of all, Maple can do
arithmetic with integers and rational numbers, regardless of the number of
digits involved.

[> 123745
1111040818513195628591079058717645191855915321226802182362\ (1.5.2)
9073199866111001242743283966127048043

(> 115/ 39+727/ 119:
42038

4641

(1.5.3)

Maple knows the standard elementary functions, such as the trigonometric
functions, logarithms, and exponentials, the square root function, and so forth.
It also knows the constant p. Consider the following calculation:

> sin(Pi/l4);
;JTT (1.5.4)

There are several important things to learn from this example. First of all, the
constant p is typed with the first letter capitalized. A common mistake is to
forget to capitalize Pi, in which case Maple regards "pi" as an arbitrary symbol
rather than a known constant:

> sin(pi/4);
sin(i rcj (1.5.5)

(Notice how Maple did not evaluate sin(pi/4), since it does not know the value of
"pi".)

Another thing to learn from the preceding example is that Maple knows that the
J2
2
handheld calculator might. Now consider the following computations of the

square root of 2.

sine of p/4 is exactly ; it does not return an estimate like 0.70710678, as a

_> sqrt(2);
J2 (1.5.6)

> sqrt(2.0);

1.414213562 (1.5.7)

The previous two examples show that Maple will return a symbolic output when
the input is symbolic, and a numeric output when the input is numeric. If an
explicit number contains a decimal point, it is regarded as numeric. Maple will
not replace symbolic quantities with numeric ones unless specifically told to do
so (below I will explain how to get a numeric result when desired). Here is
another example:

> sin(Pi/4.0);
sin(0.2500000000 =) (1.5.8)

Notice that the combination of the symbolic quantity Pi and the numeric
guantity 4.0 is partially simplified (1/4.0 is replaced by 0.2500000000), but Pi is

7z

not evaluated numerically. Also, the sine is not evaluated as R since Maple

does not regard 0.2500000000 as exactly equal to 1/4.
Here are a few more examples:

[> (100- 9) *(100+9) ;
9919 (1.5.9)
(> (-5+sqrt(502-4*1%4))/ 2;
-1 (1.5.10)
(> (-1)7245% (- 1) +4;
0 (1.5.11)

You should notice that the "*" symbol is used to indicate an exponent, "*" for
multiplication, and "/" for division.

An important feature of Maple is that you can refer to the previous output using
the "%" symbol (which Maple calls the "ditto" operator):

[> 4272
1764 (1.5.12)

> 06 20;
1744 (1.5.13)

You can also use "%%" to refer to the next-to-last output, and "%%%" to refer to

the second-to-last output. You cannot go any further back than this, however,.
If you expect to need a certain result later in your Maple session, then you
should assign it to a variable:

_> a.: =23;
a:=23 (1.5.14)

> at2+2*a-1;
574 (1.5.15)

Alternatively, you can refer to previous results by the equation number
automatically assigned by Maple. For instance, the last output was assigned
number (1.5.15). To enter this in an expression, type control-L, followed by the
number:

> (1.5.15)°
329476 (1.5.16)

Important note: the assignment operator is ":=", not just "=". The equals sign by
itself is used to represent equations, as explained below. A common mistake is
to use "=" when you should use ":="!

You will often wish to obtain a numeric value from a symbolic quantity. Maple
provides the evalf function for this purpose:

> eval f(Pi);
3.141592654 (1.5.17)

By default, all numeric computation is performed with 10 decimal digits. The
evalf function will give a more precise result if desired; the form "evalf[n](x)"
yields n digits of the decimal expansion of x:

> eval f[30] (Pi);
3.14159265358979323846264338328 (1.5.18)

You can also reset the default number of digits used in numeric computations
by changing the constant "Digits":
> Di gits;

10 (1.5.19)

[> Digits: =100;
Digits:= 100 (1.5.20)

[> eval f(Pi):
3.14159265358979323846264338327950288419716939937510582097\ (1.5.21)

4944592307816406286208998628034825342117068

> sqrt(2.0);
1.41421356237309504880168872420969807856967187537694807317\ (1.5.22)

6679737990732478462107038850387534327641573

| will reset Digits to 10 for this tutorial:

> Digits: =10;
Digits:= 10 (1.5.23)

Saving a worksheet

When you prepare a homework solution in Maple, or do some other work that
you want to save for later reference, you must save the contents of the
worksheet. The first time you save the document, go to the "File" menu, select
the "Save As" option, and then enter a file name ending in ".mws". For example,
"hwl.mws" would be a reasonable name for your first homework assignment.
Thereafter, whenever you make changes to the worksheet, use the "Save" option
under the "File" menu. As you work on your worksheet, you should frequently
save it, so that, if something goes wrong, you will never lose much work.

As you work your way through this tutorial, you will want to stop at times and
come back to it later. At those times, you will have to decide if you wish to save
the changes you have made or not. You may wish to save the tutorial with your
modifications under a different name, so that you keep a clean copy of the
original tutorial.

Here is an important point about Maple worksheets: When you open an existing
worksheet, the Maple kernel (the part of Maple that actually executes user
commands) is not aware of any commands that appear in the worksheet. In
particular, any variables that are initialized in the worksheet do not actually
have values unless you cause the kernel to execute the commands appearing in
the worksheet. For example, above | gave variable a the value of 23. If you were
now to create an execution group (using control-j, for instance) and enter the
variable name a, Maple would return the name 'a’, not the value 23. If you want
the kernel to be initialized, you must cause it to happen in one of two ways.
First of all, you can execute the commands one-by-one. To do this, simply put
the cursor on the first command line and press enter. The kernel will execute
the first command and the cursor will automatically go to the next command
line (skipping any intervening text). You can then press enter repeatedly until
you come to the point in the tutorial at which you wish to continue.

Alternatively, you can cause Maple to execute every command in the notebook
by choosing "Execute" and then "Worksheet" from the "Edit" menu. The kernel
will execute each command, beginning with the first. This is very convenient if,
for example, you are working on homework in a worksheet and you wish to pick
up where you left off. However, it may not be very useful for working with this

tutorial; if you have not finished the tutorial, then you probably do not want to
execute the commands that come after the point you have currently reached.

Y Chapter 1: Classification of differential equations

Maple allows us to define functions and compute their derivatives symbolically.
Using these capabilities, it is usually straightforward to verify that a given function
Is a solution to a differential equation.

¥ Example

Suppose you wish to verify that

u(t) =e
is a solution to the ODE
% —au=0
First define the function u:
|:> u: =t - >exp(a*t);
u:=t—et! (2.1.1)

As the above example shows, a function is defined in the form of a mapping.
The syntax

t->exp(a*t)
states that the input variable t is mapped to the output value exp(a*t). (Also
notice from this example that the natural exponential function e*is denoted "exp

(x)").

Having defined the function, | can now manipuate it in various ways: evaluate it,
differentiate it, etc. The function is evaluated in the expected way:

[> s e?3 (2.1.2)

The expected result is e?. Where did the number 23 come from? In fact, | have
intentionally illustrated a common mistake. Earlier in the worksheet, | defined
the variable a to have the value 23. Now | want to use a as an indeterminate
parameter. It is necessary to clear the value of the variable before reusing it.
Failure to clear the values of variables is a common source of errors in using

Maple!

Here is the value of a:

> a;
23 (2.1.3)

The value of a variable is cleared by assigning to the variable its own name:

> a:="a';
a:=a (2.1.4)

| can now use the variable as an indeterminate parameter:
> a;

a (2.1.5)
In fact, | can now use the function u in the expected way, without redefining it:
> u(l);

e? (2.1.6)

This example illustrates an important feature of function definitions in Maple:
When you define a function, Maple holds the definition as you give it (without
trying to simplify it or evaluate any of the parameters in the expression defining
the function). When you wish to evaluate the function, Maple uses the current
value of any parameters in the function definition.

Another way to clear the value of a parameter is using the unassign command,
which is convenient because you can use it to clear several variables at once.
Here is an example:

_> x:=1;
x:=1 (2.1.7)
> y:=2;
yi=2 (2.1.8)
;> unassign('x',"'y');
> X;
X (2.1.9)
- .
y (2.1.10)

It is good practice to clear the values of any parameters before you use them, in

case they have previously been assigned values. For example, here is how |
would define the function u:

|:> unassign('t',"a');
> u: =t->exp(a*t);
u:=t—ed! (2.1.11)

There is no harm in clearing a variable that does not have a value, and this
practice will eliminate certain errors that are difficult to find.

Now | want to get back to the example. | want to determine if

u(t) = e

is a solution of the differential equation

du
— —au=0.
Tt au

The diff command computes derivatives symbolically:

> diff(u(t),t)-a*u(t);
0 (2.1.12)

Since the result is zero, the given function u is a solution of the differential
equation.

The syntax for the diff command should be clear: "diff(expr,var)" differentiates
the expression "expr" with respect to the variable "var". Here are some more
examples:

[> di ff(x"3, x):
3 X (2.1.13)

[> di ff(x73*y~2,y);
2Xy (2.1.14)

As the previous example shows, diff can compute partial derivatives as well as
ordinary derivatives. Consider the following function of two variables:

[> unassign('x','y',"a");

> wW =(X,y)->sin(y-a*x);
w:= (X, y)—sin(y—ax) (2.1.15)

We have

[> di ff(W(x,y),x)+a*di ff(Wx, y),y);
0 (2.1.16)

This shows that w is a solution of the PDE

o o

0x oy

Is the same function a solution of the PDE

Pu_pou
X a)?

To determine this, we must know how to compute higher order derivatives. One
way is by simply iterating the diff command. For example, here is the second
derivative of w(x,y) with respect to x:

=07?

2

[> di ff(diff(Wx,y),x),X);

sin(-y+ax) a (2.12.17)
However, there is a simpler way to obtain the same result:
> diff(wx,y), X, X);

sin(-y+ax) a (2.1.18)

An alternate way to compute higher-order derivatives uses the "$" operator.
The following command computes the fifth-order derivative of w(x,y) with
respect to x twice and y three times:

> diff(wx,y), x$2, y$3);
cos(-y+ax) a° (2.1.19)

So here is the answer to the previous question: We have

> diff(wx,y), x$2)-ar2*di ff(wx,y), y$2);
0 (2.1.20)

Since the result is zero, w also solves the above second-order PDE.

V¥ More about functions and derivatives

It is important to understand the difference between an expression and a
function. In the previous example, w(x,y) is an expression (in the variables x and

y), while w itself is a function (of two variables). The diff command manipulates
expressions, and it is not necessary to define a function to use it.

On the other hand, if | have defined a function, | cannot pass it directly to diff; |
must evaluate it to form an expression. Here is the wrong way to do it:

;> unassi gn(' x');
> f:=x->x*sin(x);
f:=x—xsin(x) (2.2.1)

> diff(f,x):

0 (2.2.2)

The result is zero because the variable "x" does not appear in the expression "f".

Here is the correct use of diff:

Fdnufuym;
sin(x) + x cos(x) (2.2.3)

The derivative of the function f is another function, and Maple can compute this
other function directly using the D operator. Here is the derivative of f:

> D(f);
|: X—sin(x) + xcos(x) (2.2.4)

Notice how the derivative of f is displayed as a mapping. This is because the
derivative of f is a function, not an expression. On the other hand, | can evaluate
the derivative function to get an expression:

> D(f)(x);
|: sin(x) + x cos(x) (2.2.5)

Partial derivatives can also be computed using the D operator. For example,
consider the following function:

|:> unassign('x',"'y"');
> W =(X,Y)->XNFyN ATy N2,
wi= (X, y)—>x4 y4 +X); (2.2.6)

Here is the partial derivative of w with respect to the first input variable (which
was called "x" above):

> D 1] (W) ;
(X, Y) =4 X Y +) (2.2.7)

Here is the partial derivative of w with respect to the second input variable:

> D 2] (W) ;
(x, y)—4 x4y3 +2Xxy (2.2.8)

To compute higher-order partial derivatives, the indices of the variables can be
listed in the brackets. For example, here is the second partial derivative with
respect to y twice:

> D 2,2](wW;
(x, y)>12x Y +2x (2.2.9)

To differentiate repeatedly with respect to a given variable, use the "k$n"
notation (thus D[1$4](f) computes the fourth partial derivative with respect to
the first independent variable). Here is another way to give the previous
command:
> D[2$2](w);

(x,y)—12 x4)}+2x (2.2.10)

The following command computes
Pw
X0y’
(x,) >288X° y (2.2.11)

If you have not already done so, now is a good time to try out the help facilities.
You might start by entering "?diff" and then "?D" to compare the two
differentiation commands.

[> D[1$2, 2$31(W);

Y Chapter 2: Models in one dimension

V Section 2.1: Heat flow in a bar; Fourier's Law

Maple can compute both indefinite and definite integrals. The command for
computing an indefinite integral (that is, an antiderivative) is exactly analogous
to that for computing a derivative:

|:> unassi gn(' x");
> int(sin(x),Xx);
-COS(X) (3.1.1)

As this example shows, Maple does not add the "constant of integration”. It
simply returns one antiderivative (when possible). If the integrand is too

complicated, the integral is returned unevaluated:

> int(exp(cos(x)), X);
Jecos(x) dx (3.1.2)

(Recall from calculus that some elementary functions do not have
antiderivatives that can be expressed in terms of elementary functions.)

To compute a definite integral such as

1
J sin(x) dx,
0

we must specify the interval of integration along with the integrand and the
variable of integration. Maple has a special notation for specifying an interval or
a range of values:

> int(sin(x),x=0..1);
1 —cos(1) (3.1.3)

(Notice thatint, like diff, operates on expressions, not functions.)

Maple has an "inert" version of the int command, which represents an integral as
an expression without trying to evaluate it:

> I nt(exp(cos(x)),x=0..1);
1
eCOS(X 1y (3.1.4)

The inert version, Int, is useful for evaluating integrals numerically (that is,
approximately) when you do not want Maple to first try to find a symbolic result:

> eval f (I nt(exp(cos(x)),x=0..1));
2.341574842 (3.1.5)

As this example shows, the combination of evalf and Int is useful for integrating
functions for which no elementary antiderivative exists. (One could use intin
place of Intin the previous example, but then Maple would waste time in first
trying to find a symbolic result.)

As an example, | will use the commands for integration and differentiation to
test Theorem 2.1 from the text. The theorem states that (under certain
conditions)

o (“ @ oF
——(JFRJO®J=J-—%&VNW
ox | J, 0x

C
Here is a specific instance of the theorem:
;> unassign('x',"'y"');
> F.=(X,Yy)->X*yr3+x"2*y;

F:=(x, y)—»x;ﬁ +x2y (3.1.6)

;> unassign('c',"'d");
> diff(int(F(x,y),y=c..d), x);

1 4 1 4 2 _

4d4 4c-l—x(d ¢) (3.1.7)
> int (di ff(F(x,y),x),y=c..d):

id“—ic4+x(d2—c2) (3.1.8)

The two results are equal, as expected.

V¥ Solving simple BVPs by integration

Consider the following BVP

-l—= |=1+x0<xx<1,
(dxz)

u(0) =0,u(l1) =0.
The solution can be found by two integrations (cf. Example 2.2 in the text).
Remember, as | mentioned above, Maple does not add a constant of integration,
so | do it explicitly. (I begin by clearing the variables | am going to use, in case |
assigned values to any of them earlier.)
|:> unassign('x','u ,"'Cl',"'C2");

Here is the first integration:
(> i nt(-(1+x), x) +CL;

—x—%xz-i-Cl (3.2.1)
And here is the second integration:

(> int(%, x) + C2

{ —%xz—%x3+C1x+C2 (3.2.2)

(Recall that the % symbol represents the last output.)

Now | have a common situation: | have an expression, and | would like to turn it
into a function. Maple has a special function, called unapply, for doing this:

> u: =unappl y(% x) ;
u;:xa—%xz—%x3+C1X+C2 (3.2.3)

Unapply takes an expression and one or more independent variables, and
creates the functions mapping the variable(s) to the expression.

Here is another example of the use ofunapply:

> f:=unappl y(x*y”"2, X, Vy);
] fi=(x, y)—>X); (3.2.4)
(> £(2,3):

18 (3.2.5)

Returning to the BVP, | will now solve for the constants, using the Maple solve
command:

> sol s: =sol ve({u(0)=0,u(1)=0}, {C1, C2});

sols:= | C1 = % c2-0 (3.2.6)

The general form of the solve command is "solve(eqgns,vars)", where eqns is an
equation or a set of equations, and vars is an unknown or a set of unknowns.
Notice that the equations are formed using the equals sign (whereas assignment
uses the ":=" sign).

