
Introdu
tion to numeri
 and symboli

omputingAntti Rasila, Susanna Liesipohja, Juha KuorttiMay 16, 2011

Contents
1 Introdu
tion to MATLAB 21.1 Basi
s . 21.1.1 Output . 41.2 Ve
tors and matri
es . 61.2.1 Random numbers . 91.3 Bran
h and loop stru
tures . 91.4 De�ning fun
tions . 131.5 Polynomials . 141.6 Plotting and drawing . 151.6.1 Plotting 3D graphi
s 161.7 Useful links . 162 Linear algebra 172.1 Linear equations . 172.2 Matri
es and ve
tors in MATLAB 192.2.1 Solving linear equations in MATLAB 272.3 Gaussian elimination . 282.4 Matrix de
ompositions . 302.4.1 LU-fa
torization . 302.4.2 Cholesky-de
omposition 342.4.3 QR-de
omposition . 362.4.4 Singular value de
omposition 402.5 Linear least squares . 432.5.1 Least squares and MATLAB 482.6 Symboli
 linear algebra in MATLAB 50

1

3 Interpolation 533.1 Polynomial interpolation . 533.1.1 Lagrange interpolation 533.1.2 Determining
oe�
ients 553.2 Runge's phenomenon . 563.3 Pie
ewise linear interpolation 573.4 Splines . 593.4.1 Cubi
 spline . 603.5 Additional methods for interpolation in MATLAB 634 Numeri
al di�erential and integral
al
ulus 674.1 Numeri
al derivation . 674.1.1 Estimating derivative with polynomial 724.2 Ja
obian matrix . 734.3 Numeri
al derivation on
omplex plane 754.4 Numeri
al integration . 774.4.1 Trapezoid rule . 774.4.2 Simpson's rule . 794.4.3 Numeri
al integration in MATLAB 814.4.4 Numeri
al integration on
omplex plane 834.4.5 More advan
ed integration methods 864.5 Symboli
 di�erential and integral
al
ulus 935 Nonlinear equations 985.1 Root �nding algorithms . 995.1.1 Bra
keting . 995.1.2 Fixed point iteration 1005.1.3 Se
ant method . 1035.1.4 False position method 1055.1.5 Newton's method . 1065.1.6 Brent's method . 1105.1.7 Roots of polynomials 1145.1.8 Root �nding in MATLAB 1175.2 Minimization algorithms . 1185.2.1 Golden se
tion sear
h 1195.2.2 Brent's method . 1215.2.3 Sear
h methods for multivariable fun
tions 1245.2.4 Sear
hing minimum in MATLAB 1282

6 Di�erential equations 1306.1 Numeri
al solutions to ODE's 1326.1.1 Euler's method . 1336.1.2 Runge-Kutta methods 1366.2 Solving ODE's in MATLAB 1396.3 Boundary value problems . 1416.4 Partial di�erential equations 1426.4.1 Wave equation . 1436.4.2 Heat equation . 146

3

Chapter 1Introdu
tion to MATLABMATLAB is an intera
tive
omputing environment for doing numeri
al
om-putations with ve
tors and matri
es. It is suitable for a variety of di�erenttasks involving s
ienti�
 and te
hni
al
omputations. MATLAB was
re-ated by Cleve Moler in the 1970's as a small program for tea
hing matrix
al
ulations. It was
reated by using Fortran. LINPACK and EISPACKlibrary routines were used internally for
omputations. MATLAB was ini-tially a shareware program, and it qui
kly spread to other universities. In1984, Cleve Moler, Ja
k Little and Steve Bangert founded MathWorks and
ommersialized MATLAB. The
urrent versions are
ommer
ial produ
ts,written in C. Several extensions have been added to the original MATLAB.1.1 Basi
sAs mentioned above, MATLAB
an be used intera
tively as a sort of
al
u-lator. In this
ase, the
ommands will be written dire
tly into the MATLABprompt >>. One
an exit the prompt by writing quit or exit.The program
an also be written into a �le ending with .m, for examplemyfile.m, and run from the prompt by typing the �lename, in this
asemyfile.The MATLAB
ommands are organized into di�erent topi
s. Typing helpwill give a list of all the topi
s and typing help [topi
℄ will give a list of allthe
ommands grouped under that topi
. Typing help [
ommand℄ will givea short des
ription of the spe
i�

ommand.The MATLAB
ommands issued and the results obtained
an be saved using4

the diary-
ommand. For example,>> diary test.dry>> a=1; b=0;>> a+bans =1>> diary off>> type test.drya=1; b=0;a+bans =1diary offCal
ulations are done in �oating-point pre
ision (approximately 16 digits inthe de
imal system). The output
an be
hanged using the format
ommand,but it will not
hange the pre
ision of the
al
ulations. The default outputpre
ision is short, whi
h is of 5-digit pre
ision. For example>> pians =3.1416>> format long>> pians =3.141592653589793A variable is given a value with the = operator. The most
ommonly usedvariable is ans, it always
ontains the result of the previous
ommand. Morepre
isely, if a
ommand does not assign a value to a named variable then itis stored to the variable ans.Some names are reserved for
ertain
onstants, su
h as pi (for π), and bothi and j represent the imaginary unit. Other reserved names are, amongothers, realmax, realmin, eps, Inf and NaN. Di�erent values
an be assignedto these
onstants, but they will revert ba
k to the default values after re-starting the program or using the
ommand
lear.A short example:>> 1/0ans =Inf 5

>> 0/0ans =NaN>> NaN=5NaN =5>>
lear>> NaNans =NaN1.1.1 OutputA simple way to output data is to display a variable. This
an be a

om-plished by giving its name (without a semi
olon) in intera
tive mode. Al-ternatively you
an use the disp fun
tion, whi
h shows values without thevariable name, as in:x=42;>> disp(x)42For a fan
ier output, MATLAB has various fun
tions for
reating stringsfrom numbers, formatting data, et
... One su
h is fprintf, whi
h
an alsobe used for printing into a �le. The syntax for this is:fprintf([fileId℄,[format℄,[input values℄)If [fileId℄ is omitted, the fun
tion will print dire
tly onto the s
reen.[fileId℄ refers to the �le identi�er returned when opening the �le for writingwith fopen. For example, fileId=fopen('myfile.txt','w') would openmyfile.txt for writing. The
ommand f
lose(fileId) would
lose the �le.[format℄ is a string in single quotation marks that des
ribes the format ofthe output �elds. It
an in
lude
ombinations of the following:
• A per
ent sign followed by a
onversion
hara
ter, su
h as %s for stringsand %d for an integer. Floating-point numbers
an be printed with %ffor �xed notation and %e for exponential notation.6

• Field width and pre
ision. For example, %6.2f would refer to a �oating-point number of �eld width 6 and pre
ision 2.
• Flags, su
h as - for left-justi�ed and + for printing a sign
hara
ter (+or −). For example, %+-d would print a signed integer justi�ed to theleft.
• Literal text to print.
• Es
ape
hara
ters, su
h as \n for a new line \t for tab and %% for theper
ent sign.Below are some examples on the use of fprintf.a=5; s='Hello world ';>> fprintf ('%d is an integer and %s is a string\n',a,s)';5 is an integer and Hello world is a string>> fprintf('Now %+d is a signed integer\n',a)Now +5 is a signed integerb=1.23456789;
=0.0015;>> fprintf('Printing with pre
ision 2: %.2f\n',b)Printing with pre
ision 2: 1.23>> fprintf ('\t or with width 20: %20f\n',b)or with width 20: 1.234568>> fprintf('Printing as %f and as %e\n',
,
)Printing as 0.001500 and as 1.500000e-03For printing into a �le, one
an do the following:>> fid=fopen('output.txt ','w');>> fprintf(fid , '%s\n',s);>> f
lose(fid);Now the senten
e Hello world (and a row-
hange)
an be found in the �leoutput.txt. 7

1.2 Ve
tors and matri
esIn MATLAB, the basi
 data stru
ture is matrix. The most e�
ient way ofprogramming MATLAB is to treat every variable as a ve
tor or a matrix.Assigning ve
tor values
an be done in the followong ways:>>x = 1:1:4; % expression a:h:b produ
es a ve
tor with% numbers from a to b with interval h. If% no h is provided , 1 is assumed , eg. 1:10>>y = [0 1 0 1℄; % Ve
tor values
an be% given individually also.Ve
tor dimensions have to be taken into a

ount when performing arith-meti
s. The produ
t x*y is not de�ned for two n-ve
tors, but the pairwiseoperations x.*y and x+y are:>>x.*yans =0 2 0 4>>x.+yans =1 3 3 5In the
ase of ve
tors, the produ
t is de�ned as if they are n × 1-matri
es:hen
e we need to transform one ve
tor from a row ve
tor to a
olumn ve
tor.We do this with the transpose operator '.>>xx = 1 2 3 4>>x'x = 1234>>x'*yans =0 1 0 10 2 0 20 3 0 30 4 0 4 8

>>x*y'ans =6If your ve
tor (or matrix)
ontains
omplex numbers, you need to take intoa

ount that the transpose operator will also
hange a
omplex number toits
omplement, i.e., if z = a + bi then z̄ = a − bi.>> xi=[2+i 2 -i 4℄;>> xi'ans =2.0000 - 1.0000i2.00000 + 1.0000i4.0000The power operator is ^, and again, it only works elementwise:>>x.^yans =1 2 1 4Elementary fun
tions are also available for ve
tors:>> sin(x)ans =0.8415 0.9093 0.1411 -0.7568>>exp(y)ans =1.0000 2.7183 1.0000 2.7183You
an de�ne a matrix just as you de�ned a ve
tor: to indi
ate a row
hange, use ;>>A = [1 2 ; 3 4℄A = 1 23 4>>b= [5; 6℄; % b must be a row ve
tor% You
an now obtain inverse of A and multiply% b with it>>iA = inv(A) 9

iA =-2.0000 1.00001.5000 -0.5000>>x = iA*bx = -4.00004.5000% It is generally faster and easier to use MATLABs% built -in linear solver operator \>> x = A\bx = -4.00004.5000Some useful matrix
ommands are also: eye (produ
es an identity matrix),zeros (produ
es a matrix of all zeros) and ones (produ
es a matrix of allones). It is also possible to sele
t spe
i�
 elements, rows o
h
olumns froma matrix. The
ommand for this is A[i,j℄, where A represents a matrix, ithe row of that matrix and j the
olumn. Here, i and j
an be s
alars orve
tors.% We
reate a 3x3-matrix of all ones>> A=ones(3)A = 1 1 11 1 11 1 1% To pi
k a spe
ifi
 element from matrix A, use A(i,j).% To pi
k a whole row (or
olumn), repla
e j (or i)% with :>> A(1,:)ans =1 1 1>> A(2,:)=[2, 3, 4℄A = 1 1 12 3 41 1 1 10

>> A(3 ,2)=42A = 1 1 12 3 41 42 11.2.1 Random numbersRandom numbers
an be generated by using the
ommands rand and randn.The
ommand rand(m,n) will produ
e an m × n-matrix of uniformly dis-tributed random numbers on (0, 1) and randn(m,n) will produ
e a matrix ofnormally distributed random numbers with mean 0 and standard deviation
1.dist = zeros(6,1);for j=0:99k = round(5*rand(1)+1);dist(k) = dist(k)+1;enddisp(dist)Output:1: 142: 153: 134: 185: 186: 221.3 Bran
h and loop stru
turesThe bran
h and loop stru
tures available in matlab are: for, while, if andswit
h. The main prin
iple is that you should only use these as a last resort.If possible, you should use e�
ient ve
tor operations instead.The syntax of the for statement is:for [variable ℄=[ve
tor℄...end 11

If one wants to repeat the loop k times, it is handy to use the ve
tor statement1:k, whi
h produ
es a list of numbers 1, 2, . . . , k.# Example: 2nd powers of positive integersfor x = 1:4xx = x*xfprintf ('%d * %d = %d',x,xx)endOutput:1*1 = 12*2 = 43*3 = 94*4 = 16The syntax of the if statement in MATLAB is:if [
ondition ℄...elseif [
ondition ℄...else...endThe elseif and else bran
hes may be omitted. The
ommands in the ifbran
h are exe
uted if the
ondition is satis�ed, if not then the
onditionsin the elseif bran
hes are evaluated. If none of the
onditions given issatis�ed, the
ommands in the else bran
h are exe
uted.The most
ommon
onditions used are the
omparison operations <, <=, ==,�=, >= and >. Note that for equality, the expression == is used in order toavoid
onfusion with the value assignment operator =1. The expression �= isused for inequality.A while statement is used when one wishes to repeat the loop until some
ondition is no longer satis�ed. This stru
ture is very useful when readinginput from a �le or from the user.The syntax of the while statement is:while [
ondition ℄...end1This is signi�
ant, as in e.g. the C language, the
ondition if(x=1)... is always true.12

To avoid an in�nite loop, inside the loop there must naturally be somethingto invalidate the
ondition when the desired number of loops is rea
hed.x = 5;guess = 0;while guess ~= xguess = input('Guess a number:');if (abs(guess - x)>10)disp('Your guess is very wrong')endendOutput:Guess a number:6Guess a number :100Your guess is very wrongGuess a number:5The syntax of the swit
h statement is:swit
h [swit
h expression℄
ase [
ase expression 1℄...
ase [
ase expression 2℄......otherwise...endThe statements asso
iated with a
ertain
ase will be exe
uted when theswit
h expression equals the
ase expression in question.% Color evaluation
olor='aqua';swit
h
olor
ase {'red','pink','rose'} % multiple
ase expressionsdisp('The
olor is red.')
ase {'blue','turquoise ','aqua'}disp('The
olor is blue.')
ase 'yellow'disp('The
olor is yellow.')otherwise 13

disp('Unknown
olor.')endRemark. One should avoid
omparing non-integers with the == operator.For example, pi==3.14159265... is a
tually false. The MATLAB pi isonly
al
ulated to a spe
i�
 length, and thus, does not a
tually equal π. Thefollowing program will demonstrate this fa
t:% Desired a

ura
y of approximationtol=10^ -4;mypi=1;while mypi~=0mypi=input('Guess the value of pi (0 exits):');if mypi==pidisp('Comparison to MATLAB pi is true')elsedisp('Comparison to MATLAB pi is false')endif (abs(pi-mypi)<tol)disp('Close to pi!')elseif (abs(pi-mypi)>1)disp('Far from pi!')elsedisp('Not
lose enough to pi!')endend
d Output:Guess the value of pi (0 exits):3.141592653589793238Comparison to MATLAB pi is trueClose to pi!Guess the value of pi (0 exits):3.141592653589793258Comparison to MATLAB pi is trueClose to pi!Guess the value of pi (0 exits):3.14Comparison to MATLAB pi is falseNot
lose enough to pi!The �rst guess is an a

urate approximation of π, but the se
ond one is not(the se
ond-to-last digit is wrong). However, the
omparison to MATLABpi is
orre
t in both
ases. 14

1.4 De�ning fun
tionsA fun
tion
an be de�ned with the fun
tion statement. The syntax of thisstatement is:fun
tion [output ℄=[fun
tion name℄([input℄)...This fun
tion should be saved in an m-�le and the name of the �le must bethe same as the fun
tion name. For example, the fun
tion below should besaved as solve2.m.fun
tion x = solve2(a,b,
)D= b^2 - 4*a*
;% Floating point number should not be dire
tly%
ompared to zeroif(abs(a)<1e-6)disp('Error')returnelse if(abs(D)<1e-6)x = -b/2*a;returnelsex(1) = -b + sqrt(D)/2*a;x(2) = -b - sqrt(D)/2*a;endendOutput:>> solve2 (1,0,0)ans =0>> solve2 (1,0,1)ans = 0 + 1.0000i 0 - 1.0000i>> solve2(1,0,-1)ans =1 -1The above fun
tion solve2 solves the roots of a given se
ond order equation.The input parameters given for the fun
tion are three numbers a, b and c,
orresponding to the
oe�
ients of the equation to be solved. In the �rst15

example, the equation x2 = 0 is solved (one root at 0); in the se
ond
ase, theequation is x2 +1 = 0 (only imaginary roots) and in the third
ase x2−1 = 0(two roots ±1).For simpler fun
tions, it may be easier to de�ne the fun
tions �dire
tly� intothe program. This
an be done with the inline
ommand or, more re
ently,the fun
tion handle �.>> f=inline('exp(x.^2)','x')f = Inline fun
tion :f(x) = exp(x.^2)>> g=�(x) x.^2g = �(x)x.^21.5 PolynomialsIn MATLAB, a polynomial is represented by a ve
tor whi
h
onsists of its
oe�
ients. To
reate a polynomial one
an simply enter ea
h
oe�
ient ofthe polynomial into the ve
tor in des
ending order. For instan
e,
onsiderthe following polynomial:
p(x) = 2x4 − x2 + 5x + 17To give this in MATLAB, just write the ve
tor>> p=[2 0 -1 5 17℄;One may �nd the value of a polynomial using the polyval fun
tion. Forexample, to �nd the value of the above polynomial at x = 2,>> polyval(p,2)ans =55The roots of a polynomial
an be obtained with roots([your polynomial℄).For example, the roots of the polynomial above are>> r=roots(p)r =1.2663 + 1.3591i1.2663 - 1.3591i 16

-1.2663 + 0.9273i-1.2663 - 0.9273iIf one knows the roots already, the
oe�
ients
an be found using the inversefun
tion poly. Two polynomials
an be multiplied by using
onv([poly1℄,[poly2℄)and dividing
an be done in a similar way with the de
onv fun
tion.1.6 Plotting and drawingCurves
an be drawn with the
ommand plot. For example, to plot a sine
urve, one
an do the following:>> x=0:.1:2* pi;>> plot(x,sin(x))It is possible to plot several
urves at on
e. The appearan
e of the
urves
an be
hanged. For example, the
ommand>> plot(x,sin(x),'r',x,
os(x),'.b')plots the sine
urve in red and the
osine
urve as blue dots.

