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Introduction 

 

In this introduction, I will explain the organization of this tutorial and give some basic information about 
MATLAB and MATLAB notebooks.   I will also give a preliminary introduction to the capabilities of 
MATLAB. 
 

About this tutorial 
 

The purpose of this document is to explain the features of MATLAB that are useful for applying the 
techniques presented in my textbook.   This really is a tutorial (not a reference), meant to be read and used 
in parallel with the textbook.   For this reason, I have structured the tutorial to have the same chapter and 
sections titles as the book.  However, the purpose of the sections of this document is not to re-explain the 
material in the text; rather, it is to present the capabilities of MATLAB as they are needed by someone 
studying the text. 
 
Therefore, for example, in Section 2.1, "Heat flow in a bar; Fourier's Law", I do not explain any physics or 
modeling.  (The physics and modeling are found in the text.)  Instead, I explain the MATLAB command 
for integration, because Section 2.1 is the first place in the text where the student is asked to integrate a  
function.  Because of this style of organization, some parts of the text have no counterpart in this tutorial.  
For example, there is no Chapter 7, because, by the time you have worked through the first six chapters of 
the tutorial, you have learned all of the capabilities of MATLAB that you need to address the material in 
Chapter 7 of the text.  For the same reason, you will see that some individual sections are missing; Chapter 
5, for example, begins with Section 5.2. 
 
I should point out that my purpose is writing this tutorial is not to show you how to solve the problems in 
the text; rather, it is to give you the tools to solve them.  Therefore, I do not give you a worked-out example 
of every problem type---if I did, your "studying" could degenerate to simply looking for an example, 
copying it, and making a few changes.  At crucial points, I do provide some complete examples, since I see 
no other way to illustrate the power of MATLAB than in context.  However, there is still plenty for you to 
figure out for yourself! 
 

About MATLAB 
 

MATLAB, which is short for Matrix Laboratory, incorporates numerical computation, symbolic 
computation, graphics, and programming.  As the name suggests, it is particularly oriented towards matrix 
computations, and it provides both state-of-the-art algorithms and a simple, easy to learn interface for 
manipulating matrices.  In this tutorial, I will touch on all of the capabilities mentioned above: numerical 
and symbolic computation, graphics, and programming. 

 

MATLAB M­Book 
 

This document you are reading is called an M-Book.  It integrates text and MATLAB commands (with 
their output, including graphics).  If you are running MATLAB under Microsoft Windows, then an M-
Book becomes an interactive document: by running the M-Book under MATLAB, you can enter new 
MATLAB commands and see their output inside the M-Book itself.  The MATLAB command that allows 
you to do this is called notebook.  To run this tutorial under MATLAB, just type "notebook tutorial.docx" 
at the MATLAB prompt.  The file tutorial.docx must be in the working directory or in some directory in the 
MATLAB path (both of these concepts are explained below.) 
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Since the M-Book facility is available only under Microsoft Windows, I will not emphasize it in this 
tutorial.  However, Windows users should take advantage of it.  The most important thing to understand 
about a M-Book is that it is interactive---at any time you can execute a MATLAB command and see what it 
does.  This makes a MATLAB M-Book a powerful learning environment: when you read an explanation of 
a MATLAB feature, you can immediately try it out. 
 

Getting help with MATLAB commands 
 

Documentation about MATLAB and MATLAB commands is available from within the program itself.  If 
you know the name of the command and need more information about how it works, you can just type 
"help <command name>" at the MATLAB prompt.  In the same way, you can get information about a 
group of commands with common uses by typing "help <topic name>".  I will show examples of using the 
command-line help feature below. 
 
The MATLAB desktop contains a help browser covering both reference and tutorial material.  To access 
the browser, click on the Help menu and choose MATLAB Help.  You can then choose "Getting Started" 
from the table of contents for a tutorial introduction to MATLAB, or use the index to find specific 
information. 

Getting started with MATLAB 
 
As mentioned above, MATLAB has many capabilities, such as the fact that one can write programs made 
up of MATLAB commands.  The simplest way to use MATLAB, though, is as an interactive computing 
environment (essentially, a very fancy graphing calculator).  You enter a command and MATLAB executes 
it and returns the result.  Here is an example: 
 
clear   
2+2   
ans = 
     4   
 
 
You can assign values to variables for later use: 
 
x=2   
x = 
     2   
 
 
The variable x can now be used in future calculations: 
 
x^2   
ans = 
     4   
 
At any time, you can list the variables that are defined with the who command: 
 
who   
 
Your variables are: 
 
ans  x       
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At the current time, there are 2 variables defined.  One is x, which I explicitly defined above.  The other is 
ans (short for "answer"), which automatically holds the most recent result that was not assigned to a 
variable (you may have noticed how ans appeared after the first command above).  You can always check 
the value of a variable simply by typing it: 
 
x   
x = 
     2   
 
ans   
ans = 
     4   
 
If you enter a variable that has not been defined, MATLAB prints an error message: 
 
y   
??? Undefined function or variable 'y'.   
 
To clear a variable from the workspace, use the clear command: 
 
who   
 
Your variables are: 
 
ans  x       
 
clear x   
 
who   
 
Your variables are: 
 
ans     
 
To clear of the variables from the workspace, just use clear by itself: 
 
clear   
who 
 
MATLAB knows the elementary mathematical functions: trigonometric functions, exponentials, 
logarithms, square root, and so forth.  Here are some examples: 
 
sqrt(2)   
ans = 
    1.4142   
 
sin(pi/3)   
ans = 
    0.8660   
 
 
exp(1)   
ans = 
    2.7183   
 
log(ans)   
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ans = 
     1   
 
A couple of remarks about the above examples: 

 MATLAB knows the number , which is called pi. 
 Computations in MATLAB are done in floating point arithmetic by default.  For example, 

MATLAB computes the sine of /3 to be (approximately) 0.8660 instead of exactly 3/2. 
A complete list of the elementary functions can be obtained by entering "help elfun": 
 
help elfun   
  Elementary math functions. 
  
  Trigonometric. 
    sin         - Sine. 
    sind        - Sine of argument in degrees. 
    sinh        - Hyperbolic sine. 
    asin        - Inverse sine. 
    asind       - Inverse sine, result in degrees. 
    asinh       - Inverse hyperbolic sine. 
    cos         - Cosine. 
    cosd        - Cosine of argument in degrees. 
    cosh        - Hyperbolic cosine. 
    acos        - Inverse cosine. 
    acosd       - Inverse cosine, result in degrees. 
    acosh       - Inverse hyperbolic cosine. 
    tan         - Tangent. 
    tand        - Tangent of argument in degrees. 
    tanh        - Hyperbolic tangent. 
    atan        - Inverse tangent. 
    atand       - Inverse tangent, result in degrees. 
    atan2       - Four quadrant inverse tangent. 
    atanh       - Inverse hyperbolic tangent. 
    sec         - Secant. 
    secd        - Secant of argument in degrees. 
    sech        - Hyperbolic secant. 
    asec        - Inverse secant. 
    asecd       - Inverse secant, result in degrees. 
    asech       - Inverse hyperbolic secant. 
    csc         - Cosecant. 
    cscd        - Cosecant of argument in degrees. 
    csch        - Hyperbolic cosecant. 
    acsc        - Inverse cosecant. 
    acscd       - Inverse cosecant, result in degrees. 
    acsch       - Inverse hyperbolic cosecant. 
    cot         - Cotangent. 
    cotd        - Cotangent of argument in degrees. 
    coth        - Hyperbolic cotangent. 
    acot        - Inverse cotangent. 
    acotd       - Inverse cotangent, result in degrees. 
    acoth       - Inverse hyperbolic cotangent. 
    hypot       - Square root of sum of squares. 
  
  Exponential. 
    exp         - Exponential. 
    expm1       - Compute exp(x)-1 accurately. 
    log         - Natural logarithm. 
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    log1p       - Compute log(1+x) accurately. 
    log10       - Common (base 10) logarithm. 
    log2        - Base 2 logarithm and dissect floating point number. 
    pow2        - Base 2 power and scale floating point number. 
    realpow     - Power that will error out on complex result. 
    reallog     - Natural logarithm of real number. 
    realsqrt    - Square root of number greater than or equal to zero. 
    sqrt        - Square root. 
    nthroot     - Real n-th root of real numbers. 
    nextpow2    - Next higher power of 2. 
  
  Complex. 
    abs         - Absolute value. 
    angle       - Phase angle. 
    complex     - Construct complex data from real and imaginary parts. 
    conj        - Complex conjugate. 
    imag        - Complex imaginary part. 
    real        - Complex real part. 
    unwrap      - Unwrap phase angle. 
    isreal      - True for real array. 
    cplxpair    - Sort numbers into complex conjugate pairs. 
  
  Rounding and remainder. 
    fix         - Round towards zero. 
    floor       - Round towards minus infinity. 
    ceil        - Round towards plus infinity. 
    round       - Round towards nearest integer. 
    mod         - Modulus (signed remainder after division). 
    rem         - Remainder after division. 
    sign        - Signum.   
 
For more information about any of these elementary functions, type "help <function_name>".  For a list of 
help topics like "elfun", just type "help".  There are other commands that form part of the help system; to 
see them, type "help help". 
 
MATLAB does floating point arithmetic using the IEEE standard, which means that numbers have about 
16 decimal digits of precision (the actual representation is in binary, so the precision is not exactly 16 
digits). However, MATLAB only displays 5 digits by default.  To change the display, use the format 
command.  For example, "format long" changes the display to 15 digits:  
 
format long   
 
pi   
ans = 
   3.141592653589793   
 
Other options for the format command are "format short e" (scientific notation with 5 digits) and "format 
long e" (scientific notation with 15 digits). 
 
In addition to pi, other predefined variables in MATLAB include i and j, both of which represent the 
imaginary unit: i=j=sqrt(-1). 
 
clear   
i^2   
ans = 
    -1   
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j^2   
ans = 
    -1   
 
Although it is usual, in mathematical notation, to use i and j as arbitrary indices, this can sometimes lead to 
errors in MATLAB because these symbols are predefined.  For this reason, I will use ii and jj as my 
standard indices when needed. 

Vectors and matrices in MATLAB 
 

The default type for any variable or quantity in MATLAB is a matrix---a two-dimensional array.  Scalars 
and vectors are regarded as special cases of matrices.  A scalar is a 1 by 1matrix, while a vector is an n by 1 
or 1 by n matrix.  A matrix is entered by rows, with entries in a row separated by spaces or commas, and 
the rows separated by semicolons.  The entire matrix is enclosed in square brackets.  For example, I can 
enter a 3 by 2 matrix as follows: 
 
 
 
A=[1 2;3 4;5 6]   
A = 
     1     2 
     3     4 
     5     6   
 
Here is how I would enter a 2 by 1 (column) vector: 
 
x=[1;-1]   
x = 
     1 
    -1   
 
A scalar, as we have seen above, requires no brackets: 
 
a=4   
a = 
     4   
 
A variation of the who command, called whos, gives more information about the defined variables: 
 
whos   
  Name      Size            Bytes  Class     Attributes 
 
  A         3x2                48  double               
  a         1x1                 8  double               
  ans       1x1                 8  double               
  x         2x1                16  double                 
 
The column labeled "size" gives the size of each array; you should notice that, as I mentioned above, a 
scalar is regarded as a 1 by 1 matrix (see the entry for a, for example). 
 
MATLAB can perform the usual matrix arithmetic.  Here is a matrix-vector product: 
 
A*x   
ans = 
    -1 
    -1 
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    -1   
 
Here is a matrix-matrix product: 
 
B=[-1 3 4 6;2 0 1 -2]   
B = 
    -1     3     4     6 
     2     0     1    -2   
 
A*B   
ans = 
     3     3     6     2 
     5     9    16    10 
     7    15    26    18   
 
 
MATLAB signals an error if you attempt an operation that is undefined: 
 
B*A   
??? Error using ==> mtimes 
Inner matrix dimensions must agree.   
 
 
A+B   
??? Error using ==> plus 
Matrix dimensions must agree.   

More about M­Books 
 

If you are reading this document using the MATLAB notebook facility, then you may wish to execute the 
commands as you read them.  Otherwise, the variables shown in the examples are not actually created in 
the MATLAB workspace.  To execute a command, click on it (or select it) and press control-enter (that is, 
press the enter key while holding down the control key).  While reading the tutorial, you should execute 
each of my commands as you come to it.  Otherwise, the state of MATLAB is not what it appears to be, 
and if you try to experiment by entering your own commands, you might get unexpected results if your 
calculations depend on the ones you see in this document. 
 
Notice that the command lines in this document appear in green, and are enclosed in gray square brackets.  
Output appears in blue text, also enclosed in gray square brackets.  These comments may not apply if you 
are reading a version of this document that has been printed or converted to another format (such as  or 
PDF). 
 
If you are reading this using MATLAB's notebook command, then, as I mentioned above, you can try your 
own MATLAB commands at any time.  Just move the cursor to a new line, type the command, and then 
type control-enter.  You should take advantage of this facility, as it will make learning MATLAB much 
easier. 

Simple graphics in MATLAB 
 
Two-dimensional graphics are particularly easy to understand:  If you define vectors x and y of equal 
length (each with n components, say), then MATLAB's plot command will graph the points (x1,y1), (x2,y2), 
…, (xn,yn) in the plane and connect them with line segments.  Here is an example: 
 
format short   
x=[0,0.25,0.5,0.75,1]   
x = 
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         0    0.2500    0.5000    0.7500    1.0000   
 
 
y=[1,0,1,0,1]   
y = 
     1     0     1     0     1   
 
 
plot(x,y)   
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Two features of MATLAB make it easy to generate graphs.  First of all, the command linspace creates a 
vector with linearly spaced components---essentially, a regular grid on an interval.  (Mathematically, 
linspace creates a finite arithmetic sequence.)  To be specific, linspace(a,b,n) creates the (row) vector 
whose components are a,a+h,a+ 2h,…,a+(n-1)h, where h=1/(n-1). 
 
x=linspace(0,1,6)   
x = 
         0    0.2000    0.4000    0.6000    0.8000    1.0000   
 
The second feature that makes it easy to create graphs is the fact that all standard functions in MATLAB, 
such as sine, cosine, exp, and so forth, are vectorized.  A vectorized function f, when applied to a vector x, 
returns a vector y (of the same size as x) with ith component equal to f(xi).  Here is an example: 
 
y=sin(pi*x)   
y = 
         0    0.5878    0.9511    0.9511    0.5878    0.0000   
 
I can now plot the function: 
 
plot(x,y)   
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Of course, this is not a very good plot of sin(x), since the grid is too coarse.  Below I create a finer grid 
and thereby obtain a better graph of the function.  Often when I create a new vector or matrix, I do not want 
MATLAB to display it on the screen.  (The following example is a case in point: I do not need to see the 41 
components of vector x or vector y.)  When a MATLAB command is followed by a semicolon, MATLAB 
will not display the output. 
 
x=linspace(0,1,41);   
y=sin(pi*x);   
plot(x,y)   
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The basic arithmetic operations have vectorized versions in MATLAB.  For example, I can multiply two 
vectors component-by-component using the ".*" operator.  That is, z=x.*y sets zi equal to xiyi.  Here is an 
example: 
 
x=[1;2;3]   
x = 
     1 
     2 
     3   
 
y=[2;4;6]   
y = 
     2 
     4 
     6   
 
z=x.*y   
z = 
     2 
     8 
    18   
 
The "./" operator works in an analogous fashion.  There are no ".+" or ".-" operators, since addition and 
subtraction of vectors are defined componentwise already.  However, there is a ".^" operator that applies an 
exponent to each component of a vector. 
 
x   
x = 
     1 
     2 
     3   
 
x.^2   
ans = 
     1 
     4 
     9   
 
Finally, scalar addition is automatically vectorized in the sense that a+x, where a is a scalar and x is a 
vector, adds a to every component of x. 
The vectorized operators make it easy to graph a function such as f(x)=x/(1+x2).  Here is how it is done: 
 
x=linspace(-5,5,41);   
y=x./(1+x.^2);   
plot(x,y)   
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If I prefer, I can just graph the points themselves, or connect them with dashed line segments.  Here are 
examples: 
 
plot(x,y,'.')   
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plot(x,y,'o')   
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plot(x,y,'--')   
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The string following the vectors x and y in the plot command ('.', 'o', and '—' in the above examples) 
specifies the line type.  it is also possible to specify the color of the graph.  For more details, see "help 
plot". 
 
It is not much harder to plot two curves on the same graph.  For example, I plot y=x2 and y=x3 together: 
 
x=linspace(-1,1,101);   
plot(x,x.^2,x,x.^3)   
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I can also give the lines different linetypes: 
 
plot(x,x.^2,'-',x,x.^3,'--')   
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Symbolic computation in MATLAB 
 

In addition to numerical computation, MATLAB can also perform symbolic computations.  However, 
since, by default,  variables are floating point, you must explicitly indicate that a variable is intended to be 
symbolic.  One way to do this is using the syms command, which tells MATLAB that one or more 
variables are symbolic.  For example, the following command defines a and b to be symbolic variables: 
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syms a b   
 
I can now form symbolic expressions involving these variables: 
 
2*a*b   
ans = 
2*a*b   
 
Notice how the result is symbolic, not numeric as it would be if the variables were floating point variables.  
Also, the above calculation does not result in an error, even though a and b do not have values. 
 
Another way to create a symbolic variable is to assign a symbolic value to a new symbol.  Since numbers 
are, by default, floating point, it is necessary to use the sym function to tell MATLAB that a number is 
symbolic: 
 
c=sym(2)   
c = 
2   
 
whos   
  Name      Size             Bytes  Class     Attributes 
 
  A         3x2                 48  double               
  B         2x4                 64  double               
  a         1x1                 60  sym                  
  ans       1x1                 60  sym                  
  b         1x1                 60  sym                  
  c         1x1                 60  sym                  
  x         1x101              808  double               
  y         1x41               328  double               
  z         3x1                 24  double                 
 
I can do symbolic computations: 
 
a=sqrt(c)   
a = 
2^(1/2)   
 
You should notice the difference between the above result and the following: 
 
a=sqrt(2)   
a = 
    1.4142   
 
whos   
  Name      Size             Bytes  Class     Attributes 
 
  A         3x2                 48  double               
  B         2x4                 64  double               
  a         1x1                  8  double               
  ans       1x1                 60  sym                  
  b         1x1                 60  sym                  
  c         1x1                 60  sym                  
  x         1x101              808  double               
  y         1x41               328  double               
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  z         3x1                 24  double                 
 
Even though a was declared to be a symbolic variable, once I assign a floating point value to it, it becomes 
numeric.  This example also emphasizes that sym must be used with literal constants if they are to 
interpreted as symbolic and not numeric: 
 
a=sqrt(sym(2))   
a = 
2^(1/2)   
 
As a further elementary example, consider the following two commands: 
 
sin(sym(pi))   
ans = 
0   
 
sin(pi)   
ans = 
  1.2246e-016   
 
In the first case, since π is symbolic, MATLAB notices that the result is exactly zero; in the second, both π 
and the result are represented in floating point, so the result is not exactly zero (the error is just roundoff 
error). 
 
Using symbolic variables, I can perform algebraic manipulations. 
 
syms  x   
p=(x-1)*(x-2)*(x-3)   
p = 
(x - 1)*(x - 2)*(x - 3)   
 
expand(p)   
ans = 
x^3 - 6*x^2 + 11*x - 6   
 
factor(ans)   
ans = 
(x - 3)*(x - 1)*(x - 2)   
 
Integers can also be factored, though the form of the result is depends on whether the input is numeric or 
symbolic: 
 
factor(144)   
ans = 
     2     2     2     2     3     3   
factor(sym(144))   
ans = 
2^4*3^2   
 
For a numeric (integer) input, the result is a list of the factors, repeated according to multiplicity.   For a 
symbolic input, the output is a symbolic expression. 
 
An important command for working with symbolic expressions is simplify, which tries to reduce an 
expression to a simpler one equal to the original.  Here is an example: 
 
clear   
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syms x a b c   
p=(x-1)*(a*x^2+b*x+c)+x^2+3*x+a*x^2+b*x   
p = 
3*x + b*x + a*x^2 + (x - 1)*(a*x^2 + b*x + c) + x^2   
 
simplify(p)   
ans = 
3*x - c + c*x + a*x^3 + b*x^2 + x^2   
 
Since the concept of  simplification is not precisely defined (which is simpler, a polynomial in factored 
form or in expanded form a+bx+cx2+…?), MATLAB has a number of specialized simplification 
commands.  I have already used two of them, factor and expand.  Another is collect, which "gathers like 
terms": 
 
p   
p = 
3*x + b*x + a*x^2 + (x - 1)*(a*x^2 + b*x + c) + x^2   
 
collect(p,x)   
ans = 
a*x^3 + (b + 1)*x^2 + (c + 3)*x - c   
 
By the way, the display of symbolic output can be made more mathematical using the pretty command: 
 
pretty(ans)   
  
     3            2  
  a x  + (b + 1) x  + (c + 3) x - c   
 
 
Note: MATLAB's symbolic computation is based on Maple ™, a computer algebra system originally 
developed at the University of Waterloo, Canada, and marketed by Waterloo Maple, Inc.  If you have the 
Extended Symbolic Math Toolbox with your installation of MATLAB, then you have access to all 
nongraphical Maple functions; see "help maple" for more details.  However, these capabilities are not 
included in the standard Student Version of MATLAB, and so I will not emphasize them in this tutorial. 