The above result has no effect on the values of C1 and C2; in particular, they do
not now have the values 2/3 and 0, respectively:
> C1,;

C1 (3.2.7)

> C2;
c2 (3.2.8)

| can cause Maple to make the assignment using the assign command:

;> assi gn(sol s);

> Cl1;
2
— 3.2.9
5 (3:2.9)
- o
0 (3.2.10)
> u(x);
1 xz 1 3 2
- =X —=X 4+ =X 3.2.11
2 6 3 ()
| now have the solution to the BVP. | will check it:
> _di ff(u(x),x$2);
1+x (3.2.12)
(> u(0);
0 (3.2.13)
B u(l);
0 (3.2.14)

Both the differential equation and the boundary conditions are satisfied.

As another example, | will solve a BVP with a nonconstant coefficient:

d x\ du)
((1+2)dx)—0,0<x,x<1,

u(0) =20, u(l) = 25.

Integrating once yields

ax 100 =
1+ =

2

(It is easier to do this in my head than to type anything into Maple.) Integrating

a second time yields

;> unassign('Cl','C2',"'x");
> int(CLl/ (1+x/2), x) +C2;
2 Cl 1n(1 + % x) +C2 (3.2.15)

> u: =unappl y(% x) ;
(3.2.16)

{ u:=x—2CI ln(l +%x) +C2 (3.2.16)

Now | solve for the constants of integration:

[> sol ve({u(0)=20, u(1)=25},{CL, C2}):
5
Cl=—2>2—— C2=20 3.2.17
2n(2)] N
2
:> assign(9 ;
> u(x);
1
5In|1+ =x
(32)+20 (3.2.18)
i 11’1(5)
Check:
(> _di ff((1+x/2)*di ff(u(x),x),x):
0 (3.2.19)
(> u(0):
20 (3.2.20)
B u(l);
25 (3.2.21)

Thus u is the desired solution.

V¥ Simple plots

One of the most useful features of Maple is its ability to draw many kinds of
graphs. Here | will show how to produce the graph of a function of one variable.
The command is called plot, and we simply give it the expression to graph, the
independent variable, and the interval. The following command produces the
graph of the previous solution:

[> pl ot (u(x), x=0..1);

257

247

237

227

214

oo
0 0.2 0.4 0.6 0.8 1

The plot command has various options; for example, you can add a title to a
plot:

> plot(u(x),x=0..1,title="Solution to a BVP");

Solution to a BVP
257

247

231

227

214

20_ T T T T T T v I i 1
0 0.2 0.4 0.6 0.8 1

You can also increase the thickness of the curve using the "thickness=n" option.
The default is n=0, and n must be an integer between 0 and 15.

> pl ot (u(x),x=0..1,thi ckness=3);

257

247

237

227

217

20- T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1
X

For more details about options to a plot, see ?plot[options].

Using the plot command, you can graph several functions in the same figure by
listing the expressions in curly brackets. For example, suppose | wish to
compare the solution computed above to the solution of

2
—M:O,O<x,x<1,

dx’
V(0) =20, V(1) = 25.

The solution is

> v =xX->20+5*x;
vi=x—-20+5x (3.3.1)

Here is a graph of the two solutions:

> plot ({u(x),v(x)},x=0..1,title="The solutions to two rel ated
BVPs", t hi ckness=3);

The solutions to two related BVPs
257

247

231

227

214

20_ T T T T T T v I i 1
0 0.2 0.4 0.6 0.8 1

It is frequently useful to compare two functions by plotting their difference:

> plot(u(x)-v(x),x=0..1,title="The difference between the two
sol utions", thi ckness=3);

The difference between the two solutions
0.25 1

0.20'_
0.15 -
0.10'_

0.05'.

0 0.2 0.4 0.6 0.8 1

¥V A common mistake

Consider the following attempt to graph a function:

;> unassign(' x');
> f:=x->sin(pi*x);
f:=x—sin(nx) (3.3.1.1)

> pl ot (f(x),x=0..1);

0.5

0.2 0.4 0.6 0.8 1

-0.51

_1-

Why did the curve not appear on the graph? The reason is that I did not
define fcorrectly, and so Maple cannot evaluate the function:

> f(1.0);
|: sin(1.0m) (3.3.1.2)

The problem is that | typed in "sin(pi*x)" rather than "sin(Pi*x)." The symbol
"pi" is not defined and therefore Maple does not know its value.

Here is the correct command:

> f:=x->sin(Pi*x);
f:=x—sin(nx) (3.3.1.3)

> plot(f(x),x=0..1);

0.81

0.6

0.4 1

0.2

0 . ' . ' . ' . ' .
0 0.2 0.4 0.6 0.8 1

A common mistake is to try to graph an expression that contains an
indeterminant parameter.

Y Chapter 3: Essential linear algebra

V¥ Section 3.1: Linear systems as linear operator equations

Maple will manipulate matrices and vectors, and perform the usual
computations of linear algebra. Both symbolic and numeric (that is, floating
point) computations are supported. In order to take advantage of these
capabilities, you must load the LinearAlgebra package by giving the following
command:

[> wi t h(Li near Al gebr a) ;

[&x, Add, Adjoint, BackwardSubstitute, BandMatrix, Basis, BezoutMatrix, (4.1.1)
BidiagonalForm, BilinearForm, CARE, CharacteristicMatrix,
CharacteristicPolynomial, Column, ColumnDimension,

ColumnOperation, ColumnSpace, CompanionMatrix,
ConditionNumber, ConstantMatrix, ConstantVector, Copy,
CreatePermutation, CrossProduct, DARE, DeleteColumn, DeleteRow,

Determinant, Diagonal, DiagonalMatrix, Dimension, Dimensions,

DotProduct, EigenConditionNumbers, Eigenvalues, Eigenvectors, Equal,
ForwardSubstitute, FrobeniusForm, GaussianElimination,
GenerateEquations, GenerateMatrix, Generic, GetResultDataType,
GetResultShape, GivensRotationMatrix, GramSchmidt, HankelMatrix,
HermiteForm, HermitianTranspose, HessenbergForm, HilbertMatrix,
HouseholderMatrix, IdentityMatrix, IntersectionBasis, IsDefinite,
IsOrthogonal, IsSimilar, IsUnitary, JordanBlockMatrix, JordanForm,
KroneckerProduct, LA_Main, LUDecomposition, LeastSquares,
LinearSolve, LyapunovSolve, Map, MapZ2, MatrixAdd,
MatrixExponential, MatrixFunction, MatrixInverse,
MatrixMatrixMultiply, MatrixNorm, MatrixPower,
MatrixScalarMultiply, MatrixVectorMultiply, MinimalPolynomial,
Minor, Modular, Multiply, NoUserValue, Norm, Normalize, NullSpace,
OuterProductMatrix, Permanent, Pivot, PopovForm, QRDecomposition,
RandomMatrix, RandomVector, Rank, RationalCanonicalForm,
ReducedRowEchelonForm, Row, RowDimension, RowOperation,
RowSpace, ScalarMatrix, ScalarMultiply, ScalarVector, SchurForm,
SingularValues, SmithForm, StronglyConnectedBlocks, SubMatrix,
SubVector, SumBasis, SylvesterMatrix, SylvesterSolve, ToeplitzMatrix,
Trace, Transpose, TridiagonalForm, UnitVector, VandermondeMatrix,
VectorAdd, VectorAngle, VectorMatrixMultiply, VectorNorm,
VectorScalarMultiply, ZeroMatrix, ZeroVector, Zip]

Whenever you load a package using the with command, Maple echos the names
of all command defined by the package. (As with other Maple output, you can
suppress this output by ending the with command with a colon instead of a
semicolon.)

For example, here is the command for defining a vector:

> x:=Vector([1,0,-3]);

(4.1.2)

Having defined a vector, | can access its components using square brackets:

> X[2];
0 (4.1.3)

A matrix is specified as a list of row vectors, using the Matrix command:

[> A =Matrix([[1,2, 3],[456],[7 8, 91):
123

Ai=|4 5 6 (4.1.4)
789

(Notice the double square brackets; the input is a list of row vectors, each of
which is a list of numbers.)

You can compute the transpose of a matrix:

> Tr anspose(A);
1 4 7

258 (4.1.5)
369

You can also extract the entries of the matrix:
> A1, 3];
3 (4.1.6)

> Al 3, 3];
9 (4.1.7)

Matrix-vector and matrix-matrix multiplication are indicated by the "." (dot)
operator:

> A X
-8
-14 (4.1.8)
-20
=> A A
(4.1.9)

30 36 42
66 81 96 (4.1.9)
102 126 150

Of course, you can only multiply two matrices if their sizes are compatible:

(> B:=Matrix([[1,2],[3 4],[5, 6]]):
12

B:=|3 4 (4.1.10)
5 6

22 28
49 064 (4.1.11)
76 100

=> B. A

Error, (in LinearAlgebra:-Multiply) first matrix column
dimension (2) <> second matrix row dimension (3)

(By the way, the symbol "<>" that appears in the above error message is the
"not-equals” symbol.)

Maple provides a special mechanism for creating vectors or matrices whose
entries can be described by a function. For example, consider the vector whose

ith entry is . Here is how you create it automatically:

> f:=i->N2;
fi=iof (4.1.12)

B y: =Vector (10, f);

(4.1.13)

16
yi= 2> (4.1.13)
36
49
64
81

| 100 |

The syntax of this version of the Vector command requires the size of the vector
and a function that computes the th component from the index i. Thus "Vector
(n,f)" creates a vector with ncomponents, (1), f(2), ..., f(n).

You do not actually have to perform the first step above of defining the function
(that is, of giving the function a name), since you can describe a function using
the -> notation:

(> 7: =Vect or (10,i->i"2);

16
zZ:= = (4.1.14)
36
49
64
81

| 100 |

The same technique can be used to define a matrix; the only difference is that a
function of two indices is required. Here is a famous matrix (the Hilbert matrix):

> H =Matrix(5,5,(i,j)->1/(i+j-1));

—_

(4.1.15)

N ol vk e W

Q= vi= b= W= N
= N~ o= v~ =
O~ |~ N~ o~ U]~

U= = W= N

The form of the Matrix command just used is "Matrix(m,n,f)", which creates an
m by n matrix whose i, jentry is f(i, j).

V¥ Alternate notation for entering vectors and matrices

Here is an alternate, simplified syntax for defining a vector:

[> x: =<1, 2, 3>;

1
X:=|2 (4.1.1.1)
3

(Notice the use of the less than and great than symbols to create the "angled
brackets".) Since this is simpler than using the Vector command, | will use it
in the remainder of the tutorial.

Using the above notation, Maple allows us to enter matrices by columns,
rather than by rows:

> A =<<1, 2>| <3, 4>>;
13

2 4

(4.1.1.2)

Notice the use of the vertical bar "|" to separate the columns of the matrix;
this notation is also common in written mathematics. Just as a review, here is
the command for entering the above matrix A by rows:

|'> A =Matrix([[1,3],[2 4]1]):;

LS (4.1.1.3)
- 1.1
V¥ Section 3.2 Existence and uniqueness of solutions to Ax=b
Maple can find a basis for the null space of a matrix:
(> A =Matrix([[1,2,3],[4,56],[7,809]]);
1 2 3
A=14 56 (4.2.1)
7 89
=> Nul | Space(A);
1
-2 (4.2.2)
1

In this example, the null space is one-dimensional, so the basis contains a single
vector. If we wish to refer to the basis vector itself (instead of the set containing
the vector), we can use the index notation:

(> y:=041];

yi=| -2 (4.2.3)

Here | check that the result is correct:

> Ay;

(4.2.4)

If the given matrix is nonsingular, then its null space is trivial (that is, contains
only the zero vector) and therefore does not have a basis. In this case, the
NullSpace command returns an empty list:

> A=Matrix([[21,2,1],[-3,0,0],[1,2,2]]);
1 21
A=|-3 00 (4.2.5)
1 2 2
=> Nul | Space(A);
{} (4.2.6)

Here is an example with a two-dimensional null space:

[> C=matrix([[1,3,-1,2],[0,1,4,2],[2,7,2,6],[1,4,3,4]]);
1 3 -1 2
C:= 01 42 (4.2.7)
27 26
14 3 4
=> Nul | Space(C); »
4 13
- -4
ol] (4.2.8)
0

Maple can find the inverse of a matrix, assuming, of course, that the matrix is
nonsingular:

B Matri xI nverse(A);

1
0 -5 0
11 (4.2.9)
6 2
10 1
(> C=Matrix([[1,0,1],[1,2 1],[0,1,0]]):
101
Ci=|121 (4.2.10)
010

> Matrixl nverse(C);
Error, (in LinearAlgebra:-Matrixlnverse) singular matrix

The matrix inverse can be used to solve a square system Ax = b, since the

solution (when Ais nonsingular) is x = Alb. However, it is more efficient to use
the LinearSolve command, which applies Gaussian elimination directly:

[> A =Matrix([[1,0,1],[0,1,1],[1, 1,1]]):
101

Ai=]0 11 (4.2.11)
111

[> b: =<1, 0, 2>;

b:=|0 (4.2.12)

B x: =Li near Sol ve(A, b);

X:= 1 (4.2.13)

Any nonsingular matrix times its inverse yields the identity matrix:

> A Mat ri xI nverse(A);
100

010 (4.2.14)
001

Maple has a command for creating an identity matrix of a given size:

[> I d: =ldentityMatrix(3);
1 00
Id={0 10 (4.2.15)
001

However, you cannot call your identity matrix I, as might seem natural, since, in
Maple, | represents the imaginary unit (the square root of negative one):

> | 12;
[-1 (4.2.16)

V¥ Section 3.3: Basis and dimension
In this section, | will further demonstrate some of the capabilities of Maple by

repeating some of the examples from Section 3.3 of the text.

\ 4 Example 3.25

Consider the three vectors v1, v2, v3 defined as follows:

> v1:=<1/ sqrt(3), 1/sqrt(3) ,_1/ sqrt (_3) >:

13
3
vl:= %ﬁ (4.3.1.1)
13
3
[> v2:=<1/sqrt(2),0,-1/sqrt(2)> _
1=
2
V2= 0 (4.3.1.2)
Ly
2
> v3: =<1/sqrt(6), -2/sqrt(6_) , 1/sqrt_(6)>;
1
=6
6 V6
V3= % J6 (4.3.1.3)
1
=6
6 V6
| can use the "." (dot) operator to compute the ordinary dot product of two
vectors:
_> vl.v2;
0 (4.3.1.4)
B vl1.v3;
0 (4.3.1.5)

> v2.V3;
0 (4.3.1.6)

\ 4 Example 3.27

I will verify that the following three quadratic polynomials form a basis for P,
the space of all polynomials of degree 2 or less.

;> unassign('x');
> pl: =x->1;
pl:=x—1 (4.3.2.1)
[> p2: =x->x- 1/ 2;
p2.= x—>x—% (4.3.2.2)
[> p3: =x- >x"2- x+1/ 6;
p&:xeﬁ—x+é- (4.3.2.3)

Suppose g(Xx) = ax’ + bx+ cis an arbitrary quadratic polynomial:
[> unassign('x',"a ,'b','c");
> (. =X->a*x"2+b*x+c;
g:=x—axX +bx+c (4.3.2.4)

(Notice how | clear any values that a, b, c might have, just to be sure. | want
these to be indeterminate parameters.) Now | will try to write g in terms of
pl, p2, and p3:

[> unassign('cl' ,'c2','c3");
> q(x)-(cl*pl(x)+c2*p2(x) +c3*p3(x));
aX2+bX+C—C1—C2(X—%j—CS(XZ—X-F%) (4.3.2.5)

Next, | need to gather like terms in the above expression, which is
accomplished with the collect command:

> collect (% x);

(a—c3) x2+(b—c2+03)x+%c2+c—c1—%c3 (4.3.2.6)

Now | extract the coefficients of the above polynomial, set them equal to zero,

and solve for c1, c2, c3:
> sol ve({coeff (% x, 0)=0, coeff (% x, 1)=0, coeff (% x, 2)=0}, {c1,

c2,c3});

{Clz%b+%a+qc2:b+a,c3:a (4.3.2.7)

Since there is a unique solution c1, c2, c3 for any a, b, ¢, that is, for any
quadratic polynomial, this shows that {p1,p2,p3} is a basis for P,.