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

One may label the axes with the
ommands xlabel('[labelname℄'), for thex-axis, and ylabel('[labelname℄'), for the y-axis. A title
an be added to17

the graph with title('[title℄'). Curves
an be labeled with the
ommandlegend([
urve1℄,[
urve2℄,[
urve3℄,[... et
.℄).1.6.1 Plotting 3D graphi
sSpatial
urves given in parameters
an easily be plotted with the fun
tionplot3 simply by adding z-
oordinates.Surfa
e plotting
an be done with the fun
tion surf. But �rst, one shouldgenerate the appropriate X and Y arrays using the fun
tion meshgrid.In the example below, where we are plotting the fun
tion f(x, y) = xe−x2−y2 ,X and Y represent the �plane� and Z represents the �height�.>> x= -2:.1:2; y=x;>> [X,Y℄=meshgrid (x,y);>> Z=X.*exp(-X.^2-Y.^2);>> surf(X,Y,Z)Output:

−2
−1

0
1

2

−2

−1

0

1

2
−0.5

0

0.5

1.7 Useful links 18

Chapter 2Linear algebra
2.1 Linear equationsAn equation with variables x1 . . . xn that
an be written in the form

a1x1 + a2x2 + · · · + anxn = b, n ≥ 1is
alled linear equation. The
oe�
ients a1 . . . an and b
an be real or
omplexnumbers.A system of linear equations is a
olle
tion of one or more linear equationsinvolving the same variables. Using matrix algebra, the linear system






















a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,...
am1x1 + am2x2 + . . . + amnxn = bm,
an be written in the form

Ax = b;A =











a11 . . . a1n

a21 . . . a2n... ...
am1 . . . amn











,x =











x1

x2...
vn











,b =











b1

b2...
bm











.The matrix A is a m × n matrix, the ve
tor x a ve
tor with n
omponentsLet A ∈ Cn×n. A is said to be invertible, if there exists su
h B ∈ Cn×n,that AB = I, where I ∈ Cn×n is the identity matrix. Then the matrix B is19

alled the inverse of matrix A, and is denoted A−1. If A−1 exists, A is
alledinvertible. Using this de�nition, we get following theorem.Theorem 2.1. The linear system of equation Ax = b,A ∈ Cn×n,x ∈
Cn,b ∈ Cn has a single solution only if A is invertible. The solution is
x = A−1b.Generally, system of linear equations
an have an exa
t solution only if ithas exa
tly as many linearily independent equations as it has unknowns. Inthis situation the system of linear equations























a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,...
an1x1 + an2x2 + . . . + annxn = bn,translates into a n × n matrix and n ve
tors. However, number of equationsand unknowns do not always
oin
ide. In this
ase we get a system























a11x1 + a12x2 + . . . + a1nxn = b1,

a21x1 + a22x2 + . . . + a2nxn = b2,...
am1x1 + am2x2 + . . . + amnxn = bm,

.This system
an be written as a matrix equation
Ax = b,where A is a m × n matrix, x an n-ve
tor, and b a m-ve
tor.If m < n, that is, if there are fewer equations than there are unknowns,system is
alled underdetermined. Solving an underdetermined system ofequations will not usually produ
e an exa
t solution, but the solution willhave degrees of freedom depending on the
oe�
ient matrix: the number ofwhi
h is determined by how many unknowns remain in the solution ve
tor

x. The solution
an be interpreted as a spa
e where the obje
ts de�ned bythe equations interse
t. 20

Example 2.2. Solve an underdetermined system of equations
Ax = b =





1 3 3 2
2 6 9 5
−1 −3 3 0













x1

x2

x3

x4









=





1
5
5



 .Using elementary row operations we get the solution:
x =









−2 − 3x2 − x4

x2

1 − x4

3

x4









.The ve
tor x is a solution for the equation Ax = b with arbitrary values of
x1 and x4, thus giving an in�nitely many solutions.If in system ?? m > n, the system is
alled overdetermined; that is, thereare more equations in the system than there are unknowns. Computing anexa
t solution to a overdetermined system may be possible. However, themore there are
onstraints (equations), the less likely it is that they all holdfor a spe
i�
 point. Thus solving overdetermined systems usually in
ludessear
hing a best possible solution: a solution that does not ne
essarily holdfor all the equations in the system, or any of them, but it almost holds forall of them. This is usually a
hieved by linear least squares, whi
h will bedis
ussed in depth in later
hapters.Later we will introdu
e some methods for �nding the inverse of a matrix inMATLAB.2.2 Matri
es and ve
tors in MATLABThe basi
 data type in MATLAB is a real valued matrix, and default assump-tion for every operation is that the operands are matri
es. Some operationsare, however de�ned also elementwise, so as to make
ertain operations easyand e�
ient, and it requires a
ertain amount of alertness to avoid any ob-vious pitfalls.The basi
 multipli
ation, denoted by *, is matrix multipli
ation. It is de�nedfor matri
es A and B, where A ∈ Cm×n and B ∈ Cn×k. It also works on as
alar multipli
ation, that is cA is a legitimate operation, for c ∈ C. If the21

matrix dimensions do not mat
h, MATLAB will produ
e an error. One
anobtain an elementwise produ
t with operator .*. The elementwise operatorwill produ
e the Hadamard produ
t of two matri
es of same dimensions.% Define two square matri
es and two% non square matri
es>> A = [3 2 3; 3 4 3; 4 5 1℄A = 3 2 33 4 34 5 1>> B = [1 2 4; 1 4 6; 1 7 7℄;>> D = [1 2; 4 3 ; 7 6℄D = 1 24 37 6>> K=[3 4 5; 5 6 7℄K = 3 4 55 6 7% Multipli
ation of two square% matri
es works>> A*Bans =8 35 4510 43 5710 35 53% Hadamard produ
t of two square% matri
es>> A.*Bans =3 4 123 16 184 35 7% Produ
t of 3x2 and 2x3 matri
es>> D*Kans =13 16 1927 34 41 22

51 64 77% Elementwise produ
t doesn 't work>> D.*K??? Error using ==> timesMatrix dimensions must agree.% Multiply B by four>> 4*Bans =4 8 164 16 244 28 28Same applies to the power operator: the operator � literally means that the�rst operand is multiplied by itself as many times as the se
ond operandorders. If the �rst operand not a square matrix, the operation is not de�ned.Thus the the power operator should be used only as an elementwise operation:. �% Examples of the power operator :% First on real number>> 3^5ans =243% then on a square matrix% Note that this is a defined% operation be
ause A*A is a% defined operation .>> A^2ans =27 29 1833 37 2431 33 28% We try then the elementwise% power operator . Noti
e the% differen
e with the regular% power operator .>> A.^2ans =9 4 99 16 9 23

16 25 1% Power operator doesn 't work on a non% square matrix be
ause D*D is not defined>> D^4??? Error using ==> mpowerMatrix must be square.% However , an elementwise operator is defined:>> D.^4ans = 1 16256 812401 1296The usual division sign - /, should be used only on matri
es with a singlevalue. In
ase of single value, it works as one would expe
t: it performsa division. However, if given matrix values, the values it produ
es are notwhat one would expe
t, and obtainable in mu
h more intuitive way throughthe ba
kslash-operator, whi
h we will dis
uss later. Those interested in us-ing it should familiarize themselves with the mldivide manual page. Theelementwise version of division-operator is ./, whi
h is useful on a numberof o

asions. Be
ause sometimes both elementwise operation, and matrixoperation
an be invoked,
aution is required.Addition and subtra
tion are elementwise operations: A+B is the standardmatrix addition, whi
h requires that both A and B have the same dimen-sions. The addition and subtra
tion operators have also been overloaded toin
lude operations like 2 + A. This operation is de�ned as �add 2 to everyelement of A.� There, however, is not an elementwise operation, that wouldallow one to add two matri
es having the same number of elements, but dif-ferent dimensions, together. All of the above holds for the subtra
tion aswell.% Examples of addition% Sum of two matri
es of equal sizes is ok>> A+Bans =4 4 74 8 95 12 8% So is adding 2 to every element of A24

>> 2+Aans =5 4 55 6 56 7 3% This doesn 't work be
ause K and L have% different dimensions>> K = [1 2 3℄K = 1 2 3>> L = [1;2;3℄L = 123>> K+L??? Error using ==> plusMatrix dimensions must agree.Most of MATLAB's built-in fun
tions, like exp, sin and
os are de�nedelementwise.% Define an even spa
ed real valued ve
tor H>> H = 1:0.5:3H = 1.0000 1.5000 2.0000 2.5000 3.0000% Take an sin of ea
h element of the ve
tor>> sin(H)ans =0.8415 0.9975 0.9093 0.5985 0.1411Another topi
 that will require some attention is the matrix and ve
tor di-mensions. As mentioned, almost all the operations are dependent on thedimensions of the operands. Oftentimes, like when
rafting a fun
tion, onedoes not wish to �x the matrix dimension, but dynami
ally adapt to the di-mensions. The way to do this is to use fun
tions length and size. Fun
tionlength is primarily meant for work with ve
tors, and it returns the largestdimension of argument. For example length(ones(4,2)) would return 4.The fun
tion size returns a ve
tor
ontaining all dimensions. It is moreversatile than length, but to work, it requires an assignment. For example,if one wishes to know the number of rows in a ve
tor a, this works:25

>> dims = size(a);>> rows = dims(1);Another operation that is frequently needed in order to handle the dimen-sions is the transpose. MATLAB defaults the transpose to
onjugate version,working as transpose on real matri
es, but returning the
onjugate transposeon
omplex matri
es. The
onjugate transpose operator is the '. If onewishes to obtain a non-
onjugate transpose, a fun
tion transpose is avail-able. For work on more
omplex stru
tures than two-dimensional arrays,MATLAB provides the fun
tion permute.% Create a
omplex matrix C% Re
all that i is overloaded% to a
t as a
omplex
oeffi
ient>> C = A+B*iC =3.0000 + 1.0000i 2.0000 + 2.0000i 3.0000 + 4.0000i3.0000 + 1.0000i 4.0000 + 4.0000i 3.0000 + 6.0000i4.0000 + 1.0000i 5.0000 + 7.0000i 1.0000 + 7.0000i% Noti
e the
onjugate or hermitian transpose ,>> C'ans =3.0000 - 1.0000i 3.0000 - 1.0000i 4.0000 - 1.0000i2.0000 - 2.0000i 4.0000 - 4.0000i 5.0000 - 7.0000i3.0000 - 4.0000i 3.0000 - 6.0000i 1.0000 - 7.0000i% Should you ever need it, a non hermitian transpose% is also available .>> transpose (C)ans =3.0000 + 1.0000i 3.0000 + 1.0000i 4.0000 + 1.0000i2.0000 + 2.0000i 4.0000 + 4.0000i 5.0000 + 7.0000i3.0000 + 4.0000i 3.0000 + 6.0000i 1.0000 + 7.0000i% Transpose of a real valued ve
tor>> K'ans =123The matri
es
an be indexed with two numbers, as usual, the �rst being therow-index, the se
ond being the
olumn index, and indexes starting from 1.26

This is the way matri
es should be indexed. There is, however, an alternateway to index matri
es. Matri
es
an be indexed with a single number, theindex running down
olumn wise. That is, A(3) = A(3,1). While one maydo this, for the sake of
larity, it is highly dis
ouraged. The reason thisoption is available is due to the properties of
omputer ar
hite
ture and C,the language that MATLAB is written with.MATLAB allows a

essing entire rows,
olumns, and submatri
es of anymatrix. This is a
hieved with the range operator :. If not given any range, itdefaults to whole row or
olumn, for example: the
ommand A(:,1) returnsthe �rst
olumn of A, while A(2,:) would return the entire se
ond row of A.Instead of sele
ting the entire row or
olumn, one
an sele
t only a part ofit by giving the range operator parameters: A(1:5,1) would return the �rst�ve elements the �rst
olumn of A. Sele
tion of submatri
es follows suit:instead of giving one range, we give two: A(2:3,3:4) would return a matrixthat would
ontain A's elements a2,3, a2,4, a3,3 and a3,4. This sele
tion
an beextended further: sele
tion index
an be any
olle
tion of positive integers,and the sele
tion still works, as long as they are within index bounds of A,for example sele
tion A([1 3 5℄,2) returns elements a12, a32 and a52.Sele
tion methods are not limited to numeri
al indexing; it is also possibleto invoke so
alled logi
al indexing. Logi
al indexing is a
hieved through
reating a logi
al array, and giving it as a index. Logi
al arrays are returnedby logi
al operators, & ,| and � , relational operators, su
h as ==, �=,>and <, as well as any logi
al fun
tions, su
h as any, isinf and isequal.Using these operators and logi
al indexing, we
an, for example, sele
t allthe positive elements of a matrix.% Define a large enoug a matrix>> A = [-2 3 2 4 -4 0; -3 -4 -5 -11 2 43 -5 3 2 3 4; 1 -3 2 -4 5 -6; 1 2 3 -4 6 5℄A = -2 3 2 4 -4 0-3 -4 -5 -11 2 43 -5 3 2 3 41 -3 2 -4 5 -61 2 3 -4 6 5% Sele
t the third row of the matrix>> A(3,:) 27

ans =3 -5 3 2 3 4% The alternate indexin way: A(12) is the% the same as A(rem(12,5),mod(12 ,5)+1).% While there are situations it
an be% more effi
ient than the usual way , readability% suffers.>> A(12)ans =-5% Sele
ting submatri
es is quite similar to% single elements or rows and
olumns: just% give to ranges% Here we have sele
ted rows 2 3 4 and 5, and%
olumns 3 4 5 and 6.>> A(2:5,3:6)ans =-5 -11 2 43 2 3 42 -4 5 -63 -4 6 5% Finally a look into the logi
al sele
tion routines :% sele
t all the elemnts of A less than -4>> A(A<-4)ans =-5-5-11-6% A more
ompli
ated logi
al
ondition : sele
t% elements of A smaller than 0 but greater than% -5.% Note that this requires the use of a elementwise% logi
al operator &, whi
h is defined for the use% with logi
al matri
es and ve
tors .>> A((A<0)&(A>-5))ans =-2-3-4 28

-3-4-4-4There are several matri
es, that
ome up often in linear algebra, most no-table being the unit matrix. Most of these are provided in MATLAB's matrixlibrary, whi
h generates them a

ording to given parameters. The
ommandeye produ
es the unit matrix of given dimensions. The
ommand ones pro-du
es a matrix
omposed entirely of ones, and the
ommand zeros, a

ord-ingly, produ
es a matrix made up of zeros. Some of the more exoti
 built-inmatri
es are, for example, the Hilbert matrix and the magi
 square. TheHilbert matrix is produ
ed by
ommand hilb. The Hilbert matrix is de-signed to have
ertain very poor numeri
al properties. The magi
 square is asquare matrix with equal
olumn, row and diagonal sums, and it is produ
edby the
ommand magi
.2.2.1 Solving linear equations in MATLABThe primary tool for solving linear equations in MATLAB is the \-operator.To solve a linear equation of the formAx = b we use the
ommand x = A \b.The ba
kslash operator is very versatile: if the matrix A is overdetermined,i.e, there are more rows than there are
olumns, a solution in least-squaresense is provided. If the system is underdetermined, it �nds the basi
 solutionwith at most m nonzeros. Here are a few examples:% Example
on
erning the Hilbert matrix>> A= hilb(10);>> x = ones(10 ,1);>> b = A*x;>> sol = A\b;>> norm(x-sol)ans =8.7188e-04% The previous lsq -example with the ba
kslash -operator>> A = [1 1; 2 1; 3 1 ; 5 1; 7 1; 9 1 ; 10 1℄;>> b = [444 458 478 506 523 543 571℄;>> b = b'; 29

>> x = A\bx =13.0798434.14982.3 Gaussian eliminationProbably the most famous method for solving an n × n system of linearequations is the Gaussian elimination algorithm, named after Carl Friedri
hGauss. The idea of the algorithm is to, for ea
h
olumn of the
oe�
ientmatrix, eliminate the elements below the diagonal using row operations, andwhen an upper triangular matrix is a
hieved, we do a ba
kward substitution,solving xn from the last equation, and substituting the solution to the se
ondlast equation, and thus gaining solution to xn−1, and so forth.Example 2.3. Solve a system of linear equations using Gaussian elimination,when the system is:










3x1 − x2 + x3 = 2,

−x1 + 3x2 − 2x3 = 1,

2x1 + 2x2 − x3 = −3,

.Eliminate all the elements below the �rst element on the �rst
olumn: weadd the �rst row multiplied by 1
3
to the se
ond. Then add the �rst multipliedby −2

3
to the third row, and we get:











3x1 − x2 + x3 = 2,

0x1 + 8x2 − 5x3 = 5,

0x1 + 8x2 + x3 = −13,

.Then eliminate the se
ond element of the third row by adding the se
ondrow multiplied by −1 to it, and you get:










3x1 − x2 + x3 = 2,

0x1 + 8x2 − 5x3 = 5,

0x1 + 0x2 + 6x3 = −18,

.30

We then obtain x3 = −18
6

= −3, and pla
e it in the equation on the se
ondrow, and get x2 = −5
4
, and �nally we get x1 = 5

4
.The algorithm for Gaussian elimination in MATLAB
ode is:Listing 2.1: Algorithm for Gaussian eliminationfun
tion x = gauss_el (A,b)n = length(A);% part a - eliminationfor i = 1:n-1for j = i+1:n%
al
ulate s
ale fa
torm = A(j,i)/A(i,i);% perform row operation :% eliminate the elements below diagonal% on
olumn iA(j,:) = A(j,:) - m*A(i,:);b(j) = b(j) - m*b(i);endend% part b - ba
kward substitutionx = zeros(n,1);x(n) = b(n)/A(n,n);for i = n-1: -1:1x(i) = (b(i) - A(i,i+1:n)*x(i+1:n))/A(i,i);endGaussian elimination is prone to numeri
 instability when working on nearlysingular matri
es. The Hilbert matrix is one example of a nearly singularmatrix. Problems rise if at some part of the algorithm the absolute valueof the divisor âkk (i.e. a diagonal element after k-steps of elimination) isvery small. This easily leads to loss of pre
ision due to the nature of �oatingpoint arithmeti
, and
auses the error to a

umulate. These situations
angenerally be avoided through pivoting the matrix, that is,
hanging the orderof rows and/or
olumns, and applying the same permutations both to thesolution ve
tor and the right-hand side of the equation.Example 2.4. We now establish why Gaussian elimination without pivotingis not a stable algorithm. The fun
tion gauss_elim is the same as theprevious one. We try to numeri
ally solve a system of linear equations Ax =31

b where A is a Hilbert matrix (the Hilbert matrix is
omposed as follows:
Hij = 1/(i + j − 1)) using Gaussian elimination.>>X = ones(13 ,1);% We set up a syntheti
 solution to be a% ve
tor
omposed of ones>>A = hilb(13);% MATLAB provides some spe
ial matri
es ready ,% Hilbert 's is one of them>>b = A*X>>sol = gauss_elim(A,b);% sol now holds the solution yielded by gauss_el>> norm(sol -x)ans =11.0527As is obvious, the Gaussian elimination does not provide a

urate resultswhen dealing with matri
es that are badly
onditioned. In numeri

ases,it is re
ommended to use the matrix de
ompositions, whi
h we will dis
ussnext.2.4 Matrix de
ompositionsIt is often di�
ult to solve the equation Ax = b. Therefore in numeri
matrix
omputation we usually try to present A as a produ
t of two or morematri
es of some simpler form. This kind of representation is
alled matrixde
omposition. As we will see, matrix de
ompositions will often give us notonly an easier way to solve the linear system, but give us information aboutthe de
omposed matrix as well.2.4.1 LU-fa
torizationIn the Gaussian elimination the matrix A is �rst redu
ed into an uppertriangular form, from whi
h it is easy to obtain solutions through ba
k sub-stitution. The idea behind the LU-fa
torization is to present A as a produ
tof two matri
es, L and U, of whi
h U is upper triangular, and L is lowertriangular. We then
an solve the equation Ax = b by solving two triangular32

matrix equations:
{

Ux = z

Lz = b
, that is, Ax = LUx = Lz = bThe working idea of the LU-algorithm is to perform the Gaussian eliminationalgorithm on matrixA, and take re
ord of the multiplier that was used to zerothe elements below the diagonal on ea
h
olumn. Here is a qui
k example:Example 2.5.