Manipulating functions in MATLAB 
 
Symbolic expressions can be treated as functions.  Here is an example: 
 
syms x   
p=x/(1+x^2)   
p = 
x/(x^2 + 1)   
 
Using the subs command, I can evaluate the function p for a given value of x.  The following command 
substitutes 3 for every occurrence of x in p: 
 
subs(p,x,3)   
ans = 
    0.3000   
 
The calculation is automatically vectorized: 
 
y=linspace(-5,5,101);   
z=subs(p,x,y);   
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plot(y,z)   
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One of the most powerful features of symbolic computation in MATLAB is that certain calculus 
operations, notably integration and differentiation, can be performed symbolically.  These capabilities will 
be explained later in the tutorial. 
 
Above I showed how to evaluate a function defined by a symbolic expression.  It is also possible to 
explicitly define a function at the command line.  Here is an example: 
 
f=@(x)x^2   
f =  
    @(x)x^2   
 
The function f can be evaluated in the expected  fashion, and the input can be either floating point or 
symbolic: 
 
f(1)   
ans = 
     1   
f(sqrt(pi))   
ans = 
    3.1416   
 
f(sqrt(sym(pi)))   
ans = 
pi   
 
The @ operator can also be used to create a function of several variables: 
 
g=@(x,y)x^2*y 
g =  
    @(x,y)x^2*y   
g(1,2)   
ans = 
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     2   
g(pi,14)   
ans = 
  138.1745   
 
A function defined by the @ operator is not automatically vectorized: 
 
x=linspace(0,1,11)';   
y=linspace(0,1,11)';   
g(x,y)   
??? Error using ==> mpower 
Inputs must be a scalar and a square matrix. 
To compute elementwise POWER, use POWER (.^) instead. 
 
Error in ==> @(x,y)x^2*y   
 
The function can be vectorized when it is defined: 
 
g=@(x,y)x.^2.*y   
g =  
    @(x,y)x.^2.*y   
g(x,y)   
ans = 
         0 
    0.0010 
    0.0080 
    0.0270 
    0.0640 
    0.1250 
    0.2160 
    0.3430 
    0.5120 
    0.7290 
    1.0000   
 
There is a third way to define a function in MATLAB, namely, to write a program that evaluates the 
function.  I will defer an explanation of this technique until Chapter 3, where I first discuss programming in 
MATLAB. 

Saving your MATLAB session 
 
When using MATLAB, you will frequently wish to end your session and return to it later.  Using the save 
command, you can save all of the variables in the MATLAB workspace to a file.  The variables are stored 
efficiently in a binary format to a file with a ".mat" extension.  The next time you start MATLAB, you can 
load the data using the load command.  See "help save" and "help load" for details. 

About the rest of this tutorial 
 
The remainder of this tutorial is organized in parallel with my textbook.  Each section in the tutorial 
introduces any new MATLAB commands that would be useful in addressing the material in the 
corresponding section of the textbook.  As I mentioned above, some sections of the textbook have no 
counterpart in the tutorial, since all of the necessary MATLAB commands have already been explained.  
For this reason, the tutorial is intended to be read from beginning to end, in conjunction with the textbook. 
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Chapter 1: Classification of differential equations 
 
As I mentioned above, MATLAB can perform symbolic calculus on expressions.  Consider the following 
example: 
 
syms x   
f=sin(x^2)   
f = 
sin(x^2)   
 
I can differentiate this expression using the diff command: 
 
diff(f,x)   
ans = 
2*x*cos(x^2)   
 
The same techniques work with expressions involving  two or more variables: 
 
syms x y   
q=x^2*y^3*exp(x)   
q = 
x^2*y^3*exp(x)   
pretty(q)   
  
   2  3  
  x  y  exp(x)   
diff(q,y)   
ans = 
3*x^2*y^2*exp(x)   
 
Thus MATLAB can compute partial derivatives just as easily as ordinary derivatives. 
 
One use of these capabilities to test whether a certain function is a solution of a given differential equation.  
For example, suppose I want to check whether the function u(t)=eat is a solution of the ODE 
 

.0 au
dt

du
 

 
I define 
 
syms a t   
u=exp(a*t)   
u = 
exp(a*t)   
 
I can then compute the left side of the differential equation, and see if it agrees with the right side (zero): 
 
diff(u,t)-a*u   
ans = 
0   
 
Thus the given function u is a solution.  Is the function v(t)=at another solution?  I can check it as follows: 
 
v=a*t   
v = 
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a*t   
diff(v,t)-a*v   
ans = 
a - a^2*t   
 
Since the result is not zero, the function v is not a solution. 
 
It is no more difficult to check whether a function of several variables is the solution of a PDE.  For 
example, is w(x,y)=sin(πx)+sin(πy) a solution of the differential equation 
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As before, I can answer this question by defining the function and substituting it into the differential 
equation: 
 
syms x y   
w=sin(pi*x)+sin(pi*y)   
w = 
sin(pi*x) + sin(pi*y)   
diff(w,x,2)+diff(w,y,2)   
ans = 
- pi^2*sin(pi*x) - pi^2*sin(pi*y)   
simplify(ans)   
ans = 
-pi^2*(sin(pi*x) + sin(pi*y))   
 
Since the result is not zero, the function w is not a solution of the PDE. 
 
The above example shows how to compute higher derivatives of an expression.  For example, here is the 
fifth derivative of w with respect to x: 
 
diff(w,x,5)   
ans = 
pi^5*cos(pi*x)   
 
To compute a mixed partial derivative, we have to iterate the diff command.  Here is the mixed partial 
derivative of w(x,y)=x2+xy2  with respect to x and then y: 
 
syms x y   
w=x^2*exp(y)+x*y^2   
w = 
x^2*exp(y) + x*y^2   
 
diff(diff(w,x),y)   
ans = 
2*y + 2*x*exp(y)   
 
Instead of using expressions in the above calculations, I can use functions.  Consider the following: 
 
clear   
syms a x   
f=@(x)exp(a*x)   
f =  
    @(x)exp(a*x)   
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diff(f(x),x)-a*f(x)   
ans = 
0   
 
When defining a function that depends on a parameter (like the function f above, which depends on a), the 
value of the parametered is "captured" at the time when the function is defined. 
 
clear   
syms a   
f=@(x)exp(a*x)   
f =  
    @(x)exp(a*x)   
 
f(1)   
ans = 
exp(a)   
a=1.5   
a = 
    1.5000   
f(1)   
ans = 
exp(a)   
a   
a = 
    1.5000   
 
The same is true if the parameter has a numeric value: 
 
clear   
a=2   
a = 
     2   
f=@(x)exp(a*x)   
f =  
    @(x)exp(a*x)   
f(1)   
ans = 
    7.3891   
a=3   
a = 
     3   
f(1)   
ans = 
    7.3891   
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Chapter 2: Models in one dimension 
 

Section 2.1: Heat flow in a bar; Fourier's Law 
 
MATLAB can compute both indefinite and definite integrals.  The command for computing an indefinite 
integral (antiderivative) is exactly analogous to that for computing a derivative: 
 
syms x   
f=x^2   
f = 
x^2   
int(f,x)   
ans = 
x^3/3   
 
As this example shows, MATLAB does not add the "constant of integration."  It simply  returns one 
antiderivative (when possible).  If the integrand is too complicated, MATLAB just returns the integral 
unevaluated, and prints a warning message. 
 
int(exp(cos(x)),x)   
Warning: Explicit integral could not be found. 
ans = 
int(exp(cos(x)), x)   
 
To compute a definite integral, we must specify the limits of integration: 
 
int(x^2,x,0,1)   
ans = 
1/3   
 
MATLAB has commands for estimating the value of a definite integral that cannot be computed 
analytically.  Consider the following example: 
 
int(exp(cos(x)),x,0,1)   
Warning: Explicit integral could not be found. 
ans = 
int(exp(cos(x)), x = 0..1)   
 
Since MATLAB could not find an explicit antiderivative, I can use the quad function to estimate the 
definite integral.  The quad command takes, as input, a function rather than an expression (as does int).  
Therefore, I must first create a function: 
 
f=@(x)exp(cos(x))   
f =  
    @(x)exp(cos(x))   
 
Now I can invoke quad: 
 
quad(f,0,1)   
ans = 
    2.3416   
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"quad" is short for quadrature, another term for numerical integration.  For more information about the 
quad command, see "help quad". 
 
As a further example of symbolic calculus, I will use the commands for integration and differentiation to 
test Theorem 2.1 from the text.  The theorem states that (under certain conditions) a partial derivative can 
be moved under an integral sign: 
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  Here is a specific instance of the theorem: 
 
syms  x y c d   
f=x*y^3+x^2*y   
f = 
x^2*y + x*y^3   
 
r1=diff(int(f,y,c,d),x)   
r1 = 
- (x*(c^2 - d^2))/2 - ((c^2 - d^2)*(c^2 + d^2 + 2*x))/4   
 
r2=int(diff(f,x),y,c,d)   
r2 = 
-((c^2 - d^2)*(c^2 + d^2 + 4*x))/4   
 
r1-r2   
ans = 
((c^2 - d^2)*(c^2 + d^2 + 4*x))/4 - ((c^2 - d^2)*(c^2 + d^2 + 2*x))/4 - 
(x*(c^2 - d^2))/2   
simplify(ans)   
ans = 
0   

Solving simple boundary value problems by integration 
 
Consider the following BVP: 
 

.0)1(,2)0(

,10,1
2

2





uu

xx
dt

ud
 

 
The solution can be found by two integrations (cf. Example 2.2 in the text).  Remember, MATLAB does 
not add a constant of integration, so I do it explicitly: 
 
clear   
syms x C1 C2   
int(-(1+x),x)+C1   
ans = 
C1 - (x + 1)^2/2   
 
int(ans,x)+C2   
ans = 
C2 + C1*x - (x + 1)^3/6   
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u=ans   
u = 
C2 + C1*x - (x + 1)^3/6   
 
The above function u, with the proper choice of C1 and C2, is the desired solution.  To find the constants, I  
solve the (algebraic) equations implied by the boundary conditions.  The MATLAB command solve can be 
used for this purpose. 

The MATLAB solve command 
 
Before completing the previous example, I will explain the solve command on some simpler examples. 
Suppose I wish to solve the linear equation ax+b=0 for x.  I can regard this as a root-finding problem: I 
want the root of the function f(x)=ax+b.  The solve command  finds the root of a function with respect to a 
given independent variable: 
 
syms f x a b   
f=a*x+b   
f = 
b + a*x   
solve(f,x)   
ans = 
-b/a   
 
If the equation has  more than one solution, solve returns the possibilities in an array: 
 
syms f x   
f=x^2-3*x+2;   
solve(f,x)   
ans = 
 1 
 2   
As these examples show, solve is used to find solutions of equations of the form f(x)=0; only the expression 
f(x) is input to solve. 
 
solve can also be used to solve a system of equations in several variables.  In this case, the equations are 
listed first, followed by the unknowns.  For example, suppose I wish to solve the equations 
 
 x+y=1, 
 2x-y=1. 
 
Here is the command: 
 
syms x y   
s=solve(x+y-1,2*x-y-1,x,y)   
s =  
    x: [1x1 sym] 
    y: [1x1 sym]   
 
What kind of variable is the output s?  If we list the  variables in the workspace, 
 
whos   
  Name      Size            Bytes  Class     Attributes 
 
  C1        1x1                60  sym                  
  C2        1x1                60  sym                  
  a         1x1                60  sym                  
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  ans       2x1                60  sym                  
  b         1x1                60  sym                  
  f         1x1                60  sym                  
  s         1x1               368  struct               
  u         1x1                60  sym                  
  x         1x1                60  sym                  
  y         1x1                60  sym                    
 
we see that s is a 1 by 1 struct array, that is, an array containing a single struct.  A struct is a data type with 
named fields that can be accessed using the syntax variable.field.  The variable s has two fields: 
 
s   
s =  
    x: [1x1 sym] 
    y: [1x1 sym]   
 
The two fields hold the values of the unknowns x and y: 
 
s.x   
ans = 
2/3   
s.y   
ans = 
1/3   
 
If the system has more than one solution, then the output of solve will be a struct, each of whose fields is an 
array containing the values of the unknowns.  Here is an example: 
s=solve(x^2+y^2-1,y-x^2,x,y)   
s =  
    x: [4x1 sym] 
    y: [4x1 sym]   
 
The first solution is 
 
pretty(s.x(1))   
  
  /  1/2       \1/2  
  | 5          |  
  | ---- - 1/2 |  
  \  2         /   
 
pretty(s.y(1))   
  
   1/2  
  5  
  ---- - 1/2  
   2   
 
The second solution is 
 
pretty(s.x(2))   
  
  /    1/2       \1/2  
  |   5          |  
  | - ---- - 1/2 |  
  \    2         /   
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pretty(s.y(2))   
  
     1/2  
    5  
  - ---- - 1/2  
     2   
 
You might notice that the second solution is complex (at least, the value of x is complex).   This might be 
easier to see from the numerical value of the expressions, which we can see with the double command 
(which converts a symbolic expression to a floating point value, if possible) 
 
double(s.x(2))   
ans = 
        0 + 1.2720i   
double(s.y(2))   
ans = 
   -1.6180   
 
Here are the remaining solutions (given in floating point) 
 
double(s.x(3))   
ans = 
   -0.7862   
double(s.y(3))   
ans = 
    0.6180  
 
double(s.x(4))   
ans = 
        0 - 1.2720i   
double(s.y(4))   
ans = 
   -1.6180   
 
If the equation to be solved cannot be solved exactly, then solve automatically tries to solve it numerically, 
using extended precision arithmetic (approximately 32 decimal digits): 
 
syms x   
solve(x^5+sym(4)*x^4-x^3+x^2-x+1,x)   
ans = 
                                                 -
4.3019656878883790704888463433324 
   0.40236742000277868343510597733001*sqrt(-1) + 
0.49445817238673908475778249075192 
 - 0.67380934595293810995276180453239*sqrt(-1) - 
0.34347532844254954951335931908572 
   0.67380934595293810995276180453239*sqrt(-1) - 
0.34347532844254954951335931908572 
   0.49445817238673908475778249075192 - 
0.40236742000277868343510597733001*sqrt(-1)   
 
Finally, there is another way to call solve.  The equation and unknowns can be given as strings, meaning 
that there is no need to define symbolic variables before calling solve: 
 
solve('x^2-2*x-1=0','x')   
ans = 
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 2^(1/2) + 1 
 1 - 2^(1/2)   
 
Notice that, when specifying the equation in symbolically form, it must be expressed with the right-hand 

side equal to 0, and only the left-hand side is passed to solve (that is, to solve  for , we call 
solve as solve(f(x),x).  However, when calling solve using strings instead of symbolic expressions, we can 

use either form,  (as above) or : 
 
solve('x^2-2*x-1','x')   
ans = 
 2^(1/2) + 1 
 1 - 2^(1/2)   

Back to the example 
 
We can now solve for the constants of integrations in the solution to the BVP 
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Recall that the solution is of the form 
 
u   
u = 
C2 + C1*x - (x + 1)^3/6   
 

We must use the boundary conditions to compute C1 and C2.  The equations are  

and .  Notice how I use the subs command to form  and  
 
s=solve(subs(u,x,0)-2,subs(u,x,1),C1,C2)   
s =  
    C1: [1x1 sym] 
    C2: [1x1 sym]   
 
Here are the values of C1 and C2: 
 
s.C1   
ans = 
-5/6   
 
s.C2   
ans = 
13/6   
 
Here is the solution: 
 
u=subs(u,{C1,C2},{s.C1,s.C2})   
u = 
13/6 - (x + 1)^3/6 - (5*x)/6   
 
Notice how, when substituting for two or more variables, the variables and the values are enclosed in curly 
braces. 
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Let us check our solution: 
 
-diff(u,x,2)   
ans = 
x + 1   

subs(u,x,sym(0))   
ans = 
2   
subs(u,x,sym(1))   
ans = 
0   
 
The differential equation and the boundary conditions are satisfied. 

Another example 
 
Now consider the BVP with a nonconstant coefficient: 
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Integrating once yields 
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(It is easier to perform this calculation in my head than to ask MATLAB to integrate 0.)  I now perform the 
second integration: 
 
clear   
syms C1 C2 x   
u=int(C1/(1+x/2),x)+C2   
u = 
C2 + 2*C1*log(x + 2)   
 
Now I use solve to find C1 and C2: 
 
s=solve(subs(u,x,0)-20,subs(u,x,1)-25,C1,C2)   
s =  
    C1: [1x1 sym] 
    C2: [1x1 sym]   
 
Here is the solution: 
 
u=subs(u,{C1,C2},{s.C1,s.C2})   
u = 
(45035996273704960*log(x + 2))/3652105019575333 + 
41825526550679865/3652105019575333   
 
Notice the unexpected answer; the problem is that MATLAB did not interpret the constants in the 
equations (0, 1, 20, 25) as symbolic quantities, but rather as numerical (floating point) values.  As a result, 
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it used extended precision arithmetic while finding a solution.   The desired solution can be found by 
specifying that the various numbers be treated as symbolic: 
 
clear u   
syms C1 C2 x   
u=int(C1/(1+x/2),x)+C2   
u = 
C2 + 2*C1*log(x + 2)   
 
s=solve(subs(u,x,sym(0))-sym(20),subs(u,x,sym(1))-sym(25),C1,C2)   
s =  
    C1: [1x1 sym] 
    C2: [1x1 sym]   
 
u=subs(u,{C1,C2},{s.C1,s.C2})   
u = 
(5*(5*log(2) - 4*log(3)))/(log(2) - log(3)) - (5*log(x + 2))/(log(2) - 
log(3))   
 
Now I will check the answer: 
 
simplify(-diff((1+x/2)*diff(u,x),x))   
ans = 
0   
 
subs(u,x,0)   
ans = 
    20   
subs(u,x,1)   
ans = 
   25.0000   
 
Chapter 3: Essential linear algebra 
 

Section 3.1 Linear systems as linear operator equations 
 
I have already showed you how to enter matrices and vectors in MATLAB.  I will now introduce a few 
more elementary operations on matrices and vectors, and explain how to extract components from a vector 
and entries, rows, or columns from a matrix.  At the end of this section, I will describe how MATLAB can  
perform symbolic linear algebra; until then, the examples will use floating point arithmetic. 
 
clear   
 
Consider the matrix 
 
A=[1 2 3;4 5 6;7 8 9]   
A = 
     1     2     3 
     4     5     6 
     7     8     9   
 
The transpose is indicated by a single quote following the matrix name: 
 
A'   
ans = 
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     1     4     7 
     2     5     8 
     3     6     9   
 
Recall that, if x and y are column vectors, then the dot product of x and y can be computed as xTy: 
 
x=[1;0;-1]   
x = 
     1 
     0 
    -1   
 
y=[1;2;3]   
y = 
     1 
     2 
     3   
 
x'*y   
ans = 
    -2   
 
Alternatively, I can use the dot function: 
 
dot(x,y)   
ans = 
    -2   
 
I can extract a component of a vector, 
 
x(1)   
ans = 
     1   
 
or an entry of a matrix: 
 
A(2,3)   
ans = 
     6   
 
In place of an index, I can use a colon, which represents the entire  range.  For example, A(:,1) indicates all 
of the rows in the first column of A.  This yields a column vector: 
 
A(:,1)   
ans = 
     1 
     4 
     7   
 
Similarly, I can extract a row: 
 
A(2,:)   
ans = 
     4     5     6   
 

Section 3.2: Existence and uniqueness of solutions to Ax=b 



 33

 
MATLAB can find a basis for the null space of a matrix.  Consider the matrix 
 
B=[1 2 3;4 5 6;7 8 9]   
B = 
     1     2     3 
     4     5     6 
     7     8     9   
 
Here is a basis for the null space: 
 
x=null(B)   
x = 
   -0.4082 
    0.8165 
   -0.4082   
 
Since MATLAB returned a single vector, this indicates that the null space is one-dimensional.  Here is a 
check of the result: 
 
B*x   
ans = 
  1.0e-015 * 
   -0.2220 
   -0.4441 
         0   
 

Notice that, since the computation was done in floating point, the product  is not exactly zero, but just 
very close. 
 