\ 4 Example

Here is a final example. Consider the following three vectors in R>:
|:> ul: =<1, 0, 2>:

|:> u2: =<0, 1, 1>:

[> u3:=<1,2,-1>

I will verify that {ul,u2,u3} is a basis for R3, and express the vector

_> X: =<8, 2, -4>:

X:=| 2 (4.3.3.1)

in terms of the basis. As discussed in the text, {ul,u2,u3} is linearly
independent if and only if the matrix Awhose columns are ul, u2, u3is
nonsingular. Here | create the matrix A, using the syntax explained earlier for
entering a matrix by columns:

> A =<ul| u2| u3>;

1
A=[01 2 (4.3.3.2)
21 -1

Now | can verify that the matrix Ais nonsingular by computing its
determinant:

> Determ nant (A);
-5 (4.3.3.3)

Since the determinant of Ais nonzero, Ais nonsingular. Note that, in general,
computing the determinant is not a good way to decide if a matrix is
nonsingular. If the matrix is large and the entries are floating point numbers,
the result is likely to be misleading. A better way is to use the Rank
command:

> Rank(A);
3 (4.3.3.4)

Since A has full rank, the matrix is nonsingular.

| can now express x as a linear combination of ul, u2, u3 by solving Ac= x:

[> ¢: =Li near Sol ve(A X);
18
5
C:= —% (4.3.3.5)
22
5
Finally, I will check the result:
[> c[1] *ul+c[2] *u2+c[3] *u3; _
8
(4.3.3.6)
-4
=> X,
8
2 (4.3.3.7)
-4

V¥ Section 3.4: Orthogonal bases and projection

| have already shown to compute dot products and verify that vectors are
orthogonal. For example, consider the vectors

|:> vl:=<1/sqrt(3),1/sqrt(3), 1/sqrt(3)>:
|:> v2:=<1/sqrt(2),0,-1/sqrt(2)>:
|:> v3:=<1/sqrt(6),-2/sqrt(6), 1/ sqrt(6)>:

These vectors are orthogonal:

> vl.v2;

0 (4.4.1)
[> vl.v3;

0 (4.4.2)
> v2.V3;

0 (4.4.3)
They are also normalized:
_> vl.vl;

1 (4.4.4)
> V2.V2;

1 (4.4.5)
B v3.V3;

1 (4.4.6)

Therefore, | can easily express any vector as a linear combination of these three
vectors, which form an orthonormal basis for R>:

[> unassign('a',"b'","'c");
> X:=<a, b, c>;

a
x:=|b (4.4.7)
c
=> y:=(vl. x)*v1+(v2.Xx)*v2+(Vv3.X) *V3,;
_ 1 (1 1 1 1 (1
y=H§(gﬁa+§ﬁb+§ﬁc)ﬁ+a(aﬁa (4-4-8)
1 1 (1 1 1
_E\/?C) 2+€(€\/€a—§\/ﬁb+€\/€C)\/F},
1 (1 1 1 1 (1 1
3 (3VF a3 3pe5 335 ((V0a-30h
+ 56 ¢)VG|

| (e e]

Notice that Maple did not produce the vector x, as expected. However, before we
conclude that | (or Maple) made a mistake, we should ask it to simplify the result
as much as possible:

> sinplify(%:

b (4.4.9)

The simplify command causes the Maple kernel to apply a number of algebraic
transformations to the input, in hopes of finding a simpler form. We will often
find this command useful.

V¥ Working with the I inner product
The I? inner product is not provided in Maple (unlike the dot product), so it is

convenient to define a function implementing it. Suppose we are working on
the interval [0, 1]. | define

> | 2ip:=(f,g)->nt(f(x)*g(x),x=0..1);
1

12ip:= (f g)—>J £(x) g(x) dx (4.4.1.1)
0

For convenience, | also define a function implementing the 1% norm:

> | 2norm =f->sqrt (I 2i p(f,f));
IZ2norm:= f— 2ip(f, f) (4.4.1.2)

V¥ Example 3.35

Now consider the following two functions:

|:> unassign('x');
> 1 =x->x*(1-x):
[> g: =x- >8/ Pi ~3*si n(Pi *x) :

The following graph shows that the two function are quite similar:

[> pl ot ({f(x),g(x)},x=0..1,thickness=3);
0.251

0.2071
0.157
0.1071

0.051

0 T T T T T 1
0 0.2 04 06 08 1
X

By how much do the two functions differ? One way to answer this question is
to compute the relative difference in the I norm:

(> | 2norm(f-g)/1 2norn(f):

/ 6
v -960+m (4.4.2.1)

3
T

(> eval f (9 :
0.03801297659 (4.4.2.2)

The difference is less than 4%.

To further illustrate the capabilities of Maple, | will work through two more
examples from Section 3.4.

\ 4 Example 3.37

The data given in this example can be stored in two vectors:

[> x:=<0.1,0.3,0.4,0.75,0. 9>
[> y:=<1.7805, 2. 2285, 2. 3941, 3. 2226, 3. 5697>:

A useful command for working with discrete data like this is pointplot. Itis
part of the plots package. Before using pointplot, you must either load the
entire plots package (using "with(plots)") or simply load pointplot itself as
follows:

|:> wi th(plots, pointplot):

We must also make a list of points from the data; one way to do this is to
create a matrix whose columns are x and vy:
> d: =<x| y>; _ _
0.1 1.7805
0.3 2.2285
d:=| 04 23941 (4.4.3.1)
0.75 3.2226
0.9 3.5697

Here is the pointplot command. Notice the use of the "symbolsize" option to
make the markers larger.

> poi nt pl ot (d, synbol si ze=15) ;

3.4+

3.0

2.87

2.4 &

2.27

2.0

1.81
T T T T T T T T T T T T T T 1

01 02 03 04 05 06 07 08 009

Now | will compute the first-degree polynomial f(x) = mx + b that best fits
this data. The Gram matrix and the right hand side of the normal equations

are computed as follows:

[> e1=<1.1.1,1, 1>

[0S
I
e e

=> G=Matrix([[x.x,x.e],[e.x,e.e]]);
| 1.63250000000000006 2.45000000000000018

" | 2.45000000000000018 5

(> 70 =<x. y, e.y>;
7.43391999999999964
13.1953999999999994

Now | can solve for the coefficients in the best approximation:

> c: =Li near Sol ve(G z2);
2.24114351851852

1.54091967592593

The solution is

> | :=s->c[1] *s+c[2];
I::s—>c13’—|-c2

Here is a graph of the best fit polynomial:

[> plot(I(s),s=0..1,thickness=3):

(4.4.3.2)

(4.4.3.3)

(4.4.3.4)

(4.4.3.5)

(4.4.3.6)

3.5

0 02 04 06 08 1

If we want to graph the line and the data on the same figure, then we have to
use the display command, which displays two or more plots together (we
have to use a special command because one plot is produced by pointplot,
and the other by plot). Thedisplay command is part of the plots package,
and must be loaded as follows:

|:> wi t h(pl ots, display):

Now | will recreate the plots, assigned the results to variables so that | can
refer to them below. Notice that | use a colon to suppress the output. This is
desirable, since | do not wish to see the plots separately, but only together.

But, in fact, when a plot is assigned to a variable, Maple does not display the
plot anyway, but rather the data structure representing it.

|:> pl ot 1: =poi nt pl ot (d, synbol si ze=15) :
|:> pl ot 2: =plot(l(s),s=0..1,thickness=3):

Now | can invoke the display command:

> di splay([plotl,plot2]);

3.5
3_
2.5
: el

2 -

T T T T 1

0 0.2 0.4 0.6 0.8 1

S

The fit is not bad.

\ 4 Example 3.38

In this example, | will compute the best quadratic approximation to the
function f(x) = e*on the interval [0, 1]. Here are the standard basis functions
for the space P

|:> unassign(' x");
|:> pl: =x->1:

|:> p2: =x->X:

[> p3: =x->x"2:

I will now compute the Gram matrix and the right hand side of the normal
equations. Notice that the function f(x) = e*is named exp.

[> G=Matrix([[Il2ip(pl,pl),!2ip(p2, pl),!2ip(p3,pl)],[!2ip(pl,

p2),12i p(p2, p2),12ip(p3,p2)],[I2ip(pl, p3),I2ip(p2,p3),!2ip
(p3,p3)11);

1

(4.4.4.1)

Uil—= = W

1
2
1
3

(> b: =<l 2i p(pl, exp), | 2i p(p2, exp), | 2i p(p3, exp) >;
-1 +e

b= 1 (4.4.4.2)
-2 +e

I now solve the normal equations and find the best quadratic approximation:

B c: =Li near Sol ve(G b);
-105+39e

c:=| 588—216e (4.4.4.3)
-570+4+210e

=> g: =x->c[1] *pl(x) +c[2] *p2(x) +c[3] *p3(x);
q:=x—¢ pl(x) + ¢ p2(X) + ¢ p3(x) (4.4.4.4)

One way to judge the goodness of fit is with a plot:

[> pl ot ({exp(x),q(x)},x=0..1,thi ckness=3);

The fit is quite good, so it is more informative to graph the error:

[> pl oot (exp(x)-q(x),x=0..1,thi ckness=3);

We can also judge the fit by the relative error in %

> eval f (I 2norm(exp-q) /| 2nor m_ exp)) ;
0.002907224229

(4.4.4.5)

The error is less than 0.3%.

Particularly if you wish to use a subspace with a larger dimension, typing in
the formulas for the Gram matrix and the right-hand side of the normal
equations can be quite monotonous. One can avoid the repetitive typing, but
only by representing the basis functions differently. Here is an example:

|:> unassi gn(' x');
|:> p[1] : =x->1:

|:> p[2] : =x->x:

|:> p[3] : =x->x"2:

Now, for eachi=1, 2, 3, p[i] is one of the basis functions. Here is the third,
for example:

[> pL31(X); 2
X (4.4.4.6)

I can now define the Gram matrix using the alternate version of the Matrix
command:

(> G =Matrix(3,3,(i,j)->2ip(plil,pli]));
1 1
1 = =
2 3
1 1 1
G:= > 3 4 (4.4.4.7)
1 1 1
3 4 5
| define the right-hand side similarly:
> b: =Vector (3,i->l2ip(p[i],exp));
-1 +e
b:= 1 (4.4.4.8)
-2 +e

Just for fun, I will now repeat the above computation, but with sixth-degree
polynomials. | will define the basis functions themselves in a vector:

> p:=Vector (7,i->(x->x"(i-1)));

(4.4.4.9)

Now | will compute the Gram matrix and the right-hand side, and solve the

normal equations:

|:> G=Matrix(7,7,(i,j)->12ip(p[jl.p[i])):

> b:=Vector(7,i->l2ip(p[i],exp)):
|:> c: =Li near Sol ve(G b):

Now, the best sixth-degree approximation is

To form this expression without an undue amount of typing, | can use the

add command:
|:> unassign('x');

> g:=x->add(c[i]*p[i](x),i=1..7);
q:= x—>add(cl.pl.(x), = 1..7)

Now | will plot the approximation and the error:

B pl ot (g(x), x=0..1,thickness=3);

(4.4.4.10)

2.6
2.4
2.21

1.8-.
1.6-.
1.4-.
1.21

1- T T T T T T T T T 1
0 0.2 04 06 08 1

X

> pl ot (exp(x)-q(x), x=0. . 1, t hi ckness=3):
1.x 10_7'.
8.x107%1
6.x10_8'.
4.x10_8'.
2.x10_8'.

O T T A T A| 1
- 21 0.4 Vo.6f 08\ |1
2.x1078 X

—4.x10_8

-6.x10°8
-8.x10°8

The fit is now very good.

V¥ Section 3.5: Eigenvalues and eigenvectors of a symmetric matrix

Maple can compute the eigenvalues and eigenvectors of a square matrix:

> A =Matrix([[1,2 -1],[4,0,1],[-7,-2,3]1);

1 2 -1
A= 4 0 1 (4.5.1)
-7 -2 3

> res: =Ej genvectors(A);

o 1+VTE) /5 (1-V15) /15

2 15+7J15 15—7J15

res:=| 1++15 | 1 i ~15+4J15) -15—-415 (4.5.2)
1-J15 2 154715 15—7J15
1 1 1

The first element of the results is a vector containing the eigenvalues, and the
second is a matrix whose columns are the corresponding eigenvectors.

> |:=res[1];
2
I:=| 1+15 (4.5.3)
1-J15
> V:=res[2]; _
o - (1+V15) /15 (-1-15) /15
15+715 15—715
Vi=l 1 -15+44J15 -15-415 (4.5.4)
- 15+ 715 15-715
1 1 1

To access the individual eigenvectors, the following syntax can be used to
extract a column from a matrix:

(> V[1..3,1];

(4.5.5)

— N~ O

Here | check the eigenvalue-eigenvector pairs:

(> A V[1..3,1]-1[1]*V[1..3,1];

> AV[1..3,2]-1[2]*V[1..3, 2]:

15+7y15

15

I_(-1+Jﬁ)m_2(-15+4m) .

+7+15

N (1+m)(—1+m)m’

15+7J15
[4(1+y15) V15, (+JT15) (15 +4/75)
_ 15+7J15 15+7J15
'7(—1+m)ﬁ+2(—15+4m)+2_EH
15+7J15 15+7J15
> simplify(%:
0
0
0

> A V[1..3,3]-1[3]*V[1..3, 3]

15—-7+15

l(-1—m)m_2(-15—4m) .

15—-7v15

(1= /15) (-1-/T5) /15 |

15-7v15

[4(-1-J15) /15
15-7J15

+1+

(1-y15) (-15-4/15)

15—-7+v 15

15-7y 15

> sinplify(%:

7(1-J15) V15 2(-15-4/15) 12415

15-7y 15

|

|

|

(4.5.6)

(4.5.7)

(4.5.8)

(4.5.9)

(4.5.10)

You should notice again the value of the simplify command. When you obtain a
surprising result, you should make sure that the result is simplified.

The problem of computing the eigenvalues of an n by n matrix is equivalent to
the problem of finding the roots of an nth degree polynomial. One of the most
famous results of 19th-century mathematics is that it is impossible to find a
formula (analogous to the quadratic formula) expressing the roots of an
arbitrary polynomial of degree 5 or more. Therefore, asking Maple for the
(exact) eigenvalues of a large matrix is most likely an exercise in futility.

Here is an example:

> B:=Matrix(5,5,(i,])->1/(i+-1));
, 1111
2 3 4 5
1 1 1 1 1
2 3 4 5 6
1 1 1 1 1
B:= 3 4 5 6 7 (4.5.11)
1 1 1 11
4 5 6 7 8
11 1 1 1
5 6 7 8 9
j> Ei genvect ors(B):

The output of this command has been suppressed because it occupies many
pages; if you look at it (by replacing the colon by a semicolon and executing the
command), you will see that Maple has computed the eigenvalues and
eigenvectors in terms of the (unknown) roots of the characteristic polynomial.
Maple can manipulate the output in various ways, but | do not find it useful for
my purposes in this tutorial.

In a case like this, it is possible to have Maple estimate the eigenvalues
numerically. In fact, if the matrix given to Eigenvectors is numerical, then
Maple automatically performs a numerical computation:

B resl: =Ei genvectors(eval f(B));
1.56705069109486 + 0.1

0.208534218668013 + 0.1

resl := 0.0114074915726153 +0.1 |, [[-0.767854735059365 (4.5.12)

0.000305898025240857 + 0.1
0.00000328793927030469 + 0.1

+0.1 -0.601871478348877 + 0.1, -0.214213624244780 + 0.1,

-0.0471618059714938 +0.1,0.00617386770773715 + 0.1],
[-0.445791060459148 +0.1,0.275913417325606 + 0.],
0.724102132235258 + 0.1, 0.432667323400602 + 0.1,
-0.116692784301902 + 0.1],

[-0.321578294476595 + 0.1, 0.424876622451948 + 0. 1],
0.120453277762841 + 0.1, -0.667350401123385 + 0.,
0.506163714831499 +0.1],

[-0.253438943260472 + 0.1, 0.443903038708084 + 0.,
-0.309573971066729 + 0.1, -0.233024579702172 + 0.1,
-0.767191173018389 + 0.1],

[-0.209822636581853 +0.1,0.429013353649275 + 0.1,
-0.565193409015386 + 0.1, 0.557599980894861 + 0.],
0.376245498684095 + 0.1]]

;> | 1: =resl[1]:
| > V1. =resl| 2]:

Let us check the results of this numerical computation:

(> B.VI[1..5,1]-11[1]*V1[1..5,1]:

[-1.07198694365707 10" +0.1 |
-7.86570808486431 107 1% + 0.1
-8.15492118277916 10712 + 0.1 (4.5.13)
2.15810147530249107 M + 0.1

| 2.63102317710207107"" + 0.1 |

The result is correct, up to roundoff error.
The above eigenpairs formally contain complex numbers, although the

imaginary parts are all zero. In fact, since Bis symmetric, we know a priori that
the eigevalues are all real. We can tell Maple this when we define the matrix:

> B:=Matrix(5,5,(i,j)->1/(i+j-1), shape=synmetric);

R
2 3 4 5
111 11
2 3 4 5 6
1 1 1 1 1
B:= 3 4 5 6 7 (4.5.14)
11 1 11
4 5 6 7 8
11 1 11
»5 6 7 8 9
=> resl: =Ei genvect ors(eval f (B))_;
0.00000328793927007522
0.000305898025240873
resl:= 0.0114074915726152 , [[-0.00617386770772625, (4.5.15)

0.208534218668013
1.56705069109486

0.0471618059714956, 0.214213624244780, -0.601871478348877,
0.767854735059366],

[0.116692784301794, -0.432667323400628, -0.724102132235258,
0.275913417325605, 0.445791060459147],
[-0.506163714831327,0.667350401123493, -0.120453277762843,
0.424876622451949, 0.321578294476595],
[0.767191173018448,0.233024579702008, 0.309573971066733,
0.443903038708083, 0.253438943260472],

[-0.376245498684239, -0.557599980894780, 0.565193409015384,
0.429013353649275, 0.209822636581853]]

Since, in this tutorial, we mostly deal with symmetric matrices, the "shape=
symmetric" option will be very useful.