A =





1 −1 3
3 −5 12
0 2 −10



 .We see that in order to eliminate the elements a21 and a31 the �rst row mustbe multiplied by 3 and 0 respe
tively before subtra
ting from the se
ond andthird rows. Thus we get




1 −1 3
(3) 8 3
(0) 2 −10



where numbers in parenthesis represent the re
orded multipliers. These willform the lower triangular matrix L. On the se
ond step we get




1 −1 3
(3) 8 3
(0) (1

4
) −43

4



 .The diagonal elements
an be in
luded either in L or U. The other matrixwill have ones on the diagonal. Now we have the L and U,
L =





1 0 0
3 1 0
0 1

4
1



 ,U =





1 −1 3
0 8 3
0 0 −43

4



that satisfy
LU = A.When doing
al
ulations with paper and pen, it is generally easier to use theso
alled Doolittle algorithm. In this algorithm, the diagonal elements of L33

are �xed to ones.










a11 a12 . . . a1n

a21 . . . a2n...
an1 . . . ann











=











1 0 . . . 0
l21 1... 1
ln1 . . . ln(n−1) 1





















u11 u12 . . . u1n

0 u22 u23
...

0 . . . u(n−1)n

0 0 unn











.Here is an example.Example 2.6. Let's form the LU de
omposition for the matrix A, when
A =





6 5 12
30 18 51
−24 −76 −98



 =





1 0 0
l21 1 0
l31 l32 1









u11 u12 u13

0 u22 u23

0 0 u33



 .The 3 × 3 matrix gives us 9 equations, ea
h with only one unknown. Fromthe �rst row we get
u11 = 6, u12 = 5, u = 13 = 12.On the se
ond row, we get











l21u11 = 30 ⇔ l21 = 5,

l21u12 + 1 · u22 = 18 ⇔ u22 = 18 − l21u12 = −7,

l21u13 + 1 · u23 = 51 ⇔ u23 = 51 − l21u13 = −9,and on the third










l31u11 = −24 ⇔ l31 = −4

l31u12 + l32u22 + u23 = −76 ⇔ l32 = (1
u22

) − (76 − l31u12) = (1
−7

)(−76 − (−4 · 5)) = 8

l31u13 + l32u23 + u33 = −98 ⇔ u33 = −98 − (l31u13) − (l32u23) = 22and thus:
A = LU =





6 5 12
30 18 51
−24 −76 −98



 =





1 0 0
5 1 0
−4 8 1









6 5 12
0 −7 −9
0 0 22



 .The Doolittle algorithm stops, if there appears a zero element on the diagonalof U, but it is not limited to invertible matri
es, in fa
t it
an be
omputedon matri
es C ∈ Cm×n. In this
ase the L ∈ Cm×m and U ∈ Cm×n, and theelements below ukk, k = 1 . . .m, will be zeros.34

LU-de
ompositions in MATLABMATLAB
an
ompute the LU-fa
torization on any
omplex matrix A withthe
ommand lu. The result, however, is not true a lower triangular matrix:MATLAB permutes the parameter matrix A so as to a
hieve maximum e�-
ien
y, and the L it gives is the produ
t of the permutation matrix and thea
tual L. To get true lower- and upper triangular matri
es, we get a thirdreturn value: the permutation matrix P.Example 2.7. Here is an example on how to use LU-de
omposition in MAT-LAB.>>A = [-1 1 4;-6 -4 0; 0 4 1℄A = -1 1 4-6 -4 00 4 1>>[l u ℄ = lu(A)l = 0.1667 0.4167 1.00001.0000 0 00 1.0000 0u = -6.0000 -4.0000 00 4.0000 1.00000 0 3.5833>>norm(l*u-A)ans =1.1102e-16>>[l u p ℄ = lu(A)l = 1.0000 0 00 1.0000 00.1667 0.4167 1.000035

u = -6.0000 -4.0000 00 4.0000 1.00000 0 3.5833p = 0 1 00 0 11 0 0>>norm(l*u-p*A)ans =1.1102e-162.4.2 Cholesky-de
ompositionAnother matrix de
omposition is the Cholesky-de
omposition, named afterAndré-Louis Cholesky. It is not as general as LU-de
omposition, but thenumber of
omputations required in order to do the de
omposition is smaller.The matri
es it
an de
ompose are also
ommon in real-life appli
ations.De�nition 2.8. Matrix A ∈ Cn×n is said to be Hermitian if it holds truethat A∗ = A, i.e., A is its own
onjugate transpose. This is analogi
al tothe symmetry of the real matri
es. Note that MATLAB's '-operator givesyou the
onjugate transpose.De�nition 2.9. A HermitianmatrixA ∈ Cn×n is positive de�nite if 〈u,Au〉 >
0 for all u ∈ Cn\{0}.A matrix A ∈ Cn×n that is hermitian and positive de�nite
an be presentedwith a single upper triangular matrix, as a produ
t

A = U∗U.When you have this U, you
an simply use the method presented in LU-de
omposition to solve the linear system Ax = U∗Ux = U∗z = b. Be
ause
U∗ is a triangular matrix, this
an be solved through ba
k substitution.36

The algorithm to produ
e U is:
ukk =

√

√

√

√akk −
k−1
∑

l=1

|ulk|2

ukj =
1

ukk

(

akj −
k−1
∑

l=1

ulkulk

)

.If the number under the square root is ever negative, A is not positive de�niteand the algorithm halts, thus making the Cholesky-de
omposition an e�
ienttool in studying the positive de�nity of the matrix.Example 2.10. Compute the Cholesky-fa
torization of the matrix A, when,
A =





13 11 6
11 11 4
6 4 10



 .Values of upper triangular matrix U
an be
omputed with this table:entry general formula value for U

u11
√

a11

√
13

u12 a21/u11
11√
13

u13 a31/u11
6√
13

u22

√

a22 − u2
21

√

11 − (121
13

)

u23 (a32 − u12u13)/u22 (4 − 6√
13

· 11√
13

)/
√

121
13

u33

√

a33 − u2
13 − u2

23

√

10 − 36
13

− (11 − 121
13

)You get an upper triangular matrix U:
U =











√
13 11√

13

√

11 − (121
13

)

0
√

11 − (121
13

) (4 − 6√
13

· 11√
13

)/
√

121
13

0 0
√

10 − 36
13

− (11 − 121
13

)











,having the property A = UTU. 37

Cholesky-de
omposition in MATLABTo obtain the Cholesky-de
omposition in MATLAB, use the fun
tion
hol:>>A = [4 3 6; 4 7 6; 6 2 14℄A = 4 3 64 7 66 2 14>>A=A*A'61 73 11473 101 122114 122 236>>u =
hol(A)ans =7.8102 9.3467 14.59620 3.6931 -3.90620 0 2.7735>>norm(u'*u-A)ans =1.8201e-142.4.3 QR-de
ompositionAny
omplex square matrix A ∈ Cn×n
an be de
omposed as
A = QR,where Q is a unitary matrix, and R is a upper triangular matrix. If A isnonsingular, then the fa
torization is unique, if it is required that the diagonalelements of R are positive.De�nition 2.11. A matrix A ∈ Rn×n is orthogonal if AAT = ATA = I.A matrix A ∈ C

n×n is unitary if AA∗ = A∗A = I.QR-de
omposition is often used to solve problems in leas square sense. It isthe used in an algorithm for
omputing the eigenvalues of a matrix.38

There are several methods to
ompute the QR-de
omposition, su
h as House-holder transformations and Givens rotations. We use the Gram-S
hmidt pro-
ess. The Gram-S
hmidt pro
ess is applied to
olumns of the matrix A offull
olumn rank, using the inner produ
t 〈u,v〉 = u∗v.De�nition 2.12. Let V be an n dimensional ve
tor spa
e. A proje
tion ofa ve
tor x ∈ V onto the subspa
e spanned by a ve
tor b is the ve
tor uinto the same dire
tion as b with length |u| = |x| cos θ, where θ is the anglebetween the ve
tors x and b. Be
ause
cos θ =

x · b
|x||b|and be
ause u is in the dire
tion of b we get

u = |x| x · b
|x||b|

b

|b| .Hen
e we
an de�ne: a proje
tion of a onto the subspa
e spanned by e isprojea =
〈e, a〉
〈e, e〉e,where the inner produ
t 〈·〉 is de�ned as x∗x.

x

y

y−projection
vector v

x−projection of v

of v

39

Orthonormalize the
olumns of A = [a1, a2 . . .an].
u1 = a1, e1 = u1

||u1|| ,
u2 = a2 − proje1a2, e2 = u2

||u2|| ,
un = a3 − proje1a3 − proje2a3, e3 = u3

||u3|| ,...
un = an −

∑n−1
j=1 projejan, en = un

||un|| .By rearranging the above equations so that the ai's are on the left hand side,and using the fa
t that ei's are unit ve
tors you get:
a1 = 〈e1, a1〉e1,
a2 = 〈e1, a2〉e1 + 〈e2, a1〉e2,
a3 = 〈e1, a3〉e1 + 〈e2, a3〉e2 + 〈e3, a3〉e3,...
an = ∑n

j=1〈ej, an〉ej.This
an be written in the matrix form
A = QR,where

Q = [e1e2 . . . en] and R =











〈e1, a1〉 〈e1, a2〉 〈e1, a3〉 . . .
0 〈e2, a2〉 〈e2, a3〉
0 0 〈e3, a3〉 .Example 2.13. Compute a QR-de
omposition for the matrix A, when

A =





2 1 3
−1 0 7
0 −1 −1



 .The
olumns of A are:
a1 =





2
−1
0



 , a2 =





1
0
−1



 , a3 =





3
7
−1



 .Then use the Gram-S
hmidt pro
ess to orthonormalize the ve
tors:
q1 =

a1

||a1||
=





2√
5

− 1√
5

0



 ,40

q2 =

(

A2 −
〈a2,q1〉
〈q1,q1〉

)

1

||a2||
=







1√
30
2√
30

− 5√
30






,

q3 =

(

a3 −
〈a3,q1〉
〈q1,q1〉

− 〈a3,q2〉
〈q2,q2〉

)

1

||a3||
=







1√
6

2√
6

1√
6






.Thus you obtain the orthogonal matrix Q:

A =







2√
5

1√
30

1√
6

− 1√
5

2√
30

2√
6

0 − 5√
30

1√
6






.The matrix R is

R =





〈a1,q1〉 〈a2,q1〉 〈a3,q1〉
0 〈a2,q2〉 〈a3,q3〉
0 0 〈a3,q3〉



 =







√
5 2√

5
− 1√

5

0 6√
30

22√
30

0 0 16√
6






.The QR-de
omposition is:

A = QR =





2 1 3
−1 0 7
0 −1 −1



 =







2√
5

1√
30

1√
6

− 1√
5

2√
30

2√
6

0 − 5√
30

1√
6













√
5 2√

5
− 1√

5

0 6√
30

22√
30

0 0 16√
6






.The QR-de
omposition
an be
omputed more generally for an m×n matrix

A, as long as m ≤ n.QR-de
omposition in MATLABQR-de
omposition is o�ered as a MATLAB fun
tion qr. Here is a brief ex-ample on how to solve linear systems using QR-de
omposition. The fun
tiontriusolve is a self-made fun
tion to do the ba
k substitution;
reating oneis an exer
ise task.Example 2.14. Here is an example on how to use QR-de
omposition tosolve a system of linear equations. 41

>>A = [3 -5 7; 0 4 5; -6 -9 -8℄A = 3 -5 70 4 5-6 -9 -8>>x = ones(3,1);>>b = A*xb = 59-23>>[q r℄ = qr(A)>> ba = q'*b;>> xs = triusolve (r,ba);>>norm(A*xs-b)ans =6.6465e-152.4.4 Singular value de
ompositionEvery m × n matrix with
omplex entries
an be presented as the produ
t
A = USV∗,where U ∈ C

m×m and V ∈ C
n×n are orthogonal matri
es, and S ∈ C

m×nis a diagonal matrix with entries sorted by magnitude. If the matrix A isinvertible, the inverse is
A−1 = VS−1U∗.This is easy to
ompute, as the inverse of a diagonal matrix is just a diagonalmatrix with inverses of the original diagonal elements.MATLAB uses the QR-algorithm to
ompute the singular value de
ompo-sition. If one wishes to
ompute it manually, the following pro
edure ispropably the easiest:1. Find the eigenvalues and orthonormalized eigenve
tors of A∗A, i.e.,

A∗A = VΛV∗.42

2. Sort the eigenvalues a

ording to their magnitude, and let σj =
√

λj.3. Find the �rst r
olumns of U via
uj = σ−1

j Avj, j = 1, . . . , r.4. Pi
k the remaining
olumns so that U is unitary.Example 2.15. Compute the singular value de
omposition UΣVT for ma-trix A, when
A =





1 2
2 2
2 1



 .Begin by getting the A∗A:
A∗A =

[

9 8
8 9

]

.Continue by
omputing eigenvalues for theA∗A, and obtain λ1 = 17 and λ2 =
1. The
orresponding eigenve
tors are :

v1 =

[

1
1

] and v2 =

[

1
−1

]

.Thus, by taking the square roots of the eigenvalues you get
Σ =





√
17 0
0 1
0 0



 .and by normalizing the eigenve
tors you get
V =

[

1√
2

1√
2

1√
2

− 1√
2

]

.To get U
ompute
u1 =

1√
17

Av1 =
1√
17

1√
2





1 2
2 2
2 1





[

1
1

]

=
1√
34





3
4
3



 ,43

and
u2 = 1Av2 =

1√
2





1 2
2 2
2 1





[

1
−1

]

=
1√
2





−1
0
1



 .To determine u3 you need only satisfy:
u∗

ju3 = δj3, where j = 1, 2, 3.With this in mind, you
an pi
k
u3 =

1√
17





2
−3
2



 ,and get
A = UΣV∗ =





1 2
2 2
2 1



 =







3√
34

−1√
2

2√
17

4√
34

0 −3√
17

3√
34

1√
2

2√
17











√
17 0
0 1
0 0





[

1√
2

1√
2

1√
2

− 1√
2

]

.Condition numberWhen studying how well the matrix behaves numeri
ally, its determinant,the usual method of determining, whether a system has solutions, does notgive a

urate estimates on the expe
ted error. This is be
ause matri
es
A and λA have same numeri
al properties, but det(λA = λn det(A)). Abetter estimate on numeri
al properties of a matrix is given by a
onditionnumber, de�ned by:

cond(A) =
σ1

σn

,where σ1 and σn are the biggest and the smallest singular value of the matrix
A, respe
tively.The bigger the
ondition number, are numeri
al properties of the matrix.For example the
ondition number of the Hilbert matrix presented earlier isapproximately 1.5 · 1010. In MATLAB the
ondition number is
omputed bythe fun
tion
ond.

44

SVD in MATLABMATLAB's built-in fun
tion svd gives out the singular value de
ompositionof any matrix given to it. As an example we solve a linear system involv-ing the the Hilbert matrix. Re
all that this didn't work with the Gaussianelimination algorithm.>> a = hilb(8);% We use MATLAB 's matrix library to get the Hilbert matrix>>
ond(a)ans =1.5258e+10>> [u s v℄ = svd(a);>> x = ones(8,1);% The predetermined solution is a ve
tor
onsisting of ones.>> b = a*x;>> sol = v*(eye (8)/s)*u'*b;>> norm(sol - x)ans =3.8549e-06The problem with this method of solution is inversing the diagonal matrix
S. While this is easy from the theoreti
al point of view, it may numeri
allybe extremely di�
ult, as it requires the
omputation of numbers 1/α where
α is very small.2.5 Linear least squaresWe have been given N pairs (xi, yi), and we believe that the yi:s follow amodel of the form f(x, a1, a2, . . . aM). The question now is: how do we best
hoose the parameters ai, so that the model f(x, a1, a2, . . . aM) best �ts thedata (xi, yi). The model f is said to be linear if it is linearly dependent onthe parameters ai, otherwise it is non-linear. To �t the model we usually

45

apply the least-square method, where we minimize the sum
S =

N
∑

i=1

(yi − f(xi, a1, . . . , aM))2.To solve this, we needs to satisfy:
∂S

∂ai
= 0, i = 1, . . .M.In
ase of a linear model, one
an interpret the model f applied to observationpoints as a matrix, and the parameters ai as unknowns, and thus gain thelinear equation

Fa = ywhere F ∈ C
M×N , a ∈ C

M and y ∈ C
N .Theorem 2.16. If A ∈ Cm×n then the equation A∗Ax = A∗y has at leastone solution x ∈ Cn, and

||y − Ax|| ≤ ||y −Az|| ∀z ∈ C
n.Example 2.17. Fit a linear model to the points:

yi xi444 1458 2478 3506 5523 7543 9571 10Fitting a linear model means that you will minimize the sum
S(a) =

7
∑

i=0

(yi − (axi + b))2whi
h yields the equations
a + b = 444
2a + b = 458
3a + b = 478
5a + b = 506
7a + b = 523
9a + b = 543
10a + b = 571 .