If a matrix is nonsingular, its null space is trivial: 
 
A=[1,2;2,1]   
A = 
     1     2 
     2     1   
 
null(A)   
ans = 
   Empty matrix: 2-by-0   
 
On the other hand, the null space can have dimension greater than one: 
 
A=[1 1 1;2 2 2;3 3 3;]   
A = 
     1     1     1 
     2     2     2 
     3     3     3   
 
null(A)   
ans = 
   -0.8165         0 
    0.4082    0.7071 
    0.4082   -0.7071   
 
The matrix A has a two-dimensional null space. 
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MATLAB can compute the inverse of a nonsingular matrix: 
 
A=[1 0 -1;3 2 1;2 -1 1]   
A = 
     1     0    -1 
     3     2     1 
     2    -1     1   
 
The command is called inv: 
 
Ainv=inv(A)   
Ainv = 
    0.3000    0.1000    0.2000 
   -0.1000    0.3000   -0.4000 
   -0.7000    0.1000    0.2000   
 
A*Ainv   
ans = 
    1.0000   -0.0000    0.0000 
         0    1.0000    0.0000 
         0         0    1.0000   
 
Using the inverse, you can solve a linear system 
 
b=[1;1;1]   
b = 
     1 
     1 
     1   
 
x=Ainv*b   
x = 
    0.6000 
   -0.2000 
   -0.4000   
 
A*x   
ans = 
    1.0000 
    1.0000 
    1.0000   
 
On the other hand, computing and using the inverse of a matrix A is not the most efficient way to solve 
Ax=b.  It is preferable to solve the system directly using some variant of Gaussian elimination.  The 
backslash operator indicates to MATLAB that a linear system is to be solved: 
 
x1=A\b   
x1 = 
    0.6000 
   -0.2000 
   -0.4000   
x-x1   
ans = 
     0 
     0 
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     0   
 

(To remember how the backslash operator works, just think of A\b as "dividing  on the left by ", or 

multiplying  on the left by .  However, MATLAB does not compute the inverse.) 
 

Section 3.3: Basis and dimension 
 
In this section, I will further demonstrate some of the capabilities of MATLAB by repeating some of the 
examples from Section 3.3 of the text. 

Example 3.25 
 
Consider the three vectors v1, v2, v3 defined as follows: 
 
v1=[1/sqrt(3);1/sqrt(3);1/sqrt(3)]   
v1 = 
    0.5774 
    0.5774 
    0.5774   
v2=[1/sqrt(2);0;-1/sqrt(2)]   
v2 = 
    0.7071 
         0 
   -0.7071   
v3=[1/sqrt(6);-2/sqrt(6);1/sqrt(6)]   
v3 = 
    0.4082 
   -0.8165 
    0.4082   
 
I will verify that these vectors are orthogonal: 
 
v1'*v2   
ans = 
     0   
v1'*v3   
ans = 
     0   
v2'*v3   
ans = 
     0   

Example 3.27 
 
I will verify that the following three quadratic polynomials for a basis for P2.  Note that while I did the 
previous example in floating point arithmetic, this examples requires symbolic computation. 
 
clear   
syms p1 p2 p3 x   
p1=1   
p1 = 
     1   
p2=x-1/2   
p2 = 
x - 1/2   
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p3=x^2-x+1/6   
p3 = 
x^2 - x + 1/6   
 
Now suppose that q(x) is an arbitrary quadratic polynomial: 
 
syms q a b c   
q=a*x^2+b*x+c   
q = 
a*x^2 + b*x + c   
 
I want to show that q can be written in terms of p1, p2, and p3: 
 
syms c1 c2 c3   
 
q-(c1*p1+c2*p2+c3*p3)   
ans = 
c - c1 + b*x + a*x^2 - c2*(x - 1/2) - c3*(x^2 - x + 1/6)   
 
I need to gather like terms in this expression, which is accomplished with the collect command: 
 
collect(ans,x)   
ans = 
(a - c3)*x^2 + (b - c2 + c3)*x + c - c1 + c2/2 - c3/6   
 
I can now set each coefficient equal to zero and solve for the coefficients: 
 
r=solve(a-c3,b-c2+c3,c-c1+c2/2-c3/6,c1,c2,c3)   
r =  
    c1: [1x1 sym] 
    c2: [1x1 sym] 
    c3: [1x1 sym]   
r.c1   
ans = 
a/3 + b/2 + c   
 
r.c2   
ans = 
a + b   
r.c3   
ans = 
a   
 
Check: 
 
q-(r.c1*p1+r.c2*p2+r.c3*p3)   
ans = 
b*x - b/2 - a/3 - (a + b)*(x - 1/2) + a*x^2 - a*(x^2 - x + 1/6)   
simplify(ans)   
ans = 
0   
 
The fact that there is a unique solution to this system, regardless of the values of a, b, c, shows that every 
quadratic polynomial can be uniquely written as a linear combination of p1, p2, p3, and hence that these 
three polynomials form a basis for P2. 
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Example 
 
Here is a final example.  Consider the following three vectors in R3: 
 
u1=[1;0;2];   
u2=[0;1;1];   
u3=[1;2;-1];   
 

I will verify that {u1,u2,u3} is a basis for , and express the vector 
 
x=[8;2;-4];    
 
in terms of the basis.  As discussed in the text, {u1,u2,u3} is a basis if and only if the matrix A whose 
columns are u1, u2, u3 is nonsingular.  It is easy to form the matrix A: 
 
A=[u1,u2,u3]   
A = 
     1     0     1 
     0     1     2 
     2     1    -1   
 
One way (that works fine for such a small matrix, but is not a good method in general) to determine if A is 
nonsingular is to compute its determinant: 
 
det(A)   
ans = 
    -5   
 
Another way to determine whether A is nonsingular is to simply try to solve a system involving A, since 
MATLAB will print a warning or error message if A is singular: 
 
c=A\x   
c = 
    3.6000 
   -6.8000 
    4.4000   
 
Here is a verification of the results: 
x-(c(1)*u1+c(2)*u2+c(3)*u3)   
ans = 
     0 
     0 
     0   
 

Symbolic linear algebra 
 
Recall that MATLAB performs its calculations in floating point arithmetic by default.  However, if desired, 
we can perform them symbolically.  For an illustration, I will repeat the previous example. 
 
clear   
syms u1 u2 u3   
u1=sym([1;0;2]);   
u2=sym([0;1;1]);   
u3=sym([1;2;-1]);   
A=[u1,u2,u3]   
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A = 
[ 1, 0,  1] 
[ 0, 1,  2] 
[ 2, 1, -1]   
x=sym([8;2;-4]);   
 
c=A\x   
c = 
  18/5 
 -34/5 
  22/5   
 
The solution is the same as before. 

Programming in MATLAB, part I 
 

Before I continue on to Section 3.4, I want to explain simple programming in MATLAB---specifically, 
how to define new MATLAB functions.  I have already shown you one way to do this: using the @ 
operator.  (Also, a symbolic expression can be used in place of a function for many purposes.  For instance, 
it can be evalutated using the subs command.)  However, in addition to the @ operator, there is another 
method for defining MATLAB functions. 

Defining a MATLAB function in an M­file. 
 
An M-file is a plain text file whose name ends in ".m" and which contains MATLAB commands. There are 
two types of M-files, scripts and functions.  I will explain scripts later.  A function is a MATLAB 
subprogram: it accepts inputs and computes outputs using local variables.  The first line in a function must 
be of the form 

 
function [output1,output2,…]=function_name(input1,input2,…) 
 

If there is a single output, the square brackets can be omitted.  Also, a function can have zero inputs and/or 
zero outputs. 
 
Here is the simplest type of example.   Suppose I wish to define the function f(x)=sin(x2).   The following 
lines, stored in the M-file f.m, accomplish this:  
 

function y=f(x) 
y=sin(x.^2); 
 

(Notice how I  use the ".^" operator to vectorize the computation.  Predefined MATLAB functions are 
always vectorized, and user-defined functions typically should be as well.)  I can now use f just as a pre-
defined function such as sin.  For example: 
 
clear   
x=linspace(-3,3,101);   
plot(x,f(x))   
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A few important points: 

 The names of user-defined functions can be listed using the what, command (similar to who, but 
instead of listing variables, it lists M-files in the working directory). 

 The contents of an M-file can be displayed using the type command. 
 In order for you to use an M-file, MATLAB must be able to find it, which means that the M-file 

must be in a directory on the MATLAB path.  The MATLAB  path always includes the working 
directory, which can be determined using the pwd (print working directory) command.  The 
MATLAB path can be listed using the path command.  Other directories can be added to the 
MATLAB path using the addpath command. For more information, see "help addpath". 

 
The current path is 
 
path   
 
  MATLABPATH 
 
 fempack 
 C:\Users\Guest\Documents\MATLAB 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\general 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\ops 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\lang 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\elmat 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\randfun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\elfun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\specfun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\matfun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\datafun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\polyfun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\funfun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\sparfun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\scribe 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\graph2d 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\graph3d 
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 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\specgraph 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\graphics 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\uitools 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\strfun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\imagesci 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\iofun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\audiovideo 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\timefun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\datatypes 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\verctrl 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\codetools 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\helptools 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\winfun 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\winfun\NET 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\demos 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\timeseries 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\hds 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\guide 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\plottools 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\local 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\matlab\datamanager 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\shared\simulink 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\shared\instrument 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\shared\asynciolib 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\shared\comparisons 
 C:\Program Files 
(x86)\MATLAB\R2011a\toolbox\shared\controllib\general 
 C:\Program Files 
(x86)\MATLAB\R2011a\toolbox\shared\controllib\graphics 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\optim\optim 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\optim\optimdemos 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\shared\optimlib 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\pde 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\pde\pdedemos 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\shared\eml\eml 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\symbolic\symbolic 
 C:\Program Files (x86)\MATLAB\R2011a\toolbox\symbolic\symbolicdemos 
 C:\Program Files 
(x86)\MATLAB\R2011a\toolbox\shared\testmeaslib\general 
 C:\Program Files 
(x86)\MATLAB\R2011a\toolbox\shared\testmeaslib\graphics   
 
The working directory is 
 
pwd   
ans = 
C:\Users\Guest\Documents\MATLAB\msgocken   
 
The files associated with this tutorial are (on my computer) in 
C:\Users\Guest\Documents\MATLAB\msgocken.  (When you install the tutorial on your computer, you 
will have to make sure that all of the files that come with the tutorial are in an accessible directory.)  Here 
are all of the M-files in the directory called msgocken: 
 
what msgocken   
 
M-files in directory C:\Users\Guest\Documents\MATLAB\msgocken 
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HWProblem6Function    f1                    l2ip                  
scriptex               
beuler                f2                    l2norm                
startup                
eip                   f2a                   mkpl                  
testfun                
euler                 f6                    myplot                
testit                 
euler1                g                     myplot1               
testsym                
euler2                g1                    mysubs                 
f                     h                     mysubs1                  
 
I can look at f.m: 
 
type f   
 
function y=f(x) 
 
y=sin(x.^2);   
 
One important feature of functions defined in M-files is that variables defined in an M-file are local; 
that is, they exist only while the M-file is being executed.  Moreover, variables defined in the MATLAB 
workspace (that is, the variables listed when you give the who command at the MATLAB prompt) are not 
accessible inside of an M-file function.  Here is are examples: 
 
type g   
 
function y=g(x) 
 
a=3; 
y=sin(a*x);   
clear   
g(1)   
ans = 
    0.1411   
 
a   
??? Undefined function or variable 'a'.   
 
The variable a is not defined in the MATLAB workspace after g executes, since a was local to the M-file 
g.m. 
 
On the other hand, consider: 
 
type h   
 
function y=g(x) 
 
y=sin(a*x);   
 
clear   
 
a=3   
a = 
     3   
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h(1)   
??? Undefined function or variable 'a'. 
 
Error in ==> h at 3 
y=sin(a*x);   
 
The M-file h.m cannot use the variable a, since the MATLAB workspace is not accessible within h.m. 
(In short, we say that a is not "in scope".) 
 
Here is an example with two outputs: 
 
type f1   
 
function [y,dy]=f1(x) 
 
y=3*x.^2-x+4; 
dy=6*x-1;   
 
 
The M-file function f1.m computes both f(x)=3x2-x+4 and its derivative.  It can be used as follows: 
 
[v1,v2]=f1(1)   
v1 = 
     6 
v2 = 
     5   
 
As another example, here is a function of two variables: 
 
type g1   
 
function z=g1(x,y) 
 
z=2*x.^2+y.^2+x.*y;   
 
g1(1,2)   
ans = 
     8   
 
A function that is defined in an m-file can be given an alias---another name---inside of MATLAB.  This is 
done by using the @ operator to create a "function handle".  This is useful because it allows you to give the 
file a meaningful name, such as HWproblem6Function.m, and then use a convenient alias, such as f, 
when typing MATLAB commands. 
 
type HWProblem6Function   
 
function y=HWProblem6Function(x) 
 
y=exp(cos(x)).*sin(x).^2 - exp(cos(x)).*cos(x);   
 
f=@HWProblem6Function   
f =  
    @HWProblem6Function   
 
x=linspace(-6*pi,6*pi,401)';   
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y=f(x);   
  
 
plot(x,y)   
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As we will see later, function handles are useful for passing one function as input to another function. 

Optional inputs with default values 
 
I now want to explain the use of optional inputs in M-files.  Suppose you are going to be working with the 
function f2(x)=sin(ax2), and you know that, most of the time, the parameter a will have value 1.  However, a 
will occasionally take other values.  It would be nice if you only had to give the input a when its value is 
not the typical value of 1.  The following M-file has this feature: 
 
type f2   
 
function y=f2(x,a) 
 
if nargin<2 
   a=1; 
end 
 
y=sin(a.*x.^2);   
 
The first executable statement, "if nargin<2", checks to see if f2 was invoked with one input or two.  The 
keyword nargin is an automatic (local) variable whose value is the number of inputs.  The M-file f2.m 
assigns the input a to have the value 1 if the user did not provide it.  Now f2 can be used with one or two 
parameters: 
 
f2(pi)   
ans = 
   -0.4303   
f2(pi,sqrt(2))   
ans = 
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    0.9839   

Comments in M­files 
 
If the percent sign % is used in a MATLAB command, the remainder of the line is considered to be a 
comment and is ignored by MATLAB.  Here is an example: 
 
if sin(pi)==0   % Testing for roundoff error 
   disp('No roundoff error') 
else 
   disp('Roundoff error detected') 
end 
 
(Notice the use of the disp command, which displays a string or the value of a variable.  See "help disp" 
for more information.  Notice also the use of the if-else block, which I discuss later in the tutorial.) 
 
The most common use of comments is for documentation in M-files.  Here is a second version of the 
function f2 defined  above: 
 
type f2a   
 
function y=f2a(x,a) 
 
%y=f2a(x,a) 
% 
%  This function implements the function f2(x)=sin(a*x).  The parameter 
%  a is optional; if it is not provided, it is taken to be 1. 
 
if nargin<2 
   a=1; 
end 
 
y=sin(a*x);   
 
Notice how the block of comment lines explains the purpose and usage of the function.  One of the 
convenient features of the MATLAB help system is that the first block of comments in an M-file is 
displayed when "help" is requested for that function: 
 
help f2a   
 y=f2a(x,a) 
  
   This function implements the function f2(x)=sin(a*x).  The parameter 
   a is optional; if it is not provided, it is taken to be 1.   
 
I will explain more about MATLAB programming in Chapter 4. 

M­files as scripts 
 
An M-file that does not begin with the word function is regarded as a script, which is nothing more than a 
collection of MATLAB commands that are executed sequentially, just as if they had been typed at the 
MATLAB prompt.  Scripts do not have local variables, and do not accept inputs or return outputs.   A 
common use for a script is to collect the commands that define and solve a certain problem (e.g. a 
homework problem). 
 
Here is a sample script.  Its purpose is to graph the function  
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s dsexf
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)cos()(  

 
on the interval [0,1].  (Recall that MATLAB cannot compute the integral explicitly, so this is a nontrivial 
task.)  (Caveat: I did not try to make the following script efficient; indeed, it is decidedly inefficient!) 
 
type scriptex   
 
 
% Define the integrand 
 
g=@(s)exp(cos(s)); 
 
% Create a grid 
 
x=linspace(0,1,21); 
y=zeros(1,21); 
 
% Evaluate the integral int(exp(cos(s)),s,0,x) for 
% each value of x on the grid: 
 
for ii=1:length(x) 
   y(ii)=quad(g,0,x(ii)); 
end 
 
% Now plot the result 
 
plot(x,y)   
Here is the result of running scriptex.m: 
 
clear   
scriptex   
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As I mentioned above, scripts do not have local variables.  Any variables defined in scriptex exist in the 
MATLAB workspace: 
 
whos   
  Name      Size            Bytes  Class              Attributes 
 
  g         1x1                16  function_handle               
  ii        1x1                 8  double                        
  x         1x21              168  double                        
  y         1x21              168  double                          

 

Section 3.4: Orthogonal bases and projection 
 

Consider the following three vectors: 
 
 
clear   
v1=[1/sqrt(3);1/sqrt(3);1/sqrt(3)];   
v2=[1/sqrt(2);0;-1/sqrt(2)];   
v3=[1/sqrt(6);-2/sqrt(6);1/sqrt(6)];   
 
 
These vectors are orthonormal, as can easily be checked.  Therefore, I can easily express any vector as a 
linear combination of the three vectors, which form an orthonormal basis.  To test this, I will use the randn 
command to generate a random vector (for more information, see "help randn"): 
 
 
 
x=randn(3,1)   
x = 
   -0.2050 
   -0.1241 
    1.4897   
 
y=(x'*v1)*v1+(x'*v2)*v2+(x'*v3)*v3   
y = 
   -0.2050 
   -0.1241 
    1.4897   
 
y-x   
ans = 
  1.0e-015 * 
    0.4718 
   -0.0139 
         0   
 
Notice that the difference between y and x (which should be equal) is due to roundoff  error, and is very 
small. 

Working with the L2 inner product 
 
Since MATLAB can compute integrals symbolically, we can use it to compute the L2 inner product and 
norm.  For example: 
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clear   
syms x   
f=x   
f = 
x   
 
g=x^2   
g = 
x^2   
 
int(f*g,x,0,1)   
ans = 
1/4   
 
If you are going to perform such calculations repeatedly, it is convenient to define a function to compute 
the L2 inner product.   The M-file l2ip.m does this: 
 
help l2ip   
 I=l2ip(f,g,a,b,x) 
  
    This function computes the L^2 inner product of two functions 
    f(x) and g(x), that is, it computes the integral from a to b of 
    f(x)*g(x).  The two functions must be defined by symbolic 
    expressions f and g. 
  
    The variable of integration is assumed to be x.  A different 
    variable can passed in as the (optional) fifth input. 
  
    The inputs a and b, defining the interval [a,b] of integration, 
    are optional.  The default values are a=0 and b=1.   
 
Notice that I assigned the default interval  to [0,1].  Here is an example: 
 
syms x   
l2ip(x,x^2)   
ans = 
1/4   
 
For convenience, I also define a function computing the L2 norm: 
 
help l2norm   
 I=l2norm(f,a,b,x) 
  
    This function computes the L^2 inner product of the function f(x) 
    The functions must be defined by the symbolic expressions f. 
  
    The variable of integration is assumed to be x.  A different 
    variable can passed in as the (optional) fourth input. 
  
    The inputs a and b, defining the interval [a,b] of integration, 
    are optional.  The default values are a=0 and b=1.   
 
l2norm(x)   
ans = 
3^(1/2)/3   
double(ans)   
ans = 
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    0.5774   

Example 3.35 
 
Now consider the following two functions: 
 
clear   
syms x pi   
f=x*(1-x)   
f = 
-x*(x - 1)   
 
g=8/pi^3*sin(pi*x)   
g = 
(8*sin(pi*x))/pi^3   
 
(I must tell MATLAB that pi is to be regarded as symbolic.)  The following graph shows that the two 
functions are quite similar on the interval [0,1]: 
 
t=linspace(0,1,51);   
f1=subs(f,x,t);   
g1=subs(g,x,t);   
plot(t,f1,'-',t,g1,'--')   
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By how much do the two functions differ?  One way to answer this question is to compute the relative 
difference in the L2 norm: 
 
l2norm(f-g)/l2norm(f)   
ans = 
30^(1/2)*(1/30 - 32/pi^6)^(1/2)   
double(ans)   
ans = 
    0.0380   
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The difference is less than 4%. 
 
Here are two more examples from Section 3.4 that illustrate some of the capabilities of MATLAB. 

Example 3.37 
 
The purpose of this example to compute the first-degree polynomial f(x)=mx+b best fitting given data 
points (xi,yi).   The data given in this example can be stored in two vectors: 
 
clear   
x=[0.1;0.3;0.4;0.75;0.9];   
 
y=[1.7805;2.2285;2.3941;3.2226;3.5697];   
 
Here is a plot of the data: 
 
plot(x,y,'o')   
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To compute the first-order polynomial f(x)=mx+b that best fits this data, I first form the Gram matrix.  The 
ones command creates a vector of all ones: 
 
e=ones(5,1)   
e = 
     1 
     1 
     1 
     1 
     1   
 
G=[x'*x,x'*e;e'*x,e'*e]   
G = 
    1.6325    2.4500 
    2.4500    5.0000   
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Next, I compute the right hand side of the normal equations: 
 
z=[x'*y;e'*y]   
z = 
    7.4339 
   13.1954   
 
Now I can solve for the coefficients c=[m;b]: 
 
c=G\z   
c = 
    2.2411 
    1.5409   
 
I will define the solution as a function: 
 
 
 
l=@(x)c(1)*x+c(2)  
l =  
    @(x)c(1)*x+c(2)   
 
Here is a plot of the best fit line, together with the data: 
 
t=linspace(0,1,11);   
plot(t,l(t),x,y,'o')   
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The fit is not bad. 