\ 4 Example 3.49

| will now use the spectral method to solve Ax = b, where A and b are given as
follows:

|_> A =Matrix([[11,-4,-1],[-4,14,-4],[-1,-4,11]], shape=

symmetric);

11 -4 -1
A=| -4 14 -4 (4.5.1.1)
-1 -4 11
=> b: =<1, 2, 1>;
1
b:=|2 (4.5.1.2)
1

We need the eigenpairs of A; | will use symbolic computation for this example:

[> res: =Ei genvect ors(A);

12 -1 11
res:=| 18 |, 0 -21 (4.5.1.3)
6 1 11
=> l:=res[1];
12
I:=] 18 (4.5.1.4)
6
=> V. =res[2];
-1 11
Vi=| 0 -2 1 (4.5.1.5)
1 11

Here is an important point: Maple does not automatically normalize symbolic
eigenvectors. Of course, these eigenvectors are orthogonal since Ais
symmetric and the eigenvalues are distinct, but we must normalize the
eigenvectors manually. | will call the normalized eigenvector ul, u2, u3:

> ul:=V[1..3,1]/sqrt(V[1..3,1].V[1..3,1]);
1

_Eﬁ

ul := 0 (4.5.1.6)

Iz

1
2

>u2:=V[1..3,2]/sqrt(V[1..3,2].V[1..3,2]);
1
Ly
uz2:= -%\/E
1
6/0

> u3:=V[1..3,3]/sqrt(V[1..3,3].V[1..3,3]);

1

3V3

u3:= %\/?
1

L g\/?_

The solution of Ax= b is then

> x: =(ul.b/I[1])*ul+(u2. b/l [2])*_u2+(u3. b/ 1[3])*u3;
11
54
e
27
11
54

Check:

B A. x- b;

Y Section 4.2: Solutions to some simple ODEs

(4.5.1.7)

(4.5.1.8)

(4.5.1.9)

(4.5.1.10)

Y Chapter 4. Essential ordinary differential equations

V¥ Second-order linear homogeneous ODEs with constant coefficients

Suppose we wish to solve the following IVP:

P 0
——u+4(—wﬂ—3u:0,o<n
ot ot

u0) =1,

2 w0 =o.

v u(0)

The characteristic polynomial is P +dr— 3, which has the following roots:

> r:=sol ve(r”2+4*r-3=0,r);
ri=-24J7,-2-J7 (5.1.1.1)

The general solution is

[> unassi gn('cl ,'c2','t");
> u:=t->cl*exp(r[1] *t)+c2*exp(r[2]*t);
vt r_t

ui=tocle! +c2e? (5.1.1.2)

We can now solve for the unknowns c1 and c2:

> sol s: =sol ve({u(0)=1, D(u) (0) =0}, {c1,c2});

sols:= c1=%+%\/7, c2=—%\/7+%} (5.1.1.3)

|:> assi gn(sol s);
Here is the solution,

> u(t);
1.1 (2+v7)e, (1 1Y (2—y7)t
[2+7v7je +(7\/7+2je (5.1.1.4)

and here is its graph:

[> pl ot (u(t),t=0..5,thickness=3);

¥a special inhomogeneous second-order linear ODE

Consider the IVP

02)
— u+4u=sin(nt),0 <t
o2 (mt)
u(0) =0,
g1,1(0)—0
ot B

The solution, as given in Section 4.2.3 of the text, is

;> unassign('t','s");
> (1/2)*int(sin(2*(t-s))*sin(Pi*s),s=0..1);
nsin(t) cos(t) —sin(tmn)

-4 -|-TC2

(5.1.2.1)

[> u: =unappl y(%t);
nsin(t) cos(t) —sin(x t)

u:=_t— 5
-4 47

(5.1.2.2)

Check:

> diff(u(t),t$2)+4*u(t);
(5.1.2.3)

. : 2 . :
4 rtsin(t) cos(t) ;—sm(tn) o 4 (msin(t) Cos(t)2 sin(tr)) (5.1.2.3)
-4 +x -4+m
(> sinplify(%:
sin(tn) (5.1.2.4)
> u(0);
0 (5.1.2.5)
> D(u) (0);
0 (5.1.2.6)
V FEirst-order linear ODEs
Now consider the following IVP:
0
—u-2- o<t
ot 2
u0) =1.
Section 4.2.4 contains an explicit formula for the solution:
;> unassign('t',"'s");
> exp(t/2)+int(exp((t-s)/2)*(-s),s=0..1);
1
=t
~3e% +4+42¢ (5.1.3.1)
[> u: =unappl y(%1);
1
=t
Ui=t—-3e’ +442¢t (5.1.3.2)
Here is a graph of the solution:
[> plot(u(t),t=0..3,thickness=3):

Just out of curiosity, let us determine the value of t at which u(t) is zero:

> solve(u(t)=0,1t);
-2 LambertW(—% e‘l) —2, -2 LambertW(—l, —% e_l) —2 (5.1.3.3)

The solve command returns two solutions, expressed in terms of the
LambertW function. We can evaluate the results numerically:

> eval (9 ;
-1.160262798, 1.922557526 (5.1.3.4)

The second solution is the one we want.

We can also solve the equation numerically using fsolve, which searches for
(an approximation to) a single root on a given interval:

> fsolve(u(t)=0,t=1..2);
1.922557526 (5.1.3.5)

It is often preferable to find the numerical solution directly using fsolve.

V¥ Section 4.3: Linear systems with constant coefficients

Since Maple can compute eigenvalues and eigenvectors (either numerically or,

when possible, symbolically), it can be used to solve linear systems with
constant coefficients. | will begin with a simple example, solving the
homogeneous IVP

0
— x=Ax,0<t
ot

x(0) = x,.
| will take the matrix A and the initial vector X, to be as follows:

[> A =Matrix([[1,2],[3, 4]]):

_> X0: =<4, 1>;

The first step is to find the eigenpairs of A:

> res: =Ej genvect ors(A);

25— s
res: = -) ’ E-FE 33 5T 33
2 TV 1 1
=>I::res[1]; _ _
5 , 1
—+ =33
oo 2+2
s 1
-~ ——+33
2 2
=> V: =res[2];

(5.2.1)

(5.2.2)

(5.2.3)

(5.2.4)

(5.2.5)

Next, the initial vector must be expressed in terms of the eigenvectors of A:

|'> c: =Li near Sol ve(V, x0) ;

+%\/33
c:= (5.2.6)

9
-——+33
22 -

N |

N =

| can now write down the desired solution:

[> unassign('t');
> x::t->c[1]*exp(l[l]*t)*Y[l..2,1]+cBZ]*exp(I[2]*t)*V[1..2,2];
t t

Notice that x(t) is a vector (that is, the function x is vector-valued). For example,
the first component is

> x(t)[1]; 1 .
+— J?? t S —=V33t
(L2 ym)e TN 2 amad)de ™)
2 2 n 22 2 (5.2.8)
3 1 /— 3 1 =5 '
2 2 2 2 33

Here is its graph:

[> plot(x(t)[1],t=0..1,thickness=3);
250;
200;
1501
100

50-

(The solution is dominated by a rapidly growing exponential.)

Before | leave this example, | would like to check that the solution is correct.
This requires differentiating the vector-valued function x(t):

> diff (x(1), t)

[Error. non-algebraic expressions cannot be differentiated
The diff command cannot be applied directly to a vector-valued function.

| There are two alternatives. First, D works fine:

> D(x) (1);
J_
2L 2w (3L T
2 22 2 2 (5.2.9)
3,1 o
2—!—2\/33
5 1
5 —5V33 |t
(-2 ey (3oLl e T
n 22 2 2 2
3 1 ’
= —-=433
2 2
5 1
1,09 5,1 (G+av@)t (o 1)(s
(L+2m)(3+Lm)e (-2l
5 1
5 —5V33 |t
_%m)e(z 2)”
> simplify() —AX(t))
0 (5.2.10)
0 2.
:Alternatively, we can apply diff to each component of x(t) by using map:
> map(diff; x(1), 1);
5 1
5 +5V33 |t
z(l+im)(i+lm)e(2)
2 22 2 2
31 (5.2.11)
=4+ =33
2+2
5 1
5 —5V33 |t
(L) (S L) ™)
n 22 2 2 2
3 1 ’
> 2\/33

2

H)E-Hm)e

B simplify(map(diff, x(t), t) — Ax(t));

5.2.12
0 ()
=>x(0)-x0;_
2(l+i\/33) 2(-i 33+l)
2 "2 . 22 2) _,
3 _|_l 33 3_1 33 (5.2.13)
2 "2 2 2
0
> sinmplify(%:
0 (5.2.14)
. 2.

\ 4 Inhomogeneous systems and variation of parameters

I will now show how to use Maple to solve inhomogeneous systems of the
form

Consider the matrix

> A=Matrix([[1,2],[2,1]], shape=symetric);

12
A= (5.2.1.1)
2 1

Let
_> x0: =<0, 1>;

(5.2.1.2)

:> unassign('t');

> f:=t-><sin(t), 0>;
f:=t—(sin(t), 0) (5.2.1.3)

| will solve this problem numerically. Here are the eigenpairs of A:

[> res: =Ei genvectors(eval f (A));
-1. -0.707106781186548 0.707106781186548
res:= (5.2.1.4)
3. 0.707106781186548 0.707106781186548
> | c=res[1];
I 5.2.1.5
=1 5 ‘ (5.2.1.5)
ERY: =res[2] ;
-0.707106781186548 0.707106781186548 016
| 0.707106781186548 0.707106781186548 (5216

Maple automatically normalized numerical eigenvectors, and the eigenvectors
are necessarily orthogonal since Ais symmetric.

(> ul:=v[1..2,1];
-0.707106781186548
ul:= (5.2.1.7)
0.707106781186548
=> u2:=V[1..2,2];
0.707106781186548
uz:= (5.2.1.8)
0.707106781186548
Now, we have f(t) = ¢ (t) u; + ¢, (t) u, and x, = b, u; + b, u,, where
[> c1: =unappl y(ul.f(t),t):
cl:=t—-0.7071067811865476 sin(t) (5.2.1.9)
[> c2: =unappl y(u2. f(t),t):
c2:=t—0.7071067811865476 sin(t) (5.2.1.10)
B bl: =ul. x0;
b1:=0.707106781186547573 (5.2.1.11)
B b2: =u2. x0;
b2:=0.707106781186547573 (5.2.1.12)

We then solve the decoupled IVPs

K
%t

a, =1l a +¢(t),al0)=b,

The solutions, using the techniques of Section 4.3, are

[> bl-exp(l[1]-t) +int(exp(l[1]-(t—s))-cl(s), s=0..1);
0.3535533906 ¢ '+ 0.3535533906 cos(t) — 0.3535533906 sin(t) (5.2.1.13)

(> al = unapply(%, t);
al:=t—0.707106781186547573 e %1 —0.3535533906 ¢ !¢ (5.2.1.14)
+0.3535533906 cos(t) —0.3535533906 sin(t)

=> b2*exp(I[2]*t)+int(exp(l[2]*(t-s))*c2(s),s=0..1);
0.7778174593 > — 0.07071067812 cos(t) —0.2121320344 sin(t) (5.2.1.15)

> q2:= unapply (%, t);
a2:=t—0.707106781186547573 ¢3°1+0.07071067812 ¢>! (5.2.1.16)

—0.07071067812 cos(t) —0.2121320344 sin(t)

The solution to the original system is then

|:> X:=t->al(t)*ul+a2(t)*u2;

X:=t—al(t) ul +a2(t)u2 (5.2.1.17)
Check:
[> D(x) (t)-A x(t)-f(t);
1.90246707276742 10 " e 1+ 5.70739011607202 107! 3! (5.2.1.18)
-1.90246707276742 1071 e 11 £ 5.70739011607202 107 L &3t |~
[> x(0) - x0;
0.
6 (5.2.1.19)
2.22044604925031 10

The answer is correct, up to roundoff error.

V¥ Section 4.4: Numerical methods for initial value problems

When we turn to numerical methods for IVPs in ODEs, we naturally wish to write
programs to implement the methods. Since time-stepping methods involve
repeated steps of the same form, it would be quite tedious to apply the method
manually. Here is another strength of Maple: not only does it integrate symbolic
and numerical computations with graphics, it also provides a programming
environment. | will explain the basics of programming in Maple.

V Interactive commands

Maple supports the usual programming constructs, such as loops and
conditionals, which can be used both interactively and in programs. For
example, suppose we wish to apply Euler's method to estimate the solution of

0
—py=—H4 ,0 <t
ot 1+¢
ul0) =1
on the interval [0, 1]. The exact solution is
|:> unassign('t');
> v:=t->exp(arctan(t));
yi= t—edrctanty (5.3.1.1)

I will use the exact solution to test my results below. In preparation for
applying Euler's method, | define the right-hand side of the ODE as a
function:

|:> unassign('u');
> fi=(t,u)->u/ (1+t"2);

fi=(t, u) - -2

£ +1

(5.3.1.2)

| now apply Euler's method with a step length of 0.1. The Maple command we
need is the "repetition statement,” a form of the familiar for-loop (in C
programming) or do-loop (in Fortran programming). First, some
initialization:

[> dt:=0.1:

dt:=0.1 (5.3.1.3)
_> n: =10;

n:=10 (5.3.1.4)
_> u: =1.0;

u:=1.0 (5.3.1.5)
_> tt:=0.0:;

|_ tt:=0. (5.3.1.6)

(Here is an important but subtle point. | definitely want to do numeric
computations, not symbolic. Therefore, | assign the quantities dt, u, and t to
have floating point values (0.1, 1.0, and 0.0) rather than exact values (1/10, 1,
and 0). If | do not do this, then the symbolic computation becomes quite
involved---all the quantities involved will be rational numbers, and the
number of digits will explode. The results are not bad for 10 steps, but you
would not want to do a symbolic computation for hundreds of steps.)

The following loop executes 10 steps of Euler's method (notice that | do not
save the intermediate values of the computed solution):

>for i from1l to n
> do
> u: =u+dt *f (tt, u);
> tt:=tt+dt;
> end do;
u:=1.100000000
tt:=0.1
u:=1.208910891
tt:=0.2
u:=1.325152323
tt:=0.3
u:=1.446725931
tt:=0.4
u:=1.571443684
tt:=0.5
u:=1.697159179
tt:=0.6
u:=1.821950295
tt:=0.7
u:=1.944228838
tt:=0.8
u:=2.062779377
tt:=0.9
u:=2.176745088
tt:=1.0 (5.3.1.7)

(If I do not wish to see the intermediate results, | can end the "end do"
statement with a colon instead of a semicolon.)

Here is the relative error in the computed solution (at t=1.0):

> abs(v(1.0)-u)/abs(v(1.0));
0.007538920072 (5.3.1.8)

The result is not bad.

If | want to save the intermediate results (for plotting purposes, say), | can put
them in a matrix. The following command creates an n+ 1 by 2 matrix filled
with zeros.

[> U =Matri x(n+l1, 2);
11 x 2 Matrix

Data Type: anythin
U:= P Y g (5.3.1.9)
Storage: rectangular

Order: Fortran_order

Here is another version of the calculation:

[> U1, 1] : =0. O:
> U 1, 2]:=1.0:
> for I froml1l to n
> do
> Ui+, 2]:=Ui,2]+dt*f (Ui, 1], i, 2]):
> Ui+1,1]:=U i, 1] +dt:
| > end do:

I can now look at the results using pointplot:

;> W t h(plots, pointplot):
> poi nt pl ot (U, synbol si ze=15) ;

1.8 7

1.6 1

1.4 1

1+ - T : . - -

0 0.2 0.4 0.6
[> plot1: =%

Here is the exact solution:

B plot(v(t),t=0..1,thickness=3);

0.8

1.8

1.6 1

1.4

1.2 1

o 02 04 06 08 1

[> plot2: =%
Here are the exacted and computed solution:

;> with(plots, display):
> di splay(plotl,plot2);

1 T T T T T T T ! I v 1
0 0.2 0.4 0.6 0.8 1

| can define a function representing the computed solution using
interpolation. One way to do this is to use the Spline function (which is part
of the CurveFitting package). Spline (by default) produces a piecewise cubic
function agreeing with the data points, and it is simple to use, as the
following example shows. (I recommend ending the command with a colon,
as the output is quite complicated.)

|:> wi t h(CurveFitting, Spline):
[> spline(y,t):

(The reason for the argument 't" is that Spline produces an expression in the
given variable.)