46

This linear system
an be written in matrix form Ax = b where
A =





















1 1
2 1
3 1
5 1
7 1
9 1
10 1





















,x =

[

a
b

]

,b =





















444
458
478
506
523
543
571





















.

You then obtain the LSQ-solution by solving x = (ATA)−1ATb. The matrix
ATA is

[

269 37
37 7

]

, its inverse is [

7
514

− 37
514

− 37
514

269
514

]

, and ATb is [

19582
3523

]

.Thus you gain the solution ve
tor x:
x =

[

6723
514

223153
514

]

, or numeri
ally [

13.08
434.15

]

.

0 2 4 6 8 10 12
440

460

480

500

520

540

560

580

x−values

y−
va

lu
es

47

Example 2.18. The linearity in linear least squares does not limit its usesto �tting lines: only the linearity of
oe�
ients is required. This examplewill show
ase this. We have some data points (xk, yk):
xi yi21 2123 4325 9027 16429 221 .Qui
k study of the values shows, that �tting a line will not work this time.However, the distribution of the data points suggests, that a polynomial ofse
ond degree might work. Now, instead of �tting line ax+ b, �t a quadrati
polynomial ax2 + bx + c.The data points and quadrati
 polynomial give us a system of equations































441a + 21b + c = 21

529a + 23b + c = 43

625a + 25b + c = 90

729a + 27b + c = 164

841a + 29b + c = 221

.

This yields an overdetermined linear system
Ax = bwhere

A =













441 21 1
529 23 1
625 25 1
729 27 1
841 29 1













,x =





a
b
c



 ,b =













21
43
90
164
221











Now solve this as in previous example:
ompute the ATA and seek solutionsto equation
ATAx = ATbby obtaining the inverse (ATA)−1 and multiply from left both sides of theequation with it. 48

For the �nal solution x = (ATA)−1ATb MATLAB's symboli
 toolkit gives:
x =





97/56
−4239/70

147079/280



 .Considering, that the data was syntheti
ally generated by getting valuesof the fun
tion f(x) = 1
2
x2 − 200 and adding some error, this falls quitefar. However, graphi
al study indi
ates, that the solution �ts the data quiteni
ely.

20 21 22 23 24 25 26 27 28 29 30
0

50

100

150

200

250

300

The least square method is not limited to �tting linear models. Though thelinear interpretation of the model is lost, the premise of the problem doesnot
hange: one wishes to minimize the sum
S(α) =

N
∑

i=1

(yi − f(xi, α))2.Doing this manually may turn out to be extremely di�
ult, but in numeri
alsense, it is possible to gain a good solution through standard minimizationalgorithms. Di�erent methods of seeking fun
tion minimums are dis
ussedlater, but an example is given, that illustrates the idea of seeking the mini-mum. 49

2.5.1 Least squares and MATLABIn MATLAB one
an use the '-operator, and form the matri
es as in theprevious example, or one
an use the Moore-Penrose pseudo-invariant thatyields the same results. It is given by MATLAB fun
tion pinv. Also thestandard method for solving linear equations in MATLAB, dis
ussed morepreviously, automati
ally gives the LSQ solution if the system is overdeter-mined or otherwise unsolvable. Here is the previous example in MATLAB:>> A = [1 1; 2 1; 3 1 ; 5 1; 7 1; 9 1 ; 10 1℄;>> b = [444 458 478 506 523 543 571℄;>> b = b';>> x = pinv(A)*bx =13.0798434.1498The �tted model need not be linear: the proper solution would be gainedthrough
omputing the partial derivatives in respe
t to parameters, and solv-ing the system of equations they give, but as this is usually
umbersome apro
ess, it is possible, and oftentimes even preferable to use a fun
tion min-imum seeking algorithm.Example 2.19. In this example we wish to study the age do
torate studentsin math department
omplete the Ph.D. It is believed, that the fun
tion
f(x, β) = β1x

2e−β2x �ts the data we have, and wish to �nd a β, that satis�esthe least square
ondition.

50

The following
ode does the minimum sear
h.Listing 2.2: Non-linear �t
lear;
lose all;x = 20:65;y = [0 0 0 1 2 3 15 65 71 80 55 48 46 26 25 25 16 9 18 ...8 8 6 4 6 5 5 2 6 4 2 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0℄;f = inline('beta(1)*x.^2 .* exp(-beta(2)*x.^2)','x','beta');fobj= inline('norm (fmodel(x,lam)-y)','lam' ,...'fmodel', 'x', 'y');beta0 = [2 0.01 ℄;[beta fval eflag℄ = fminsear
h(fobj ,beta0 ,[℄,f,x,y);bar(x,y,'
');hold on;plot(x,f(x,beta),'r');xlabel('Age of Ph.D'); ylabel('Number of Ph.Ds');When plotted, the f(x, β), x ∈ [20, 65], and β the ve
tor produ
ed by theprevious algorithm, produ
es this graph.
51

10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

Age of Ph.D

N
um

be
r

of
 P

h.
D

s

2.6 Symboli
 linear algebra in MATLABMATLAB's symboli
 toolbox
ontains a number of tools with whi
h to per-form linear algebra symboli
ally. Here we present a short introdu
tion tosymboli
 linear algebra with MATLAB. Most of the fun
tionality of the nu-meri
al MATLAB is available in the symboli
 toolbox as well. Now the fo
usis shifted on the symboli
 matrix and ve
tor operations.A list of variables
an be designated symboli
 with the
ommand syms, orfor just a single variable, or number, sym. The variable designated symboli

an now be used to de�ne a matrix just as usual. The symboli
 matrix
annow be operated just as a numeri
al one; most of the operations de�nedon numeri
al matri
es are de�ned also on symboli
 ones. One should keepin mind though, that fairly fast numeri
 operation does not translate intofairly fast symboli
 one. For example, invoking de
omposition algorithmson symboli
 matri
es
an take an exorbitant amount of time. The full listof operations available in symboli
 toolbox
an be seen at help page helpsymboli
.Here is an example of how to determine a symboli
 matrix, and to obtainit's inverse.>> B =[sym(2) sym (3) sym (8);sym(-13) sym(5) sym(6);sym(-1) sym(13) sym(9)℄B = 52

[2, 3, 8℄[-13, 5, 6℄[-1, 13, 9℄>> inv(B)ans =[3/95, -7/95, 2/95℄[-111/1045, -26/1045, 116/1045℄[164/1045, 29/1045 , -49/1045℄It is also possible to in
lude non-numeri
 symbols to matri
es, thus gain-ing more general solutions. Here is a symboli
 matrix, and its null spa
e,
hara
teristi
 polynomial, and determinant.>> A = [2 b
 ; 4 2*b 2*
 ; a 1 b℄A =[2, b,
℄[4, 2*b, 2*
℄[a, 1, b℄>> null(A)ans =-(b^2-
)/(-2+b*a)-(-2*b+a*
)/(-2+b*a)1>> poly(A)ans =x^3-3*x^2*b+2*x*b^2-2*
*x-2*x^2+2*x*b-a*
*x53

>> det(A)ans =0To make use of the generalisations, we use the substitution fun
tion substo repla
e the symbols with the values we wish
al
ulate it with. Here isan example. A symboli
 matrix is de�ned , and its symboli
 determinanta
quired, and used to
ompute the values of the determinant at 2,−1 and 4.>> syms a b
>> A = [a b 3;7*a -
 2*b;
 -2*a
℄A =[a, b, 3℄[7*a, -
, 2*b℄[
, -2*a,
℄>> d =det(A)d =-a*
^2+4*b*a^2-7*a*
*b-42*a^2+2*
b^2+3
^2>> subs(d,{a,b,
},{2, -1, 4})ans =-104
54

Chapter 3InterpolationInterpolation is a method of
onstru
ting new data points within the range ofa dis
rete set of known data points. If the goal is to generate new data pointsoutside of the range of the presented set of data points, we are dis
ussingextrapolation, whi
h is
onsiderably more hazardous.This
hapter will serve as an introdu
tion to a few of the more
ommon meth-ods of interpolation, su
h as polynomial, linear and spline (more spe
i�
ally,
ubi
 spline) interpolation.3.1 Polynomial interpolationGiven n points in the plane, (xk, yk), k = 1, 2, . . . , n, with distin
t xk's,there is a unique polynomial in x of degree less than n whose graph passesthrough the points. There are many di�erent formulas for this polynomial,but they all de�ne the same fun
tion. The polynomial in question is
alledthe interpolating polynomial be
ause it exa
tly reprodu
es the given data
P (xk) = yk, k = 1, . . . , n.3.1.1 Lagrange interpolationOne representation on the interpolating polynomial is the Lagrange form

P (x) =

n
∑

k=1









n
∏

j=1
j 6=k

x − xj

xk − xj









yk.55

Example 3.1. Let us
onsider the following data set>> x = 0:3;>> y = [-5 -6 -1 16℄;The Lagrangian form of the polynomial interpolating this data is
P (x) =

(x − 1)(x − 2)(x − 3)

−6
· (−5) +

x(x − 2)(x − 3)

2
· (−6)

+
x(x − 1)(x − 3)

−2
· (−1) +

x(x − 1)(x − 2)

6
· 16By de�ning>> xi =0:.01:3;>> yi=lagrange (x,y,xi);where the fun
tion lagrange interpolates the values using the lagrange method(homework problem).The resulting polynomial
an now be plotted with the
ommand>> plot(x,y,'or',xi,yi,'-')Output:

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

15

20

56

3.1.2 Determining
oe�
ientsPolynomials are not usually represented in the Lagrange form, but in itspower form,
P (x) = c1x

n−1 + c2x
n−2 + · · ·+ cn−1x + cn.The
oe�
ients of the power form
an, in prin
iple, be
omputed by solvinga system of simultaneous linear equations











xn−1
1 xn−2

1 · · · x1 1
xn−1

2 xn−2
2 · · · x2 1...

xn−1
n xn−2

n · · · xn 1





















c1

c2...
cn











=











y1

y2...
yn











.The n × n-matrix V in the linear system above is
alled the Vandermondematrix. Its elements are
vk,j = xn−j

k .Example 3.2. De�ne x and y as>> x=0:3;>> y = [-5 -6 -1 16℄;The Vandermonde matrix
an be generated in MATLAB with the
ommandvander:>> V=vander(x)V = 0 0 0 11 1 1 18 4 2 127 9 3 1Now, the linear equation V
=y'
an be solved with>>
=V\y'
 = 1.00000.0000-2.0000-5.0000In
on
lusion, the resulting interpolating polynomial is
P (x) = x3 − 2x − 5.57

3.2 Runge's phenomenonThe idea with polynomial approximation is that the degree of the polynomialin
reases as the amount of sample points in
reases. This does not usuallyhave the desired e�e
t, and as the amount of sample points in
rease, the lessa

urate the approximation is. One su
h example is Runge's phenomenon.Observe the equally spa
ed polynomial approximation of the fun
tion f(x) =
1/(1 + x2) in the interval [−5, 5]. As the amount n of sample points xk =
−5 + (k − 1) · 10/(n − 1), (k = 1, . . . , n), in
reases, the fun
tion starts towildly os
illate
lose to the end points of the interval. Thus, the interpolatedpolynomial will only produ
e useless results.Example 3.3. When plotting the polynomial interpolation of the fun
tionabove for 7 sample points and
omparing it with the graph of the originalfun
tion, one
an
learly see a di�eren
e. If the number of sample points isin
reased, the os
illations will be
ome even wilder.% Runge 's phenomenon% Files needed: lagrange .mxi= -5:.01:5;n=7; %number of sample pointsk=1:n;x=-5+(k -1).*10./(n-1); % sample pointsf=�(x) 1./(1+x.^2); %Runge 's fun
tionyi=lagrange (x,f(x),xi); % interpolated valuesplot(xi,f(xi), xi,yi, x, f(x), 'or ')legend('original fun
tion ', 'interpolated fun
tion ', ...'data points ')

58

Output:

−5 −4 −3 −2 −1 0 1 2 3 4 5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

original function
interpolated function
data points

Lesson: Methods for polynomial approximation (like Lagrange interpolation)should not be used for large values of n (n ≥ 6). If there are many samplepoints, one
ould, for example, use a pie
ewise
ubi
 interpolation method(like
ubi
 spline).3.3 Pie
ewise linear interpolationA simple pi
ture of a data set
an be
reated by plotting the data twi
e, on
ewith
ir
les at the data points and on
e with straight lines
onne
ting thepoints.
59

1 2 3 4 5 6 7 8 9 10
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

To
reate the lines, MATLAB uses pie
ewise linear interpolation. First, theinterval index k must be determined, so that
xk ≤ x ≤ xk+1.Now, a line between the points (xk, yk) and (xk+1, yk+1)
an be mapped usinganalyti
al geometry. The interpolant between the points
an be written as:

L(x) = yk + (x − xk)
yk+1 − yk

xk+1 − xk
= Ayk + Byk+1, (3.4)where

A =
xk+1 − x

xk+1 − xk
and B =

x − xk

xk+1 − xk
. (3.5)The points xk are sometimes
alled breakpoints or breaks.The pie
ewise linear interpolant L(x) is
ontinuous in referen
e to x, but itsderivate is not
ontinuous. The derivate is

L′(x) =
yk+1 − yk

xk+1 − xkfor all x ∈ [xk, xk+1], and it jumps at the breakpoints.60

3.4 SplinesSpline interpolation is a built-in fun
tion in MATLAB and
an be a

essedwith the
ommand spline([datapoints℄,[datapoint values℄, [interpolant℄).The fun
tion returns the interpolated values.There are several methods for spline interpolation, but what all the methodshave in
ommon, is its pie
ewise polynomial nature. It works in a similar wayas pie
ewise linear, but instead of linear fun
tions, one uses polynomial fun
-tions of a �xed degree whose derivatives are
ontinuous at the breakpoints(
alled knots when dis
ussing spline).The
lassi
al approa
h is to use polynomial fun
tions of degree 3, this is the
ase of
ubi
 spline, whi
h MATLAB also uses.Example 3.6. Plot the spline interpolation of Runge's fun
tion (presentedin the se
tion on Runge's phenomenon).xi= -5:.01:5;n=10; %number of data pointsk=1:n;x=-5+(k -1).*10./(n-1); % data pointsf=�(x) 1./(1+x.^2); %Runge 's fun
tionyi=spline(x,f(x),xi); % interpolated valuesplot(xi,f(xi), xi,yi, x, f(x), 'or ')legend('original fun
tion ', 'interpolated fun
tion ', ...'data points ')

61

Output:

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

original function
interpolated function
data points

In
ontrast to polynomial interpolation, here the a

ura
y will in
rease asthe amount of data points in
reases.We will now have a
loser look at the theory behind
ubi
 spline.3.4.1 Cubi
 splineThe polynomials used in
ubi
 spline are of third degree, and must have
ontinuous se
ond derivatives and satisfy the interpolation
onstraints.Suppose, that in addition to the tabulated values of yk one would also havethe tabulated values to the fun
tion's se
ond derivatives, that is, a set ofnumbers y′′
k . Now, one
an add to the right-hand side of the equation forpie
ewise linear interpolation, i.e.

