
Aalto SCIp Heikki Apiola, Juha Kuortti
Matlab 2
For credits, send in at least 3 problems to us:
heikki.apiola@aalto.fi, juha.kuortti@aalto.fi
Problems 1,2,3 use parallel toolbox, problems 4,5 don’t require it.
Dead-line for credits to be discussed on lecture 23.11.

1. Experiments with spmd-way of numerical integration in Triton.

ssh -X scip@triton.aalto.fi
passw: Given in lectures
mkdir mynamed % Where, perhaps under course dir

Slight problem with common project (?)
cd mynamed
module load matlab

cp scip2016/2016_2_syksySCI/Lectures/spmd_numint.m .
matlab&

(a) Open spmd_numint.m in Matlab, experiment with some nlabs-values and enjoy!
(b) Plot the Matlab-function humps (help humps). Run the spmd-block using humps

(c) Take a lower degree integration method: help trapzd. It integrates summing up
trapezoids defined by x and y-vectors. Write a function:

function z = trapzfun(f,a,b,n)
% z = trapzfun(f,a,b,n) returns trapez-sum defined by
% vectors x and y=f(x), x=linspace(a,b,n)
...

(d) Now run spmd using your trapzfun-function using several nlabs-values and observe
the affects to accuracy. Remember: format long

Write a script with explanations and experiences. Publish it into pdf:
>> publish 'spmdnumint.m' (Remember: Give this in command window, not in the
script-file -> infinite loop).

2. Here’s the beginning part of the “darts”-simulation-estimation for π in Matlab 1-course.

(a) Plot the unit square : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1 and the unit circle inside it.

t=linspace(0,2*pi);
x=cos(t);y=sin(t);
plot(x,y,[1 1 -1 -1 1],[-1 1 1 -1 -1]);
axis([-1.5 1.5 -1.5 1.5])
axis square

(b) Generate random points, uniformly distributed on the unit square −1 < x <, 1 <
y < 1. Find an approximation for π by counting the ratio of the number of points
inside the circle with the total number of points generated.

Hint: Generate two random vectors x and y. Find a suitable condition for logical indexing
to pick the “inside-poins”.
Note: You can use arithmetic (sum) to a logical vector. Try to avoid loops.
Matlab 2-exercise:
Do the simulation in parallel in at least one of two ways:
1. spmd
2. parfor

nlabs=2; % Begin
nlabs=16; % Triton (vary this)
% Recommendation: Try Triton also
parpool(nlabs)
spmd
N=100000; % Vary
X = something random
Y = something random
% Condition for hitting inside disk:
in = ...;
Nhits = ...;
piestimlabs= ... % Each worker's result
end

Use gplus to compute the total number of hits.
If you want to try parfor, you must break the elegant vectorization and write a “tradi-
tional” loop. But you get material for efficiency comparisons. (This is “voluntary”.)
Please observe: Don’t expect miracles in accuracy, Monte Carlo is a low-accuracy method.

3. Van der Pol equation is an equation describing self-sustaining oscillations in which energy
is fed into small oscillations and removed from large oscillations.

y′′ − µ(1− y2)y′ + y = 0

(a) Use Matlab-solver ode45 for solving the equation for some value, say µ = 1.5.
For this you have to transform the equation into a systen of first order equations:y′1 = y2

y′2 = µ(1− y2
1)y2 − y1

Let me give the Matlab code:

function dydt = vdpode(t,y,mu)
% Vanderpol equation
%
dydt = [y(2); mu*(1-y(1)^2)*y(2)-y(1)];

The trick is that in the script or function where you call the ode solver (ode45) you
can define and use a function handle like this:

mu=1.5;
odefun=@(t,y)=vdpode(t,y,mu)

(Each time you change mu you have to re-enter the function definition line to get the
updated mu in the definition. If these lines are included in a fuction or script, then
it happens automatically, of course.)
Test your function first by something like:
[T,Y]=ode45(odefun,[0 tmax],[0 1]); (see help ode45.)
Use suitable tmax. ([0 1] are initial conditions, you may vary.)