;> ui : =unapply(%t):
> plot(ui(t),t=0..1,thickness=3);

1.8 7

1.6 1

1.4 -

1.2 1

1] T T T T T T ! I ! I
0 0.2 0.4 0.6 0.8 1

Now we can compare the computed solution directly with the exact solution:

[> plot(v(t)-ui(t),t=0..1,thickness=3):

\ 4 Creating new Maple commands

For convenience, we can write a program to implement Euler's method. In
Maple, writing a program really implies creating a new Maple command. A
reasonable command for applying Euler's method to the IVP

0
o u=f(tu),0<t
u(ly) = uy

would take as inputs f; t,, u,, as well as T (the final time) and n (the number of
time steps), and would produce the table of t, u;values (like the result U
above). In Maple, a command is implemented as a procedure:

myeul er: =proc(f,t0,u0, T, n)
| ocal i,U, dt;

U =Matri x(n+1, 2);

dt: =eval f (T/ n);

Ui, 1]:=to0:

U 1, 2]:=u0:

V V VYV

\%

for i from1l to n
do
Ui+1,1]:=Ui, 1] +dt:
Ui+l,2]:=Ui,2]+dt*f(Ui,1],Yi,2]):
end do:
U
end proc;
myeuler .= proc(f, t0, u0, T, n) (5.3.2.1)

local i U, dt

U:= Matrix(n+1, 2);

dt:=evalf(T/ n);

Ull, 1]:=t0

Ull, 2]:=u0,

for i to n do
Ull+i1]:=U[i1]+dg Ul+1i?2]:=U[i2]+dt*f(U[i 1],
Uli, 2])

end do;

U

end proc

VVVYVYVYVYV

The last statement in the above procedure just echos the value of U, since
the return value of the procedure is the last computed value.

I can now use the myeuler procedure instead of typing out the loop each time
| want to apply Euler's method. The following command repeats the above
computation:

> U =nyeul er (f,0.0,1.0, 1.0, 10);
11 x 2 Matrix
Data Type: anything

U:= (5.3.2.2)
Storage: rectangular

Order: Fortran_order

Here is a graph of the computed solution:

> poi nt pl ot (U, synbol si ze=15) ;

1.8 1

1.6 1

1.4 1

1 -al:" ' I ' I ' I ' I ' 1

0 0.2 0.4 0.6 0.8 1

Notice that, as implemented above, the myeuler command uses local
variablesi, U, dt. When the command is invoked, the variables are known only
during the execution of the command. Also notice that the return value of
the procedure is the last result generated by it; thus, the desired output value
U is echoed in the final statement.

As written, there is nothing indicating to the myeuler command that the IVP
to be solved is scalar. Therefore, the same command will solve a system,
such as

0
& X; = -X,X(0) =1,

0
o X, =X, X,(0) =0,

whose solution is

|:> unassign('t');
> X:=t-><cos(t),sin(t)>;
Xx:= t—{(cos(t), sin(t)) (5.3.2.3)

Here is how | would apply myeuler to the system:

;> unassign('u');
> f:=(t,u)-><-u[2], u[l]>;
fi=(t u) —(-uy,) (5.3.2.4)

B n: =20;
n:=20 (5.3.2.5)

> UL: =nyeul er (f, 0.0, <1.0, 0. 0>, 10.0, n);

21 x 2 Matrix

Data Type: anythin
Ul := P Y g (5.3.2.6)
Storage: rectangular

Order: Fortran_order

Now | have computed the solution, but it is not stored in a very convenient
fashion. The second column of Ul consists of 2-vectors; for instance, here is
the last computed value:

> Ul[n+1, 2] ;
-9.20609188079834

(5.3.2.7)
1.40856170654297

| can display the components of the solution by first extracting them, along
with the time grid:

(> tt:=UL[1..n+1,1];
1..21 Vector,

olumn

Data Type: anythin
tt:= ype-anytimng (5.3.2.8)

Storage: rectangular

Order: Fortran_order

(> UL1: =Vector (n+1,i->UL[i,2][1]):
1.. 21 Vector,

olumn

Data Type: anythin
Ull:= ype. arytiaing (5.3.2.9)

Storage: rectangular

Order: Fortran_order

[> U12: =Vect or (n+1, i ->UL[i,2][2]):

Ul2:=

1. 21 Vectorc

Data Type: anything

Storage: rectan

Order: Fortran_order

olumn

gular

(5.3.2.10)

Now | can plot the first component of the solution using the pointplot

command:

[> poi nt pl ot (<tt| UL1l>, synbol si ze=15);

4

> plotl: =%

[> plot(x(t)[1],t=0..10,thickness=3);

0.5

-0.5 7

[> pl ot 2: =%

> di splay(plotl,plot2);

10

e

Obviously the computed solution is not very accurate. | leave it to you to
verify that, if the number of steps is increased, the error decreases in a
satisfactory way.

\ 4 Storing programs in files

Having decided that a certain algorithm is useful enough to be made into a
Maple command, you will probably wish to save it in a file, so that it can be
loaded (rather than type anew) whenever it is needed in a new Maple session.
Doing this is simple enough: the Maple commands defining the function are
typed into a plain text file and read into Maple using the read command. For
example, | created a text file containing the myeuler command defined above
(the file is also called "myeuler”). | read it in as follows:

> read myeul er;
myeuler := proc(f, t0, u0, T, n) (5.3.3.1)

local i, U, dt
U:= Matrix(n+1, 2);
dt:=evalf(T/ n);

Ull, 1]:=t0;

Ull, 2]:=uG;

for i to n do
Ull+i1]:=U[i1]+dt Ull+1i2]:=U[i2]+dt*f(U[i 1],
Uli, 2])

end do;

U

end proc

I can now use myeuler as before.

When working with user-defined files, it is important that Maple be able to
find the files. By default, Maple looks in the current directory. You can
determine the current directory with the currentdir command:

> currentdir();
"/home/msgocken/books/pdebook?2/tutorial/maple” (5.3.3.2)

The most recentread command may have failed when you ran it; this would
happen if the file "myeuler” is not stored (on your computer) in the current
directory. You can change the current directory with the same currentdir
command; the syntax is "currentdir(new_dir)", where "new_dir" is the name of
the new directory (use the full path name). If the directory name contains
special characters (like spaces), enclose it in quotes.

If necessary, you can give the full path name of the file. Here is an alternate
version of the above command:

> read
"/ home/ nsgocken/ books/ pdebook?2/ tutorial / mapl e/ nyeul er”;
myeuler := proc(f, t0, u0, T, n) (5.3.3.3)

local i, U, dt

U:= Matrix(n+1, 2);

dt:=evalf(T/ n);

Ull, 1]:=t0

Ull, 2]:=uCG;

for i to n do
Ull+i 1]:=U[i 1]+dt U[1+1i 2]:=Uli 2]+ dt*f(U[j, 1],
Uli, 2])

\ 4

end do;
U

end proc

(On a Windows-based machine, the directory separator (the backslash) must
be repeated; also, the file name must be enclosed in quotes if it contains
spaces.) The above command is likely to fail on your computer, unless you
happen to have the same directory structure as | have.

Y Chapter 5: Boundary value problems in statics

Section 5.2: Introduction to the spectral method; eigenfunctions

| will begin this section by verifying that the eigenfunctions of the negative
second derivative operator (under Dirichlet conditions),

sin(nilxj,n= 1, 2, 3, ...

are mutually orthogonal on the interval [0, I]. (This is not necessary, as we know
from the symmetry of the operator that the eigenfunctions must be orthogonal.
However, it is a chance to illustrate another capability of Maple.)

;> unassign('x'",'m,'n" ,"1");
> int(sin(n*Pi*x/1)*sin(mPi*x/1),x=0..1);
[(ncos(nr) sin(mn) —msin(nnr) cos(mmn))
n (- +m?)

(6.1.1)

> sinplify(%:
I[(ncos(nr) sin(mn) —msin(nnr) cos(mmn))

n (- +m)

(6.1.2)

At first glance, this result is surprising: Why did Maple not obtain the expected
result, 0? However, a moment's thought reveals the reason: The integral is not
necessarily zero unless m and n are integers, and Maple has no way of knowing
that m and n are intended to represent integers. Fortunately, there is a way to

give Maple this information:

|:> assume(n, i nteger);
|:> assunme(m i nt eger);
>int(sin(n*Pi*x/1)*sin(n¥Pi*x/1),x=0..1);
0 (6.1.3)

When you tell Maple to make assumptions about a symbol, it displays the
symbol with a tilde (~) to indicate that assumptions are made about that
symbol:

m ~ (6.1.4)

n~ (6.1.5)

When performing Fourier series computations, the ability to assume that a
symbol represents an integer is very useful.

V¥V Example 5.7

Let
|:> unassign(' x');

> fi=x->x*(1-x);
fi=x—-x(1—X) (6.1.1.1)

| can easily compute the Fourier sine coefficients of fon the interval [0, 1]:

> 2*int(f(x)*sin(n*Pi *x), x=0..1);
4 (-1+(-1)™)

373 (6.1.1.2)
n~"m
This result is fairly simple because nis known to be an integer.
Now | define the Fourier coefficient as a function, for convenience:
> a: =unappl y(%n);
n~
a:=n~-— - 4 (-1 +3(31)) (6.1.1.3)
n~"mn

| can represent the (partial) Fourier sine series using the add command. | take
the number of terms to be an input, along with the variable x, so that | can
experiment with the convergence of the series.

|:> unassign('x',"N);
> S =(x, N ->add(a(n)*sin(n*Pi *x),n=1..N);
S:=(x, N)—add(a(n)sin(ntx), n=1..N) (6.1.1.4)

Here is a graph of the partial Fourier series with 10 terms. | include the

original function for comparison:

[> plot ({f(x),S(x,10)}, x=0. . 1, t hi ckness=3) :
0.25 "

0.20 1
0.15
0.10 A

0.05 1

0 T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1

The two functions are so close that it is more informative to graph the error
(that is, the difference):

B pl ot (f(x)-S(x,10),x=0..1,thickness=3);

0.0004

0.0003

0.0002

0.0001

0.2 0.4 0.6 0.8 1

ol | VPV

S u

We can see how the approximation improves when we increase the number of
terms:

[> plot (f(x)-S(x,20), x=0. . 1, t hi ckness=3):

0.00012
0.00010
0.00008
0.00006-
0.00004'-

0.00002 1

-0.00002 A

-0.00004 -

-0.00006

1

)

AAAN
TAATATE

B pl ot (f(x)-S(x,40),x=0..1,thickness=3);

0.00003
0.00002

0.00001 *

i QPAAAAAA AAAAAAAA

RS RS

-0.00001 -+

V Section 5.5: The Galerkin method

I will now show how to apply the Galerkin method with a polynomial basis.
Suppose we wish to approximate the solution to the BVP

-(;i ((1+)ZZ)):xZ,o<x,x<1,

u(0)=0,u(l)=0
using the subspace spanned by the following four polynomials:

> unassign('x');

> p[1] : =x->x*(1-X):

> p[2]:=x->x*(1/2-x)*(1-x):

[> p[3]:=x->x*(1/3-x)*(2/3-x)*(1-x):

| > p[4]:=x->x*(1/4-x)*(1/ 2-x)*(3/4-x)*(1-X):

The energy inner product is defined as follows:

;> unassign('u','v');
> a:=(u,v)->int((1+x)*diff(u(x),x)*diff(v(x),x),x=0..1);

. _, d da
a=(uv) Lu+m(ﬁuu0(ﬁvm)m (6.2.1)

The I? inner product is given by

> L:=(u,v)->int(u(x)*v(x),x=0..1);
1
L:= (u, v)—»J u(x) v(x) dx (6.2.2)
0

Now the calculation is simple (but it would be very tedious to carry out by hand):
We just need to compute the stiffness matrix and the load vector, and solve the
linear system. The stiffness matrix is

> K::Nhtrix(4,4,(i,j)->a(p[j],p[i]),shape:symtric);

1 L 1 1L
2 30 90 672
S 3 19 3
30 40 3780 896
K:= (6.2.3)
1 19 5 4
90 3780 567 60480
1 3 4 43
672 896 60480 43008
The load vector is
B f:=x->x"2;
f::x—>x2 (6.2.4)
B F:=Vector (4,i->L(p[i].f));
1
20
L
120
F:= (6.2.5)
1
630
1
| 2688 |

Then the coefficients defining the (approximate) solution are

[> ¢: =Li near Sol ve(K, F);
3325
34997
_ 9507
139988
Cc:=
1575
69994
420
34997
and the (approximate) solution is
> v =unappl y(add(c[i]*p[i](x),i=1..4), x)
v, 3325 9507 1 1575 1
V= x(1—x) = — X) + x| =
34997 139988 2 69994 3
—XJ (579 09+ 5007 %3 - J () {5 a
3 34997 4 4

Here is a graph:

B pl ot (v(x),x=0..1,thi ckness=3);

(6.2.6)

(6.2.7)

0.020
0.015 -
0.010

0.005

0 T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1

The exact solution can be found by direct integration:

;> unassign('x',"'s','cl','c2');
> int(-s72,s=0..x)+cl;
1

-§x?+d (6.2.8)

[> int((cl-s73/3)/(1+s),s=0..x):
Warning. unable to determine if -1 is between 0 and x; trv
to use assumptions or use the AllSolutions option

X 1
R
T30

ds (6.2.9)

0

Notice the error message; Maple could not compute the integral because it does
not know if there is a singularity (a zero in the denominator) on the interval of
integration. Since we are only interested in x>0, we can impose this as an
assumption:

> 1nt((cl-sA3/3)/(1+5s), s=0..x) assuming x > 0;

9 1N\

—%x3—%x+%x2+%ln(l+x)+ln(1+x)cl (6.2.10)

> u: =unappl y(% x) ;

u::x—>—lx3—lx+lx2+lln(x+1)+ln(x+1)cl (6.2.11)
9 3 6 3
> sol s: =sol ve(u(1)=0,cl);
.1 -5+6In(2)
sols:= 18 In(2) (6.2.12)
[> cl: =sol s;
.1 -5+6In(2)
cl:= 18 n(2) (6.2.13)

Check:

(> o di ££((14x) *di £ (u(x),x),X)
1o 1 1. 1 1 -5+6In(2)
3%+3 3% T3 1+x 18 (1+x) In(2)
1 _+;_-5+6ma))
3(1+x)°% 18 (1+x)?%In(2)

2.1
—(1+x)(—3x+3 (6.2.14)

> sinplify(%: 2

X (6.2.15)
E u(0);

0 (6.2.16)
B u(l);

0 (6.2.17)

Now we can compare the exact and approximate solutions:

[> plot ({u(x),v(x)},x=0..1,thi ckness=3):

0.020 -
0.015 A
0.010 -

0.005 -

o T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1
X

[> pl ot (u(x)-v(x),x=0..1,thi ckness=3):

4.x10°°1

3.x1076-

2.x10°°

1.x 10764

0 T T T T T T T T T
0.2 0.4 0.6 0.8 1

~1.x10%1 X

2.x10°%1

-3.x 1075

~4.x10%1

-5.x 1076

The computed solution is quite accurate.