L(x) = Ayk + Byk+1, (3.7)where
A =

xk+1 − x

xk+1 − xk

and B =
x − xk

xk+1 − xk

, (3.8)62

a
ubi
 polynomial whose se
ond derivative varies from y′′
k at the left of theinterval and y′′

k+1 at the right. This will produ
e the desired
ontinuous se
-ond derivative. By also
onstru
ting the
ubi
 polynomial so that it hasvalues of zero at xk and at xk+1, then adding it in will not
hange the be-haviour at the knots (i.e. the value yk at xk in the interval [xk−1, xk] is equalto the value yk at xk in the interval [xk, xk+1]).This
an be a
hieved with
y = Ayk + Byk+1 + Cy′′

k + Dy′′
k+1, (3.9)where A and B are de�ned as above in (3.8), and

C =
1

6
(A3 − A)(xk+1 − xk)

2 and D =
1

6
(B3 − B)(xk+1 − xk)

2. (3.10)One
an easily
he
k that y′′ is in fa
t the se
ond derivative of the interpo-lating fun
tion. The derivatives of equation (3.9) with respe
t to x
an betaken by using the de�nitions of A, B, C and D to
ompute dA/dx, dB/dx,
dC/dx and dD/dx.The �rst derivative is now

dy

dx
=

yk+1 − yk

xk+1 − xk
− 3A2 − 1

6
(xk+1 − xk)y

′′
k +

3B2 − 1

6
(xk+1 − xk)y

′′
k+1 (3.11)and the se
ond derivative is

d2y

dx2
= Ay′′

k + By′′
k+1. (3.12)In the
al
ulations above, it was assumed that the y′′

k 's were known. In orderto
al
ulate them, one must require that the �rst derivative of the polynomialis also
ontinuous. Now, the required equations
an be obtained from (3.11)by setting the value for x = xk in the interval [xk−1, xk] to be equal to thevalue for x = xk in the interval [xk, xk+1]. With some rearrangement, thisgives
xk − xk−1

6
y′′

k−1 +
xk+1 − xk−1

3
y′′

k +
xk+1 − xk

6
y′′

k+1 =
yk+1 − yk

xk+1 − xk

− yk − yk−1

xk − xk−1for all k = 2, . . . , N − 1.Now yk, where k = 1, . . . N ,
an be solved from this system of N − 2 linearequations. In order for the solution to be unique, the boundary
onditionsat xk+1 and xk must be spe
i�ed. The most
ommon ways of doing this is toeither 63

• set one or both of y′′
1 and y′′

N to zero, whi
h will give us the, so
alled,natural
ubi
 spline, or
• set either of y′′

1 and y′′
N to values
al
ulated from (3.11) so as to give the�rst derivative of the interpolating fun
tion at either or both boundariesa spe
i�
 value.Example 3.13. Let the set of sample points (xk, yk) be (1, 2), (2, 1), (3, 5), (4, 3).Using equations (3.8) for A and B, we get the following

A =





2 − x
3 − x
4 − x



 and B =





x − 1
x − 2
x − 3



 .Using these values for A and B, and equations (3.10) for C and D, we get
C =







1
6
((2 − x)3 − 2 + x)

1
6
((3 − x)3 − 3 + x)

1
6
((4 − x)3 − 4 + x)






and D =







1
6
((x − 1)3 − x + 1)

1
6
((x − 2)3 − x + 2)

1
6
((x − 3)3 − x + 3)






.In equation (3.9) the pie
ewise
ubi
 polynomial was de�ned as

y = Ayk + Byk+1 + Cy′′
k + Dy′′

k+1.By using the derivate (3.11) of this polynomial and rearranging it, as de-s
ribed, and investigating it at the knots, we re
eive the following linearsystem equations
{

1
6
y′′

1 + 2
3
y′′

2 + 1
6
y′′

3 = 5
1
6
y′′

2 + 2
3
y′′

3 + 1
6
y′′

4 = −6whi
h has the solutions


















y′′
1 = t1

y′′
2 = − 4

15
t1 + 1

15
t2 + 52

5

y′′
3 = 1

15
t1 − 4

15
t2 − 58

5

y′′
4 = t2

t1, t2 ∈ R.The values for t1 and t2
an now be set to zero and the pie
ewise
ubi
polynomial is
y =











26
15

x3 − 26
5
x2 + 37

15
x + 3, when x ∈ [1, 2]

−11
3
x3 + 136

5
x2 − 187

3
x + 231

5
, when x ∈ [2, 3]

29
15

x3 − 116
5

x2 + 1333
15

x − 105, when x ∈ [3, 4]64

3.5 Additional methods for interpolation in MAT-LABOne fun
tion in MATLAB, that allows the user to spe
ify the desired inter-polation method, is interp1. It
an be a

essed with the
ommandinterp1 ([datapoints℄,[datapoint values℄,[interpolant℄,......[method℄,[extrapolation℄).The argument [method℄ spe
i�es the spe
i�
 interpolation method, availablemethods are
• 'linear', whi
h spe
i�es linear interpolation. This is the defaultmethod, and will be used if no method is spe
i�ed.
• 'nearest', whi
h uses nearest neighbor interpolation. The interpo-lated value in a spe
i�
 point will be the same as the value of thenearest datapoint.
• 'spline', whi
h uses pie
ewise
ubi
 spline interpolation.
• 'p
hip', whi
h uses shape-preserving pie
ewise
ubi
 interpolation,also known as pie
ewise
ubi
 Hermite interpolation.
• '
ubi
', whi
h is the same as 'p
hip'.
• 'v5
ubi
', whi
h is
ubi
 interpolation used in MATLAB 5. Thismethod does not extrapolate and if the datapoints are not equallyspa
ed, 'spline' is used instead.Example 3.14. De�ne the datapoints and the interpolant as>> x=1:10;>> y=rand(1 ,10);>> xi =1:.1:10;The nearest neighbor method:>> yi=interp1(x,y,xi,'nearest ');>> plot(x,y,'or',xi,yi)Output: 65

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The shape-preserving pie
ewise
ubi
 method:>> yi=interp1(x,y,xi,'
ubi
 ');>> plot(x,y,'or',xi,yi)Output:

66

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

The argument [extrapolate℄
an be used to evaluate points outside of thegiven interval of data points.If the argument is spe
i�ed as 'extrap', the fun
tion will use the spe
i�edmethod to evaluate any out of range values in [interpolant℄.Example 3.15. Let x and y be de�ned as in the last example, and de�nethe interpolant as>> xi =1:.1:11;Now, the interpolant is de�ned outside of the range of datapoints, and thepoints outside of the range must be extrapolated.>> yi=interp1(x,y,xi,'spline ','extrap ');>> plot(x,y,'or',xi,yi)Output:
67

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

The [extrapolation℄ argument
an also be spe
i�ed as a s
alar to be re-turned for any out of range values. Here, 0 and NaN are often used.The fun
tion
an also be de�ned, for example, aspp=interp1(x,y,[method℄,'pp'),whi
h will use the method spe
i�ed in the arguments (ex
ept for 'v5
ubi
')to generate the pie
ewise polynomial form of the datapoint values. Thenppval
an be used to evaluate that pie
ewise polynomial. For example,ppval(pp,xi), where pp is de�ned as above, is equivalent tointerp1(x,y,xi,[method℄,'extrap').

68

Chapter 4Numeri
al di�erential andintegral
al
ulus
4.1 Numeri
al derivationThe derivative of a fun
tion measures how its values
hanges as its parameters
hange. It is de�ned via limiting values of di�eren
e quotient.De�nition 4.1. The derivative of fun
tion f at x0 is the limit

f ′(x) = lim
h→0

f(x0 + h) − f(x0)

h
.When f is a fun
tion of one real variable, the derivative is the slope of thetangent line drawn to the graph of the fun
tion at real number x0.From the perspe
tive of the numeri
al
omputation the de�nition is skewed:it tells the behaviour of the fun
tion either before or after the derivationpoint. Applying it numeri
ally will give results with error term proportionalto h.One wishes to know behaviour of the fun
tion both before and after thederivation point. This is a
hieved by �tting a se
ant line travelling throughthe points ((x0 − h), f(x0 − h)) and ((x0 + h), f(x0 + h)), and
omputing itsslope. As h approa
hes 0, the se
ant line approa
hes the tangent line of thefun
tion at x0:

f ′(x) ≈ f(x + h) − f(x − h)

2h
, if h ≈ 0. (4.2)69

In numeri
al sense, using this so
alled three point rule, will yield results witherror terms proportional to h2.In order for the formula 4.2 to work, the parameter h must be sele
ted ap-propriately; while the intuition says, that the smaller the |h|, the better theresults, the truth is, that a small value of h will result in extremely badloss of pre
ision. Literature on the subje
t suggests that usually sele
tion
h = (meps)0.5 yields the best results. Furthermore, it may be ne
essaryto ensure that the sele
ted h is presentable in �oating point arithmeti
. Ifit is not, then the di�eren
e of x0 and x0 + h is not exa
tly h, whi
h willlead to additional a

umulation of error. Considering this phenomenon inMATLAB is not ne
essary be
ause of the optimization pro
edures, but in
ompiled languages one should take steps to ensure proper representation of
h. The formula 4.2 is sus
eptible to bad properties of fun
tion: if the valuesof the fun
tion f vary widely on the interval (x − h, x + h), the results itprovides are not a

urate. Here is an example
ode on how to implementthis in MATLAB: Listing 4.1: Numeri
al derivativefun
tion df = numdif(f,x,h)% x is an n-ve
tor[m,n℄ = size(x); one = ones(m,n);df = (feval(f,x+h*one)-feval(f,x-h*one))/(2*h);Here is an example on how to use the fun
tion numdif, and then an example,why this method of derivation should be only applied with
are.Example 4.3. We numeri
ally derivate a fun
tion whose derivative is easyto de�ne:

f(x) = cos(4x) − sin(2x),and then
ompare it to the real derivative,
f ′(x) = −4 sin(4x) − 2 cos(2x).Listing 4.2: Example of numeri
al derivative>> f = inline('
os (4*x)-sin(2*x)','x');>> x = 0:0.02:3;% We now
ompute the numeri
al% derivative on the interval x% eps is MATLAB built -in value70

% for ma
hine epsilon>> df = numdif(f,x,eps .^0.5);% To establish the a

ura
y of% the numeri
 derivative ,% we
ompare it to the a
tual derivative>> y = -4*sin(4*x) - 2*
os (2*x);% we plot the differen
e of the numeri
% an the a
tual derivative>> plot(x, y-df);

0 0.5 1 1.5 2 2.5 3
−10

−8

−6

−4

−2

0

2

4

6

8
x 10

−9

As
an seen, the maximum error seems to be of magnitude 6 · 10−9, whi
h is
omparably tolerable. Next presented is a warning example on the e�e
ts ofa poor
hoi
e of h:Listing 4.3: Consequen
es of poorly sele
ted h>> f = inline('
os (4*x)-sin(2*x)','x');71

>> x = 0:0.02:3;% We now
ompute the numeri
al derivative% on the interval x>> df = numdif(f,x,eps);% To establish the a

ura
y of the% numeri
 derivative ,% we
ompare it to the a
tual derivative>> y = -4*sin(4*x) - 2*
os (2*x);% we plot the differen
e of the numeri
% an the a
tual derivative>> plot(x, y-df);

0 0.5 1 1.5 2 2.5 3
−3

−2

−1

0

1

2

3

As is obvious, sele
ting too small an h
an yield staggeringly bad results.Example 4.4. There are situations where not even a proper
hoi
e of param-eters
an help to salvage the a

ura
y of numeri
al derivative. To show
ase72

this the behaviour of numeri
al derivative of fun
tion
f(x) = sin(x4)on the interval (3, 6) is studied. It is then
ompared to the true derivative of

f ,
f ′(x) = x3 cos(x4)>> f = inline('sin(x.^4)','x');>> fd = inline('(4*x.^3).*(
os(x.^4))','x');>> x = 3:0.02:6;>> plot(x,numdif(f,x,eps.^0.5) - fd(x));

3 3.5 4 4.5 5 5.5 6
−5

−4

−3

−2

−1

0

1

2

3

4
x 10

−6

The pi
ture shows, that the errors are of magnitude 4 ·10−6, whi
h, while notunbearable,
an in
ertain situations be meaningful. One should also note,that the fun
tion's variation in values
ontinues to in
rease in frequen
y, thus73

making numeri
al derivation highly suspe
t.In addition to poorly behaving fun
tions, there are fun
tions that are not dif-ferentiable, either at spe
i�
 points or at all, but whose numeri
al derivatives
an be obtained. For example, it is well known that the fun
tion f(x) = |x|does not have derivative at 0. However, when
omputed with the fun
tionnumdif this is not instantly obvious.>> numdif(�abs ,0,1e-8)ans =0Only times the numeri
al derivative is not te
hni
ally obtainable are at dis-
ontinuity intervals of the evaluated fun
tion. One should however keep inmind that even if a derivative is numeri
ally obtainable, it does not meanthat it exists.4.1.1 Estimating derivative with polynomialThe previous estimate for a derivative of a fun
tion was based on linearapproximation of the fun
tion on the interval (x − h, x + h). This leads oneto wonder, whether it is possible to in
rease the a

ura
y of the derivationthrough better approximation of the fun
tion.If a fun
tion f is approximated with a polynomial, basing the approximationon points xi = x + ih, i = −n, . . . , n, one
an a
quire a polynomial using theLagrange interpolation method. Suppose then that n = 2 has been
hosen,and been used to
reated the estimate p2, with p2(xi) = f(xi). The derivative
an now be approximated:
f ′(x0) ≈ p′2(x0).Di�erent approximations to fun
tions derivatives, and their a

ura
y havebeen widely dis
ussed in literature. We rest the matter by giving the resultthe previously presented polynomial estimate yields, though without proof.

f ′(x0) ≈
1

h

(

1

12
f(x−2) −

2

3
f(x−1) +

2

3
f(x2) −

1

12
f(x2)

)

.Here is the MATLAB implementation to the �ve point rule:74

fun
tion dy = diff(y,h)% The 5-point rule% the parameter y is% the values of the% fun
tion on the interval% we wish to obtain the% derivatives , h is the step fa
tor% To
ompute dy at single point x0% set interval x = x0 -2*h:h:x0+2*h% y=f(x), and invoke diff% dy = diff(y,h);for p =-2:2a= (2*p^3-3*p^2-p+1)/12; b= (4*p^3-3*p^2-8*p+4)/6;
= (2*p^3-5*p)/2;d= (4*p^3+3*p^2-8*p-4)/6; e= (2*p^3+3*p^2-p -1)/12;
oe=[
oe; [a -b
 -d e℄℄;end;% We now make sure that y is of proper size[d1,d2℄=size(y);if ((min(d1,d2)>1) | (max(d1,d2) <5))error('Argument error in numder');end;dy =y;dy (1)=(1/h)*sum(
oe(1 ,:).*y(1:5));dy (2)=(1/h)*sum(
oe(2 ,:).*y(1:5));for p=3:d2 -2dy(p)=(1/h)*sum(
oe (3 ,:).*y(p-2:p+2));end;dy(d2 -1)=(1/h)*sum(
oe(4 ,:).*y(d2 -4:d2));dy(d2)=(1/h)*sum(
oe (5 ,:).*y(d2 -4:d2));4.2 Ja
obian matrixWhen studying fun
tions with more than one
omponent and variable, abest tool to observe the di�erentiation of a fun
tion is the Ja
obian matrix.Ja
obian matrix
ontains all �rst-order partial derivatives of a ve
tor- ors
alar-valued fun
tion on it's
olumns.75

Suppose F : Rn → Rm has
omponents
F (x1 . . . xn) = (F1(x1 . . . xn)), F2(x1 . . . xn) . . . Fm(x1 . . . xn)).Then its Ja
obian matrix is







∂F1

∂x1
. . . ∂F1

∂xn...
∂Fn

∂x1
. . . ∂Fm

∂xn






.As one
an see, if (x1, . . . , xn) are the orthogonal Cartesian
oordinates, asusual, the k:th row of Ja
obian is the gradient of the k:th
omponent of thefun
tion F .To numeri
ally
ompute the Ja
obian matrix we use the method in one di-re
tion at time, �lling the Ja
obian matrix
olumn wise.Listing 4.4: Algorithm for numeri
al Ja
obi matrixfun
tion Jf = ja
obian_matrix(f,x,m,n)% here f is the fun
tion to be derivated ,% x is the point of derivation ,% m is the number of
omponent fun
tions ,% and n is the number of parameters.% we begin by initializing JfJf = zeros(m,n);h = eps .^0.5;% e will define the dire
tion we wish to partially derivatee = zeros(n,1);% fun
tion f will produ
e m partial derivatives ,% thus filling the
olumnfor j=1:n%set the dire
tione(j) = 1;Jf(:,j) = (f(x+e*h) - f(x-e*h))/(2*h);e(j)=0;endJa
obian matrix des
ribes the orientation of the tangent plane of the fun
tionat a given point; one
an think it a generalized gradient.Ja
obian matrix
an through the inverse fun
tion theorem say, whether afun
tion has an inverse at some point or not. The inverse fun
tion theorem76

states, that matrix inverse of the Ja
obian matrix of an invertible fun
tionis the Ja
obian matrix of the inverse fun
tion. Hen
e,
Jf−1(f(p)) = Jf(p)−1.Be
ause the existen
e of inverse fun
tion is usually more interesting thana
tually determining what it is, it is often enough to
ompute the determinantof the Jf ,
alled Ja
obian determinant, or just Ja
obian. The Ja
obian plays alarge role in many �elds of mathemati
s, su
h as partial di�erential equations.Ja
obian matrix
an also be used to linearly approximate the fun
tion onshort intervals, and it is essential when applying the Newton method onve
tor fun
tions.4.3 Numeri
al derivation on
omplex planeIt is often desirable to perform numeri
 di�erential
al
ulus on
omplex fun
-tions. This is possible in MATLAB using the built-in
omplex variables i and

j.Complex fun
tions are fun
tions that map
omplex variables into
omplexplane. Any
omplex number
an be separated in to real and imaginary parts:
z = x + yi,where z ∈ C, x, y ∈ R. Similarily any
omplex fun
tion
an be divided intoreal and separate parts:

f(z) = u(x, y) + iv(x, y),where u, v : R2 → R and x, y ∈ R.Complex derivation at point z0 ∈ C is de�ned as a limiting value on a
omplexfun
tion f

f ′(z0) = lim
h→0

f(z0 + h) − f(z0)

h
,where h ∈ C.One should noti
e, that while this de�nition seems very mu
h like like its
ounterpart on the real line, the fa
t that h ∈ C makes matters a bit
ompli-
ated. Instead of two possible dire
tions of approa
h, there are now in fa
tin�nitely many dire
tions from where h
an approa
h 0. It usually pays to77

express the
omplex number in polar
oordinates to make the determinationof the limiting value easier.Evaluating the derivative numeri
ally may sometimes be de
eivingly easy:while the method need not ne
essarily be di�erent than the one we observedbefore for real fun
tions. As a rule MATLAB does not need any spe
ialinstru
tions on how to deal with
omplex variables:>> f = inline('z.^2','z')f = Inline fun
tion :f(z) = z.^2>> numdif(f,2+2*i,1e-8)ans =4.0000 + 4.0000iProblems rise when we en
ounter fun
tions that are not di�erentiable; whendealing with
omplex fun
tions these are not always easy to identify. Forexample the
omplex
onjugate: f(z) = f(x + iy) = x− iy = z is not di�er-entiable anywhere on
omplex plane, but numdif still provides the numeri-
ally evaluated derivative. This is somewhat de
eiving, be
ause the partialderivatives for the similar real valued fun
tion f(x, y) = (x,−y) exist andare
ontinous at every point of R
2.Usually di�erentiability at any one single point is not an interesting property.If U is some open disk of C and a
omplex fun
tion f is di�erentiable at everypoint of U , f is
alled holomorphi
 in U . The holomorphity of a
omplexfun
tion, while similar in nature to di�erentiability of a real valued fun
tion,is mu
h more stri
t a requirement. There is a link between the two, however.If we separate the real and imaginary
omponents of a
omplex fun
tion

f(x + iy) = u(x, y) + iv(x, y), in order for f to be holomorphi
, the realvalued fun
tions u and v must satisfy the partial di�erential equations
∂u

∂x
=

∂v

∂y
and ∂u

∂y
= −∂v

∂x
.These are
alled Cau
hy-Riemann equations. Holomorphism is an important
on
ept in fun
tion theory. It will be revisited when
omplex integration isstudied.