Example 3.38 
 
In this example, I will compute the best quadratic approximation to the function ex on the interval [0,1].  
Here are the basis functions for the subspace P2: 
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clear   
syms x   
p1=1;   
p2=x;   
p3=x^2;   
 
I now compute the Gram matrix and the right hand side of the normal equations: 
 
G=[l2ip(p1,p1),l2ip(p1,p2),l2ip(p1,p3) 
l2ip(p2,p1),l2ip(p2,p2),l2ip(p2,p3) 
l2ip(p3,p1),l2ip(p3,p2),l2ip(p3,p3)]   
G = 
[   1, 1/2, 1/3] 
[ 1/2, 1/3, 1/4] 
[ 1/3, 1/4, 1/5]   
 
 
b=[l2ip(p1,exp(x));l2ip(p2,exp(x));l2ip(p3,exp(x))]   
b = 
 exp(1) - 1 
          1 
 exp(1) - 2   
 
Now I solve the normal equations and find the best fit quadratic: 
 
c=G\b   
c = 
  39*exp(1) - 105 
 588 - 216*exp(1) 
 210*exp(1) - 570   
 
Here is the solution: 
 
q=c(1)*p1+c(2)*p2+c(3)*p3   
q = 
(210*exp(1) - 570)*x^2 + (588 - 216*exp(1))*x + 39*exp(1) - 105   
 
Here is the graph of y=ex and the quadratic approximation: 
 
t=linspace(0,1,41)';   
plot(t,exp(t),'-',t,subs(q,x,t),'--')   
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Since the approximation is so accurate, it is more informative to graph the error: 
 
plot(t,exp(t)-subs(q,x,t))   
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We can also judge the fit by computing the relative error in the L2 norm: 
 
l2norm(exp(x)-q)/l2norm(exp(x))   
ans = 
(1350*exp(1) - (497*exp(2))/2 - 3667/2)^(1/2)/(exp(2)/2 - 1/2)^(1/2)   
double(ans)   
ans = 
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    0.0030   
 
The error is less than 0.3%. 
 

Section 3.5: Eigenvalues and eigenvectors of a symmetric matrix 
 
MATLAB can compute eigenvalues and eigenvectors of a square matrix, either numerically or 
symbolically (when possible). 

Numerical eigenvalues and eigenvectors 
 
Recall that a matrix or any other quantity is stored in floating point by default: 
 
clear   
A=[1,2,-1;4,0,1;-7,-2,3]   
A = 
     1     2    -1 
     4     0     1 
    -7    -2     3   
 
The eig command computes the eigenvalues and eigenvectors: 
 
[V,D]=eig(A)   
V = 
   -0.4986    0.2554         0 
    0.8056    0.0113    0.4472 
   -0.3200   -0.9668    0.8944 
D = 
   -2.8730         0         0 
         0    4.8730         0 
         0         0    2.0000   
 
The eig command returns two matrices.  The first contains the eigenvectors as the columns of the matrix, 
while the second is a diagonal matrix with the eigenvalues on the diagonal.   The eigenvectors and 
eigenvalues are given in the same order.  For example: 
 
A*V(:,1)-D(1,1)*V(:,1)   
ans = 
  1.0e-014 * 
    0.1998 
   -0.1332 
    0.0222   
 (Notice how the colon is used to extract the first column of A.)  The eigenvalue-eigenvector equation holds 
up to roundoff error. 
 
It is also possible to call the eig command with a single output, in which case only the eigenvalues are 
returned, and in a vector instead of a matrix: 
 
ev=eig(A)   
ev = 
   -2.8730 
    4.8730 
    2.0000   

Symbolic eigenvalues and eigenvectors 
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To obtain symbolic (exact) eigenvalues and eigenvectors, it is only necessary to define the matrix to be 
symbolic: 
 
clear   
A=sym([1,2,-1;4,0,1;-7,-2,3])   
A = 
[  1,  2, -1] 
[  4,  0,  1] 
[ -7, -2,  3]   
 
The computation then proceeds exactly as before: 
 
[V,D]=eig(A)   
V = 
[    (4*15^(1/2))/17 + 11/17,  11/17 - (4*15^(1/2))/17,   0] 
[ - (11*15^(1/2))/34 - 43/34, (11*15^(1/2))/34 - 43/34, 1/2] 
[                          1,                        1,   1] 
D = 
[ 1 - 15^(1/2),            0, 0] 
[            0, 15^(1/2) + 1, 0] 
[            0,            0, 2]   
 
Recall that you can use the pretty command to make output easier to read.  For example, here is the second 
eigenvector: 
 
pretty(V(:,2))   
  
  +-                  -+  
  |               1/2  |  
  |           4 15     |  
  |   11/17 - -------  |  
  |             17     |  
  |                    |  
  |       1/2          |  
  |  11 15             |  
  |  -------- - 43/34  |  
  |     34             |  
  |                    |  
  |          1         |  
  +-                  -+   
 
It is not always possible to compute eigenvalues and eigenvectors exactly.  Indeed, the eigenvalues of an n 
by n matrix are the roots of the nth-degree characteristic polynomial.  One of the most famous results of 
19th century mathematics is that it is impossible to find a formula (analogous to the quadratic formula) 
expressing the roots of an arbitrary polynomial of degree 5 or more.  For this reason, MATLAB cannot 
always find the eigenvalues of a symbolic matrix exactly.  When it cannot,  it automatically computes them 
approximately, using high precision arithmetic. 
 
Here is a famous matrix, the Hilbert matrix: 
 
clear   
H=sym(hilb(5))   
H = 
[   1, 1/2, 1/3, 1/4, 1/5] 
[ 1/2, 1/3, 1/4, 1/5, 1/6] 
[ 1/3, 1/4, 1/5, 1/6, 1/7] 
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[ 1/4, 1/5, 1/6, 1/7, 1/8] 
[ 1/5, 1/6, 1/7, 1/8, 1/9]   
 
I will now try to compute the eigenvalues and eigenvectors symbolically: 
 
[V,D]=eig(H);   
 
Here is the first computed eigenvector: 
 
V(:,1)   
ans = 
 0.016409133693801387188101700354447 
 -0.31015050746487107774850800716253 
   1.3453013982367055055233302583319 
  -2.0390705016861528742291328798663 
                                 1.0   
 
Notice that the result appears to be in floating point, but with a large number of digits.  In fact, MATLAB 
has returned a symbolic quantity, as the command whos shows: 
 
whos   
  Name      Size            Bytes  Class    Attributes 
 
  D         5x5                60  sym                 
  H         5x5                60  sym                 
  V         5x5                60  sym                 
  ans       5x1                60  sym                   
 
The results are highly accurate, as the number of digits would suggest: 
 
H*V(:,1)-D(1,1)*V(:,1)   
ans = 
   2.483918886762125461642000548734*10^(-40) 
  2.5796608527140381819915257178503*10^(-40) 
 -3.2318146482723256106713975379415*10^(-41) 
  1.8942051991510714756211514642121*10^(-40) 
  8.1080530444298240540717917418738*10^(-41)   
 
The explanation of these results is that when MATLAB could not compute the eigenpairs symbolically, it 
automatically switched to variable precision arithmetic, which, by default, uses 32 digits in all calculations.  
I will not have any need for variable precision arithmetic in this tutorial, but I wanted to mention it in case 
you encounter it unexpectedly, as in the above example.   You may wish to explore this capability of 
MATLAB further for your own personal use.  You can start with "help vpa". 
 
Since it is not usually possible to find eigenpairs symbolically (except for small matrices), it is typical to 
perform a floating point computation from the very beginning. 

Example 3.49 
 
I will now use the spectral method to solve Ax=b, where A and b are as defined below: 
 
clear   
A=[11,-4,-1;-4,14,-4;-1,-4,11]   
A = 
    11    -4    -1 
    -4    14    -4 
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    -1    -4    11   
b=[1;2;1]   
b = 
     1 
     2 
     1   
 
The matrix A is symmetric, so its eigenvalues are necessarily real and its eigenvectors orthogonal.  
Moreover, MATLAB's eig  returns normalized eigenvectors when the input is a floating point matrix. 
 
[V,D]=eig(A)   
V = 
    0.5774    0.7071   -0.4082 
    0.5774   -0.0000    0.8165 
    0.5774   -0.7071   -0.4082 
D = 
    6.0000         0         0 
         0   12.0000         0 
         0         0   18.0000   
 
The solution of Ax=b is then  
 
x=(V(:,1)'*b/D(1,1))*V(:,1)+(V(:,2)'*b/D(2,2))*V(:,2)+(V(:,3)'*b/D(3,3)
)*V(:,3)   
x = 
    0.2037 
    0.2593 
    0.2037   
 
 
Check: 
 
A*x-b   
ans = 
  1.0e-015 * 
    0.6661 
    0.8882 
   -0.2220   

Review: Functions in MATLAB 
 
I have presented three ways to define new functions in MATLAB.  I will now review and compare these 
three mechanisms. 
 
First of all, an expression in one or more variables can be used to represent a function.  For example, to 
work with the function f(x)=x2, I define 
 
clear   
syms x   
f=x^2   
f = 
x^2   
 
Now I can do whatever I wish with this function, including evaluate it, differentiate it, and integrate it.  To 
evaluate f, I use the subs command: 
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subs(f,x,3)   
ans = 
     9   
 
Differentiation and integration are performed with diff and int, respectively: 
 
diff(f,x)   
ans = 
2*x   
 
int(f,x)   
ans = 
x^3/3   
 
As I have shown in earlier examples, a symbolic expression can be evaluated at a vector argument; that is, 
it is automatically vectorized: 
 
t=linspace(0,1,21);   
 
plot(t,subs(f,x,t))   
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The second way to define a function is using the @ operator: 
 
clear   
f=@(x)x^2   
f =  
    @(x)x^2   
 
An advantage of using a function is that functional notation is used for evaluation (instead of the subs 
command). 
 
f(3)   
ans = 
     9   
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Functions can be evaluated with symbolic inputs: 
 
syms a   
f(a)   
ans = 
a^2   
 
Symbolic calculus operations can be performed on functions indirectly, bearing in mind that diff and int 
operate on expressions, not functions. 
 
syms x   
diff(f(x),x)   
ans = 
2*x   
 
Here is an important fact to notice: functions are not automatically vectorized: 
 
t=linspace(0,1,41);   
plot(t,f(t))   
??? Error using ==> mpower 
Inputs must be a scalar and a square matrix. 
To compute elementwise POWER, use POWER (.^) instead. 
 
Error in ==> @(x)x^2   
 
You can vectorize a function when you write it by using ".^", ".*", and "./". 
 
g=@(x)x.^2;   
plot(t,g(t))   
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Here is a common situation that I often face: Suppose we compute a complicated symbolic expression, 
perhaps using diff or another command, and we wish to make it into a function without retyping it.  (We 
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might wish to do this inside a script, for example, where it is not possible to retype the expression, or copy 
and paste it, because the calculations are being done automatically by the code.)  Here is a trick: convert the 
expression to a string using the char command, construct a string containing the command to define the 
function, and then execute it using the eval command. 
 
clear   
syms x y   
u=x^2*(1-x)*sin(pi*y)^2   
u = 
-x^2*sin(pi*y)^2*(x - 1)   
expr=-diff(u,x,2)-diff(u,y,2)   
expr = 
2*sin(pi*y)^2*(x - 1) + 4*x*sin(pi*y)^2 + 2*pi^2*x^2*cos(pi*y)^2*(x - 
1) - 2*pi^2*x^2*sin(pi*y)^2*(x - 1)   
cmd=['f=@(x,y)',char(expr)]   
cmd = 
f=@(x,y)2*sin(pi*y)^2*(x - 1) + 4*x*sin(pi*y)^2 + 
2*pi^2*x^2*cos(pi*y)^2*(x - 1) - 2*pi^2*x^2*sin(pi*y)^2*(x - 1)   
 
eval(cmd)   
f =  
    @(x,y)2*sin(pi*y)^2*(x-
1)+4*x*sin(pi*y)^2+2*pi^2*x^2*cos(pi*y)^2*(x-1)-
2*pi^2*x^2*sin(pi*y)^2*(x-1)   
 
f(.5,.75)   
ans = 
    0.5000   
 
In the above calculation, notice that "['f=@(x,y)',char(expr)]" creates a character array---a string---that is 
the result of concatenating the two strings 'f=@(x,y)' and char(expr).  Also note that single quotes are used 
to delimit an explicit string in MATLAB. 
 
One problem with the previous example is that the resulting function f is not vectorized.  This is easily 
remedied using the MATLAB command vectorize: 
 
clear   
syms x y   
u=x^2*(1-x)*sin(pi*y)^2;   
expr=-diff(u,x,2)-diff(u,y,2);   
cmd=['f=@(x,y)',vectorize(char(expr))]   
cmd = 
f=@(x,y)2.*sin(pi.*y).^2.*(x - 1) + 4.*x.*sin(pi.*y).^2 + 
2.*pi.^2.*x.^2.*cos(pi.*y).^2.*(x - 1) - 
2.*pi.^2.*x.^2.*sin(pi.*y).^2.*(x - 1)   
 
The third way to define a new function in MATLAB is to write an M-file.  The major advantage of this 
method is that very complicated functions can be defined, in particular, functions that require several 
MATLAB commands to evaluate.  You can review the section "Programming in MATLAB, part I" at this 
point, if necessary. 
 
Chapter 4: Essential ordinary differential equations 
 

Section 4.2: Solutions to some simple ODEs 
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Second­order linear homogeneous ODEs with constant coefficients 
 
Suppose we wish to solve the following IVP: 
 

.0)0(

,1)0(

,0,034
2

2







dt

du

u

tu
dt

du

dt

ud

 

 
The characteristic polynomial is r2+4r-3, which has the following roots: 
 
clear   
syms r   
l=solve(r^2+4*r-3,r)   
l = 
   7^(1/2) - 2 
 - 7^(1/2) - 2   
 
The  general solution of the ODE is then 
 
syms t c1 c2   
u=c1*exp(l(1)*t)+c2*exp(l(2)*t)   
u = 
c1*exp(t*(7^(1/2) - 2)) + c2/exp(t*(7^(1/2) + 2))   
 
We can now solve for the unknown coefficients c1, c2: 
 
c=solve(subs(u,t,sym(0))-1,subs(diff(u,t),t,sym(0)),c1,c2)   
c =  
    c1: [1x1 sym] 
    c2: [1x1 sym]   
c.c1,c.c2   
ans = 
7^(1/2)/7 + 1/2 
ans = 
(7^(1/2)*(7^(1/2) - 2))/14   
 
The solution is found by substituting the correct values for c1 and c2: 
 
u=subs(u,{c1,c2},{c.c1,c.c2})   
u = 
exp(t*(7^(1/2) - 2))*(7^(1/2)/7 + 1/2) + (7^(1/2)*(7^(1/2) - 
2))/(14*exp(t*(7^(1/2) + 2)))   
 
Here is a better view of the solution: 
 
pretty(u)   
  
                    /  1/2       \      1/2   1/2  
          1/2       | 7          |     7    (7    - 2)  
  exp(t (7    - 2)) | ---- + 1/2 | + --------------------  
                    \  7         /              1/2  
                                     14 exp(t (7    + 2))   
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I can now plot the solution: 
 
tt=linspace(0,5,21);   
plot(tt,subs(u,t,tt))   
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A special inhomogeneous second­order linear ODE 
 
Consider the IVP 
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The solution, as given in Section 4.2.3 of the text, is 
 
clear   
syms t s pi   
(1/2)*int(sin(2*(t-s))*sin(pi*s),s,0,t)   
ans = 
-(2*sin(pi*t) - pi*sin(2*t))/(2*(pi^2 - 4))   
 
u=simplify(ans)   
u = 
-(sin(pi*t) - (pi*sin(2*t))/2)/(pi^2 - 4)   
pretty(u)   
  
                pi sin(2 t)  
    sin(pi t) - -----------  
                     2  
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  - -----------------------  
              2  
            pi  - 4   
Let us check the solution: 
 
diff(diff(u,t),t)+4*u   
ans = 
(pi^2*sin(pi*t) - 2*pi*sin(2*t))/(pi^2 - 4) - (4*(sin(pi*t) - 
(pi*sin(2*t))/2))/(pi^2 - 4)   
simplify(ans)   
ans = 
sin(pi*t)   
 
The ODE is satisfied.  How about the initial conditions? 
 
subs(u,t,0)   
ans = 
     0   
subs(diff(u,t),t,0)   
ans = 
     0   
 
The initial conditions are also satisfied. 

First­order linear ODEs 
 
Now consider the following IVP: 
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Section 4.2.4 contains an explicit formula for  the solution: 
 
clear   
syms t s   
exp(t/2)+int(exp((t-s)/2)*(-s),s,0,t)   
ans = 
2*t - 3*exp(t/2) + 4   
 
u=ans   
u = 
2*t - 3*exp(t/2) + 4   
 
Here is a graph of the solution: 
 
tt=linspace(0,3,41);   
plot(tt,subs(u,t,tt))   
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Just out of curiosity, let us determine the value of t for which the solution is zero. 
 
solve(u,t)   
ans = 
- 2*lambertw(0, -3/(4*exp(1))) - 2   
 
 
The solve command finds a solution and  expresses in terms of the Lambert W function (see "help 
lambertw" for details).   We can convert the result to floating point: 
 
double(ans)   
ans = 
   -1.1603   
 
We see that, in this case, solve did not succeed in finding the desired root. 
 
As an alternative to solve, MATLAB provides a command, fzero, that looks for a single root numerically.  
To use it, you must have an estimate of the desired root.  To make it easier to find such an estimate, I will 
add a grid to the previous graph using the grid command: 
 
grid   
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From the graph, we see that the desired root is a little less than 2.   fzero requires a function, not just an 
expression, so I convert the expression u into a function: 
 
eval(['u=@(t)',char(u)])   
u =  
    @(t)2*t-3*exp(t/2)+4   
 
Now I call fzero, using 2.0 as the initial estimate of the root: 
 
fzero(u,2.0)   
ans = 
    1.9226   
 
Let's  check the root: 
 
u(ans)   
ans = 
 -8.8818e-016   
 
The solution appears to be highly accurate. 
 

Section 4.3: Linear systems with constant coefficients 
 
Since MATLAB can compute eigenvalues and eigenvectors (either numerically or, when possible, 
symbolically), it can be used to solve linear systems with constant coefficients.  I will begin with a simple 
example, solving the homogeneous IVP 
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where A and x0 have the values given below.  Notice that I define A and x0 to be symbolic, and hence use 
symbolic computations throughout this example. 
 
clear   
A=sym([1 2;3 4])   
A = 
[ 1, 2] 
[ 3, 4]   
x0=sym([4;1])   
x0 = 
 4 
 1   
 
The first step is to find the eigenpairs of A: 
 
[V,D]=eig(A)   
V = 
[ - 33^(1/2)/6 - 1/2, 33^(1/2)/6 - 1/2] 
[                  1,                1] 
D = 
[ 5/2 - 33^(1/2)/2,                0] 
[                0, 33^(1/2)/2 + 5/2]   
 
Notice that the matrix A is not symmetric, and so the eigenvectors are not orthogonal.  However, they are 
linearly independent, and so I can express the initial vector as a linear combination of the eigenvectors.  
The coefficients are found by solving the linear system Vc=x0: 
 
c=V\x0   
c = 
         1/2 - (9*33^(1/2))/22 
 (33^(1/2)*(33^(1/2) + 27))/66   
 
Now I can write down the solution: 
 
syms t   
x=c(1)*exp(D(1,1)*t)*V(:,1)+c(2)*exp(D(2,2)*t)*V(:,2)   
x = 
 ((33^(1/2)/6 + 1/2)*((9*33^(1/2))/22 - 1/2))/exp(t*(33^(1/2)/2 - 5/2)) 
+ (33^(1/2)*exp(t*(33^(1/2)/2 + 5/2))*(33^(1/2)/6 - 1/2)*(33^(1/2) + 
27))/66 
                                         (33^(1/2)*exp(t*(33^(1/2)/2 + 
5/2))*(33^(1/2) + 27))/66 - ((9*33^(1/2))/22 - 1/2)/exp(t*(33^(1/2)/2 - 
5/2))   
 
Here are the graphs of the two components of the solutions: 
 
tt=linspace(0,1,21);   
plot(tt,subs(x(1),t,tt),'-',tt,subs(x(2),t,tt),'--')   
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Both components are dominated by a rapidly growing exponential, as a careful examination of the formulas 
confirms. 