V¥ Section 5.6: Piecewise polynomials and the finite element method

As in my textbook, I will only discuss piecewise linear finite element methods.
You will recall that a piecewise linear function is determined by the mesh and
the nodal values of the functions. For example, here is a regular mesh on the
interval [0, 1]:

;> wi t h(Li near Al gebra):

[> n:=5:
> X:=Vector(n+l,i->(i-1)/n);

(6.3.1)

(6.3.1)

= Uik vlw v v~ O

Here are the nodal values of the piecewise linear interpolant of the function
sin(w x) relative to this mesh:

> v: =Vect or (n+1,i - >eval f(_si n(Pi*Xi]))) ;
0.
0.5877852524
0.9510565165
Y:= (6.3.2)
0.9510565165
0.5877852524

0.

| can create the piecewise linear function defined by these nodal values using
the Spline command. Since | want a piecewise linear interpolant, | must give the
"degree=1" option:

;> wi th(CurveFitting, Spline):

| > unassign(' x');

> p: =unappl y(Spline(X Y, x, degree=1), x);

pi= x—>piecewise(x < % 2.038926262 X, x < % 0.2245139885 (6.3.3)

+1.816356320 x, x < %, 0.9510565165, x < %, 2.040870309

—1.816356320 x, 2.938926262 — 2.938926262 x)

| can now plot the piecewise linear function:

> plot(p(x),x=0..1,thickness=3);
0.9'-
0.8-
0.7-
0.6'-
0.5-
0.4-
0.3'-
0.2-

0.17

0 T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1
X

=> pl ot ({sin(Pi*x),p(x)},x=0..1,thi ckness=3);

0.8 1

0.6 1

0.4 1

0.2 1

0 T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1

We can use the Spline command to represent the standard piecewise linear basis
functions. Here is an example:

;> Y3: =Vector (n+1,i->0):
[> Y3[3]:=1:
> phi 3: =unappl y(Spl i ne(X, Y3, x, degree=1), X);

¢3::x—>piecewise(x < %, 0, x< %, -14+5x x< %, 3—5x,x< %, 0, Oj (6.3.4)

B pl ot (phi 3(x), x=0..1,thi ckness=3);

0.9
0.8'-
0.7-
0.6'-
0.5-
0.41
0.3-
0.2
0.1

0 T i I i I 1 1
0 0.2 0.4 0.6 0.8 1

| can now use the Spline command to create a basis and then apply the finite
element method. For example, suppose | wish to apply the finite element
method, with piecewise linear functions, to the following BVP:

_(a_i (k(x) (6_(1 u))):x,0<x,x<1,
u0)=0,u(l)=0.

| begin by defining a mesh and all of the basis functions:

> n: =10:

| > X:=Vector(n+l,i->eval f((i-1)/n)):

>for i fromO to n

> do

> Y: =Vector (n+1,i->0.0):

> Y[i+1]:=1.0:

> phi[i]:=unapply(Spline(XY,Xx, degree=1), X):
> end do:

| define the energy and I? inner products for convenience. | will take
k(x) =1 + x for this example.

> k: =x->1+x;
ki=x—-x+1 (6.3.5)

> a: =(u, Vv)->i nt(k(x)*D(u)(lx)*D(v)(x),x:O..l);

a:=(u, v)—>J k(x) D (1) (x) D(V) (x) dx (6.3.6)
0
=> L: =(u, v)->int(u(x)*v(x), x=0. .11);
L= (u v)—»J u(x) v(x) dx (6.3.7)
0

| could assemble the stiffness matrix with a single command:
K:=Matrix(n-1,n-1,(i,j)->a(phi[j],phi[i]),shape=symmetric);

However, this command would not take advantage of the fact that K is sparse,

and so would be very inefficient. Instead, | will create a sparse matrix with no

nonzero entries and then fill in the nonzeros in two loops.

The following command creates an "empty" tridiagonal, symmetric matrix ("band

[1,0]" means that only the first subdiagonal and the main diagonal of the matrix
will be stored; this is sufficient, since the matrix is tridiagonal and symmetric):

[> K =Matri x(n-1,n-1, shape:syrmet ric, st orag_e:band[1,0]);
000O0O 00O

(6.3.8)

S O O O O o o O
S O O O O O O O
S O O O O o O O
S O O O O o o O
S O O O O O o o O
S O O O O O O O
S O O O O o o O
S O O O O O O O

S O O O o O o O

Next, | fill in the main diagonal (as explained in the text, the stiffness matrix in
this problem is tridiagonal---the only nonzeros lie on the main diagonal, and
the first sub- and super-diagonals.). Notice that the main diagonal of K has
n—1 entries.

>for i froml1l to n-1
> do

> Kli,i]:=a(phi[i],phi[i]):
| > end do:
-«
22. 0 0 0 0 0 0 0]
0 24. 0 0 0 0 0 0 O
0 026 0 0 0O 0 0 0
0 0 0 28. 0 0 0O O O
0 0 0 0300 0 0 0 (6.3.9)
0 0 0 0 0 32.0 0 0
0 0 0 0 0 O 34. 0 0
0 0 0 0 0 0 0 36 0
0O 0 0 0 0 0 0 0 38

I_:inally, | fill in the sub-diagonal (since | told Maple that Kis symmetric, | do not
need to fill in the super-diagonal).

> for i from1l to n-2

> do

> K[i+1,i]:=a(phi[i],phi[i+1]):
> end do:

(Notice that the loop executes n— 2 times, since the sub- and super-diagonals
each have n — 2 entries.)

f[gé., -11.50000000, 0, 0, 0, 0, 0, 0, 0], (6.3.10)

[-11.50000000, 24., -12.50000000, 0, 0, 0, 0, 0, 0],
[0, - 12.50000000, 26., -13.50000000, 0, 0, 0, 0, 0],
[0, 0, -13.50000000, 28., - 14.50000000, 0, 0, 0, 0],
[0, 0,0, -14.50000000, 30., -15.50000000, 0, 0, 0],
[0, 0,0, 0, -15.50000000, 32., - 16.50000000, 0, 0],
[0, 0,0, 0,0, -16.50000000, 34., -17.50000000, 0],
[0,0,0,0,0,0, -17.50000000, 36., -18.50000000],
[0,0,0,0,0,0,0, -18.50000000, 38.]]

_Next, | compute the load vector:

2

[i=x—X

> f:=x->x"2;
(6.3.11)

Finally, | solve the linear system KU = Fto find the nodal values:

F:=| 0.02516666667

> Fr=Vector(n-1,i->L(phi[i], f));

0.001166666667 |
0.004166666667
0.009166666667
0.01616666667

0.03616666667
0.04916666667
0.06416666667
| 0.08116666667 |

[> U: =Li near Sol ve(K, F)_; _
0.00642674694414684

0.0121931970525418
0.0171649978189051
0.0210895047013156
0.0236284134076978
0.0243798656381844
0.0228938561171263
0.0186832376161287

0.0112317516465363

(6.3.12)

(6.3.13)

Now | have computed the nodal values of the approximate solution, and | can
define the solution using the Spline command. 1 first need to add the boundary

values to the vector U:

[> U =Vect or (n+1,[0, U, 0]);

1..11 VectorC

olumn
Data Type: anything

Storage: rectangular

Order: Fortran_order

(6.3.14)

(The above command creates a vector with n+ 1 components, initialized from

the list with elements 0, U, 0.)

> v =Spl i ne(X, U, x, degree=1);

0.0642674694414683 x
0.000660296835751899 + 0.0576645010839494 x
0.00224959551981509 + 0.0497180076636334 x
0.00539147717167362 + 0.0392450688241050 x
0.0109338698757869 + 0.0253890870638219 x
0.0198711522552650 + 0.00751452230486564 x
0.0332959227645328 —0.0148600952105808 x
0.0523681856241096 —0.0421061850099762 x
0.0782951253728674 —0.0745148596959234 x

x < 0.1000000000
x < 0.2000000000
x < 0.3000000000
x < 0.4000000000
x < 0.5000000000
x < 0.6000000000
x < 0.7000000000
x < 0.8000000000
x < 0.9000000000

0.112317516465363 —0.112317516465363 x otherwise
Here is a graph of the approximate solution:
[> pl ot (v(x), x=0. .1, thi ckness=3) :
0.020 A
0.015 A
0.010 A
0.005 A
O I T T T T 1
0 0.2 0.4 0.6 0.8 1

(6.3.15

)

The exact solution was computed in the preceding section:

> u(x);
1 3 1 1 2 1 1 In(1+x)(-5+6In(2))
9 X 3 X+ 6 + 3 In(1 + Xx) 18 In(2) (6.3.16)

Here is a comparison of the two solutions:

> plot ({u(x),v(x)},x=0..1,thickness=3);

0.020 A
0.015 -
0.010 -

0.005 A

o T T T T T T T T T 1
0 0.2 0.4 0.6 0.8 1
X

=> pl ot (u(x)-v(x),x=0..1,thickness=3);

0.0005 - n
0.0004 - n
0.0003 -

0.0002 A "

0.0001 A

0 —
| 0.2 04 0:6 0.8 1

The above method for computing the stiffness matrix and load vector, while
easy to implement, is still not particularly efficient, since Maple cannot
manipulate the piecewise linear basis functions very quickly. It would be more
efficient to define simple linear functions to represent the pieces of the basis
functions, and then restrict the intervals of integration. Notice that the basis
function ¢, satisfies

x—X
¢I-(X) - I’Xi< X <Xiiy
¢,(x) = ‘TH’XHf X <Xy

q)l.(x) =0, otherwise,

where his the mesh size (h= % in this case). (Notice that the nodes of the

mesh are enumerated X}, X,, ..., X, , ;, rather than X, X, ..., X, as in the text. This
is because Maple vectors are indexed beginning at 1.) Therefore | define

|:> unassign(' x');
|'> phi 1:=(x,i)->(x-X[i])*n:

c 2 17\

|_ 01:= (x, i)~ (x—X) n (6.3.17)

> phi 2:=(X,1)->(x-Xi+2]) *n;
p2:= (X 0)—>- (X=X)N (6.3.18)

(Notice that the mesh X and the integer n must be defined already.) Now | can
compute the load vector more efficiently as follows:

> F: =Vector(n-1,i->eval f(int(phi 1(x,1)*f(x),x=X[i]..Xi+1])+
> int (phi2(x,i)*f(x),x=X[i+1]..X[1+2])));
0.001166666667
0.004166666667
0.009166666666
0.01616666667
F:=| 0.02516666667 (6.3.19)
0.03616666666
0.04916666667
0.06416666667
0.08116666666

You should be able to notice how much more quickly this computation
executes, as opposed to the previous version.

| can apply the same technique to assemble the stiffness matrix, except that |
have no need to differentiate the basis functions on the subintervals---1 know
that the slope of ¢, is either % =nor —% =-n

[> Ki=Matrix(n-1,n-1, shape=symetric, storage=band[1, 0]):
>for i from1l to n-1

> do

> Kli,i]:=eval f(n?*2*int(k(x),x=X[1]..Xi+2])):

> end do:

>for i from1l to n-2

> do

> Kli+1,i]:=eval f(-n?2*int (k(x),x=X[1+1]..Xi+2])):
> end do:

> K

[[22.00000000, -11.50000000, 0, 0,0, 0,0, 0, 0], (6.3.20)

[-11.50000000, 24.00000000, -12.50000000, 0, 0, 0, 0, 0, 0],
[0, -12.50000000, 26.00000000, -13.50000000, 0, 0, 0, 0, 0],

\ 4

[0, 0, -13.50000000, 28.00000000, -14.50000000, 0, 0, 0, 0],
[0, 0,0, -14.50000000, 30.00000000, -15.50000000, 0, 0, 0],
[0, 0, 0,0, -15.50000000, 32.00000000, -16.50000000, 0, 0],
[0,0,0,0,0, -16.50000000, 34.00000000, -17.50000000, 0],
[0,0,0,0,0,0, -17.50000000, 36.00000000, -18.50000000],
[0,0,0,0,0,0,0, -18.50000000, 38.000000001]]

(Notice that, for a constant coefficient problem, there would be no need to

perform any integrations in assembling K, since then the entries of the stiffness

matrix would be constants. The diagonals entries would all be 2k , and the

h'
k

offdiagonal nonzero entries would all be _ﬂ')

This second method of assembling K and Fis much more efficient than the first,
although it is slightly more complicated because we must deal directly with the
mesh, the indexing of the vectors, and so forth. Which method is preferable
depends on how important speed is to you. (The second method is similar to
how the method would be implemented in a finite element software package,
since speed of execution is more important than programming convenience for
such a package.)

Chapter 6: Heat flow and diffusion

V¥ Section 6.1: Fourier series methods for the heat equation

\ 4 Example 6.2: An inhomogenous example
Consider the BVP

W APU_ 107 00 x<100. 50,

ot ax
u(x, 0) =0, 0< x<100,
u(0,t)=0,t> 0,
u(100, t) =0, t=0.

The constant A has the following value:

> A: =0. 208;
A:=0.208 (7.1.1.1)

The solution can be written as

ux, t) = Z a,(t) sin(
n=1

nnx)
100)’

where the coefficient a,(t) satisfies the IVP

0 N An =« a, 50
[at ”} 1000 T
a(0)=0

The values ¢, G, G, ... are the Fourier sine coefficients of the constant

function 107", Recall the use of the assume function for making Maple aware
the nis an integer.

[> unassign('n',"'x");
| > assume(n,integer);
> 2/ 100*i nt (10"(-7) *si n(n*Pi *x/100), x=0.. 100);
1 -14 (-1
5000000 n~m

(7.1.1.2)

> c: =unappl y(% n);
1 14 (D™
5000000 n~m

C:i=n~— (7.1.1.3)

| can now compute a,(t) by the following formula (derived in Section 4.2.4 of
the text):

;> unassign('t',"'s");
> int(exp(-A*n"2*pPi "2*(t-s)/1007r2)*c(n),s=0..1);

—1(0.0003101109080 (- 1. ¢ 0000205287715 tn-2 (7.1.1.4)
n~
4@ 00002052877715tn-2 (g yn~ g q (1 yn~))
[> a: =unappl y(%t, n);
a:= (1, n~)—»——(0.0003101109080 (-1, ¢ 0000205287715 tn-2 (7 4 1 5)
n~
+ e—00002052877715 tn~2 (_1.)nN + 1. _ 1. (_1.)n~))

| can now define the Fourier series solution:

|:> unassign(' N);

> u:=(x,t,N)->add(a(t, n)*sin(n*Pi *x/100), n=1. . N);

u:=(x ¢ N)—»add(a(t, n) sin(ﬁ nnx), n= 1..N) (7.1.1.6)

| can easily look at some "snapshots" of the solution. For example, | will show
the concentration distribution after 10 minutes (600 seconds). Some trial and
error may be necessary to determine how many terms in the Fourier series
are required for a qualitatively correct plot. (As discussed in the text, this
number decreases as tincreases, due to the smoothing of the solution.)

[> pl oot (u(x, 600, 10), x=0. . 100, titl e="t =600, 10 terns",
t hi ckness=3);

t=600, 10 terms

0.00006 1
0.00005
0.00004 ~

0.00003

0.00002

0.00001

0 20 40 60 80 100

The wiggles at the top of the arch suggest that | did not use enough terms in
the Fourier series, so | will try again with more terms. (Of course, perhaps
these wiggles are really part of the solution. In that case, they will persist
when | draw the graph with more terms.)

> pl ot (u(x, 600, 20), x=0..100,title="t=600, 20 ternms",
t hi ckness=3);

t=600, 20 terms

0.00006 7

0.00005

0.00004

0.00003

0.00002

0.00001

0 T T T T T T T T T
0 20 40 60 80 100
X

B pl ot (u(x, 600, 40), x=0..100,title="t=600, 40 terns",
t hi ckness=3);

\ 4

t=600, 40 terms

0.00005

0.00004

0.00003 A

0.00002

0.00001 +

O I i I i I i I i I i
0 20 40 60 80 100
X

The above graphs suggest that 20 terms are probably sufficient for a
qualitatively correct graph at t = 600.

Section 6.4: Finite element methods for the heat equation

Now | will show how to use the backward Euler method with the finite element
method to (approximately) solve the heat equation. Since the backward Euler
method is implicit, it is necessary to solve an equation at each step. This makes
it difficult to write a general-purpose program implementing the backward
Euler method, and | will not attempt to do so. Instead, the command beuler
(defined below) applies the algorithm to the system of ODEs

which is the result of applying the finite element method to the heat equation.

|_> read(beul er);

beuler := proc(M, K, f, a0, n, dt) (7.2.1)
local i, L, U, rhs;
U:= Matrix(n+ 1, 2, datatype = anything);
for i from O to ndo U[l +1i 1]:=i*dt end do;
Ull, 2]:= a0,
L:= M+ dt*K;
for i to n do
rhs:= . (M, U[i 2]) +dt*f(U[1 + i 1]);
U1l + i, 2]:= LinearAlgebra:-LinearSolve(L, rhs)
end do;
U

end proc

To solve a specific problem, | have to compute the mass matrix M, the stiffness
matrix K, the load vector f(t), and the initial data a,. The techniques should by

now be familiar.

¥ Example 6.9

A 100 cm iron bar, with p=7.88 g/cm3, c=0.437 J/(g K), and k= 0.836 W/(cm
K), is chilled to an initial temperature of O degrees and then heated internally
with both ends maintained at O degrees. The heat source is described by the
function

|:> unassign('x',"t");
> F:=(x,t)->10"(-8)*t *x*(100- x) "2;
1

Fi= e tx (100 —x)? 7211
% 0=1050000000 X (100X ()

The temperature distribution is the solution of the IBVP

ou 02u
c— —k— = F(x, t), 0<x<100, t>0,
p o Kaxz (x, 1) X
u(x,0) =0, 0<x<100,
u(o, t) =0, =0,

u(100, t) =0, =0.