78

4.4 Numeri
al integrationIntegrals are an area of mathemati
s where numeri
al solutions are oftensought out, be
ause for many fun
tions it is impossible to de�ne an exa
tintegral. Even if it is possible, oftentimes it takes far less work and yieldsgood enough results to make numeri
al solutions su�
ient. The term numer-i
al quadrature, or just quadrature, is more or less synonym for numeri
alintegration.The basi
 problem
onsidered by numeri
al integration is to approximate asolution to a de�nite integral
∫ b

a

f(x)dx.First thought would probably be to
ount fun
tion's Riemann sums with suf-�
iently dense partition, but while Riemann sums provide a good theoreti
altool for de�ning the integrals, in appli
ations the skewed results they provideare usually insu�
ient.4.4.1 Trapezoid ruleThe idea of partitioning the interval is a useful one, but instead of approx-imating the fun
tion on the short interval in partition by a
onstant valueat either end, like the Riemann sums do, fun
tion's values are approximatedwith a line drawn through the fun
tions values at the endpoints of the inter-val. This method produ
es us a number of trapezoids, whose area is easilydetermined, and the sum of those areas is, depending on the smoothness ofthe fun
tion, and the sele
ted partition, a good approximation of the inte-gral.Using the knowledge that area of any trapezoid is de�ned as
A = (b − a)

f(a) + f(b)

2
,approximate the de�ned integral:

∫ b

a

f(x)dx ≈ 1

2

N
∑

i=2

(xi − xi−1)(f(xi) + f(xi−1)).In the formula N is the number of intervals studied. It depends on the inte-grand and the interval [a, b] what the N should be, and should the intervals
[xi−1, xi] be of uniform length or not.79

−1 −0.5 0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

30

35

40

Figure 4.1: Trapezoids drawn on
urve y = x3 + 2x + 4.Trapezoid rule in MATLABMATLAB has a built-in fun
tion
alled trapz. It takes two ve
tors as argu-ments,
ontaining the values xi and yi.Here is another way to implement the trapezoid rule: one that uses uniforminterval length, and takes a fun
tion as an argument.Listing 4.5: Algorithm for trapezoid rulefun
tion A = trapez(f,a,b,n)h = (b-a)/n;A = 0;for i = 1:n-1x = a + h*i;A = A + 2*f(x);endA = A + f(a) + f(b);A = 0.5*A*h;The fun
tion trapez is used like this>>trapez(�sin , 0, pi, 10) 80

ans =1.9835% Sin
e integral of sin from 0 to pi is%
os(0) -
os(pi) = 2% this is quite a

urate with as few as 10% intervals ..Expanding the formula to more dimensions is not impossible, or di�
ult,though one should keep tra
k of the quantity the trapezoids present.4.4.2 Simpson's ruleSimpson's rule is based on interpolation of the integrand fun
tion with aquadrati
 polynomial P (x). The polynomial P (x) takes the same values asintegrand at the endpoints a and b, and at the midpoint m = a+b
2
. UsingLagrange interpolation method, it is dis
overed, that

P (x) = f(a)
(x − m)(x − b)

(a − m)(a − b)
+ f(m)

(x − a)(x − b)

(m − a)(m − b)
+ f(b)

(x − a)(x − m)

(b − a)(b − m)
.

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

P(x) = The interpolant

f(x)=exp(−x)−sin(x2)+2*cos(x)

The interpolant P (x) is polynomial of se
ond degree, and hen
e easy to81

integrate:
∫ b

a

P (x)dx =
b − a

6

(

f(a) + 4f

(

a + b

2

)

+ f(b)

)

.One should noti
e, that in order for the Simpson's rule to produ
e goodapproximations, the integrand fun
tion should be relatively smooth over theinterval [a, b]; relatively meaning that the quadrati
 interpolant is a

uratesome a

eptable degree. However, if the integrand fun
tion os
illates heavilyor it la
ks derivatives at some points, or it has some other �bad� property,an a

urate interpolation over a long interval may be impossible.To
orre
t the situation where integrand fun
tion behaves badly the usualapproa
h is to break the interval [a, b] into a number of subintervals. TheSimpson's rule
an then be applied to ea
h subinterval individually, and thesum of these approximations is usually a good approximation of the de�niteintegral over the entire interval.Suppose that f is the integrand fun
tion, and the interval [a, b] is dividedinto n subintervals, n being an even number. Then the
omposite Simpson'srule gives
∫ b

a

f(x)dx ≈ h

3

(

f(x0) + 2

n/2−1
∑

j=1

f(x2j) + 4

n/2
∑

j=1

f(x2j−1) + f(xn)

)

,where xj = a + jh for j = 0 . . . n and h = (b− a)/n. Here is an implementa-tion in MATLAB
odefun
tion S = simpson(f,a,b,n)% f is the name of the integrand ,% a and b define the interval% n is the desired number of% subintervals% Here 's the first term of the sumS = f(a);n = 2*n;% make sure n is even% h is the length of the% subdivision. 82

l = (b - a)./n;% the uneven additionsfor j = 1:2:n-1x = a + l*j;S = S + 4*f(x);end% the even additionsfor j = 2:2:n-2x = a + l*j;S = S + 2*f(x);endS = S+f(b);S = h*S/3;Simpson's rule
an be extended to more than one dimensions, but is limitedto studying re
tangular shapes.4.4.3 Numeri
al integration in MATLABMATLAB o�ers a range of built-in fun
tions to numeri
ally
al
ulate de�niteintegrals. Most of them are based on adaptive Simpson's rule, so they
anbe expe
ted to produ
e a

urate results on fun
tions that are relatively wellbehaved.The simplest one to use is the fun
tion quad. It uses the Simpson's rule toestimate the de�nite integral of a fun
tion of single variable on an interval
[a, b]. It's variant, quadl takes the same parameters, but uses the Lobatto-quadrature instead. The previously mentioned fun
tion trapz essentially
omputes the integral using trapezoid rule. Here are a few examples on howto use these fun
tions.% First we set up the integrand fun
tions ,% and the integral fun
tions to observe the% a

ura
y of different methods.f = inline('sin(2*x) + 4*
os(2*x)','x');g = inline('x.^3 + 2*x -5','x');F = inline('2*sin(2*x)- 0.5*
os(2*x)','x');G = inline('0.25*x.^4 + x.^2 - 5*x','x');% first the trapezoid rulex = 0:0.2:4; 83

s1 = trapz(x,f(x));s2 = trapz(x,g(x));%disp(s1 - (F(4) - F(0)))% prints% -0.0341disp(s2 - (G(4) - G(0)))% prints% 0.1600% we then use the quad fun
tions1 = quad(f,0,4);s2 = quad(g,0,4);disp(s1 - (F(4) - F(0)))% prints% 3.7260e-09disp(s2 - (G(4) - G(0)))% prints% -7.1054e-15% Finally we observe the quadl - the Lobatto rules1 = quadl(f,0,4);s2 = quadl(g,0,4);disp(s1 - (F(4) - F(0)))% prints% 8.5916e-11disp(s2 - (G(4) - G(0)))% prints% -7.1054e-15MATLAB's integration methods are not limited only to fun
tions of sin-gle variable: the fun
tions dblquad and triplequad
ompute the integralsover re
tangular planes and volumes respe
tively. The syntax they use isdblquad(f,xmin,xmax,ymin,ymax), where f is a fun
tion handle to fun
-tion that takes two parameters, a ve
tor x and a s
alar y, and returns valuesin a ve
tor V
ontaining the values of the integrand.
84

4.4.4 Numeri
al integration on
omplex planeIntegral of
omplex fun
tion f is
alled
omplex integral. It is notated as
F (z) =

∫

C

f(z)dzwhere C is a path on
omplex plane. Before dis
ussing what this notation a
-tually means, one needs to de�ne a path and a integral of a
omplex fun
tionover real interval.De�nition 4.5. Let [a, b] be an interval on real line, U be an open subset of
C , and let γ : [a, b] → U be
ontinous. Then γ is
alled a path. If γ(a) = γ(b)path γ is
alled a
losed path. For the purposes of
omplex integrals pathsare usually
hosen so that they are also di�erentiable.De�nition 4.6. Let [a, b] be an interval on real line , and let f : [a, b] → Cbe a
ontinous fun
tion f(t) = v(t) + iu(t), where v and u are real valuedfun
tions. Integral of fun
tion f over the interval

∫ b

a

f(s)ds =

∫ b

a

v(s)ds + i

∫ b

a

u(s)ds.With the two previous de�nitions we
an de�ne a
omplex integral over a
urve C. Let γ map some real interval [a, b] to the path C. Now the
omplexintegral is
∫

C

f(z)dz =

∫ b

a

f(γ(t))γ′(t)dt.Example 4.7. Integrate f(z) = 2z + 3i over paths C1 and C2, when C1 :
[−1, 1] → C, C1(x) = ix, and C2 : [−π

2
, π

2
] → C, C2(x) = cos(x) + i sin(x).

85

Re

Im

C1

C2

Derivative of the path C1(x) = ix is simply i. This means that the
omplexintegral is:
∫

C1

2z + 3idz =

∫ 1

−1

(2is + 3i)ids =

∫ 1

−1

−2s − 3ds = −6.Derivative of the path C2 = cos(x)+ i sin(x) is C ′
2(x) = − sin(x)+ i cos(x) =

i(cos(x) + i sin(x)). Using this yields the
omplex integral
∫

C2

2z + 3i =

∫ −π
2

π
2

(2(cos(s) + i sin(s)) + 3i)i(cos(s) + i sin(s))ds =

i

(∫ −π
2

π
2

2(cos(s) + i sin(s))2ds +

∫ −π
2

π
2

3i(cos(s) + i sin(s))ds

)

=

i(3i · 2) = −6.The reason the two
omplex integrals yield the same result is that the in-tegrand fun
tion, f(z) = 2z + 3i is holomorphi
. It also means, that itis path independent: the value of the
omplex integral does not dependon the sele
ted path, provided that the fun
tion is holomorphi
 on the en-tire path. Observe now a
omplex integral of g(z) = |z| along the paths86

C1 and C2. We use Euler's formula to make the C2 more manageable:
C2(x) = cos(x) + i sin(x) = eix, and C ′

2(x) = ieix.
∫

C1

g(z)dz =

∫ 1

−1

|is|i ds = i,while
∫

C2

g(z) =

∫ −π
2

π
2

|eis|ieisds =

∫ −π
2

π
2

ieis = 2i.Be
ause g is not holomorphi
, the integrals along di�erent paths di�er.Computing
omplex integrals in numeri
ally does not di�er greatly fromreal integrals: essentially the idea of dividing the interval and summing thetrapezoids works in
omplex
ase as well.>> f = inline('2*z+3*i','z')f = Inline fun
tion :f(z) = 2*z+3*i% fun
tion trapez is the same one% defined in the se
tion on trapezoid% integrals>> trapez(f,-i,i,100)ans =-6% MATLAB 's own integral tool has no% problems either>> quad(f,-i,i)ans =-6Numeri
ally the real and
omplex integrals do not di�er, when dealing withholomorphi
 fun
tions. When the only the endpoints of the integral pathmatter, the integral
an always be evaluated along the straight line fromthe beginning of the path to the end of the path. However, if the integrandfun
tion is not holomorphi
, this is not the
ase, as was seen in the previousexample. In these
ases it is ne
essary use the de�nition to
ompute theintegral.>> quad(�abs ,-i,i)ans = 87

0 + 1.0000i>> g=inline('abs(
os(x)+i*sin(x))*i.*(
os(x)+i*sin(x))')>> quad(g,-0.5*pi ,0.5*pi)ans = 0 + 2.0000i4.4.5 More advan
ed integration methodsBoole's ruleBoole's rule approximates the integral
∫ x5

x1

f(x)dxby
omputing values of f at �ve equally spa
ed points, so that xk = x1 +
(k − 1)h and h = x5−x1

4
. In the Handbook of Mathemati
al Fun
tions withFormulas, Graphs, and Mathemati
al Tables, the estimate is expressed as:

∫ x5

x1

=
2h

45
(7f(x1) + 32f(x2) + 12f(x3) + 32f(x4) + 7f(x5)) + error.The error term is:

− 8

945
h7f (6)(c)where c ∈ [x1, x5]. Here is an example of Boole's method implemented inMATLAB.fun
tion I = boole(f,a,b)h = (b-a)/4;S = [f(a) f(a+h) f(a+2*h) f(a+3*h) f(a+4*h)℄;I = 2*h/45*(7*S(1)+32*S(2)+12*S(3)+32*S(4)+7*S(5));Be
ause the only fa
tor that
an be a�e
ted in the error term is the lengthof the integration interval, it might be a good idea to adapt the method forintervals too long. Here is an example on how to implement the adaptation.A word of warning though: this example makes use of re
ursion. Re
ursion,as a rule, is extremely resour
e
onsuming, and should be avoided at all
osts.fun
tion S = boole_re
 (f,a,b)if(abs(a-b)<0.5)S = boole(f,a,b); 88

return;endmiddle = (a+b)/2;S = boole_re
 (f,a,middle) + boole_re
 (f,middle ,b);Romberg's methodRomberg's method
reates a triangular array
onsisting of numeri
al esti-mates of the de�nite integral it approximates. It applies Ri
hardson extrap-olation
ontinuously on the trapezoid rule, until desired a

ura
y is a
hieved.The method
an be de�ned indu
tively:
R(0, 0) = 1

2
(b − a)(f(a) + f(b))

R(n, 0) = 1
2
R(n − 1, 0) + hn

∑2n−1

k=1 f(a + (2k − 1)hn)

R(n, m) = R(n, m − 1) + 1
4m−1

(

R(n, m − 1) − R(n − 1, m − 1)

)where hn = a+b
2n .With n and m su�
iently large,

∫ b

a

f(x)dx ≈ R(m, n)with the maximal error estimate for the R(m, n) being O(h2m+2
n).First
olumn of this triangular array, that is, values R(i, 0), i = 0 . . . n, are thetrapezoidal integrals
al
ulated with 2n +1 points. The �rst extrapolation isequivalent to the integral approximation using the Simpson's rule with 2n +1points.As far as
omputation is
on
erned, the re
ursive
alls within the loops arenot e�
ient at all. A better solution is to table the values, and updatethe table as we move along the algorithm. While some small ine�
ien
y issu�ered by not being able to preallo
ate the matrix R, it is a small pri
e topay for avoiding the deep re
ursions that would otherwise be ne
essary.Here is an example implementation of Romberg integral in MATLAB.fun
tion q = romb(f,a, b, tol)% Approximates the integral from a to b of f(x)dx% to toleran
e of tol by using the trapezoidal% rule with repeated Ri
hardson89

% extrapolation.% Make first estimate using one interval .n = 1; h = b-a;fval = [f(a); f(b)℄;R(1,1) = .5*h*(fval(1)+fval(2));% Keep doubling the number of subintervals until% desired toleran
e is a
hieved or max no. of%subintervals (2^10 = 1024) is rea
hed.% The array R will hold the triangular%array of estimates for F(b)-F(a)err = tol +80;% Initialize err to something > tol.disp(' q error est')s = 0;while err > tol && s < 10,s = s+1; n = 2*n; h = h/2;fvalnew = zeros(n+1,1);% Store
omputed values of f to reuse% when h is
ut in half. We preallo
ate% for speed.for i=1:2:n+1fvalnew (i) = fval((i -1)/2 + 1);end;% Compute f at midpoints of previous intervalsfor i=2:2:nfvalnew (i) = f(a+(i-1)*h);end;fval = fvalnew;trap = .5*(fval(1)+fval(n+1));for i=2:ntrap = trap + fval(i);end;% Use trapezoidal rule with new h value% to estimate integral . fval holds the% endpoints of 90

R(s+1,1) = h*trap;% Store new estimate in first
olumn of tableau.% Perform Ri
hardson extrapolations.% That is, we fill the slots R(s,2) to R(s,s+1)for j=2:s+1,R(s+1,j)=((4.^(j-1))*R(s+1,j-1)-R(s,j -1))/(4.^(j-1) -1);end;q = R(s+1,s+1);% Estimate error. This is usually an overestimate of% the error in q.% It is a more appropriate approximation for the% error at previous stage.% The error will de
rease , as either n or m grows.err = max([abs(q-R(s,s)); abs(q-R(s+1,s))℄);% Print out approximation to integral and error at ea
h% step , for monitoring
onvergen
e. For industrious% use ,
omment away. (Print is a
ostly operation)disp([q err℄)end;Monte Carlo - methodsMonte Carlo methods form a
lass of
omputational algorithms, that rely onevaluating repeated random samples to
ompute an approximate result to thegiven problem. Be
ause of their relian
e on large number of pseudo-randomnumbers, they are almost uniformly suited for
omputers, and tend to beused when a
quiring the deterministi
 solution is impossible or unfeasible.The term itself was invented in Los Alamos National Laboratory by physi
istsworking on nu
lear weapon proje
t during the se
ond world war.Our interest in Monte Carlo methods
on
ern numeri
al integration. Thepreviously presented methods of numeri
al integration are based on takinga number of evenly spa
ed sample points, and determining the quadrature.However, there are
ases when
omputing the de�nite integral in some de-terministi
 way, even numeri
ally, may turn out to be too di�
ult. In these
ases Monte Carlo integration method may prove to be a good
hoi
e.91

Informally, the idea of Monte Carlo integration is to approximate de�niteintegral over domain D, by pi
king a simple domain E, whose area is easilydetermined, and whi
h
ontains C. Random points are then sele
ted in E,knowing that some of these will also fall in C. The estimate for the integral
D is the area of E multiplied by the fra
tion of random samples in D.