Inhomogeneous systems and variation of parameters 
 
I will now show how to use MATLAB to solve the inhomogeneous system 
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Consider the matrix 
 
clear   
A=sym([1 2;2 1])  
A = 
[ 1, 2] 
[ 2, 1]   
 
and let 
 
syms t   
f=[sin(t);0]   
f = 
 sin(t) 
      0   
x0=sym([0;1])   
x0 = 
 0 
 1   
 
Notice that the matrix A is symmetric.  First, I find the eigenvalues and eigenvectors of A: 
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[V,D]=eig(A)   
V = 
[ -1, 1] 
[  1, 1] 
D = 
[ -1, 0] 
[  0, 3]   
 
When operating on a symbolic matrix, MATLAB does not normalize the eigenvectors, so I normalize them 
and call them v1 and v2: 
 
v1=V(:,1)/sqrt(V(:,1)'*V(:,1))   
v1 = 
 -2^(1/2)/2 
  2^(1/2)/2   
v2=V(:,2)/sqrt(V(:,2)'*V(:,2))   
v2 = 
 2^(1/2)/2 
 2^(1/2)/2   
 
For convenience, I will call the eigenvalues l1 and l2: 
 
l1=D(1,1)   
l1 = 
-1   
l2=D(2,2)   
l2 = 
3   
 
We have f(t)=c1(t)v1+c2(t)v2 and x0=b1*v1+b2*v2, where 
 
c1=v1'*f   
c1 = 
-(2^(1/2)*sin(t))/2   
c2=v2'*f   
c2 = 
(2^(1/2)*sin(t))/2   
b1=v1'*x0   
b1 = 
2^(1/2)/2   
b2=v2'*x0   
b2 = 
2^(1/2)/2   
 
I now solve the two decoupled IVPs 
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using the methods of Section 4.2.  The solution to the first is 
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syms s   
a1=b1*exp(l1*t)+int(exp(l1*(t-s))*subs(c1,t,s),s,0,t)   
a1 = 
(2^(1/2)*cos(t))/4 - (2^(1/2)*sin(t))/4 + 2^(1/2)/(4*exp(t))   
 
(Notice how I used the subs command to change the variable in the expression for c1 from t to s.) 
The solution to the  second IVP is 
 
a2=b2*exp(l2*t)+int(exp(l2*(t-s))*subs(c2,t,s),s,0,t)   
a2 = 
(11*2^(1/2)*exp(3*t))/20 - (3*2^(1/2)*sin(t))/20 - (2^(1/2)*cos(t))/20   
 
The solution to the original system is then 
 
x=simplify(a1*v1+a2*v2)   
x = 
 (11*exp(3*t))/20 - 1/(4*exp(t)) - (3*cos(t))/10 + sin(t)/10 
   1/(4*exp(t)) + (11*exp(3*t))/20 + cos(t)/5 - (2*sin(t))/5   
 
Let us check this result: 
 
diff(x,t)-A*x-f   
ans = 
 0 
 0   
 
Thus we see that the ODE is satisfied.  We also have 
 
subs(x,t,sym(0))-x0   
ans = 
 0 
 0   
 
so the initial condition is satisfied as well. 

Programming in MATLAB, Part II 
 
In preparation for the next section, in which I discuss the implementation of numerical methods for IVPs in 
MATLAB, I want to present more of the mechanisms for programming in MATLAB.  In an earlier section 
of this tutorial, I explained how to create a new function in an M-file.  An M-file function need not 
implement a simple mathematical function f(x).  Indeed, a common use of M-files is to implement 
algorithms, in which case the M-file should be thought of as a subprogram. 
 
To program any nontrivial algorithm requires the common program control mechanisms for implementing 
loops and conditionals. 
 
 
Loops in MATLAB 
 
Here is an example illustrating an indexed loop: 
 
for jj=1:4 
   disp(jj^2) 
end   
     1 



 69

     4 
     9 
    16   
 
This example illustrates the for loop in MATLAB, which has the form 
 
 for j=j1:j2 
  statement1 

  statement2 

  … 
  statementn 

 end 
 
The sequence of statements statement1, statement2,…,statementn is executed j2-j1+1 times, first with j=j1,  
then with j=j1+1, and so forth until j=j2. 
 
MATLAB also has a while loop, which executes as long as a given logical condition is true.  I will not need 
the while loop in this tutorial, so I will not discuss it.  The interested reader can consult "help while". 

Conditional execution 
 
The other common program control mechanism that I will often use in this tutorial is the if-elseif-else 
block.  I already used it once (see the M-file f2.m above).  The general form is 
 

if condition1 

 statement(s) 
elseif condition2 

 statements(s) 
. 
. 
. 
elseif conditionk 

 statement(s) 
else 
 statement(s) 
end 

 
When an if-elseif-else block is executed, MATLAB checks whether condition1 is true; if it is, the first block 
of statements is executed, and then the program proceeds after the end statement.  If condition1 is  false,  
MATLAB checks condition2, condition3, and so on until one of the conditions is true.  If conditions 1 
through k are all false, then the else branch executes. 
 
Logical conditions in MATLAB evaluate to 0 or 1: 
 
abs(0.5)<1   
ans = 
     1   
abs(1.5)<1   
ans = 
     0   
 
Therefore, the condition in an if or elseif statement can be any expression with a numerical value.  
MATLAB regards a nonzero value as true, and zero as false. 
 
To form complicated conditions, one can use the logical operators == (equality), && (logical and), and || 
(logical or).  Here are some examples: 
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clear   
x=0.5   
x = 
    0.5000   
 
if x<-1 || x>1 % true if x is less than -1 or x is greater than 1       
   disp('True!')  
else  
   disp('False!')  
end   
False!   
 
if x>-1 && x<1  % true if x is between -1 and 1       
   disp('True!')  
else  
   disp('False!')  
end   
True!   

Passing one function into another 
 
Often a program (which in MATLAB is a function) takes as input a function.  For example, suppose I wish 
to write a program that will plot a given function f on a given interval [a,b].  (This is just for the purpose of 
illustration, since the program I produce below will not be much easier to use than the plot command 
itself.) 
The function is written in the obvious fashion; when calling the function, a function handle is created and 
passed. 
 
Here is the desired program, which I will call myplot: 
 
type myplot   
 
function myplot(f,a,b) 
 
x=linspace(a,b,51); 
y=f(x); 
plot(x,y)   
 
To call this function, a function handle is given as the first input argument.  For example, to plot the 
function g(x)=sin(x^2) , I first define the function g and then call myplot in the obvious fashion: 
 
clear   
g=@(x)sin(x.^2);   
myplot(g,0,pi)   
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Now recall the function f that I defined earlier: 
 
type f   
 
function y=f(x) 
 
y=sin(x.^2);   
 
One might be tempted to call myplot like this: 
 
myplot(f,0,pi)   
??? Input argument "x" is undefined. 
 
Error in ==> f at 3 
y=sin(x.^2);   
 
The above error occurs before MATLAB reaches the executable statements in myplot.m.  In parsing the 
command "myplot(f,0,pi)", MATLAB must evaluate all of the inputs, so that it can pass their values to the 
M-file myplot1.m.  However, in trying to evaluate f, MATLAB calls the M-file f.m and encounters an 
error since the input to f has not been given. 
 
To correctly pass f to myplot, we must create a function handle referring to f.m: 
 
f1=@f   
f1 =  
    @f   
myplot(f1,0,pi)   
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Now the code works fine. 

Section 4.4: Numerical methods for initial value problems 
 
Now I will show how to implement numerical methods, such as those discussed in the text, in MATLAB 
programs.  I will focus on Euler's method; you should easily be able to extend these techniques to 
implement a Runge-Kutta method. 
 
Consider the IVP 
 

.)(
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utu

ttutf
dt
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
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A program that applies Euler's method to this problem should take, as input, , , and , as well as 
information that allows it to determine the step size and the number of steps, and return, as output, the  
approximate solution on the resulting grid.  I will assume that the user will specify the time interval 

 and the number of steps  (then the program can compute the time step). 
 
As an example, I will solve the IVP 
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,0,
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



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u

t
t

u

dt

du
 

 
on the interval [0,10].  I will do it first interactively, and then collect the commands in an M-file. 
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The first step is to define the grid and allocate space to save the computed solution.  I will use 100 steps, so 
the grid and the solution vector will each contain 101 components (t0,t1,t2,…,t100 and u0,u1,u2,…,u100).  (It is 
convenient to store the times t0,t1,t2,…,t100 in a vector for later use, such as graphing the solution.) 

 
clear   
t=linspace(0,10,101);   
u=zeros(1,101);   
 
Now I assign the initial value and compute the time step: 
 
u(1)=1;   
dt=10/100;   
 
Next I define the function that forms the right-hand side of the ODE: 
 
f=@(t,u)u/(1+t^2)   
f =  
    @(t,u)u/(1+t^2)   
 
Euler's method is now implemented in a single loop: 
 
for ii=1:100   
  u(ii+1)=u(ii)+dt*f(t(ii),u(ii));  
end   
 
The exact solution is u(t)=exp(tan-1(t)): 
 
 
 U=@(t)exp(atan(t))   
U =  
    @(t)exp(atan(t))   
 
Here is a graph of the exact solution and the computed solution: 
 
plot(t,U(t),t,u)   
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The computed solution is not too different from the exact solution.  As is often the  case, it is more 
informative to graph the error: 
 
plot(t,U(t)-u)   

0 1 2 3 4 5 6 7 8 9 10
-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

   
 
  
 
It is now easy to gather the above steps in an M-file  that implements Euler's method: 
 
type euler1   
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function [u,t]=euler1(f,t0,tf,u0,n) 
 
%[u,t]=euler1(f,t0,tf,u0,n) 
% 
%   This function implements Euler's method for solving the IVP 
% 
%         du/dt=f(t,u), u(t0)=u0 
% 
%   on the interval [t0,tf].  n steps of Euler's method are taken; 
%   the step size is dt=(tf-t0)/n. 
 
% Compute the grid and allocate space for the solution 
 
t=linspace(t0,tf,n+1); 
u=zeros(1,n+1); 
 
% Assign the initial value and compute the time step 
 
u(1)=u0; 
dt=(tf-t0)/n; 
 
% Now do the computations in a loop 
 
for ii=1:n 
   u(ii+1)=u(ii)+dt*f(t(ii),u(ii)); 
end   

The entire computation I did above now requires a single line: 
 
[u,t]=euler1(f,0,10,1,100);   
plot(t,u)   
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Vectorizing the euler program 
 
Euler's method applies equally well to systems of ODEs, and the euler1 program requires only minor 
changes to handle a system.  Mainly we just need to take into account that, at each time ti, the computed 
solution ui is a vector.  Here is the program, which works for either scalar or vector systems (since a scalar 
can be viewed as a vector of length 1): 
 
type euler2   
 
function [u,t]=euler2(f,t0,tf,u0,n) 
 
%[u,t]=euler2(f,t0,tf,u0,n) 
% 
%   This function implements Euler's method for solving the IVP 
% 
%         du/dt=f(t,u), u(t0)=u0 
% 
%   on the interval [t0,tf].  n steps of Euler's method are taken; 
%   the step size is dt=(tf-t0)/n. 
% 
%   The solution u can be a scalar or a vector.  In the vector case, 
%   the initial value must be a kx1 vector, and the function f must 
%   return a kx1 vector. 
 
% Figure out the dimension of the system by examining the initial 
value: 
 
k=length(u0); 
 
% Compute the grid and allocate space for the solution 
 
t=linspace(t0,tf,n+1); 
u=zeros(k,n+1); 
 
% Assign the initial value and compute the time step 
 
u(:,1)=u0; 
dt=(tf-t0)/n; 
 
% Now do the computations in a loop 
 
for ii=1:n 
   u(:,ii+1)=u(:,ii)+dt*f(t(ii),u(:,ii)); 
end   

You should notice the use of the length command to determine the number of components in the initial 
value u0.  A related command is size, which returns the dimensions of an array: 

 
A=randn(4,3);   
size(A)   
ans = 
     4     3   

The length of an array is defined simply to be the maximum dimension: 
length(A)   
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ans = 
     4   
max(size(A))   
ans = 
     4   
 
The only other difference between euler1 and euler2 is that the vector version stores each computed value 
ui as a column in a matrix. 

As an example of solving a system, I will apply Euler's method to the system 

.1)0(,
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uu
dt
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The right-hand side of the system is defined by the vector-valued function 
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which I define as follows: 
 
f=@(t,u)[u(2);-u(1)]   
f =  
    @(t,u)[u(2);-u(1)]   
 
Notice that the function must return a column vector, not a row vector.  Notice also that, even though this 

particular function  is independent of t, I wrote euler2 to expect a function f(t,u) of two variables.  
Therefore, I had to define f above as a function of t and u, even though it is constant with respect to t. 
 
The initial value is 
 
u0=[0;1];   
 
I will solve the system on the interval [0,6]. 
 
[u,t]=euler2(f,0,6,u0,100);   
 
Here I plot both components of the solution: 
 
plot(t,u(1,:),t,u(2,:))   
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Programming in MATLAB, part III 
 
There is a subtle improvement we can make in the above program implementing Euler's method.  Often a 
function, which is destined to be input to a program like euler2, depends not only on independent variables, 
but also on one or more parameters.  For example, suppose I wish to solve the following IVP for a several 
different values of a: 
 

.1)0(,  uau
dt

du
 

 
One way to handle this is to define a different function f for each different value of a: 
 
f1=@(t,u)u   
f1 =  
    @(t,u)u   
f2=@(t,u)2*u   
f2 =  
    @(t,u)2*u   
(and so forth).  However, this is obviously tedious and inelegant.  A better technique is to make f depend 
directly on the parameter a; in effect, make f a function of three variables: 
 
clear   
f=@(t,u,a)a*u   
f =  
    @(t,u,a)a*u   
 
The question is: How can a program implementing Euler's method recognize when the function f depends 
on one or more parameters?  The answer lies in  taking advantage of MATLAB's ability to count the 
number of arguments to a function.  Recall that, inside an M-file function, the nargin variable records the 
number of inputs.  The program can then do different things, depending on the number of inputs.  (I already 
showed an example of the use of nargin above in the first section on MATLAB programming.) 
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Here is an M-file function implementing Euler's method and allowing for optional parameters: 
 
type euler   
 
function [u,t]=euler(f,t0,tf,u0,n,varargin) 
 
%[u,t]=euler(f,t0,tf,u0,n,p1,p2,...) 
% 
%   This function implements Euler's method for solving the IVP 
% 
%         du/dt=f(t,u), u(t0)=u0 
% 
%   on the interval [t0,tf].  n steps of Euler's method are taken; 
%   the step size is dt=(tf-t0)/n. 
% 
%   If the optional arguments p1,p2,... are given, they are passed 
%   to the function f. 
 
% Figure out the dimension of the system by examining the initial 
value: 
 
k=length(u0); 
 
% Compute the grid and allocate space for the solution 
 
t=linspace(t0,tf,n+1); 
u=zeros(k,n+1); 
 
% Assign the initial value and compute the time step 
 
u(:,1)=u0; 
dt=(tf-t0)/n; 
 
% Now do the computations in a loop 
 
for ii=1:n 
   u(:,ii+1)=u(:,ii)+dt*f(t(ii),u(:,ii),varargin{:}); 
end   
 
There are only two differences between euler2 and euler.  The new program accepts an additional input, 
varargin, and it passes this argument, in the form varargin{:}, to f.  The symbol varargin is a special 
variable in MATLAB (like nargin) that is used only in M-file functions.   It is initialized, when the M-file 
is invoked, to contain any additional arguments beyond those explicitly listed in the function statement.  
These additional arguments, if they are provided, are stored in a cell array---an indexed array of possibly 
different types. 
 
I do not wish to explain cell arrays in any detail, since I do not need them in this tutorial except in this one 
context.  It is enough to know that varargin{:} turns the fields of varargin into a list that can be passed to 
another function.  Moreover, if there were no additional parameters when the M-file was invoked, the 
varargin is empty and passing varargin{:} to another function has absolutely no effect. 
 
I will now do an example, solving 
 

1)0(,  uau
dt

du
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on the interval [0,1] for two different values of a. 
 
clear   
f=@(t,u,a)a*u;   
[u1,t]=euler(f,0,1,1,20,1);   
[u2,t]=euler(f,0,1,1,20,2);   
 
Now I plot the two solutions: 
 
plot(t,u1,'-',t,u2,'--')   
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By the way, although the style of euler is the "right" way to implement a function that takes a mathematical 
function as an input, there is another way to accomplish the desired end.  Suppose we have a function like 
euler2 that does not have the flexibility of euler; specifically, it expects a function of the form f(t,u) and 
does not allow for an additional parameter, as in f(t,u,a).  We can use the @ operator to define, for example, 
f1(t,u)=f(t,u,1), and then pass f1 to euler2: 
 
f1=@(t,u)f(t,u,1);   
[u1a,t]=euler2(f1,0,1,1,20);   
norm(u1a-u1)   
ans = 
     0   
The result is now exactly the same as before. 
  
Note: The point of the textbook and this tutorial is for you to learn how numerical methods work, and how 
to implement them in MATLAB.  However, if you have an ODE to solve and need a numerical solution, 
you should be aware that MATLAB includes state-of-the-art algorithms implemented in ode45 and other 
routines.  In particular, ode45 implements a variable step fourth-fifth order scheme, similar in spirit to the 
RKF45 scheme mentioned in the text (page 119), though using a different pair of formulas.  MATLAB also 
has solvers, such as ode23s, for stiff systems.  For more information, see "help ode45" or "help ode23s" 
(the documentation contains a list of other related routines). 
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Efficient MATLAB programming 
 

Programs written in the MATLAB programming language are interpreted, not compiled.  This means that 
you pay a certain performance penalty for using the MATLAB interactive programming environment 
instead of programming in a high-level programming language like C or Fortran.  However, you can make 
your MATLAB programs run very fast, in many cases, by adhering to the following simple rule: whenever 
possible, use MATLAB commands, especially vectorization, rather then user-defined code. 
 
Here is a simple example.   Suppose I wish to evaluate the sine function on the grid 
 

0, 0.000001, 0.000002, ... ,1.0 
 
 (1,000,001 points).  Below are two ways to accomplish this; I time each using the "tic-toc" commands (see 
"help tic" for more information). 
 
 
clear   
x=linspace(0,1,1000001);   
tic 
y=sin(x); 
toc   
Elapsed time is 0.008175 seconds.   
 
tic 
y=zeros(1000001,1); 
for i=1:1000001,y(i)=sin(x(i));end 
toc   
Elapsed time is 1.151249 seconds.   
 
 
The version using an explicit loop is much more time-consuming than the version using MATLAB 
vectorization.  This is because the vectorized commands use compiled code, while the explicit loop must be 
interpreted. 
 
MATLAB commands use state-of-the-art algorithms and execute efficiently.  Therefore, when you solve 
linear systems, evaluate functions, sort vectors, and perform other operations using MATLAB commands, 
your code will  be very efficient.  On the other hand, when you execute explicit loops, you pay a 
performance penalty.  For many purposes, the convenience of MATLAB far outweighs any increase in 
computation time. 
 
 

More about graphics in MATLAB 

Adding a legend to a plot 
 
When graphing two curves on the same plot, it is often helpful to label them so they can be distinguished.  
MATLAB has a command called legend, which adds a key with user-defined descriptions of the curves.  
The format is simple: just list the descriptions (as strings) in the same order as the curves were specified to 
the plot command: 
 
x=linspace(0,1,101)';   
plot(x,exp(x),'-',x,exp(2*x),'--')   
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legend('a=1','a=2')   
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It is possible to tell MATLAB where on the plot to place the legend; see "help legend" for more 
information. 
 
You can also add a title and labels for the axes to a graph using title, xlabel, and ylabel.  Use help to get 
more information. 
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Changing the font size, line width, and other properties of graphs 
 
It is possible to increase the size of fonts, the widths of curves, and otherwise modify the default properties 
of MATLAB graphics objects.  I do not want to explain how to do this here, but I wanted to make you 
aware of the fact that this can be done.   You can find out how to modify default properties from the 
documentation on graphics, available through the help browser on the MATLAB desktop.  Alternatively, 
you can consult "help set" and "help plot" to get started. 
 
Chapter 5: Boundary value problems in statics 
 

Section 5.2:  Introduction to the spectral method; eigenfunctions 
 
I will begin by verifying that the eigenfunctions of the negative second derivative operator (under Dirichlet 
conditions), sin(nπx/l), are mutually orthogonal: 
 
 
clear   
syms m n pi x l   
int(sin(n*pi*x/l)*sin(m*pi*x/l),x,0,l)   
ans = 
-(l*(m*cos(pi*m)*sin(pi*n) - n*cos(pi*n)*sin(pi*m)))/(pi*(m^2 - n^2))   
simplify(ans)   
ans = 
-(l*(m*cos(pi*m)*sin(pi*n) - n*cos(pi*n)*sin(pi*m)))/(pi*(m^2 - n^2))   
 
At first glance, this result is surprising: Why did MATLAB not obtain the expected result, 0?  However, a 
moment's thought reveals the reason: The integral is not necessarily zero unless m and n are integers, and 
MATLAB has no way of knowing that the symbols m and n are intended to represent integers.  When m is 
an integer, then sin(mπ)=0 and cos(mπ)=(-1)m.  We can use the subs command to replace each instance of 
sin(mπ) by zero, and similarly for cos(mπ), sin(nπ), and cos(nπ): 
 
subs(ans,sin(m*pi),0)   
ans = 
-(l*m*cos(pi*m)*sin(pi*n))/(pi*(m^2 - n^2))   
subs(ans,cos(m*pi),(-1)^m)   
ans = 
-((-1)^m*l*m*sin(pi*n))/(pi*(m^2 - n^2))   
subs(ans,sin(n*pi),0)   
ans = 
0   
 
These substitutions are rather tedious to apply, but they are often needed when doing Fourier series 
computations.  Therefore, I wrote a simple program to apply them: 
 
type mysubs   
 
function expr=mysubs(expr,varargin) 
 
%expr=mysubs(expr,m,n,...) 
% 
%  This function substitutes 0 for sin(m*pi) and (-1)^m 
%  for cos(m*pi), and similarly for sin(n*pi) and cos(n*pi), 
%  and any other symbols given as inputs. 
 
syms pi 
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k=length(varargin); 
for j=1:k 
   expr=subs(expr,sin(varargin{j}*pi),0); 
   expr=subs(expr,cos(varargin{j}*pi),(-1)^varargin{j}); 
end 
expr=simplify(expr);   
 
I will use mysubs often to simplify Fourier coefficient calculations. 
 