Using the standard piecewise linear basis functions and the techniques
introduced in Section 5.6 of this tutorial, | compute the mass and stiffness
matrices below:

| > n: =100:

> h:=100. 0/ n:

| > k:=0.836:

[> p: =7.88:

[> c:=0.437:

> K:=Matrix(n-1,n-1, shape=synmetri c, st orage=band[1, 0] ,

dat at ype=fl oat):
for i froml to n-1
do

K[i,i]:=2%k/h:
end do:
for i froml to n-2
do

K[i+1,i]:=-k/h:
end do:

IIVVVV

vV V VYV

(Notice that, for this constant coefficient problem, there is no need to
perform any integrations; we already know the entries in the stiffness matrix.
The same is true for the mass matrix below.)
> M =Matrix(n-1,n-1, shape=synmetri c, st orage=band[1, 0],
dat at ype=fl oat):
for i fromlto n-1
do
Mi,i]:=2*h*p*c/ 3:
end do:
for i froml to n-2
do
Mi+1,i]:=h*p*c/6;
end do:

IIVVVV

V V VYV

I must perform some integrations to compute the load vector F.

| > phil:=(x,i)->(x-(i-1)*h)/h:

| > phi 2: =(x,i)->(x-(i+1)*h)/h:

> Vector(n-1,i->int(F(x,t)*phi1(x,i),x=i*h-h..i*h)+int(F(x,
t)*phi 2(x,i),

| > x=i *h..i*h+h)):

> f:=unapply(%t):

Finally, before invoking beuler, | need the initial vector:
[> a0: =Vector(n-1,i->0.0):

Now | choose the time step and the number of time steps, and invoke the
backward Euler method:

;> st eps: =90:
[> dt: =180. 0/ st eps:
> U: =beul er(MK, f, a0, st eps, dt);
91 x 2 Matrix
Data Type: anything

U:= (7.2.1.2)
Storage: rectangular

Order: Fortran_order

I now define the spatial grid and view the last time snapshot:

| > X:=Vector(n+l,i->(i-1)*h):

| > Y:=Vector(n+1,[0.0, Usteps+1,2],0.0]):
[> wi th(plots, pointplot):

> poi nt pl ot (<X| Y>, synbol si ze=15) ;

0 20 40 60 80 100

Y Chapter 8: First-order PDEs and the method of
characteristics

V¥ Section 8.1: The simplest PDE and the method of characteristics

When solving PDEs in two variables, it is sometimes desirable to graph the
solution as a function of two variables (that is, as a surface), rather than plotting
snapshots of the solution. This is particularly appropriate when neither variable
is time.

The plot3d function plots a function of two variables:
| > unassign('u','x",'y");

> u=(x,¥)— [1+(x1+¥)2) ;
u:= (x, y)—>1+(x—1i_%y)2 (8.1.1)

=> plot3d(u(x, y), x=-5..5, y=0.10);

Notice that, by default, the axes are not displayed in a three-dimensional plot.
| The following option causes Maple to display the axes:

> plot3d(u(x, y), x=-5..5, y=0..10, axes = normal);

If you would like to see the surface from a different angle, you can click on the
figure and rotate it by moving the mouse (i.e. put the pointer on the figure, hold
down the left mouse button, and move the mouse).

V¥ Section 8.2: First-order quasi-linear PDEs

The purpose of the method of characteristics is to reduce a PDE to a family of
ODEs. Maple has a function called dsolve that will solve many ordinary
differential equations symbolically. | will illustrate the use of dsolve in the
context of Example 8.6 from the text.

The method of characteristics reduces the PDE in Example 8.6 to the IVP

dv 1
o =, V(0) = e

dsolve will solve this problem as follows:

LN B DP B D |

| > unassign('V\'t\'s");

> dsolve({D(v)(t) — (1), V(0) = 1}, v(t));
(1+5°)
1
= —— 8.2.1
Vo 1+5—t 8.2
[fyou prefer, you can specifiy the ODE using diff rather than D:
> dsolve({diff(v(t), £ = (1) V(0) = (lisz) } v(t)j;
1
) = B 8.2.2
Vi 1+ —t (8.2.2)

If no initial condition is given, dsolve will return the general solution of the
ODE:
> sol = dsolve(D(v) (1) = V(1)°, W(1));

1

l:= = 2.
sol:= V(t) t+ ¢l (8.2.3)

If you wish to assign the solution to a function, you can use rhs to extract the
right-hand side (the formula for the solution) and then use unapply:
> v:= unapply(rhs(sol), t);

1

S — 8.2.4
v “t+_Cl (8.2.4)
> v(1);
S (8.2.5)
1+ _C1
> (2= 4
C2:=4 (8.2.6)
> v(1);
S (8.2.7)
1+ _C1

dsolve will also solve systems of ODEs (when possible). Here is the system from
Example 8.7:

% =v,x(0) =s,
A _y 0y =1,

dt

dv
_— = = 2 .
dt x, v(0) S.

When calling dsolve, the differential equations and initial conditions must be
given as a list, as must the list of unknowns:

| > unassign('x','y,\V,'s\'t");
> sol := dsolve({D(x)(t) = v(t), D(y)(t) = y(t), D(v)(t) = x(t), x(0) =, ¥(0)

=1, V(0) = 2-5), {x(1), Y(1), V(1) });
sol:= {v(t) = % sel + % Se_t, x(t) = % sel — % Se_t, y(t) = e! (8.2.8)

'I'he solutions are given in a list, and can be accessed using indices:
> sol[1];

V(t) = % sel+ % se’! (8.2.9)

(> V= unapply(rhs(sol[1]), t);
V= t—»% se'+ % se’! (8.2.10)

> x = unapply(rhs(sol[2]), t);
X'=t—>= Set_ % Se_t (8211)

=> y = unapply(rhs(sol[3]), t);
yi=t—el (8.2.12)

Y Chapter 11: Problems in multiple spatial dimensions

V¥ Section 11.2: Fourier series on a rectangular domain

Fourier series calculations on a rectangular domain proceed in almost the same
fashion as in one-dimensional problems. The key difference is that we must
compute double integrals and double sums in place of single integrals and
single sums. Fortunately, Maple makes this easy. We do not need to learn any
new commands, since a double integral over a rectangle is just an iterated
integral.

As an example, | will compute the Fourier double sine series of the following
function fon the unit square:

|:> unassign('x',"'y"');
> fi=(x,y)->x*(1-x) *y*(1-y);
fi=(xy)>x(1-x)y(1-y) (9.1.1)

The Fourier series has the form

i [i a,,, sin(mnx) sm(nny)]

n_

where

1.1
a, . =4 J J f(x,¥) sin(mnx) sin(nry) dydx |.
mn 0Jo

So we calculate as follows:

[> unassign('m,"'n");

[> assunme(minteger):

| > assune(n,integer):

>4 int(int(f(x,y)*sin(ntPi*x)*sin(n*Pi *y),y=0..1),x=0..1);
16 (1- (D" =™+ (1" ")

(9.1.2)
n~>n° m~*
For convenience, | define a function representing the coefficienta,,,
> a: =unappl y(% mn);
o n~ . m-~ _ m~ + n~
a:=(m~, n~)— 16 (1= (-1) § é) +(-1)) (9.1.3)

n~m m~3

Finally, I define a function representing the (partial) Fourier series:

| > unassign('M);

> S =(x,y,M->add(add(a(m n)*si n(ntPi *x)*si n(n*Pi *y),n=1.. M,
mn=l.. M

S:=(x, , M)—add(add(a(m, n) sin(mnx) sin(nny), n=1..M), m=1 (9.1.4)

M)

We can now plot f using plot3d:

> pl ot 3d(f(x,y),x=0..1,y=0..1, axes=normal) ;

0}.{ a9 'Q
0.8 jr; ” !0""‘0 0.8

IHONOGKRTR \“k\
il R
' ll;g’ll "!ft, \\‘%%\\

lll;,,,h ‘\

You may prefer "boxed" axes

[> plot3d(f(x,y),x=0..1,y=0..1, axes=boxed):

r};f:ix

1.06- —}}”ﬁ":"’:&%

05 L PO A,

ok DRSO

104] .-'? -'"!""‘*“'““\" \""-.

)03 Vi ?&iﬁﬁ"{\‘\{{
[T

.02 |
.01

"1 “

(R
%

Here is the graph of the Fourier series with a total of 100 terms:

[> pl ot 3d(S(x,y, 10),x=0..1,y=0..1, axes=normal) ;

The approximation looks pretty good. To confirm this, | will graph the error:

[> pl ot 3d(f(x,y)-S(x,y, 10), x=0. . 1, y=0. . 1, axes=nor mal) ;

RS T T

- 000008
- 0.00006
Qo0

b

R Y

Q.
- [

Looking at the vertical axes on the last two plots, we see that the relative
difference between fand its partial Fourier series with 100 terms is only about
one tenth of one percent.

V¥ Section 11.3: Fourier series on a disk
The Bessel functions J,(s) are built-in functions in Maple, just as are the more

common elementary functions sine, cosine, exp, and so forth, and can be used
just as conveniently. For example, here is the graph of J

[> pl ot (Bessel J(0, x), x=0. . 10, t hi ckness=3) ;

0.8 1

0.6 7

0.4 1

0.2 1

-0.2 7

-0.4-

(Notice that the first argument to the BesselJ function is the index n.)

As an example, | will compute the smallest roots s, , Sy 2, Sy 3 0f J,. The above
graph shows that these roots are approximately 2.5, 5.5, and 8.5, respectively.

> fsol ve(Bessel J(0, x), x=2..3);
2.404825558 (9.2.1)

> fsol ve(Bessel J(0, x), x=5..6);
5.520078110 (9.2.2)

> fsol ve(Bessel J(0, x), x=8..9);
8.653727913 (9.2.3)

\ 4 Graphics on the disk

Functions defined on a disk are naturally described by cylindrical
coordinates, that is, as z= f(#, 6), where r, 8 are polar coordinates. We can
use a version of the plot3d command to plot a function given in polar
coordinates; we just have to view the surface as given parametrically:

(x, ¥, z) = (rcos(0), rsin(0), f(r, 0)).

For example, consider the eigenfunction J,(s; | r) cos(8) of the Laplacian on
the unit disk. First, | must compute the root s, ; of Ji:

[> pl ot (Bessel J(1, x), x=0..10, t hi ckness=3);
0.5 7
0.4 7
0.3 7
0.2 1
0.1
0 I I i 1
2 8 10
-0.1 1
-0.2 1
-0.3 1
=> fsol ve(Bessel J(1, x),x=3..4);
3.831705970 (9.2.1.1)
> s11: =%
s11:=3.831705970 (9.2.1.2)
;> unassign('r','t");
> phi:=(r,t)->Bessel J(1,s1l1*r)*cos(t);
¢ := (r, t) »Bessel]J(1, s11r) cos(t) (9.2.1.3)

Here is a plot of the eigenfunction. Notice that | just give the parametric
representation of the surface, followed by the range of the variables.

> plot3d([r*cos(t),r*sin(t),phi(r,t)],r=0..1,t=0..2*Pi, axes=
normal) ;

Y Chapter 12: More about Fourier series

V¥ Section 12.1: The complex Fourier series

It is no more difficult to compute complex Fourier series than the real Fourier
series discussed earlier. You should recall that the imaginary unity -1 is
represented by | in Maple. As an example, | will compute the complex Fourier
series of the function f(x) = X on the interval [-1,1].

;> unassign('x');
> f1=x->x"2;
fi= X— X (10.1.1)

;> unassign('n');
| > assunme(n,integer):
> (1/2)*int(f(x)*exp(-1*Pi*n*x),x=-1..1);

Mn 1 2\

: (10.1.2)
T N~
> sinplify(%;
n~
2 (-1) (10.1.3)
T N~
> ¢ =unappl y(% n) ;
n~
. n~_>2(2—_1) (10.1.4)
2
T N~

The foregoing formula obviously does not hold for n=0, and so | need to
compute ¢, separately:

[> (1/2)*int (f(x), x=-1..1);
(10.1.5)

w |k

_> c0: =1/ 3;

c0:= (10.1.6)

1
3

Now | can define the partial Fourier series. Recall from Section 12.1 of the text
that, since fis real-valued, the following partial Fourier series is also real-
valued:

|:> unassign('x',"'M);
> S:=(x,M->c0+add(c(n)*exp(l*n*Pi *x),n=-M.-1) +
> add(c(n)*exp(I*n*Pi *x),n=1.. M ;
S:= (x, M) >0+ add(c(n) "™ n=-M..-1) + add(c(n) "™ n=1.M) (10.1.7)

| will check the computation with a plot:

> pl ot (S(x, 10), x=-1..1,thickness=3);

The approximation is not bad, as the following graph of the error shows:

[> plot (f(x)-S(x,10), x=-1.. 1, t hi ckness=3)

0.03 1

0.02 A

0.01 A

WA AAAAANAND
N \/Vo.SVVb{VVo.V\/ 1

U -0.01 - u

V Section 12.2: Fourier series and the fast Fourier transform

Maple implements the fast Fourier transform in the command FFT. As
mentioned in Section 12.2.3 in the text, there is more than one way to define the
FFT (although all are essentially equivalent), and Maple's definition differs

slightly from that used in the text: Instead of associating the factor of]\% with

the DFT, Maple associates it with the inverse DFT (cf. the formulas for the DFT
and inverse DFT in Section 12.2.2 of the text). Otherwise, the definition used by
Maple is the same as that used in the text.

There are several unusual features to the FFT command in Maple. First of all, it
operates only on sequences of length 2™ where m s a positive integer.
Secondly, it does the computation "in place"; that is, rather than accepting an
input and producing an output, FFT replaces the input with the output, and just
returns the number 2™ Thirdly, the real and imaginary parts of the input
sequence must be given in separate vectors.

Here is an example. Let fbe the sequence of length 8, whose terms are 1,2,...,8. |
define the real and imaginary parts of f:

|> fre:=Vector(8,i->i):
|:> fim=Vector(8,i->0.0):

| must pass the integer m (where the length of the sequence is 2™, as well as
these two arrays, to FFT

> FFT(3,fre, fim;
8 (10.2.1)

Recall that 8 is just the length of the input sequence, and that the input has now
been replaced by the output:

> fre;
36

-4.000000002
-4.
-3.999999998
-4.
-3.999999998
-4.
| -4.000000002 |

(10.2.2)

=> fim
0.

9.656854244
4.

1.656854248
0.

-1.656854248
-4.

_ -9.656854244 |

(10.2.3)

As | explained in Section 12.2.2 of the text, a common operation when using the
FFT is to swap the first and second halves of a finite sequence. Here is a
command to do this; it takes as input a vector and returns a new vector with the
two halves swapped. The swap command illustrates some more programming
techniques, which you can learn by studying swap and using the on-line help.

|_> swap: =pr oc(x)

> | ocal n,vy;
If not is(x,Vector) then
error "lnput nust be of type Vector"
end if;
n: =op(1, x);
> if is(n,odd) then
> error "lnput vector nmust have even | ength”
> end if;
y:=Vector(n,[x[(n/2+1)..n],x[1..(n/2)]]);
> y;
> end proc;
swap .= proc(x) (10.2.4)
local n, y;

if not is(x, Vector) then error "Input must be of type Vector'

end if;

n:=op(l, x);
if is(n, odd) then error "Input vector must have even length"
end if;
y:=Vector(n, [x[1/2*n+1.n],x[1..1/2*n]]);
y
end proc
:> X:=Vector(8,i->i):
> swap(x) o
5
6
7
8 (10.2.5)
1
2
3
4
\ 4 Example

I will now repeat Example 12.3 from the text, except with 8 points instead of
6 (N=4 instead of N=3, in the notation of that example). First | define the
initial sequence:

[> unassign('x');
> f:=x->x"3;
f:=x—>x3 (10.2.1.1)

=> x:=Vector(8,i->- 1+(i_- 1)*2.0/8);

-1.
-0.7500000000
-0.5000000000
-0.2500000000
X:= (10.2.1.2)

0.
0.250000000
0.500000000

0.750000000

NE =Vector (8,i->f(x[i]));

-1.
-0.4218750000
-0.1250000000
P -0.01562500000 (10.2.1.3)

0.
0.01562500000
0.1250000000

0.4218750000

> F[1] : =0:
F:=0 (10.2.1.4)

Next, | shift the sequence using swap:

> F: =swap(F);

(10.2.1.5)

0.
0.01562500000
0.1250000000
0.4218750000
F:= (10.2.1.5)
0
-0.4218750000
-0.1250000000

| -0.01562500000 |

Now | can apply the FFT. However, | need to create the imaginary part of the
sequence, and | also need to divide the sequence by its length (since Maple
uses a different version of the FFT than | use in the text):

[> F: =F/s8:
|:> Fim =Vector(8,i->0.0):
[> FFT(3,F, Finm:

Now | must swap both the real and imaginary parts of the solution:

|:> F: =swap(F):
> Fim=swap(Fi m:

Here is the desired result:
> G =F+| *Fi m
0.4+0.1

-2.18750018099456 107" + 0.0460898041687500 1
0.—0.1015625000000001
2.18750018099456 107! + 0.1085898041312501
G:= (10.2.1.6)

0.+0.1
2.18750018099456 1011 —0.1085898041312501
0.+0.1015625000000001

-2.18750018099456 10" — 0.04608980416875001

\ 4 Creating a more convenient FFT command

| do not find Maple's FFT command to be particularly convenient, for several

reasons:
1. I would rather not have to separate the sequence into real and imaginary
parts.