∫

D

f(x)dx ≈ area(E)
n

Nwhere n is the number of random samples that fell within D and N is thetotal number of random samples. As the number N grows, the approximation
onverges towards the de�nite integral.Monte Carlo integration methods are very well suited to situations, whenthere is little or no mathemati
al stru
ture behind the integrand: for exam-ple integration of a noisy experimental data. For this reason Monte Carlomethods are eminently used in
omputational physi
s, while in other areasof mathemati
s deterministi
 methods are used.In order for Monte Carlo- integration to produ
e good results, the methodfor produ
ing random points must be sele
ted with
are; traditionally therandom points are uniformly distributed over the domain E, though othermethods have been suggested to de
rease the error.Example 4.8. In this example Monte Carlo integration is used to estimatethe volume of a
ube with a radius of one. To do this, take a number ofrandom samples from [−1, 1]× [−1, 1]× [−1, 1], and perform the evaluation.% we estimate the volume of a sphere% with radius of one% using Monte Carlo integration% we get n random triples from
ube% [-1,1℄x[-1,1℄x[-1,1℄% it
ontains the sphere with radius% of onen=input('How many random samples do you want?');hit = 0;for i = 0:na = 2*rand(1)-1;b = 2*rand(1)-1;
 = 2*rand(1)-1; 92

if(a^2+b^2+
^2 <= 1)hit = hit + 1;endenddisp('Estimated volume')disp(8*hit/n);disp('Real volume')disp(4/3*pi);Testing shows, that 3000 samples seems to produ
e quite good results, witherror of magnitude of 10−4.Gaussian quadratureThe
on
ept of orthogonal fun
tions, �rst de�ned in theory of ve
tor spa
es,gives us a useful tool to approximate a de�nite integral numeri
ally.De�nition 4.9. First, de�ne a ve
tor spa
e with
ontinuous fun
tions de-�ned on the interval [a, b]. Let f and g be su
h fun
tions, and let W be athird fun
tion, a weight fun
tion. De�ne then the inner produ
t for fun
tions
f and g with

〈f, g〉 =

∫ b

a

W (x)f(x)g(x)dx.If 〈f, g〉 = 0, the fun
tions are orthogonal. If 〈f, f〉 = 1,, f is said to benormalized. If every fun
tion in a set of normalized fun
tions is orthogonalwith ea
h other, it is said to be orthonormal.Using the previous de�nition, one
an
reate a set of polynomials havingexa
tly one polynomial pj(x) of the degree j, j = 0, 1, 2,The
onstru
tion is as follows. First set
p−1(x) ≡ 0, p0(x) ≡ 1,then

pj+1(x) = (x − aj)pj(x) − bjpj−1(x)where
aj =

〈xpj , pj〉
〈pj, pj〉

, bj =
〈pj , pj〉

〈pj−1, pj−1〉
, j = 1, 2, 3 . . .The fa
tor b0
an be sele
ted arbitrarily, usual
hoi
e is zero.93

Now, when approximating de�nite integral
∫ b

a

W (x)f(x)dx ≈
N

∑

j=1

wjf(xj)one
an sele
t the weights wj and abs
issas xj so, that the formula holdsas equivalen
e for all polynomials of at most 2N − 1 degree; the evaluationpoints are the roots of the orthogonal polynomials,
onstru
ted as shownbefore. The weights depend on the polynomials as well.One of the most
ommonly used set of polynomials are the Legendre poly-nomials Pn(x). It
an be de�ned as a
ontour integral
Pn(z) =

1

2πi

∮

(1 − 2tz + t2)−1/2t−n−1dt.The
ontour should en
lose the origin, and no other singular points, and itis traversed
ounter
lo
kwise.S
ale the integrand fun
tion to interval [−1, 1], and sele
t the weight fun
tion
W (x) ≡ 1. The evaluation points, or Gauss nodes, xi will then be the i:throot of the Pn, where n is the degree of the Legendre polynomial to be applied.The weights wi will be

wi =
2

(1 − x2
i)(P

′
n(xi)2)

.Here is an example
ode for Gaussian quadrature using Legendre polynomi-als.fun
tion I = gauss_quad2(f,a,b,n)I = 0;% The fun
tion must be s
aled to% [-1 1℄. wp and ws are s
aling% weights.wp = (b-a)/2;ws = (a+b)/2;% Find the abs
issasR = legroots (n);% define a step for derivationh = sqrt(eps);for i= 1:length(R)r = R(i); 94

% Built in Legendre fun
tion :% subsequent rows represent% in
reasing order: the first% row is the 0th order Legendre% fun
tion , i.e. Leg. polynomial.y = legendre (n,[r-h r+h℄);dy = (y(1,2)-y(1 ,1))/(2*h);% Determine the weightsw = 2/((1-r.^2) * (dy.^2));I = I + f(r*wp+ws)*w;endfun
tion r = legroots (N)% The fun
tion r = legroots (N)
omputes the roots of the% Legendre polynomial of degree N. For the purposes of% this
ourse , just have faith that it does what it% promises .n = 1:N-1; % Indi
esd = n./sqrt(4*n.^2 -1); % Create subdiagonalsJ = diag(d,1)+diag(d,-1); % Create Ja
obi matrixr = eig(J); % Compute eigenvaluesThe Gaussian method
an be made more a

urate by in
reasing the degree ofLegendre polynomial, or by sele
ting a di�erent set of orthogonal polynomialsand weight fun
tion altogether. In
ase of the latter,
ommon
hoi
es in
ludeweight fun
tion 1√
1−x2

with Chebysev polynomials, and e−x with Laguerrepolynomials.4.5 Symboli
 di�erential and integral
al
ulusWhile MATLAB is designed to be primarily a tool for numeri
al
omput-ing, sin
e 2008 MATLAB symboli
 math toolkit has in
luded the MuPAD
omputer algebra system,
apable of performing symboli

omputations. Itis somewhat inferior to its more famous
ompetitors, Maple and Mathemat-i
a, but it provides a good enough foundation on whi
h to perform symboli
operations.If used from MATLAB
ommand line, the MuPAD fun
tionality is a

essedthrough de�ning a variable symboli
 with the
ommand sym. After de
laringa variable symboli
 it does not hold a numeri
 value, like variable usually95

would. It is now
onsidered a symbol, and all operations performed on itare now done through the MuPAD kernel, rather than MATLAB. Here is anexample:% First we define two symboli
 variables , x and a.>> x = sym('x');>> a = sym('a');% We now test the arithmeti
s>> a * x*aans =a^2*x>> a + a + a +a + aans =5*a% Numbers
an also be given symboli
% representation.>> sym (11)/sym (22)ans =1/2In addition to the basi
 operators, the symboli
 toolbox o�ers a wide varietyof di�erent operators. In this se
tion we, however
on
entrate on those thathave to do with basi

al
ulus, starting with the obvious ones: derivationand integration. Symboli
 operators diff and int perform the derivation,or integration, if possible. They must be given a symboli
 expression as aparameter in order for them to work. Here are examples.% First define a symboli
 variable .>> x=sym('x');% Then define a symboli
 fun
tion :% it's only parameters are symboli
% variables .>> t = 8*x^3 + 15*x^2 - 56*x + 8;% We integrate the polynomial with% respe
t to x>> int(t,x) 96

ans =2*x^4+5*x^3-28*x^2+8*x% We then derivate in respe
t to x>> diff(t,x)ans =24*x^2+30*x-56% Then something more
omplex>> t = 1/(1+x^2);>> int(t,x)ans =atan(x)% Integration over areas works also>> y = sym('y');>> t = x^2+y^2;>> int(t,x,y)ans =1/3*y^3 -1/3*x^3+y^2*(y-x)% partial derivation works also...>> diff(t,x)ans =2*x% so do se
ond derivatives>> diff(diff(t,x),x)ans =2 97

% and finally the gradients>> h = x^3+ 4*y;>> A=[t h℄;>> diff(A,x)ans =[2*x, 3*x^2℄In addition to integration and derivation operators, MuPAD o�ers tools toobserve limits of fun
tions,
onvergen
e of series, and �nally, to �nd Ja
obianmatri
es and Taylor series for given fun
tions. Here are examples.% We start with simple limit:% the value of Napier 's
onstant e>> n = sym('n');>> s = (1+1/n)^n% The limit defaults to% 0 if no value is given>> limit(s, n, inf)ans =exp(1)% Then another limit , this time at 0>> x = sym('x');>> f = sin(x)/x;>> limit(f)ans =1% Now we shall attempt to find a Taylor series%for a
ompli
ated fun
tion at x_0 = 0;% the
ommand syms is shorthand for
reating% lists of symboli
 variables .>> syms x y>> f = sin(x)*x + exp(x) + 8>> taylor(f) 98

ans =9+x+3/2*x^2+1/6*x^3 -1/8*x^4+1/120* x^5% Without spe
ifi
ations the fun
tion% taylor finds the Taylor polynomial% at 0, and
omputes five first terms>> taylor(exp(-x),3,6)ans =exp(-6)-exp(-6)*(x -6)+1/2* exp(-6)*(x-6)^2% Here we spe
ified that we want the first% three terms
omputed at x_0 = 6% Finally we take a look at the symboli
% Ja
obian matrix>> f = [x^2+y*x; x*y+x; exp(x+y)℄;>> ja
obian (f,[x y℄)ans =[2*x+y, x℄[y+1, x℄[exp(y+x), exp(y+x)℄

99

Chapter 5Nonlinear equationsIn previous
hapters di�erent methods of solving systems of linear equationswere studied. Now more general types of equations are studied. Generally,obje
t is to �nd a ve
tor x = (x1, . . . xn),x ∈ Rn that satis�es the system ofequations










f1(x) = b1...
fn(x) = bn

, (5.1)where the fun
tions fj are non-linear. If the ve
tor x satis�es the systemof equations, it is
alled root. The methods that were available for solvinglinear systems of equations are no longer generally valid, and one must �ndother methods of solutions.Before trying to seek exa
t solutions to a non-linear system of equations, youmust make sure the solution exists. In
ase of linear algebra this was easilygleaned from theorems of linear algebra, in non-linear
ase there is no singleway of determining the existen
e of a solution.There is also no general algorithm of solving a system of non-linear equa-tions, if there are more than on equation. In
ase of just one equation, thebra
keting method is general, sin
e it requires knowledge only about the val-ues of fun
tion. For a system of equations, there are algorithms, that work,if some fairly light assumptions
an be made about the fun
tions fj . In orderfor several of these algorithms to work, somewhat a

urate initial guess isrequired.Most of the algorithms to �nd the root of 5.1 are based on iterative methods.Sin
e it is usually impossible to numeri
ally �nd the exa
t root, one needs to100

have some preset
ondition to halt the iteration on
e the desired a

ura
y isa
hieved. It should also be noted, that the iterations do not always
onvergetoward the root, and to avoid in�nite loops, a halting
ondition should beset for this eventuality as well.5.1 Root �nding algorithms5.1.1 Bra
ketingBra
keting, or bise
tion method, is a very general algorithm for dis
overingthe roots of a fun
tion of one variable. Only thing it requires is, that thereexist an interval [a, b], where the fun
tion is
ontinuous, and that the fun
tion
hanges sign on the interval, i.e. f(a)f(b) < 0. Bra
keting makes use of theintermediate value theorem, whi
h says, that a fun
tion f is
ontinuous onthe interval [a, b], it gets at least all the values [f(a)f(b)]. Should the f(a)and f(b) have di�erent signs, it implies that there is a value c, a ≤ c ≤ b,so that f(c) = 0. The basi
 idea of the bra
keting is this: �rst
he
k thatinterval endpoints have di�erent signs. Then evaluate the fun
tion at themidpoint m = b−a
2
. If the f(m) = 0 or numeri
ally
lose enough, stop thealgorithm and return m. If not
he
k the signs of f(m)f(a) and f(m)f(b).If f(m)f(a) is positive, it is known that the root lies on the interval [m, b],and if it is not, it's known that the root lies on the interval [a, m]. Thensele
t the appropriate interval, and repeat the iteration, and keep repeatingit until you rea
h the root.Bra
keting is very robust algorithm: it produ
es good results and does notrequire
omplex pro
edures to a
quire the root. It is not without its weak-nesses, however. As a rule, the bra
keting method
onverges slowly when
ompared to other root �nding methods. Also, it �nds only one root; andonly that root. Finding other roots requires a priori knowledge where theroots lie, or adaptive implementation of the algorithm. Here is an exampleimplementation of bra
keting in MATLAB.fun
tion x0 = bra
ket(f,xmin ,xmax)% finds a root of the fun
tion f on the% interval xmax , xmin. f should
hange its% sign on this interval at least on
eif(f(xmax)*f(xmin)>0)error('Positive or negative endpoints ');101

endm= (xmax -xmin)/2;m = xmin+m;while abs(f(m))>1e-8disp(f(m));if(f(m)*f(xmin)>0)xmin =m;elsexmax = m;endm = (xmax -xmin)/2;m = xmin + m;endx0=m;5.1.2 Fixed point iterationThe iterative methods to solve the system 5.1 are almost uniformly basedon the �xed points of fun
tion. The point x is said to be a �xed point offun
tion f , if x = f(x). The idea is to write the iteration in the form
xk+1 = f(xk).The x is not restri
ted into being a real or
omplex number: it
an be ave
tor, or even a fun
tion. If the sequen
e (xk)
onverges towards somevalue x0, and the fun
tion f is
ontinuous, it holds that
x0 = f(x0).This method for �nding the root of equation x0 = f(x0) is
alled �xed pointiteration. Next su�
ient and ne
essary properties for fun
tion f to have inorder for the sequen
e (xk) to
onverge are studiedBana
h's �xed point theoremIn 1922 a polish mathemati
ian named Stefan Bana
h proved a theoremthat stipulates when a fun
tion has �xed points, and guarantees that theyare unique. He presented his theorem for metri
 spa
es, whi
h allows the�xed point iteration to be used in not only real- and
omplex spa
es, but,for example, in the spa
e de�ned by
ontinuous fun
tions on some interval.102

De�nition 5.2. Let B be a
omplete ve
tor spa
e with s
alar �eld C. B isa Bana
h spa
e, if it has a norm || · || so that1. ||x|| ≥ 0 ∀x ∈ B,2. ||x|| = 0 ⇔ x = 0,3. ||γx|| = |γ|||x||, ∀γ ∈ C, ∀x ∈ B,4. ||x + y|| ≤ ||x|| + ||y|| ∀x, y ∈ B .De�nition 5.3. Let (X, dX) and (Y, dY) be metri
 spa
es. The fun
tion
f : X → Yis
alled Lips
hitz-
ontinuous, if there exists a real
onstant K ≥ so that forall x1, x2 ∈ X

dY (f(x1), f(x2)) ≤ KdX(x1, x2).If 0 < K < 1, the fun
tion f is
alled
ontra
tion.Theorem 5.4. (Bana
h's �xed point theorem). Let A be a
losed subset ofBana
h spa
e B, and let the fun
tion f be Lips
hitz
ontinuous
ontra
tion.Then the fun
tion f admits one, and only one �xed point x0. Furthermore,the iterative sequen
e xn = F (xn−1)
onverges to x0 regardless of the sele
tionof the initial point.Proof. First remember, that B is a
omplete ve
tor spa
e and hen
e, everyCau
hy sequen
e
onverges, and that the sequen
e (xk) is a Cau
hy-sequen
eif for every ǫ > 0 there exists a number nǫ so that
||xm − xn|| < ǫ, when m, n ≥ nǫ.The �xed point iteration xk = f(xl−1) gives us:

||xk+1 − xk|| = ||f(k) − f(xk−1)|| ≤ K||xk − xk−1|| =

K||f(xk−1) − f(xk−2)|| ≤ K2||xk−1 − xk−2 = . . .this gives us indu
tively
||xk+1 − xk|| ≤ Kk−l||xl+1 − xl||.103

Then show that (xk) is a Cau
hy-sequen
e:
||xk+m − xk|| = ||xk+m − xk+m−1 + xk+m−1 − . . . − xk||

≤
k+m−1
∑

j=k

||xj|| ≤ Kk(Km−1 + Km−2 + . . . + K + 1)||x1 − x0||

= Kk 1 − Km

1 − K
||x1 − x0||.Be
ause 0 < K < 1, (xk) is a Cau
hy-sequen
e. Therefore the
losed subset

A
ontains the limiting value
s = lim xk, s ∈ A.Furthermore f(s) = f(lim xk) = lim f(xk) = lim xk+1 = s, so s is a �xedpoint of f . Show then, that this �xed point is unique through
ounter as-sumption: suppose that s1 and s2 are �xed points of f , and ||s1 − s2|| > 0,we get

||s1 − s2|| = ||f(s1) − f(s2)|| ≤ K||s1 − s2||whi
h leads to situation K ≥ 1, whi
h
ontradi
ts the supposition that thefun
tion f is a
ontra
tion. Therefore s1 = s2, and �xed points are unique.You
an now use the �xed point iteration to solve equations of the form
f(x) = x, if the fun
tion f satis�es the required
onditions. Che
king the
ontra
tion-
ondition is
an be simpli�ed in Eu
lidean spa
es: fun
tion f isa
ontra
tion, if |f ′(x)| < c, c ∈ (0, 1).Here is a simple implementation of how �xed point iteration
ould be imple-mented in MATLAB.fun
tion fp = bana
h(f)% f is assumed to be a fun
tion% of single ve
tor variable .% A fixed point of f is% returned if it was found% in less than 100 iterations.% Otherwise 0 is returned .fp = 0;
tr = 0; 104

h = sqrt(eps);% We make an elementary
he
k of% Lips
hitz propertyif((f(fp+h)-f(fp-h)/2*h)>1)error('Not a
ontra
ting fun
tion ')endwhile((abs(fp-f(fp))>1e-8) && (
tr <100))fp = f(fp);end5.1.3 Se
ant methodSe
ant method uses sequen
e of se
ant lines drawn to the graph of the stud-ied fun
tion. Roots of these lines will, given good enough an initial guess,
onverge towards the root of the fun
tion. Good enough guess means, thatone must have knowledge, that a root exists on some interval (a, b).Se
ant line of a
urve is a line that lo
ally interse
ts with
urve at twodi�erent points. Se
ant method uses the line that is drawn to interse
t the
urve of the fun
tion at the points of initial guess ass interpolant for thefun
tion on this interval. It then makes a new estimate on a new interval,using the root of the se
ant line as a new endpoint. Here is the re
urren
eformula for the se
ant method:
xn = xn−1 − f(xn−1)

xn−1 − xn−2

f(xn−1) − f(xn−1)
.The two values, x0 and x1, required for the �rst re
ursion are the initialguess, and ideally should lie
lose to the root.