Example 5.5 
 
Let f(x) be defined as follows: 
 
clear   
syms x   
f=x*(1-x)   
f = 
-x*(x - 1)   
 
I can easily compute the Fourier sine coefficients of f on the interval [0,1]: 
 
syms n pi   
2*int(f*sin(n*pi*x),x,0,1)   
ans = 
(2*(4*sin((pi*n)/2)^2 - pi*n*sin(pi*n)))/(pi^3*n^3)   
I simplify the result using mysubs: 
 
a=mysubs(ans,n)   
a = 
(8*sin((pi*n)/2)^2)/(pi^3*n^3)   
Here is the coefficient: 
 
pretty(a)   
  
       / pi n \2  
  8 sin| ---- |  
       \  2   /  
  --------------  
        3  3  
      pi  n   
 
Using the symsum (symbolic summation) command, I can now create a partial Fourier sine series with a 
given number of terms.  For example, suppose I want the Fourier sine series with n=1,2,…,10.  Here it is: 
 
S=symsum(a*sin(n*pi*x),n,1,10)   
S = 
(8*sin(pi*x))/pi^3 + (8*sin(3*pi*x))/(27*pi^3) + 
(8*sin(5*pi*x))/(125*pi^3) + (8*sin(7*pi*x))/(343*pi^3) + 
(8*sin(9*pi*x))/(729*pi^3)   
 
I can plot the partial sum: 
 
t=linspace(0,1,21);   
plot(t,subs(S,x,t))   
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I can also plot the error in S as an approximation to f: 
 
plot(t,subs(f,x,t)-subs(S,x,t))   
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The error looks jagged because I chose a coarse grid on which to perform the computations.  Here is a more 
accurate graph: 
 
t=linspace(0,1,101);   
plot(t,subs(f,x,t)-subs(S,x,t))   
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I can also investigate how the error decreases as the number of terms in the Fourier series is increased.  For 
example, here is the partial Fourier series with 20 terms: 
 
S=symsum(a*sin(n*pi*x),n,1,20);   
 
Here is the error in S as an approximation to f: 
 
plot(t,subs(f,x,t)-subs(S,x,t))   
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A few notes about symsum 
 
The symsum command has the form "symsum(expr,ii,m,n)", where ii must be a symbolic variable without 
an assigned value.  If ii has previously been assigned  a value, then the above command will not work.  
Here are some errors to be avoid: 
 
This does not  work because ii is not symbolic: 
 
ii=1;   
symsum(ii,ii,1,10)   
??? Undefined function or method 'symsum' for input arguments of type 
'double'.   
 
This does not work because ii has a value: 
 
syms ii   
ii=sym(1);   
symsum(ii,ii,1,10)   
??? Error using ==> mupadmex 
Error in MuPAD command: summation variable must be an identifier or 
indexed identifier [sum] 
 
Error in ==> sym.symsum at 74 
   r = mupadmex('symobj::map',f.s,'symobj::symsum',x.s,a.s,b.s);   
 
This is correct: 
 
clear ii   
syms ii   
symsum(ii,ii,1,10)   
ans = 
55   
 
When symsum(expr,ii,m,n) is executed,  the values m, m+1, ... ,n are substituted for ii in expr, and the 
results are summed.  This substitution is automatic, and is part of the function of the symsum command.  
By contrast, consider the following loop: 
 
clear   
syms ii   
expr=ii^2;   
s=sym(0);  
for ii=1:10   
  s=s+expr;  
end   
s   
s = 
10*ii^2   
 
Even though ii has a value when the line "s=s+expr" is executed, this value is not substituted into expr 
unless we specifically direct that it be.   (The fact that the analogous substitution takes place during the 
execution of symsum is a special feature of symsum.)  The subs command can be used to force this 
substitution: 
 
clear   
syms ii   
expr=ii^2;   
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s=sym(0);   
for ii=1:10   
   s=s+subs(expr);  
end   
s   
s = 
385   
 
This use of  the subs command, subs(expr), tells MATLAB that if a variable appears in expr, and that 
variable has a value in the MATLAB workspace, then the value should be substituted into expr. 
 

Section 5.5: The Galerkin method 
 
Since MATLAB can compute integrals that would be tedious to compute by hand, it is fairly easy to apply 
the Galerkin method with polynomial basis functions.  (In the next section, I will discuss the finite element 
method, which uses piecewise polynomial basis functions.)  Suppose we wish to approximate the solution 
to  
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using the subspace spanned by the following four polynomials: 
 
clear   
syms x   
p1=x*(1-x)   
p1 = 
-x*(x - 1)   
p2=x*(1/2-x)*(1-x)   
p2 = 
x*(x - 1)*(x - 1/2)   
p3=x*(1/3-x)*(2/3-x)*(1-x)   
p3 = 
-x*(x - 1)*(x - 1/3)*(x - 2/3)   
p4=x*(1/4-x)*(1/2-x)*(3/4-x)*(1-x)   
p4 = 
x*(x - 1)*(x - 1/2)*(x - 1/4)*(x - 3/4)   
 
I have already defined the L2 inner product in an M-file (l2ip.m).  Here is an M-file function implementing 
the energy inner product: 
 
type eip   
 
function I=eip(f,g,k,a,b,x) 
 
%I=eip(f,g,k,a,b,x) 
% 
%   This function computes the energy inner product of two functions 
%   f(x) and g(x), that is, it computes the integral from a to b of 
%   k(x)*f'(x)*g'(x).  The three functions must be defined by symbolic 
%   expressions f, g, and k. 
% 
%   The variable of integration is assumed to be x.  A different 
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%   variable can passed in as the (optional) sixth input. 
% 
%   The inputs a and b, defining the interval [a,b] of integration, 
%   are optional.  The default values are a=0 and b=1. 
 
% Assign the default values to optional inputs, if necessary 
 
if nargin<6 
   syms x 
end 
 
if nargin<5 
   b=1; 
end 
 
if nargin<4 
   a=0; 
end 
 
% Compute the integral 
 
I=int(k*diff(f,x)*diff(g,x),x,a,b);   
 
Now the calculation is simple, although there is some repetitive typing required.  (Below I will show how 
to eliminate most of the typing.)  We just need to compute the stiffness matrix and the load vector, and 
solve the linear system.  The stiffness matrix is 
 
k=1+x;   
K=[eip(p1,p1,k),eip(p1,p2,k),eip(p1,p3,k),eip(p1,p4,k) 
eip(p2,p1,k),eip(p2,p2,k),eip(p2,p3,k),eip(p2,p4,k) 
eip(p3,p1,k),eip(p3,p2,k),eip(p3,p3,k),eip(p3,p4,k) 
eip(p4,p1,k),eip(p4,p2,k),eip(p4,p3,k),eip(p4,p4,k)] 
   
K = 
[    1/2,    -1/30,      1/90,    -1/672] 
[  -1/30,     3/40,  -19/3780,     3/896] 
[   1/90, -19/3780,     5/567, -41/60480] 
[ -1/672,    3/896, -41/60480,  43/43008]   
and the load vector is 
 
f=x^2   
f = 
x^2   
F=[l2ip(p1,f);l2ip(p2,f);l2ip(p3,f);l2ip(p4,f)]   
F = 
    1/20 
  -1/120 
   1/630 
 -1/2688   
 
I can now solve for the coefficients defining the (approximate) solution: 
 
c=K\F   
c = 
   3325/34997 
 -9507/139988 
   1575/69994 
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    420/34997   
 
The approximate solution is 
 
p=c(1)*p1+c(2)*p2+c(3)*p3+c(4)*p4   
p = 
(420*x*(x - 1)*(x - 1/2)*(x - 1/4)*(x - 3/4))/34997 - (9507*x*(x - 
1)*(x - 1/2))/139988 - (1575*x*(x - 1)*(x - 1/3)*(x - 2/3))/69994 - 
(3325*x*(x - 1))/34997   
 
Here is a graph: 
 
t=linspace(0,1,41);   
plot(t,subs(p,x,t))   
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The exact solution can be found by integration: 
 
syms c1 c2   
int(-x^2,x)+c1   
ans = 
c1 - x^3/3   
u=int(ans/k,x)+c2   
u = 
c2 - x/3 + log(x + 1)*(c1 + 1/3) + x^2/6 - x^3/9   
 
Now I solve for the constants c1 and c2: 
 
c=solve(subs(u,x,sym(0)),subs(u,x,sym(1)),c1,c2)   
c =  
    c1: [1x1 sym] 
    c2: [1x1 sym]   
 
subs(u,c1,c.c1)   
ans = 
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c2 - x/3 - log(x + 1)*((6*log(2) - 5)/(18*log(2)) - 1/3) + x^2/6 - 
x^3/9   
subs(ans,c2,c.c2)   
ans = 
x^2/6 - log(x + 1)*((6*log(2) - 5)/(18*log(2)) - 1/3) - x/3 - x^3/9   
u=simplify(ans)   
u = 
(5*log(x + 1))/(18*log(2)) - x/3 + x^2/6 - x^3/9   
 
Let us check the solution: 
 
-diff(k*diff(u,x),x)   
ans = 
(x + 1)*((2*x)/3 + 5/(18*log(2)*(x + 1)^2) - 1/3) - 5/(18*log(2)*(x + 
1)) - x/3 + x^2/3 + 1/3   
simplify(ans)   
ans = 
x^2   
subs(u,x,0)   
ans = 
     0   
subs(u,x,1)   
ans = 
  2.7756e-017   
 
This last result is a bit of a surprise.  However, every quantity in MATLAB is floating point by default, so 
the "1" substituted into u is the floating point number 1, which causes the result to be computed in floating 
point.  Here is what we really want: 
 
subs(u,x,sym(1))   
ans = 
0   
 
Since we have the exact solution, let us compare it with our approximate solution: 
 
plot(t,subs(u,x,t),t,subs(p,x,t))   
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The computed solution is so close to the exact solution that the two graphs cannot be distinguished.  Here is 
the error: 
 
plot(t,subs(u,x,t)-subs(p,x,t))   
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Computing the stiffness matrix and load vector in loops 
 
The above calculation is easy to perform, but it is rather annoying to have to type in the formulas for K and 
F in terms of all of the necessary inner products.  It would be even worse were we to use an approximating 
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subspace with a higher dimension.  Fortunately, we can compute K and F in loops and greatly reduce the 
necessary typing.  The key is to store the basis functions in a vector, so we can refer to them by index. 
 
clear   
syms x   
p=[x*(1-x);x*(1/2-x)*(1-x);x*(1/3-x)*(2/3-x)*(1-x);x*(1/4-x)*(1/2-
x)*(3/4-x)*(1-x)];   
  
pretty(p)   
  
  +-                                         -+  
  |                 -x (x - 1)                |  
  |                                           |  
  |            x (x - 1) (x - 1/2)            |  
  |                                           |  
  |       -x (x - 1) (x - 1/3) (x - 2/3)      |  
  |                                           |  
  |  x (x - 1) (x - 1/2) (x - 1/4) (x - 3/4)  |  
  +-                                         -+   
 
k=1+x;   
K=sym(zeros(4,4));   
for ii=1:4 
   for jj=1:4 
      K(ii,jj)=eip(p(ii),p(jj),k); 
   end 
end   
K   
K = 
[    1/2,    -1/30,      1/90,    -1/672] 
[  -1/30,     3/40,  -19/3780,     3/896] 
[   1/90, -19/3780,     5/567, -41/60480] 
[ -1/672,    3/896, -41/60480,  43/43008]   
 
f=x^2;   
F=sym(zeros(4,1));   
for ii=1:4 
   F(ii)=l2ip(p(ii),f); 
end   
F   
F = 
    1/20 
  -1/120 
   1/630 
 -1/2688   
 
With this method, it is equally easy to compute K and F regardless of the number of basis functions.  (Note 
that the above double loop that computes K is not as efficient as it could be, since K is known to be 
symmetric.) 
 

Section 5.6: Piecewise  polynomials and the finite element method 
 
The finite element method is the Galerkin method with a piecewise linear basis.  The computations are a bit 
more complicated than in the previous section, since a basis function is not defined by a single formula, as 
in the previous section. 
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Here is a typical basis function φi on a mesh with n elements: 
 
clear   
n=10;   
x=linspace(0,1,n+1)';   
phi=zeros(n+1,1);   
ii=5;   
phi(ii)=1;   
plot(x,phi)   
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The basis function φi is defined by  
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In these formulas, h=(b-a)/n, where the interval of interest is [a,b] and the number of elements is n, and 
 

.,,2,1,0, niihaxi   

 
The easiest way to represent φi is to define two expressions representing the two nonzero pieces.  I will 
assume that a (the left endpoint of the interval) is zero: 
 
clear   
syms ii h x   
phi1=(x-(ii-1)*h)/h   
phi1 = 
(x - h*(ii - 1))/h   
  



 95

phi2=-(x-(ii+1)*h)/h   
phi2 = 
-(x - h*(ii + 1))/h   

Computing the load vector  
 
Here is how I would use the above expressions to compute a load vector.  Consider the following BVP: 
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I define the right-hand side: 
 
f=x^2;   
  
Now I choose n and define h: 
 
n=10;   
h=1/n;   
 
Here is the computation: 
 
F=zeros(n-1,1);    
for  ii=1:n-1 
  F(ii)=int(subs(phi1)*f,x,ii*h-
h,ii*h)+int(subs(phi2)*f,x,ii*h,ii*h+h); 
end   
  
  
F   
F = 
    0.0012 
    0.0042 
    0.0092 
    0.0162 
    0.0252 
    0.0362 
    0.0492 
    0.0642 
    0.0812   
 
Notice the use of subs(phi1) and subs(phi2) in the above loop.  When the subs command is called with a 
single expression, it tells MATLAB to substitute, for variables in the expression, any value that exist in the 
workspace.  In the above example, those variables were h and ii: 
 
phi1   
phi1 = 
(x - h*(ii - 1))/h   
ii=10;   
subs(phi1)   
ans = 
10*x - 9   
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Computing the stiffness matrix 
 
Computing the stiffness matrix is simple when the coefficient in the differential equation is a constant k, 
because then we already know the entries in the stiffness matrix (they were derived in the text). 
 
The diagonal entries in the stiffness matrix are all 2k/h, and the entries on the subdiagonal and 
superdiagonal are all –k/h.  All other entries are zero. 
 
As I explained in the text, one of the main advantages of the finite element method is that the stiffness 
matrix is sparse.  One of the main advantages of MATLAB is that it is almost as easy to create and use 
sparse matrices as it is to work with ordinary (dense) matrices!  (There are some exceptions to this 
statement.  Some matrix functions cannot operate on sparse matrices.)  Here is one way to create the 
stiffness matrix.  Notice that I first allocate an n-1 by n-1 sparse matrix and then write two loops, one to fill 
the main diagonal, and the second to fill the subdiagonal and superdiagonal.  (I take k=1 in this example.) 
 
k=1;   
K=sparse(n-1,n-1)   
K = 
   All zero sparse: 9-by-9   
for ii=1:n-1 
    K(ii,ii)=2*k/h; 
end   
for ii=1:n-2 
   K(ii,ii+1)=-k/h; 
   K(ii+1,ii)=-k/h; 
end   
 
Notice that I wrote two loops because the subdiagonal and superdiagonal have only n-2 entries, while the 
main diagonal has n-1 entries.  (Note: It is more efficient to create the sparse matrix K use the spdiags 
command, which allows us to define a sparse matrix by specifying its diagonals.  The spdiags command is 
explained below.) 
 
Here is the matrix K: 
 
K   
K = 
   (1,1)       20 
   (2,1)      -10 
   (1,2)      -10 
   (2,2)       20 
   (3,2)      -10 
   (2,3)      -10 
   (3,3)       20 
   (4,3)      -10 
   (3,4)      -10 
   (4,4)       20 
   (5,4)      -10 
   (4,5)      -10 
   (5,5)       20 
   (6,5)      -10 
   (5,6)      -10 
   (6,6)       20 
   (7,6)      -10 
   (6,7)      -10 
   (7,7)       20 
   (8,7)      -10 
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   (7,8)      -10 
   (8,8)       20 
   (9,8)      -10 
   (8,9)      -10 
   (9,9)       20   
 
Notice that MATLAB only stores the nonzeros, so the above output is rather difficult to read.  I can, if I 
wish, convert K to a full matrix to view it in the usual format: 
 
full(K)   
ans = 
    20   -10     0     0     0     0     0     0     0 
   -10    20   -10     0     0     0     0     0     0 
     0   -10    20   -10     0     0     0     0     0 
     0     0   -10    20   -10     0     0     0     0 
     0     0     0   -10    20   -10     0     0     0 
     0     0     0     0   -10    20   -10     0     0 
     0     0     0     0     0   -10    20   -10     0 
     0     0     0     0     0     0   -10    20   -10 
     0     0     0     0     0     0     0   -10    20   
 
However, this is usually not a good idea, since we tend to use sparse matrices when the size of the problem 
is large, in which case converting the sparse matrix to a dense matrix partially defeats the purpose. 
 
The spy command is sometimes useful.  It plots a schematic view of a matrix, showing where the nonzero 
entries are: 
 
spy(K)  
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I can now solve Ku=F to get  the nodal values (I computed F earlier): 
 
u=K\F   
u = 
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    0.0083 
    0.0165 
    0.0243 
    0.0312 
    0.0365 
    0.0392 
    0.0383 
    0.0325 
    0.0203   
 
For graphical purposes, I often explicitly put in the nodal values (zero) at the endpoints: 
 
u=[0;u;0]   
u = 
         0 
    0.0083 
    0.0165 
    0.0243 
    0.0312 
    0.0365 
    0.0392 
    0.0383 
    0.0325 
    0.0203 
         0   
 
If I now create the grid, I can easily plot the computed solution: 
 
t=linspace(0,1,n+1)';   
plot(t,u)   
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As I mentioned earlier, MATLAB's plot command simply graphs the given data points and connects them 
with straight line segments---that is, it automatically graphs the continuous piecewise linear function 
defined by the data! 
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The nonconstant coefficient case 
 
Now consider the BVP 
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Now when I fill the stiffness matrix, I must actually compute the integrals, since their values are not known 
a priori.  I can, however, simplify matters because I know the derivatives of phi1 (1/h) and phi2 (-1/h).  
Here is the computation of of the main diagonal of K: 
 
k=x+1;   
K=sparse(n-1,n-1);   
for ii=1:n-1 
   K(ii,ii)=int(k/h^2,x,ii*h-h,ii*h)+int(k/h^2,x,ii*h,ii*h+h); 
end   
 
Here is the loop that computes the subdiagonal and super diagonal.  Recall that K is symmetric, which 
means that I do not need to compute the subdiagonal once I have the superdiagonal: 
 
for ii=1:n-2 
   K(ii,ii+1)=double(int(-k/h^2,x,ii*h,ii*h+h)); 
   K(ii+1,ii)=K(ii,ii+1); 
end   
  
Now I can compute the nodal values and plot the result, as before: 
 
u=K\F;   
u=[0;u;0];   
plot(t,u)   
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Creating a piecewise linear function from the nodal values 
 
Here is the exact solution to the previous BVP: 
 
syms c1 c2   
int(-x^2,x)+c1;   
U=int(ans/k,x)+c2;   
c=solve(subs(U,x,sym(0)),subs(U,x,sym(1)),c1,c2);   
subs(U,c1,c.c1);   
subs(ans,c2,c.c2);   
U=simplify(ans);   
pretty(U)   
  
                      2    3  
  5 log(x + 1)   x   x    x  
  ------------ - - + -- - --  
   18 log(2)     3   6    9   
 
Now I would like to compare this exact solution with the solution I computed above using the finite 
element method.  I can plot the error as follows: 
 
plot(t,subs(U,x,t)-u)   
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However, this is really a misleading graph, since I computed the errors at the nodes and (implicitly, by 
using the MATLAB plot command) that the error is linear in between the nodes.  This is not true. 
 