2. 1 would prefer to use the definition in the text.

3. | prefer to not overwrite the input with the output.

As a further example of Maple programming, | will write a procedure that
calls FFT, but has the features that | prefer. My new command will be called
myFFT.

In order to implement myFFT, | will need the following capability: Given a
vector with complex components, extract the real and imaginary parts. | can
easily extract the real and imaginary parts of a complex number, since Maple
has builtin commands to do this:

[> Re(1+2*1):
1 (10.2.2.1)

[> I n(1+2%1):

2 (10.2.2.2)

These commands can be applied to vectors:

(> x:=<1+2%1 1, 2-1,-0.5+ >
1+21

X:= (10.2.2.3)

=> Re(x);

(10.2.2.4)

> Im(x);

(10.2.2.5)

Another way to accomplish the same thing is to map the commands to the

components of the vector:
> map(Re, x);

1
0
(10.2.2.6)
-0.5
=> map(Im, x); _ _
2
1
(10.2.2.7)
-1
1.
| use the map command in implementing myFFT:
=> read(nyFFT);
myFFT := proc(x)
local m, n, w, y, z
if not is(x, Vector) then
error "Input must be of type Vector"
end if;
n:=op(1l, x);
m := simplify(log[2](n));
if not is(m, integer) then
error "Input vector must have length n=2Am"
end if;
W=X/H
y:=swap(map(Re, w));
z:=swap(map(Im, w));
FFT(m, y, z);
w:=swap(y) +1*swap(z)
end proc
swap = proc(x) (10.2.2.8)
local n, y;

if not is(x, Vector) then

error "Input must be of type Vector"
end if;
n:=op(1, x);
if is(n, odd) then

error "Input vector must have even length"
end if;
y:=Vector(n, [X[1/2*n+1.n], x[1..1/2*n]]);
y
end proc
i x:=Vector(8,i->-1+(i-1)*2.0/8):
> f:=x->x"3:
[> F:=Vector(8,i->f(x[i])):
| > F[1] : =0:
> G =nyFFT(F);

0.+0.1
-3.00000000000000 107! +0.0460898041700000 I
0.—0.1015625000000001

3.00000000000000 107! +0.1085898041000001
G:= (10.2.2.9)
0.40.1
3.00000000000000 10711 —0.1085898041000001
0. +0.1015625000000001

| -3.00000000000000 101 —0.0460898041700000 I |

As an exercise, you can implement a similar function myiFFT as an interface
to iFFT.

Y Chapter 13: More about finite element methods

V¥ Section 13.1: Implementation of finite element methods

In this section, | do more than just explain Maple commands, as has been my
policy up to this point. | define a collection of Maple commands that implement
piecewise linear finite elements on polygonal domains. The interested reader
can experiment with and extend these commands to see how the finite element

method works in practice. The implementation of the finite element method
follows closely the explanation | give in Section 13.1 of the text, although the
data structure has been extended to allow the code to handle inhomogeneous
boundary conditions. (However, the code itself has not been extended to handle
inhomogeneous boundary conditions. This extension has been left as an
exercise.)

The finite element code | provide consists of about a dozen commands, all of
which are defined in the file "fempack"”. Therefore, before using these

commands, you must read in the file using the read command (recall the earlier
discussion of the current directory).

|:> wi t h(Li near Al gebra):
[> with(plots):
|:> read(f enpack) :

| will now describe the finite elements commands and illustrate their use.
V¥V The boundary value problem
The fempack finite element codes solves the following problem

-div(ia(x, y) gradu) = f(x, y) in Q,

u=0on 1“1,
ou =0 on 1“2,
on

where I', and T, partition the boundary of Q. However, before any
computation can be performed, the mesh must be described.

V The mesh data structure

A triangulation of a planar, polygonal region is described by the following
arrays:

T[NodeList]: An Mx2 array of real numbers, the coordinates of the
nodes in the mesh.

T[NodePtrs]: An Mx1 array of integers; the ith entry equals the index of
the ith node in T[FNodePtrs] if the node is free, and the negative of
its index in T[CNodePtrs] if the node is constrained.

T[FNodePtrs]: An NNx1 array of integers, where NN is the number of free
nodes. T[FNodePtrs][i] is the index of the ith free node in T[NodePtrs].

T[CNodePtrs]: An Kx1 array of integers, where K is the number of

constrained nodes. T[CNodePtrs][i] is the index of the ith constrained
node in T[NodePtrs].

T[EIList]: An Lx3 array of integers, where L is the number of triangular
elements. Each row corresponds to one element and contains pointers to
the nodes of the triangle in T[NodeList].

T[EIEdgeList]: An Lx3 matrix. Each row contains flags indicating whether
each edge of the corresponding element is on the boundary (flag is -1

if the edge is a constrained boundary edge, otherwise it equals the

index of the edge in FBndyList) or not (flag is 0). The edges of the
triangle are, in order, those joining vertices 1 and 2, 2 and 3, and

3 and 1.

T[FBndyList]: A Bx2 matrix, where B is the number of free boundary edges
(i.e. those not constrained by Dirichlet conditions). Each row
corresponds to one edge and contains pointers into T[NodeList], yielding
the two vertices of the edge.

For more details, see Section 13.1.1 of 'Partial Differential Equations:
Analytical and Numerical Methods' by Mark S. Gockenbach

\ 4 Creating a mesh: rectangleMeshD, rectangleMeshN, and
rectangleMeshTopD.

| provide three routines to create meshes:

T:=rectangleMeshD(nx,ny,lIx,ly) creates a regular triangulation of the
rectangle [0, Ix] X [0, Iy], with nx and ny subdivisions in the x and y directions,
respectively. Dirichlet conditions are assumed on the boundary.

rectangleMeshN and rectangleMeshTopD work the same way, but assume
Neumann conditions and mixed conditions (Dirichlet on the top edge,
Neumann elsewhere), respectively.

Thus | provides the means to deal with a single domain shape, a rectangle,
and under only three combinations of boundary conditions: Dirichlet and a
certain combination of mixed Dirichlet and Neumann conditions. To use my
code to solve BVPs on other domains, or under other boundary conditions,
you will have to write code to generate the meshes.

Here | create a mesh:

|:> T: =rect angl eMesh(8, 8,1.0,1.0):

| have provided a command for viewing a mesh.

V¥ Viewing a mesh: showMesh

showMesh(T) can be used to display a triangular mesh. This command
returns a plot structure, which can be displayed using the display command.

> di spl ay(showvesh(T));
1

0.8

0.6

0.4

0.2

O N 1 N 1 1 N 1 N
0 02 04 0.6 0.8 1

\ 4 Assembling the stiffness matrix and the load vector: stiffness and load

K=stiffness(T,a) assembles the stiffness matrix for the BVP

-div(a(x, y) gradu) = f(x, y) in Q,
u=0on Fl,

0
— u=0onT,,
on 2

The domain Q and the boundary conditions are defined by the mesh T, while
the input a must be a function of two variables representing the coefficient
a(x, y) in the PDE.

Here is an example:

|:> unassign('x','y',"a");
> a: =(X,y)->1+x"2:
> K =stiffness(T,a):

Maple provides a method for viewing the sparsity pattern of a sparse matrix
like K

> sparsematri xpl ot (K);

49 © o
* whE
* T
* -
* '
* T
*]
* 4 *
* L] *
4 0- * [] *
* wh *
* T *
* whE *
* 1 *
* 4 *
* T *
* o *
o *
* [T *
c 3 O- * HEE *
* 4 *
E * *#
* ' *
* - *
- * FEE +
= * i *
* L] *
(@] * e *
* It *
Q 2 O- * FEE *
whE *
* T *
* i *
* T *
* HH *
* T *
* [T *
* [T *
* (T *
1 0- * hE *
* T *
* H *
* *
[T *
(T *
e L] *
b *
T *
1— ¥ *
T T T T T 1

The above plot is schematic; there is a box at position i, j if Kijis nonzero.

F:=load(T,f) assembles the load vector for the BVP

-div(a(x, y) gradu) = f(Xx, y) in Q,
u=0on I,

0
— u=0o0n T,
on

The domain Q and the boundary conditions are defined by the mesh T, while
the input f must be a function of two variables representing the right hand
side f(x, y) in the PDE.

Here is an example:

|:> f:=(x,y)->1:
[> F: =l oad(T, f):

Now that | have compute K and F for the problem

~div((1 +x%) gradu) =1inQ,
u=0on bndy Q,

| can solve for the nodal values of the approximate solution:

|:> u: =Li near Sol ve(K, F):

| provide a command for viewing a piecewise linear function.

V Displaying a piecewise linear function: showPWLinFcn

showPWLinFcn(T,u) creates a graph of the piecewise linear function defined
by the mesh T and the nodal values u. The value at each constrained node is
assumed to be zero. Like showMesh, showPWLinFcn returns the plot
structure, which can be displayed using the display command.

Here is the approximate solution just computed:

> di spl ay(showPW.i nFcn(T, u));

0,05
[0.04
[0.03
02

To illustrate the effect of the boundary conditions, | will now solve the same
PDE, but with the mixed boundary conditions described above:

| > T: =rectangl eMeshTopD(8, 8,1.0,1.0):
K:=stiffness(T,a):

F:=load(T,f):

u: =Li near Sol ve(K, F):

| >
[>
| >
> di spl ay(showPW.i nFcn(T, u));

If the angle at which you view the above surface is not satisfactory, you can
select the figure and rotate it using the 6 and ¢ angles on the toolbar (at the
top of the Maple window), or simply by dragging the figure with the mouse.

\ 4 Testing the code

To see how well the code is working, | can solve a problem whose solution is
known, and compare the computed solution with the exact solution. | can
easily create a problem whose solution is known; | just choose a(x, y) and any
u(x, y) satisfying the boundary conditions, and then compute

-div(a(x, y) grad u(x, y))
to get the right hand side f(x, y).

For example, suppose | take

|:> unassign('x','y',"a ,"'u);
> a:=(X,y)->1+x"2:
> u:=(X,y)->x*(1-x)*sin(Pi *y):

(Notice that u satisfies homogeneous Dirichlet conditions on the unit square.)
Then | can compute f:

(> sinplify(-diff(a(x,y)*diff(u(x,y),x),x)-
> diff(a(x,y)*diff(u(x,y),y).y));
-sin(ny) (2x—6x2—2—x3n2+x4n2—xn2+x2n2) (11.1.7.1)

(> f: =unappl y(% x, y)

fi=(x,y)—-sin(ny) (2x—6x -2 —x° A —xn + X nz) (11.1.7.2)

Now | will create a coarse grid and compute the finite element solution:

- =rectangl eMeshD(2,2,1.0,1.0):
c=stiffness(T,a):

»=load(T,f):

- =Li near Sol ve(K, F):

VL
cCmAx

Here is the computed solution:

> di spl ay(showPW.i nFcn(T, U));

(On such a coarse grid, there is a single free node!)
| can determine how accurate the compute solution is (at least at the nodes)

by comparing to the piecewise linear interpolant of u(x, y). | provide a
routine to make this convenient.

\ 4 Computing a piecewise linear interpolant: nodalValues

v:=nodalValues(T,u) computes the values of the input function u(x, y) at the
free nodes of the mesh T, and returns them in the vector v.

Here | use nodalValues to interpolate the exact solution of the previous
example:

|:> V: =nodal Val ues(T, u):

| then plot the difference between the exact and computed solution:

> di spl ay(showPW.i nFcn(T, V-U));

I will now repeat the previous calculations on finer and finer grids.

| > T: =rectangl eMeshD(4,4,1.0,1.0):

| > K =stiffness(T,a):

| > F: =l oad(T,f):

| > U: =Li near Sol ve(K, F):

| > V: =nodal Val ues(T, u):

> di spl ay(showPW.i nFcn(T, V-U));
;D.DIE
:D.DDE

-

;> T: =rect angl eMeshX 8,8, 1.0, 1. 0):
| > K =stiffness(T,a):

| > F:=load(T,f):

| > U: =Li near Sol ve(K, F):

| > V: =nodal Val ues(T, u):

> di spl ay(showPWLi nFcen(T, V-U));

I__."'\."."'\.""'\." &

0,003
[0.002
0001

0.5

| > T: =rectangl eMesh(16, 16, 1.0, 1. 0):
| > K =stiffness(T,a):

| > F: =l oad(T,f):

| > U: =Li near Sol ve(K, F):

| > V: =nodal Val ues(T, u):

As these results show, the code produces increasingly accurate solutions as

the mesh is refined.

V¥ Using the code

My purpose for providing this code is so that you can see how finite element
methods are implemented in practice. To really benefit from the code, you
should study it and extend its capabilities. By writing some code yourself,
you will learn how such programs are written. Here are some projects you
might undertake, more or less in order of difficulty.

1. Write a command called mass that computes the mass matrix. The calling
sequence should be simply M:=mass(T), where T is the triangulation.

2. Choose some other geometric shapes and/or combinations of boundary
conditions and write mesh generation routines analogous to
rectangleMeshD.

3. Extend the code to handle inhomogeneous Dirichlet conditions. Recall that
such boundary conditions change the load vector, so load must be modified.

4. Extend the code to handle inhomogeneous Neumann conditions. As in the
case of inhomogeneous Dirichlet conditions, the load vector is affected.

5. (Hard) Write a routine to refine a given mesh, according to the standard
method suggested in Exercise 13.1.4 of the textbook.

As mentioned above, the mesh data structure includes the information
necessary to solve exercises 3, 4, and 5.

V¥ Section 13.2: Solving sparse linear systems

In this section, | merely wish to point out that Maple allows you to define and
use sparse matrices. In fact, | took advantage of this in the finite element code
(specifically, stiffness produces a sparse matrix).

Here is the simplest way to define a sparse matrix:

|:> wi t h(Li near Al gebra):
[> n: =1000:
|:> A: =Matri x(n, n, storage=spar se, dat at ype=f| oat):

The matrix Ais an n by nzero matrix. | can now add nonzeros as desired. For
example, | will make A a tridiagonal, nonsingular matrix:

|7> for i froml1l to n

> do
> Ali,i]:=2.0:

> end do:

> for i from1l to n-2
> do

> Ali+1,i]:
> Ali,i+1]:

| > end do:

= 1.
= 1.

For comparison, | will create the same matrix, but using dense storage.

\

Al: =Matri x(n, n, dat at ype=fl oat):

for i from1l to n

do
Al[i,i]:=2.0:

end do:

for i froml to n-2

do
AlL[i+1,i]:
Al[i,1+1]:

end do:

V V VYV

"V VV VYV

| will now solve the linear system Ax = b, using both dense and sparse storage,
and compare the time taken using Maple's time command.

> b:=Vector(n,i->1.0,datatype=float):
[> st:=tinme():

| > X: =Li near Sol ve(Al, b):

> time()-st;

0.401 (11.2.1)
[> st:=time():
| > Xx: =Li near Sol ve(A, b):
> time()-st;

0.008 (11.2.2)

On my computer, the dense matrix-vector solve takes about one hundred times
as long as the sparse matrix-vector solve. (Your results may be different.)

The other issue in using sparse storage is memory. Running on my laptop
computer, Maple refuses to create a 10000 by 10000 dense matrix, but will allow
me to create and use a 20000 by 20000 sparse matrix.

> Al := Matrix(20000, 20000, datatype = float);

[Error. (in Matrix) not enough memory to allocate rtable

> A := Matrix(20000, 20000, storage = sparse, datatype = float);

[20000 x 20000 Matrix |

Data Type: floatg

Storage: sparse

Order: Fortran_order

(11.2.3)