(b) Create job and tasks: Instead of a script you need to write a “coverfunction”
vdpSolver whose parameter list includes mu also. For simplicity, just fix the initial
conditions and tmax for instance as [0 1] and 25.
Then you can create a job and tasks:

job=createJob(...);

task1 = createTask(job,@vdpSolver,2,{0.5});
task2 = createTask(job,@vdpSolver,2,{1});
task3 = createTask(job,@vdpSolver,2,{1.5});
%% Submit:
submit(job)
wait(job)
results =fetchOutputs(job);

Then you can plot solutions, phase-planes, see the affect of mu.
We will give more hints and comparison to a similar problem with some more pa-
rameters on the remaining lectures.

4. A simple scrambling circuit for voice communications works as follows. Consider the
frequency band from 0 to 4 kHz. It is a known fact that the overwhelming majority
of the power spectrum of human voice is concentrated in this frequency band. One
way of scrambling this frequency band is to subdivide it into 4 equal sub-bands and
interchange the sub-bands according to some pre-determined key. For example, let sub-
band A correspond to frequencies between 0 and 1 kHz. Then, sub-band B corresponds to
frequencies between 1 and 2 kHz, sub-band C corresponds to frequencies between 2 and 3
kHz, and sub-band D corresponds to frequencies between 3 and 4 kHz. The original order
of the sub-bands is ABCD. A simple scrambling technique is to interchange this order, i.e.

reorder the sub-bands to BCDA or DCBA or CABD or any other pre-determined order.
Call the resulting signal the scrambled signal. This scrambled signal is not comprehensible
unless you know the key and can rearrange the sub-bands back into the original order.
The goal of this problem is for you to design a MATLAB program that will descramble
a given voice signal. You may obtain the scrambled signal (’scramble.wav’) from the
course web site. To transform the voice signal into frequency domain, you should use
the MATLAB command fft; to rearrange the bands you should take the first half of the
transform (beware of off-by-one), and rearrange it using the key given below; after that,
use ifft to transform the signal back to time domain. You can play any sound clip in
MATLAB using the command sound; remember to provide the sampling rate, and don’t
do it during class (sound doesn’t respect Ctrl-c).
It has been scrambled in the above-described fashion by rearranging the bands ABCD
into CBDA. Descramble this signal and transcribe the first and last 5 words. Turn in
your code as well as your transcription.
This assignment and the sound clip are adapted from materials in Stanford university
course EE261 distributed under Creative Commons BY-NC-SA 4.0 license.

5. Let c and z0 be complex numbers. We define the following recursion:

zn = z2
n−1 + c

This is a dynamical system known as a quadratic map. Given different choices for pa-
rameter c and the initial value z0 the recursion leads to a sequence of complex numbers
z1, z2, . . . known as the orbit of z0. This dynamical system is highly chaotic, meaning
that depending on the selected c and z0, a huge number of different orbit patterns are
possible.
Suppose that we fix the parameter c. In such cases, most choices of z0 tend towards
infinity (i.e. |zn| → ∞ as n → ∞). For some z0 (this depends a little on c as well),
however, the orbit is stable, meaning that it goes into periodic loop; and finally there are
some orbits, that seem to do neither, dancing around the complex space apparently at
random.
In this assignment, your task is to you write a MATLAB script that visualizes a slightly
different set, called the filled-in Julia set (or Prisoner Set), denoted Kc , which is the set
of all z0 with orbits which do not tend towards infinity. The ”normal” Julia set would be
the edges of of Kc.

a) It is known that if the modulus of zn (i.e. |zn|) becomes larger than 2 for any n, the
sequence will tend to infinity. The value of n for which this becomes true is called
the ’escape velocity’ of a particular z0. Write a function that returns the escape
velocity of given z0 and c. Note you cannot test the recursion for all n: but rather
you should select an upper bound N , so that if |zn| < 2 ∀n < N , the function should
return N . This allows you to avoid infinite loops.

b) Then write a function that takes c, zmax and N as arguments. The function will
define a square in complex plane of complex numbers with real part between −zmax

and zmax, and imaginary part between −zmax and zmax, and discretise it into a
500 × 500 grid. It will then compute the escape velocity of every element in the
grid using the function you wrote previously, and the parameters c and N . Save the
escape velocities to a matrix M ; remember to preallocate.

c) Visualize your fractal using imagesc(M). You may also want to try imagesc(atan(0.1*M)).