To  see the true error, I must create a piecewise linear function from the grid and the nodal values, and then 
compare it to the true solution.  MATLAB has some functions for working with piecewise polynomials, 
including mkpp, which creates an array describing a piecewise polynomial according to MATLAB's own 
data structure, and ppval, which  evaluates a piecewise polynomial.  Because mkpp is a little complicated, I 
wrote a function, mkpl.m, specifically for creating a piecewise linear function.  It takes as inputs the grid 
and the nodal values: 
 
help mkpl   
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  pl = mkpl(x,v) 
  
    This function creates a continuous, piecewise linear function 
    interpolating the data (x(i),v(i)), i=1,...,length(x).  The 
    vectors x and v must be of the same length. Also, it is 
    assumed that the components of x are increasing.   
 
Here is the piecewise linear function we computed using the finite element method: 
 
pu=mkpl(t,u);   
 
I now create a fine grid: 
 
tt=linspace(0,1,10*n+1)';   
 
I can now use ppval to evaluate pu on the grid (and subs to evaluate U, as usual): 
 
plot(tt,subs(U,x,tt)-ppval(pu,tt))   
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You should notice that the error is very small at the nodes---graphing only the nodal error gives a 
misleading impression of the size of the error. 

More about sparse matrices 
 
If a matrix B is stored in ordinary (dense) format, then the command S =sparse(A) creates a copy of the 
matrix stored in sparse format. For example: 
 
clear   
A = [0 0 1;1 0 2;0 -3 0]   
A = 
     0     0     1 
     1     0     2 
     0    -3     0   
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 S = sparse(A)   
S = 
   (2,1)        1 
   (3,2)       -3 
   (1,3)        1 
   (2,3)        2   
 
whos   
  Name      Size            Bytes  Class     Attributes 
 
  A         3x3                72  double               
  S         3x3                64  double    sparse       
 
Unfortunately, this form of the sparse command is not particularly useful, since if A is large, it can be very 
time-consuming to first create it in dense format. The command S = sparse(m,n) (as we have already seen) 
creates an m by n  zero matrix in sparse format. Entries can then be added one-by-one: 
 
A = sparse(3,2)   
A = 
   All zero sparse: 3-by-2   
 
A(1,2)=1; 
A(3,1)=4; 
A(3,2)=-1; 
A   
A = 
   (3,1)        4 
   (1,2)        1 
   (3,2)       -1   
 
(Of course, for this to be truly useful, the nonzeros would be added in a loop or by some other method.) 
 
Another version of the sparse command is S = sparse(I,J,S,m,n,maxnz). This creates an m by n sparse 
matrix with entry (I(k),J(k)) equal to S(k). The optional argument maxnz causes MATLAB to pre-allocate 
storage for maxnz nonzero entries, which can increase efficiency in the case when more nonzeros will be 
later added to S. 
 
There are still more versions of the sparse command. See "help sparse" for details. 
 
The most common type of sparse matrix is a banded matrix, that is, a matrix with a few nonzero diagonals. 
Such a matrix can be created with the spdiags command. Consider the following matrix: 
 
A =[ 
    64   -16     0   -16     0     0     0     0     0 
   -16    64   -16     0   -16     0     0     0     0 
     0   -16    64     0     0   -16     0     0     0 
   -16     0     0    64   -16     0   -16     0     0 
     0   -16     0   -16    64   -16     0   -16     0 
     0     0   -16     0   -16    64     0     0   -16 
     0     0     0   -16     0     0    64   -16     0 
     0     0     0     0   -16     0   -16    64   -16 
     0     0     0     0     0   -16     0   -16    64];   
  
 
(notice the technique for entering the rows of a large matrix on several lines). This is a 9 by 9 matrix with 5 
nonzero diagonals. In MATLAB's indexing scheme, the nonzero diagonals of A are numbers -3, -1, 0, 1, 
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and 3 (the main diagonal is number 0, the first subdiagonal is number -1, the first superdiagonal is number 
1, and so forth). To create the same matrix in sparse format, it is first necessary to create a 9 by 5 matrix 
containing the nonzero diagonals of A. Of course, the diagonals, regarded as column vectors, have different 
lengths; only the main diagonal has length 9. In order to gather the various diagonals in a single matrix, the 
shorter diagonals must be padded with zeros (or any other number---these extra entries are ignored). The 
rule is that the extra zeros go at the bottom for subdiagonals and at the top for superdiagonals. Thus we 
create the following matrix: 
 
 B = [ 
   -16   -16    64     0     0 
   -16   -16    64   -16     0 
   -16     0    64   -16     0 
   -16   -16    64     0   -16 
   -16   -16    64   -16   -16 
   -16     0    64   -16   -16 
     0   -16    64     0   -16 
     0   -16    64   -16   -16 
     0     0    64   -16   -16];   
 
The spdiags command also needs the indices of the diagonals: 
 
d = [-3,-1,0,1,3];   
 
The matrix is then created as follows: 
 
S = spdiags(B,d,9,9);   
 
The last two arguments give the size of S. 
 
Perhaps the most common sparse matrix is the identity. Recall that an identity matrix can be created, in 
dense format, using the command eye. To create the n by n identity matrix in sparse format, use 
I = speye(n).  For example: 
 
I=speye(3)   
I = 
   (1,1)        1 
   (2,2)        1 
   (3,3)        1   
 
Recall that the spy command is very useful for visualizing a sparse matrix: 
 
spy(A)   
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Chapter 6: Heat flow and diffusion 
 

Section 6.1: Fourier series methods for the heat equation 

Example 6.2: An inhomogeneous example 
 
Consider the IBVP 
 

.0,0),100(

,0,0),0(

,1000,0)0,(

,0,1000,10 7
2

2












 

ttu

ttu

xxu

tx
x

u
A

t

u

 

 
The constant A has value 0.208 cm2/s. 
 
clear   
A=0.208   
A = 
    0.2080   
 
The solution can be written as 
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where the coefficient an(t) satisfies the IVP 
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The values c1, c2, c3, ... are the Fourier sine coefficients of the constant function 10-7: 
 
syms n x pi   
2/100*int(10^(-7)*sin(n*pi*x/100),x,0,100)   
ans = 
-(cos(pi*n) - 1)/(5000000*pi*n)   
mysubs(ans,n)   
ans = 
-((-1)^n - 1)/(5000000*pi*n)   
c=ans   
c = 
-((-1)^n - 1)/(5000000*pi*n)   
 
The coefficient an(t) is given by the following formula: 
 
syms t s   
int(exp(-A*n^2*pi^2*(t-s)/100^2)*c,s,0,t)   
ans = 
((-1)^n - 1)/(104*pi^3*n^3*exp((13*pi^2*n^2*t)/625000)) - ((-1)^n - 
1)/(104*pi^3*n^3)   
a=simplify(ans)   
a = 
((1/exp((13*pi^2*n^2*t)/625000) - 1)*((-1)^n - 1))/(104*pi^3*n^3)   
 
Next I define the (partial) Fourier series of the solution: 
 
S=symsum(a*sin(n*pi*x/100),n,1,10);   
  
I can now look at some "snapshots" of the solution.  For example, I will show the concentration distribution 
after 10 minutes (600 seconds).  Some trial and error may be necessary to determine how many terms in the 
Fourier series are required for a qualitatively correct solution.  (As discussed in the text, this number 
decreases as t increases.) 
 
S600=subs(S,t,600);   
xx=linspace(0,100,201);   
plot(xx,subs(S600,x,xx))   
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The wiggles in the graph suggest that 10 terms is not enough for a correct graph (after 10 minutes, the 
concentration distribution ought to be quite smooth).  Therefore, I will try again with 20 terms: 
 
S=symsum(a*sin(n*pi*x/100),n,1,20);   
S600=subs(S,t,600);   
plot(xx,subs(S600,x,xx))   
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Now with 40 terms: 
 
S=symsum(a*sin(n*pi*x/100),n,1,40);   
S600=subs(S,t,600);   
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plot(xx,subs(S600,x,xx))   
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It appears that 20 terms is enough for a qualitatively correct graph at t=600. 

 

Section 6.4: Finite element methods for the heat equation 
 
Now I will show how to use the backward Euler method with finite element discretization to 
(approximately) solve the heat equation.  Since the backward Euler method is implicit, it is necessary to 
solve an equation at each step.  This makes it difficult to write a general-purpose program implementing 
backward Euler, and I will not attempt to do so.  Instead, the function beuler.m applies the backward Euler 
method to the system of  ODEs 
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which is the result of applying the finite element to the heat equation. 
 
type beuler   
 
function [a,t]=beuler(M,K,f,a0,N,dt) 
 
%[a,t]=beuler(M,K,f,a0,N,dt) 
% 
%   This function applies the backward Euler method to solve the 
%   IVP 
% 
%       Ma'+Ka=f(t), 
%       a(0)=a0, 
% 
%   where M and K are mxm matrices (with M invertible) and f is 
%   a vector-valued function taking two arguments, t and m. 
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% 
%   N steps are taken, each of length dt. 
 
m=length(a0); 
a=zeros(m,N+1); 
a(:,1)=a0; 
t=linspace(0,N*dt,N+1)'; 
 
L=M+dt*K; 
for ii=1:N 
   a(:,ii+1)=L\(M*a(:,ii)+dt*f(t(ii+1),m)); 
end   
 
To solve a specific problem, I must compute the mass matrix M, the stiffness matrix K, the load vector f(t), 
and the initial data a0.  The techniques should by now be familiar. 
 
Example 6.9 
 
A 100 cm iron bar, with ρ=7.88, c=0.437, and κ=0.836, is chilled to an initial temperature of 0 degrees, and 
then heated internally with both ends maintained at 0 degrees.  The heat source is described by the function 
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The temperature distribution is the solution of  
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I will use standard piecewise linear basis functions and the techniques introduced in Section 5.6 of this 
tutorial to compute the mass and stiffness matrices: 
 
clear   
n=100   
n = 
   100   
h=100/n   
h = 
     1   
k=0.836   
k = 
    0.8360   
p=7.88   
p = 
    7.8800   
c=0.437   
c = 
    0.4370   
 
K=spdiags([-k/h*ones(n-1,1),2*k/h*ones(n-1,1),-k/h*ones(n-1,1)],[-
1,0,1],n-1,n-1);   
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M=spdiags([p*c*h/6*ones(n-1,1),2*p*c*h/3*ones(n-1,1),p*c*h/6*ones(n-
1,1)],[-1,0,1],n-1,n-1); 
 
(Note that, for this constant coefficient problem, we do not need to perform any integrations, as we already 
know the entries in the mass and stiffness matrices.) 
 
Now I compute the load vector.  Here is the typical entry: 
 
clear ii   
syms x t ii   
phi1=(x-(ii-1)*h)/h   
phi1 = 
x - ii + 1   
phi2=-(x-(ii+1)*h)/h   
phi2 = 
ii - x + 1   
F=10^(-8)*t*x*(100-x)^2   

F = 
(t*x*(x - 100)^2)/100000000   
int(F*subs(phi1),x,ii*h-h,ii*h)+int(F*subs(phi2),x,ii*h,ii*h+h)   
ans = 
(t*(30*ii^3 - 5970*ii^2 + 296015*ii + 99003))/6000000000 + (t*(30*ii^3 
- 6030*ii^2 + 304015*ii - 101003))/6000000000   
simplify(ans)   
ans = 
(t*(6*ii^3 - 1200*ii^2 + 60003*ii - 200))/600000000   
 
Now I need to turn this formula into a vector-valued function that I can pass to beuler.  I write an M-file 
function f6.m: 
 
type f6   
 
function y=f(t,n) 
 
ii=(1:n)'; 
y=(t*(6*ii.^3 - 1200*ii.^2 + 60003*ii - 200))/600000000; 
%y=-1/3000000*t+1/100000000*t*ii.^3-1/500000*t*ii.^2+... 
%   20001/200000000*t*ii;   
 
(Note the clever MATLAB programming in f6: I made ii a vector with components equal to 1,2 ,...,n-1. 
Then I can compute the entire vector in one command rather than filling it one component at a time in a 
loop.) 
 
Next I  create the initial vector a0.  Since the initial value in the IBVP is zero, a0 is the zero vector: 
 
a0=zeros(n-1,1);   
 
Now I choose the time step  and invoke beuler: 
 
dt=2;   
N=180/dt;  
f=@f6;   
[a,t]=beuler(M,K,f,a0,N,dt);   
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The last column of a gives the temperature distribution at time t=180 (seconds).  I will put in the zeros at 
the beginning and end that represent the Dirichlet conditions: 
 
T=[0;a(:,N+1);0];   
xx=linspace(0,100,n+1)';   
 
Here is a plot of the temperature after 3 minutes: 
 
plot(xx,T)   
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Chapter 8: First-Order PDEs and the Method of Characteristics 

 
Section 8.1: The simplest PDE and the method of characteristics 
 
When solving PDEs in two variables, it is sometimes desirable to graph the solution as a function of two 
variables (that is, as a surface), rather than plotting snapshots of the solution.  This is particularly 
appropriate when neither variable is time. 

Two­dimensional graphics in MATLAB 
 
Recall that to plot a function of one variable, we create a grid using the linspace command and then 
evaluate the desired function on the grid.  We can then call the plot command.  For a function of two 
variables, the procedure is similar.  However, we need to create a grid on a rectangle rather than on an 
interval, which is a bit more complicated. 
 
The meshgrid command takes two one-dimensional grids, on the intervals a<x<b and c<y<d, and creates 
the necessary grid on the rectangle {(x,y) : a<x<b and c<y<d}.  This grid is represented as two matrices X 
and Y; the points in the grid are then (Xij,Yij).  Evaluating f(x,y) on the grid means producing a matrix Z 
such that 
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., allfor ),( jiYXfZ ijijij   

 
This last step is easy, since MATLAB supports vectorized operations. 
 
Here is how I created Figure 8.2 (page 314): 
 
First, I create the two one-dimensional grids: 
 
x=linspace(-5,5,41)';   
y=linspace(0,10,41)';   
 
Next, I invoke meshgrid to create the two-dimensional grid: 
 
[X,Y]=meshgrid(x,y);   
 
Finally,  I compute the function u on the grid: 
 
z=1./(1+(X+0.5*Y).^2);   
  
The command for plotting the surface z=f(x,y) is called mesh: 
 
mesh(x,y,z)   

   
 
This surface looks better when viewed from a different angle (see "help view" for details):  
 
view(20,45)   
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I can add the axis labels as follows: 
 
xlabel('x');ylabel('y')   

   
  
 
An alternative to mesh is surf: 
 
surf(x,y,z);view(20,45)   
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Section 8.2: First-order quasi-linear PDEs 
 
The purpose of the method of characteristics is to reduce a PDE to a family of ODEs.  MATLAB has a 
function called dsolve that will solve many ordinary differential equations symbolically.  I will illustrate 
the use of dsolve in the context of Example 8.6 (pages 323-324 in the text): 

Example 8.6 
 
The method of characteristics reduces the given PDE to the IVP 
 

 
 
dsolve will solve this problem as follows: 
 
dsolve('Dv=v^2','v(0)=1/(1+s^2)')   
ans = 
1/(s^2 - t + 1)   
 
There are several points to notice about the use of dsolve: 
 
The differential equation is specified as a string, in (single) quotation marks, and it is followed by the initial 
condion(s) (if any), also in single quotes.  Notice that, unlike with the solve command, there is no option to 
give the equation explicitly using symbolic variables, rather than as a string.  dsolve determines the name 
of the unknown function from the equation, and assumes that the independent variable is t. 
 
Any derivatives are specified using "D" as an operator.  If a higher-order derivative appears, it is specified 
using "D2", "D3", etc.  For example: 
dsolve('D2x=-x','x(0)=0','Dx(0)=1')   
ans = 
sin(t)   
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If no initial condition is given, dsolve returns the general solution of the ODE (when possible): 
 
dsolve('Dv=v^2')   
ans = 
            0 
 -1/(C13 + t)   
 

Notice that, in this example, two solutions are returned.  This is because the formula  

does not include the special solution .  This situation is always possible when the differential 
equation is nonlinear.  Also notice that MATLAB chose a name for the constant in the general solution.  If  
it solves another problem, it will choose another name for the constant: 
 
dsolve('Dv=v')   
ans = 
C16*exp(t)   
 
If desired, you can give dsolve a different name for the independent variable; this has to be the final input: 
 
dsolve('Dv=v^2','x')   
ans = 
            0 
 -1/(C19 + x)   
 
dsolve will solve a system of ODEs (when possible); the equations in the system are given as multiple 
inputs to dsolve.  This is illustrated in the context of Example 8.7 (pages 325-326 in the text): 

Example 8.7 
 
The method of characteristics, applied to the given PDE, yields the following system of ODEs: 
 
   dx/dt=v, x(0)=s, 
   dy/dt=y, y(0)=1, 
   dv/dt=x, v(0)=2s. 
 
We solve this as follows: 
 
sol=dsolve('Dx=v','Dy=y','Dv=x','x(0)=s','y(0)=1','v(0)=2*s')   
sol =  
    y: [1x1 sym] 
    x: [1x1 sym] 
    v: [1x1 sym]   
sol.x   
ans = 
(3*s*exp(t))/2 - s/(2*exp(t))   
sol.y  ans = 
exp(t)   
sol.v   
ans = 
s/(2*exp(t)) + (3*s*exp(t))/2   
 
Chapter 11: Problems in multiple spatial dimensions 
 

Section 11.2: Fourier series on a rectangular domain 
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Fourier series calculations on a rectangular domain proceed in almost the same fashion as in one-
dimensional problems.  The key difference is that we must compute double integrals and double sums in 
place of single integrals and single sums.  Fortunately, this is not difficult, since a double integral over a 
rectangle is just an iterated integral. 
 
As an example, I will compute the Fourier double sine series of the following function f on the unit square: 
 
clear   
syms x y   
f=x*y*(1-x)*(1-y)   
f = 
x*y*(x - 1)*(y - 1)   
 
The Fourier series has the form 
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where amn is computed as follows: 
 
syms m n pi   
a=4*int(int(f*sin(m*pi*x)*sin(n*pi*y),y,0,1),x,0,1) 
a = 
(4*(16*cos((pi*m)/2)^2*cos((pi*n)/2)^2 + 
8*pi*n*sin((pi*n)/2)*cos((pi*m)/2)^2*cos((pi*n)/2) - 16*cos((pi*m)/2)^2 
+ 8*pi*m*sin((pi*m)/2)*cos((pi*m)/2)*cos((pi*n)/2)^2 + 
4*pi^2*m*n*sin((pi*m)/2)*sin((pi*n)/2)*cos((pi*m)/2)*cos((pi*n)/2) - 
8*pi*m*sin((pi*m)/2)*cos((pi*m)/2) - 16*cos((pi*n)/2)^2 - 
8*pi*n*sin((pi*n)/2)*cos((pi*n)/2) + 16))/(pi^6*m^3*n^3)   
 
Here is the partial Fourier series with a total of 100 terms: 
 
S=symsum(symsum(a*sin(m*pi*x)*sin(n*pi*y),n,1,10),m,1,10);   
  
 
To graph the (partial) Fourier series, I begin by creating, the two one-dimensional grids: 
 
xx=linspace(0,1,21)';   
yy=linspace(0,1,21)';   
 
Next, I invoke meshgrid to create the two-dimensional grid: 
 
[X,Y]=meshgrid(xx,yy);   
 
Finally,  I compute the function f, from the previous example, on the grid: 
 
Z=subs(f,{x,y},{X,Y});   
  
(Notice how I can substitute for two variables at one time by listing the variables and the values between 
curly brackets.) 
 
Now I invoke the surf command: 
 
surf(X,Y,Z)   
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I can also evaluate the Fourier series on the two-dimensional grid.  Notice that this may take some time if 
the grid is very fine or there are many terms in the series, or both. 
 
Z1=subs(S,{x,y},{X,Y});   
surf(X,Y,Z1)   

   
 
Here is the approximation error: 
 
surf(X,Y,Z-Z1)   
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Looking at the  vertical scale on the last two plots, we see that the error of approximation is only about one-
half of one percent. 
 

Section 8.3: Fourier series on a disk 
 
The Bessel functions Jn(s) are built-in functions in MATLAB, just as are the more common elementary 
function such as sine and cosine, and can be used just as conveniently.  For example, here is the graph of 
J0: 
 
clear   
t=linspace(0,10,101);   
plot(t,besselj(0,t));grid   
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(Notice that the first argument to besselj is the index n.) 
 
As an example, I will compute the smallest root s01, s02, s02 of J0.  The above graph shows that these roots 
are approximately 2.5, 5.5, and 8.5.  Recall that the command fzero finds a (floating point estimate of) a 
root, near a given estimate, of a function.  We have a slight difficulty in applying fzero to besselj, however, 
since besselj takes two arguments, and the first is the parameter n.  Like most MATLAB functions that 
operate on functions, fzero will allow us to pass a parameter through to the user-defined function, but the 
parameter must come after the variable in the calling  sequence.  I will get around this problem by defining 
a function of one variable that represents J0: 
 
J0=@(x)besselj(0,x)   
J0 =  
    @(x)besselj(0,x)   
 
Now I can invoke  fzero: 
 

fzero(J0,2.5)   
ans = 
    2.4048   
 
fzero(J0,5.5)   
ans = 
    5.5201   
 
fzero(J0,8.5)   
ans = 
    8.6537   

Graphics on the disk 
 

Functions on a disk are naturally described by cylindrical coordinates, that is, as  where  
are polar coordinates.  We can use surf to graph such functions; however,  it requires a little extra work to 
set up the grid.  Here is how it works: 
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First, set up one-dimensional grids in r and θ (A is the radius of the disk): 
 
clear   
A=1;   
r=linspace(0,A,21);   
th=linspace(0,2*pi,21);   
 
Next, use meshgrid to set up a rectangular grid in r and θ: 
 
[R,Th]=meshgrid(r,th);   
 

Now compute the function   I will use  for this example: 
 
Z=R.*cos(Th);   
 
Next, create matrices X and Y containing the  coordinates: 
 
X=R.*cos(Th);   
Y=R.*sin(Th);   
 
Now I can plot the surface: 
 
surf(X,Y,Z)   

   
 

Here is a more interesting example.  I will graph the eigenfunction  on the unit 
disk.  First I must compute the root s11 of J1: 
 
clear   
J1=@(x)besselj(1,x);   
t=linspace(0,10,101)';   
plot(t,J1(t));grid   
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s11=fzero(J1,4)   
s11 = 
    3.8317   
 
Now I define the various grids: 
 
r=linspace(0,1,21);   
th=linspace(0,2*pi,21);   
[R,Th]=meshgrid(r,th);   
X=R.*cos(Th);   
Y=R.*sin(Th);   
 

Next I define the function  
 
Z=besselj(1,s11*R).*cos(Th);   
 
Finally, I can graph the surface: 
 
surf(X,Y,Z)   
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Chapter 12: More about Fourier series 
 

Section 12.1: The complex Fourier series 
 
It is no more difficult to compute complex Fourier series than the real Fourier series discussed earlier.  You 
should recall that the imaginary unit sqrt(-1) is denoted by i (or j, but I will use i) in MATLAB.  As an 

example, I will compute the complex Fourier series of  on the interval  
 
clear   
f=inline('x.^2','x');   
syms x pi n   
1/2*int(f(x)*exp(-i*pi*n*x),x,-1,1)   
ans = 
- (exp(pi*n*sqrt(-1))*(pi^2*n^2 + 2*pi*n*sqrt(-1) - 2)*sqrt(-
1))/(2*pi^3*n^3) - ((1/exp(pi*n*sqrt(-1)))*(- pi^2*n^2 + 2*pi*n*sqrt(-
1) + 2)*sqrt(-1))/(2*pi^3*n^3)   
 
We now have a simplification problem similar to what we first encountered in Chapter 5, and for which I 
wrote the function mysubs.  In this  case, since n is an integer, exp(-iπn) equals (-1)n, as does exp(iπn).  For 
this reason, I wrote another version of mysubs, namely mysubs1, to handle this  case: 
 
type mysubs1   
 
function expr=mysubs1(expr,varargin) 
 
%expr=mysubs1(expr,m,n,...) 
% 
%  This function substitutes (-1)^m for exp(-i*pi*m) and 
%  for exp(i*pi*m), and similarly for exp(-i*pi*n) and 
%  exp(i*pi*n), and any other symbols given as inputs. 
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syms pi i 
k=length(varargin); 
for jj=1:k 
   expr=subs(expr,exp(-i*(pi*varargin{jj})),(-1)^varargin{jj}); 
   expr=subs(expr,exp(i*pi*varargin{jj}),(-1)^varargin{jj}); 
end 
expr=simplify(expr);   
 
Now I apply mysubs1: 
 
a=mysubs1(ans,n);   
pretty(a)   
  
        n  
  2 (-1)  
  -------  
    2  2  
  pi  n   
 

This formula obviously does not hold for , and so I need to compute the coefficient a0 separately: 
 
a0=1/2*int(f(x),x,-1,1)   
a0 = 
1/3   
 
Now I can define the partial Fourier  series.  Recall from Section 9.1 of the text that, since f is real-valued, 
the following partial Fourier series is also real-valued (I choose  to use 21 terms in the series): 
 
S=a0+symsum(a*exp(i*n*pi*x),n,-10,-1)+symsum(a*exp(i*n*pi*x),n,1,10);  
t=linspace(-1,1,101)'; 
plot(t,subs(S,x,t))   
Warning: Imaginary parts of complex X and/or Y arguments ignored 
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The approximation is not bad, as the following graph of the error shows: 
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plot(t,f(t)-subs(S,x,t))   
Warning: Imaginary parts of complex X and/or Y arguments ignored 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-0.02

-0.01

0

0.01

0.02

0.03

0.04

   
 
 
You should notice the above warning messages complaining that the quantity I am trying to graph is 
complex.  This is not important, because I know from the results in the text that the partial Fourier series 
must evaluate to a real number (since the underlying function f is real-valued).  Therefore, any imaginary 
part must be due to roundoff error, and it is right to ignore it.  Here is an example: 
 
subs(S,x,1)   
ans = 
   0.9614 + 0.0000i   
imag(ans)   
ans = 
  3.0815e-033   
 
(The imag command extracts the imaginary part of a complex number.) 
  

Section 9.2: Fourier series and the FFT 
 
MATLAB implements the fast Fourier transform in the command fft.  As mentioned in Section 9.2.3 in the 
text, there is more than one way to define the DFT (although all are essentially equivalent), and MATLAB's 
definition differs slightly from that used in the text: Instead of associating the factor of 1/M with the DFT, 
MATLAB associates it with the inverse DFT (cf. the formulas for the DFT and inverse DFT in Section 
9.2.2 of the text).  Otherwise, the definition used by MATLAB is the same as that in the text. 
 
The inverse FFT is implemented in the command ifft. 
 
As I explained in Section 9.2.2 of the text, a common operation when using the FFT is to swap the first and 
second halves of a finite sequence.  Since this operation is so common, MATLAB implements it in the 
command fftshift: 
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help fftshift   
 FFTSHIFT Shift zero-frequency component to center of spectrum. 
    For vectors, FFTSHIFT(X) swaps the left and right halves of 
    X.  For matrices, FFTSHIFT(X) swaps the first and third 
    quadrants and the second and fourth quadrants.  For N-D 
    arrays, FFTSHIFT(X) swaps "half-spaces" of X along each 
    dimension. 
  
    FFTSHIFT(X,DIM) applies the FFTSHIFT operation along the  
    dimension DIM. 
  
    FFTSHIFT is useful for visualizing the Fourier transform with 
    the zero-frequency component in the middle of the spectrum. 
  
    Class support for input X: 
       float: double, single 
  
    See also IFFTSHIFT, FFT, FFT2, FFTN, CIRCSHIFT. 
 
    Reference page in Help browser 
       doc fftshift   
 
I can now reproduce Example 9.3 from the text to illustrate the use of  these commands. 
 
First, I define the function and the initial sequence: 
 
clear   
ff=inline('x.^3','x')   
ff = 
     Inline function: 
     ff(x) = x.^3   
x=linspace(-2/3,2/3,5);   
f=[0,ff(x)]   
f = 
         0   -0.2963   -0.0370         0    0.0370    0.2963   
 
Next, I shift the sequence using fftshift, and then apply fft.  Recall that, to reproduce the results in the text, 
I must use the same definition for the DFT, which means that I must divide the output of fft by 6, the length 
of the sequence: 
 
f1=fftshift(f)   
f1 = 
         0    0.0370    0.2963         0   -0.2963   -0.0370   
F1=fft(f1)/6   
F1 = 
  Columns 1 through 4 
        0                  0 - 0.0962i        0 + 0.0748i        0           
  Columns 5 through 6 
        0 - 0.0748i        0 + 0.0962i   
 
Now I apply fftshift to F1 to obtain the desired sequence F: 
 
F=fftshift(F1)   
F = 
  Columns 1 through 4 
        0                  0 - 0.0748i        0 + 0.0962i        0           
  Columns 5 through 6 
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        0 - 0.0962i        0 + 0.0748i   
 
The result is the same as in the text, up to round-off error. 
 
I can perform the entire computation above in one line as follows: 
 
F=fftshift(fft(fftshift(f))/6)   
F = 
  Columns 1 through 4 
        0                  0 - 0.0748i        0 + 0.0962i        0           
  Columns 5 through 6 
        0 - 0.0962i        0 + 0.0748i   
 
 
Chapter 13: More about finite element methods 
 
 

Section 13.1 Implementation of finite element methods 
 
In this section, I do more than just explain MATLAB commands, as has been my policy up to this point.  I 
define a collection of MATLAB M-file functions that implement piecewise linear finite elements on two-
dimensional polygonal domains.  The interested reader can experiment with and extend these functions to 
see how the finite element method works in practice.  The implementation of the finite element method 
follows closely the explanation I give in Section 13.1 of the text, although the data structure has been 
extended to allow the code to handle inhomogeneous boundary conditions.   (However, the code itself has 
not been extended to handle inhomogeneous boundary conditions.  This extension has been left as an 
exercise.) 
 
The main commands are Stiffness1 and Load1, which assemble the stiffness matrix and load vectors for 
the BVP 

 
 

 
 

 
 

where Γ is part of the boundary of Ω and  is the rest of the boundary.  However, before any 
computation can be done, the mesh must be described.  I provide three routines for creating rectangular 
meshes, RectangleMeshD1, RectangleMeshN1, and RectangleMeshTopD1 (these routines differ in the 
boundary conditions that are assumed). 

Creating a mesh 
 
The data structure is described in the M-file Mesh1.m (this M-file contains only comments, which are 
displayed when you type "help Mesh1"): 
 
addpath('fempack')   
help Mesh1   
  The Fem1 package implements piecewise linear finite elements for two 
  dimensional problems and is intended to accompany "Partial 
  Differential Equations: Analytical and Numerical Methods" (second 
  edition) by Mark S. Gockenbach (SIAM 2010).  It uses the data 
  structure described in Section 13.1 of the text (that is, the four 
  arrays NodeList, NodePtrs, FNodePtrs, and ElList, augmented by 
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  three more arrays (CNodePtrs, ElEdgeList, and FBndyList) to allow 
  the code to handle inhomogeneous boundary conditions (as hinted at 
  in the text).  These seven arrays are collected into a structure. 
  
     NodeList: Mx2 matrix, where M is the number of nodes in the mesh 
               (including boundary nodes).  Each row corresponds to a 
               node and contains the coordinates of the node. 
  
     NodePtrs: Mx1 matrix.  Each entry corresponds to a node: 
                if node i is free, NodePtrs(i) is the index of node i 
                in FNodePtrs; else NodePtrs(i) is the negative of 
                index of node i in CNodePtrs 
  
     FNodePtrs: Nx1 vector, where N is the number of free nodes. 
                NodePtrs(i) is the index into NodeList of the ith 
                free node.  So, for example, NodeList(NodePtrs(i),1:2) 
                are the coordinates of the ith free node. 
  
     CNodePtrs: Kx1 vector, where K=M-N is the number of constrained 
                nodes.  CNodePtrs(i) is the index into NodeList of the 
                ith constrained node. 
  
     ElList: Lx3 matrix, where L is the number of triangular elements 
             in the mesh.  Each row corresponds to one element and 
             contains pointers to the nodes of the triangle in 
             NodeList. 
  
     ElEdgeList: Lx3 matrix.  Each row contains flags indicating 
                 whether each edge of the corresponding element is on 
                 the boundary (flag is -1 if the edge is a constrained 
                 boundary edge, otherwise it equals the index of the 
                 edge in FBndyList) or not (flag is 0).  The edge 
                 of the triangle are, in order, those joining vertices 
                 1 and 2, 2 and 3, and 3 and 1. 
  
     FBndyList: Bx2 matrix, where B is the number of boundary edges 
                not constrained by Dirichlet conditions.  Each 
                row corresponds to one edge and contains pointers 
                into NodeList, yielding the two vertices of the edge.   
 
The command RectangleMeshD1 creates a regular triangulation of a rectangle 

],0[],0[ yx ll  , 

 assuming Dirichlet conditions on the boundary. 
 
help RectangleMeshD1   
  T=RectangleMeshD1(nx,ny,lx,ly) 
  
    This function creates a regular, nx by ny finite element mesh for 
    a Dirichlet problem on the rectangle [0,lx]x[0,ly]. 
  
    The last three arguments can be omitted; their default values are 
    ny=nx, lx=1, ly=1.  Thus, the command "T=RectangleMeshD1(m)" 
    creates a regular mesh with 2m^2 triangles on the unit square. 
  
    For a description of the data structure describing T, see 
    "help Mesh1".   
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The command RectangleMeshN1 creates a regular triangulation of  the same rectangle, assuming  
Neumann conditions on the boundary, while RectangleMeshTopD1 imposes Dirichlet conditions on the 
top edge and Neumann conditions on the other three edges. 
 
Thus I only provide the means to deal with a single domain shape (a rectangle), and only under three 
combinations of boundary conditions. To use my code to solve BVPs on another domain, you will have to 
write code to generate the mesh yourself.  Note, however, that the rest of the code is general: it handles any 
polygonal domain, with any combination of homogeneous Dirichlet and Neumann conditions. 
 
Here I create a mesh: 
 
clear   
T=RectangleMeshD1(4)   
T =  
      NodeList: [25x2 double] 
      NodePtrs: [25x1 double] 
     FNodePtrs: [9x1 double] 
     CNodePtrs: [16x1 double] 
        ElList: [32x3 double] 
    ElEdgeList: [32x3 double] 
     FBndyList: []   
 
The mesh I just created is shown in Figure 10.1 in the text.  I have provided a means of viewing a mesh: 
 
help ShowMesh1   
  ShowMesh1(T,flag) 
  
    This function displays a triangular mesh T.  Unless the flag 
    is nonzero, free nodes are indicated by a 'o', and 
    constrained nodes by an 'x'. 
  
    For a description of the data structure T, see "help Mesh1". 
  
    The optional argument flag has the following effect: 
  
       flag=1: the triangles are labeled by their indices 
       flag=2: the nodes by their indices 
       flag=3: both the nodes and triangles are labeled 
       flag=4: the free nodes are labeled by their indices. 
       flag=5: the free and constrained nodes are labeled by 
               their indices.   
 
ShowMesh1(T)   
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(Notice that it is also possible to label the triangles and/or nodes by their indices.) 

Computing the stiffness matrix and the load vector 
 
Here are the main commands: 
 
help Stiffness1   
  K=Stiffness1(T,fnk) 
  
    Assembles the stiffness matrix for the PDE 
  
         -div(k*grad u)=f in Omega, 
              u=0 on Gamma, 
              du/dn=0 on Bndy(Omega)-Gamma. 
  
    The input fnk can be a (positive) number k or a function 
    implementing a function k(x,y).  If fnk is omitted, it is 
    assumed to be the constant 1.  T describes the triangulation 
    of Omega.  For a description of the data structure T, see 
    "help Mesh1".   
 
help Load1   
  F=Load1(T,fnf) 
  
    Assembles the load vector for the BVP 
  
         -div(a*grad u)=f in Omega, 
              u=0 on Gamma, 
              du/dn=0 on Bndy(Omega)-Gamma. 
  
    The right hand side function f(x,y) must be implemented in the 
    function fnf.   
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Thus, to apply the finite element method to the BVP given above (assuming homogeneous boundary 
conditions), I need to define the coefficient a(x,y) and the forcing function f(x,y).  As an example, I will 
reproduce the computations from Example 8.10 from the text, in which case a(x,y)=1 and f(x,y)=x. 
a=1;   
f=@(x,y)x;   
 
Now I compute the stiffness matrix K and the load vector F: 
 
K=Stiffness1(T,a);   
F=Load1(T,f);   
  
 
Finally, I solve the system Ku=F to get the nodal values: 
 
u=K\F;   
  
 
Given the vector of nodal values (and the mesh), you can graph the computed solution using the 
ShowPWLinFcn1 command: 
 
help ShowPWLinFcn1   
  ShowPWLinFcn1(T,U,g) 
  
    This function draws a surface plot of a piecewise linear 
    function defined on a triangular mesh.  The inputs are T, 
    the mesh (see "help Mesh1" for details about this data structure) 
    and the vector U, giving the nodal values of the function 
    (typically U would be obtained by solving a finite element 
    equation). 
  
    The optional input g is a vector of nodal values at the 
    constrained nodes.  If g is not given, this vector is taken 
    to be zero.   
 
ShowPWLinFcn1(T,u)   
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The above solution does not look very good (not smooth, for instance); this is because the mesh is rather 
coarse.  I will now repeat the calculation on a finer mesh. 
 
T=RectangleMeshD1(16);   
  
ShowMesh1(T)   

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

   
 
K=Stiffness1(T,a);   
 F=Load1(T,f);   
 u=K\F;   
ShowPWLinFcn1(T,u)   
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For the sake of  illustrating mixed boundary conditions, I will solve the same PDE with mixed boundary 
conditions: 
 
T1=RectangleMeshTopD1(16);   
K1=Stiffness1(T1,a);   
F1=Load1(T1,f);   
u1=K1\F1;   
  
ShowPWLinFcn1(T1,u1)   
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There are other utility routines included, such as routines for estimating the  and energy norms.  For a 
complete list of routines provided, type "help Fem1". 

Testing the code 
 
To see how well the code is working, I can solve a problem with a known solution, and compare the 
computed solution with the exact solution.  I can easily create a problem with a known solution; I just 
choose a(x,y) and any u(x,y) satisfying the boundary conditions, and then compute 
 

 uyxayxf  ),(),(  

 
to get the right-hand side f.  For example, suppose I take 
 
clear   
a=@(x,y)1+x.^2;   
u=@(x,y)x.*(1-x).*sin(pi*y);   
 
(Notice that u satisfies homogeneous Dirichlet conditions on the unit square.)  Then I can compute f: 
 
syms x y   
-diff(a(x,y)*diff(u(x,y),x),x)-diff(a(x,y)*diff(u(x,y),y),y)   
ans = 
2*sin(pi*y)*(x^2 + 1) + 2*x*(x*sin(pi*y) + sin(pi*y)*(x - 1)) - 
pi^2*x*sin(pi*y)*(x^2 + 1)*(x - 1)   
cmd=['f=@(x,y)',char(ans)];   
eval(cmd)   
f =  
    @(x,y)2*sin(pi*y)*(x^2+1)+2*x*(x*sin(pi*y)+sin(pi*y)*(x-1))-
pi^2*x*sin(pi*y)*(x^2+1)*(x-1)   
 
Now I will create a coarse mesh and compute the finite element approximation: 
 
T=RectangleMeshD1(2);    
K=Stiffness1(T,a);    
F=Load1(T,f);   
 U=K\F;   
  
Here is the approximate solution: 
ShowPWLinFcn1(T,U)   

mailto:a=@(x,y)1+x.%5E2�
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(The mesh is so coarse that there is only one free node!) 
 
For comparison purposes, let me compute the nodal values of the exact solution on the same mesh. I have 
provided a command to do this: 
 
help NodalValues1   
 [v,g]=NodalValues1(T,u) 
  
   This function sets v equal to the vector of 
   values of u(x,y) at the free nodes of the mesh T, 
   and g equal to the vector of values of u(x,y) 
   at the constrained nodes of the mesh T. 
   The function implementing u must be vectorized. 
  
   See "help Mesh1" for a description of the 
   data structure for T.   
 
V=NodalValues1(T,u);   
  
 
Now I will plot the difference between the computed solution and the piecewise linear interpolant of the 
exact solution (notice the scale on the graph): 
 
ShowPWLinFcn1(T,V-U)   
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I now repeat with a sequence of finer meshes: 
 
T=RectangleMeshD1(4);   
K=Stiffness1(T,a);   
F=Load1(T,f);   
U=K\F;   
V=NodalValues1(T,u);   
ShowPWLinFcn1(T,V-U)   
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T=RectangleMeshD1(8); 
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K=Stiffness1(T,a);  
F=Load1(T,f);  
U=K\F;  
V=NodalValues1(T,u);  
ShowPWLinFcn1(T,V-U)  
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T=RectangleMeshD1(16);  
K=Stiffness1(T,a);  
F=Load1(T,f);  
U=K\F;  
V=NodalValues1(T,u);  
ShowPWLinFcn1(T,V-U)  
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Using the code 
 
My purpose for providing this code is so that you can see how finite element methods can be implemented 
in practice.  To really benefit from the code, you should extend its capabilities.  By writing some code 
yourself, you will learn how such programs are written.  Here are some projects you might undertake, more 
or less in order of difficulty: 
 

1. Write a command called Mass1 that computes the mass matrix.  The calling sequence should be 
simply M=Mass1(T), where T is the triangulation. 

2. Choose some other geometric shapes and/or combinations of boundary conditions, and write some 
mesh generation routines analogous to RectangleMeshD1. 

3. Extend the code to handle inhomogeneous Dirichlet conditions.  Recall that such boundary 
conditions change the load vector, so the routine Load1 must be modified. 

4. Extend the code to handle inhomogeneous Neumann conditions.  Like inhomogeneous Dirichlet 
conditions, the load vector is affected 

5. (Hard) Write a routine to refine a given mesh, according to the standard method suggested in 
Exercise 10.1.4 of the text. 

 
As I mentioned above, the mesh data structure described in Mesh1.m includes the information needed to 
solve exercises 3, 4, and 5. 
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