105

x0

f(x 0)

x1

f(x 1)

x2

f(x 2)

x3

f(x 3)

Se
ant method, when it
onverges, is somewhat slow, but usually betterthan bra
keting method. There are, however,
ases when bra
keting willprove to be more e�
ient: espe
ially if a smooth fun
tion's se
ond derivative
hanges sign near the root. Se
ant method
an be extended to more than ondimensions: it is then
all Broyden's method. Here is an example MATLABimplementation of the se
ant method in one dimension.fun
tion x = se
ant(f,x0,x1)% Se
ant method for MATLAB% parameter f is a fun
tion% handle or inline fun
tion .% x0 and x1 are the initial% guess points.xold = x0;xnew = x1;
tr =0;% initialize xnew as x0% for
onvenien
e purposes% We set up a halting
onditions% both for finding the root% and for the
ase that% the series (x_n) does not%
onverge .while(abs(f(xnew))>1e-8)aux = xnew; 106

xnew = xnew - f(xnew)*((xnew -xold)/(f(xnew)-f(xold)));xold = aux;
tr =
tr+1;endx = xnew;One should note, that the algorithm makes no suppositions for the initialvalues: the root does not have to lie between them. This means, that themethod does not ne
essarily
onverge at all. Next an algorithm is presentedthat requires the root to be bra
keted between the interval's endpoints.5.1.4 False position methodFalse position method (sometimes
alled Regula Falsi-method)
ombinesbra
keting and se
ant methods. It begins as the bra
keting method does:by sele
ting an interval, with fun
tion values at interval ends having oppo-site signs. Then, instead of
hoosing the midpoint for new interval endpoint,
hoose the root of se
ant line drawn at these two points, and then
hoosingthe new interval so, that the fun
tion values at the endpoints have di�erentsigns. Formally:
ck =

f(bk)ak − f(ak)bk

f(bk) − f(ak)
{

ak+1 = ck if f(ck)f(ak) < 0

bk+1 = ck if f(ck)f(bk) < 0
.In
ase the studied fun
tion is
ontinuous and the initial
ondition f(a0)f(b0) <

0 holds, one will always �nd a root with this method. This method is gener-ally faster than bra
keting, but as with se
ant method, there are
ases when�nding the fun
tions roots requires many iterations.

107

x

y

x0

f(x 0)

x1

f(x 1)

x2

Here is a MATLAB implementation of method of false position.fun
tion x = regfalsi (f,a,b)if(f(a)*f(b)>0)error('no sign
hange on interval ');endxnew = a;xold = b;
tr = 0;while(abs(f(xnew))>1e-8 &&
tr <100)
 = (f(xold)*xnew -f(xnew)*xold)/(f(xold)-f(xnew));if(f(xnew)*f(
)<0)xold = xnew;xnew =
;elsexnew =
;endendx = xnew;5.1.5 Newton's methodProbably the most famous method for �nding roots of a fun
tion is the New-ton's method, named after sir Isaa
 Newton. The method will �nd su

es-sively better approximations for roots of a real valued fun
tion using tangent108

lines �tted to the fun
tion. Newton's method requires that the studied fun
-tion is di�erentiable.The idea behind the method is to use approximation gained by
al
ulatingthe fun
tions Taylor series:
T (f ; x0) = f(x0) + f ′(x0)(x − x0) +

1

2
f ′′(x0)(x − x0)

2 + . . .at point x0 + ǫ. Obtain
f(x0 + ǫ) = f(x0) + f ′(x0)ǫ +

f ′′(x0)

2
ǫ2 . . .When ǫ is very small, one
an approximate the fun
tion value by keepingterms only to the �rst order:

f(x0 + ǫ) ≈ f(x0) + f ′(x0)ǫ.If you now set f(x + ǫ) = 0, and use the previous approximation to
omputethe ǫ, you get:
ǫ0 = − f(x0)

f ′(x0)
.One
an see, that the approximation is the equation of the tangent line of thefun
tion f at the point (x0, f(x0)). It inter
epts the x-axis at point (x1, 0).Set now, that x1 = x0 + ǫ0. This gives an idea for an algorithmi
 approa
hfor �nding a root: set

ǫn = − f(xn)

f ′(xn)and
al
ulate xn by
xn = xn−1 − ǫn.If the obtained sequen
e (xn)
onverges, it
onverges towards a �xed point,whi
h is pre
isely the root. This gives us the traditional formula for Newton'siteration:

xn+1 = xn − f(xn)

f ′(xn)
.Whether the sequen
e given by Newton's iteration
onverges is a
ompli
atedquestion; however for the purposes of this
ourse it is enough to say, thatin a su�
iently small neighborhood of a simple root of a twi
e di�erentiablefun
tion, Newton's method
onverges quadrati
ally to that root.109

Figure 5.1: First two steps of Newton iteration

x0

f(x 0)

f(x0)+f ’(x)x
0

x1

f(x 1)

x2

f(x 2)
x

y

f(x)

Another interesting question is that if a fun
tion f has more than one root,whi
h one will it
onverge towards, if it
onverges at all. The answer issomewhat unexpe
ted: on
omplex plane roots of fun
tions with more thantwo roots yield a rational map of C, and the Julia set of this map is a fra
tal,or to put it more poeti
ally: this is a manifestation of
haos.Here is an example MATLAB implementation of Newton's method in singledimension.fun
tion root = mynewt(f,x0)% f is the fun
tion we whose% roots we wish to find , x0 is% the initial guess.% mynewt uses the numdif fun
tion% that was introdu
ed in the% numeri
al
al
ulus se
tion.% If a suitable solution is% not found in 100 iterations% attempt is abandoned . 110

tr =0;x =x0;h = sqrt(eps);while(abs(f(x))>1e-8 &&
tr <100)df = numdif(f,x,h);x = x - (f(x)/df);
tr =
tr+1;endroot = x;Newton's method
an be generalized for ve
tor fun
tions F : Rn → Rn bysubstituting the the fun
tions derivative by Ja
obian matrix of the fun
tion.This puts somewhat more requirements for the fun
tion, as the Ja
obianmatrix must be invertible at the evaluation points, and as we rememberfrom the
al
ulus se
tion, this means the fun
tion must have an inverse insome small environment near the evaluation point.Sear
hing for the root of the fun
tion F is analogous to solving a system ofequations






















f1(x1 . . . xn) = 0

f2(x1 . . . xn) = 0...
fn(x1 . . . xn) = 0

.Assuming that the fun
tion F = (f1(x), . . . fn(x))T ,x = (x1 . . . xn) is di�er-entiable, following holds:
F (x0 + δ) ≈ F (x0) + Jf(x0)δ,where JF (x0) is the Ja
obian matrix of F evaluated at x0.As in one dimensional
ase, using su

essive linearisation approximations forthe fun
tion F yield:

0 ≈ F (xn+1) ≈ F (xn) + JF (xn)(xn+1 − xn).This gives us the Newton-iteration step:
xn+1 = xn − JF (xn)−1F (xn).If the initial guess x0 is lo
ated
lose enough to the root, the sequen
e (xn)
onverges to the root. 111

Here is an one MATLAB implementation of the Newton's method in multipledimensions.fun
tion root = ve
torNewton(f,x0)% f is a inline fun
tion or a fun
tion handle.% f should an nx1 ve
tor as a parameter , and% it should return an nx1 ve
tor.x = x0;
tr = 0;while((abs(norm(f(x)))>1e-8) && (
tr <100))jf = ja
ob(f,x,length(x0), length(x0));x = jf\(jf*x-f(x));
tr =
tr +1;endroot = x;fun
tion Jf = ja
ob(f,x,m,n)% f is a fun
tion with m
omponents ,% x is a ve
tor with n
omponents ,% the result is an m by n matrix.Jf = ones(m,n); h = 1e-4;for j =1:ne = zeros(n,1); e(j) = 1;Jf(:,j) = (feval(f,x+h*e)-feval(f,x-h*e))/(2*h);end;5.1.6 Brent's methodSin
e there exist situations where se
ant method and false position - methodlose in e�
ien
y to the bra
keting method, one
an pose a question:
an thesemethods be
ombined in a way whi
h makes best use of the best propertiesof all three methods? It turns out that there is: Brent's method
ombinesthe se
ant method, bra
keting and inverse quadrati
 interpolation.The idea is as follows: you wish to solve an equation of the form f(x) = 0. Aswith bra
keting method, you need two points, a and b, so that f(a)f(b) < 0.This means that if f is
ontinuous, a

ording to intermediate value theorem,it must have a root between a and b.Before presenting the Brent's method, we will study the so
alled Dekker'siteration, on whi
h the the Brent's method is based on. Dekker's iteration112

uses three points at ea
h step of the iteration: bn, the most re
ent estimate forthe root of f , an, is a point for whi
h f(an)f(bn) < 0, and |f(bn)| ≤ |f(an)|,and the previous iterate, bk−1. For the �rst iteration set b−1 = a0.At ea
h step of iteration, two possible values for the next iterate are
om-puted; �rst one by the se
ant method:
s = bn − bn − bn−1

f(bn) − fn−1
,and the se
ond using the bra
keting method:

m =
an + bn

2
.If bk < s < m, then bn+1 = s, otherwise, bn+1 = m. Then a new
ontrapoint is sele
ted. If f(an)f(bn+1 < 0), no
hange is ne
essary, and an+1 = an,otherwise an+1 = bn. �nally test, if |f(an+1)| < |f(bn+1)|. If the inequalityholds, then an+1 is (probably) a better estimate for the fun
tion root, so swapthe values an+1 and bn+1.Brent's method introdu
es several additional tests to ensure a fast
onver-gen
e. First, if f(an), f(bn) and f(bn−1) are distin
t, the method uses inversequadrati
 interpolation instead of se
ant method.Inverse quadrati
 interpolation is another root �nding method for fun
tion

f(x), using Lagrange's quadrati
 interpolation to approximate the inverse of
f . The quadrati
 inverse formula is a re
urren
e relation:

xn+1 =
f(xn−1)f(xn)

(f(xn−2) − f(xn−1))(f(xn−2) − f(xn))
xn−2+

f(xn−2)f(xn)

(f(xn−1) − f(xn−2))(f(xn−1) − f(xn))
xn−1+

f(xn−2)f(xn−1)

(f(xn) − f(xn−2))(f(xn) − f(xn−1))
xn.Se
ond, set some toleran
e δ, and, if previous step used bra
keting, an in-equality

|δ| < |bn − bn−1|must hold. If it doesn't, next iteration will also use bra
keting.If previous iteration used inverse quadrati
 interpolation or se
ant method,an inequality
|δ| < |bn−1 − bn−2|113

must hold in order for another interpolation to be made: otherwise bra
ketingwill be used.These tests are performed, be
ause in Dekker's method a situation may arise,where |bn+1 − bn| will be very small, leading to extremely slow
onvergen
eof (bn).Additionally, in order for an interpolation to be performed at step n of algo-rithm, if step n − 1 used bra
keting this inequality has to hold:
|s − bn| <

1

2
|bn − bn−1|in order to perform a interpolation at step n. If step n−1 used interpolation,an inequality

|s − bn| <
1

2
|bn−1 − bn−2|has to hold to
ontinue performing interpolations.These inequalities ensure, that
onse
utive interpolation step sizes halve ev-ery two iterations, and furthermore, ensure that interpolation step size willbe less than δ, thus for
ing the use of bise
tion method, on
e the root hasbeen lo
alised to a small enough an interval.Brent's method is somewhat
ompli
ated, but it is very popular method of�nding roots: for example MATLAB's fun
tion fzero uses it. Here is anexample implementation in MATLAB.fun
tion root = brent(f,x0,x1)% The fun
tion brent will attempt% to find the fun
tion root on% a given interval . The fun
tion% must a single variable real valued% fun
tion , and it must
hange sign% on the given interval% The parameter f is fun
tion handle% or a string holding the fun
tion name% x0 and x1 must be real numbers that% satisfy f(x0)*f(x1)<0.% Che
k the initial
onditionif(f(x0)*f(x1)>0)error('no sign
hange on (a,b)');end 114

a= x0;b = x1;% make sure the endpoints% are in right orderif(abs(f(x0))< abs(f(x1)))b = x0;a = x1;end
 = a;s = a;% mflag keeps tra
k of the previous step:% if true(1) previous step was bise
tion% if false (0) it was an interpolation% or se
ant step.mflag = true;delta = 1e-4;d = 0;%
onditions for ending the iteration :% small enough a fun
tion value or small% enough a an intervalwhile(abs(f(b))>1e-8||abs(f(s))>1e-8||abs(b-a)<1e-10)% Do we use interpolation or the se
ant rule ?if(norm(f(a)-f(
))>1e-11 && norm(f(b)-f(
))>1e-11)s = inversequadrati
(f,a,b,
);else% Se
ant rules = b-f(b)*((b-a)/(f(b)-f(a)));end% Now a list of
onditions that define ,% if we take a bise
tion rule instead
1 = (0.25*(3* a+b)<s || s<b);
5 = (mflag == 1 && abs(s-b)>= abs(b-
)/2);
2 = (mflag == 0 && abs(s-b)>= abs(b-
)/2);
3 = (mflag == 1 && abs(b-
)<delta);
4 = (mflag == 0 && abs(
-d)<delta);if(
1||
2||
3||
4||
5)s = (a+b)/2;mflag = true;else 115

mflag = false;endd =
;
 = b;% Define a new interval : determine% the enpointsif(f(a)*f(s)<0)b = s;elsea = s;end% put the points in right orderif(abs(f(a))<abs(f(b)))aux = a;a = b;b = aux;endendroot = b;fun
tion s = inversequadrati
(f,a,b,
)s = (a*f(b)*f(
))/((f(a)-f(b))*(f(a)-f(
)));s = s + (b*f(a)*f(
))/((f(b)-f(a))*(f(b)-f(
)));s = s + (
*f(a)*f(b))/((f(
)-f(a))*(f(
)-f(b)));5.1.7 Roots of polynomialsThe root �nding methods presented thus far have not made little distin
tionon the fun
tions whose roots we have wished to �nd: there have been re-quirements to be sure, but �nding the roots has been based on the fun
tionsderivatives, or Lips
hitz-
ontinuity or intermediate value theorem. If thestudied fun
tion is a polynomial, one
an take advantage of the properties ofthe fun
tion itself.The fundamental theorem of algebra states, that nth polynomial p(x) has nroots in the
omplex plane, so a root will always be found. Also, polynomialsare di�erentiable and
ontinuous on entire real line. Using these propertiesallows us to develop algorithms for �nding the roots of polynomials. Whileone
an use any of the previous algorithms to �nd roots of polynomials, aswell as any other fun
tion, methods
rafted for polynomials tend to be more116

a

urate and
onverge faster than the more general ones. As an example ofan root �nding algorithm for polynomials, we present the Laguerre's method.Laguerre's methodA

ording to the fundamental theorem of algebra, we
an write every poly-nomial p(x) of nth degree in form
p(x) = C(x − x1)(x − x2) . . . (x − xn),where xi, i = 1 . . . n are the roots of p. To get the Laguerre's method, studythe natural logarithm, and logarithmi
 derivatives of the p.

log |p(x)| = log |C| + log |x − x1| + log |x − x2| + . . . + log |x − xn|,

d log |p(x)|
dx

=
1

x − x1
+

1

x − x2
+ . . . +

1

x − xn
,

d2 log |p(x)|
dx2

= − 1

(x − x1)2
+

1

(x − x2)2
+ . . . +

1

(x − xn)2
.Denote the �rst and se
ond derivatives of p with

F (x) =
d log |p(x)|

dx
, G(x) =

d2 log |p(x)|
dx2

.Now some assumptions are required: assume, that the root we are
urrentlylooking for, x1 is a
ertain distan
e a away from our
urrent estimate x, whileall other roots are at same distan
e b away from our
urrent best estimate.Denote : a = x − x1 and b = x − xi, i = 2 . . . n. This allows you to express
F and G in terms of a and b:

F ≡ 1

a
+

n − 1

b
,

G(x) ≡ 1

a2
+

n − 1

b2
.Solving these equations for a gives

a =
n

F ±
√

(n − 1)(nH − G2)where the sign is sele
ted to give the largest magnitude for the denominator.117

This gives an approa
h for an algorithm: Sele
t an initial guess x0, and onevery iteration k,
ompute F = p′(xk)
p(xk)

and G = F 2 − p′′(xk)
p(xk)

. Then set a aspreviously:
a =

n

F ±
√

(n − 1)(nH − G2)and
hoose the sign appropriately. Finally we set xk+1 = xk − a.One should note that if the set of assumptions made in the derivation of themethod does not hold for some polynomial P , P
an be transformed intopolynomial Q for whi
h the assumptions do hold true. Finding all the roots
an be derived through �nding one root: if a + ib is a root, a − ib is also aroot; if x0 is a root of a polynomial P , P = (x−x0)Q(x) for some polynomial
Q of (n − 1)th degree, and fa
tor (x − x0)
an be redu
ed away.Here is an example implementation of Laguerre method to �nd one root ofa polynomial in MATLAB.fun
tion z = laguerre (p, x0, tol , itmax)% the parameter p should be 1xn or nx1% ve
tor holding the
oeffi
ients of% polynomial P(x).% x0 should be an initial guess for the% root , and it determines , towards whi
h% root the method
onverges% tol and itmax determine the halting%
ondition for the method: it halts% if f(xn)<tol or if number of iterations% ex
eed the itmax.n = length(p)-1;dp = polyder(p);dp2 = polyder(dp);
tr = 0;% Here we use the built -in fun
tion% polyder that provides a derivative% for polynomial.while(
tr <itmax)px = polyval(p, x0);dpx = polyval(dp, x0);dp2x = polyval(dp2 , x0);%is the
urrent guess ok?if(abs(px) < tol)z = x0; 118

returnend% Here we
ompute the FF = dpx/px;% And here the GG = F*F-dp2x/px;% here 's the square root part of% adis
 = sqrt((n-1)*(n*G-F*F));% Here we de
ide if we
hoose% positive or negative signif (abs(F-dis
) < abs(F+dis
))denom = F+dis
;elsedenom = F-dis
;enddx = n / denom;% update the x0x0 = x0 - dx;% if the
hange is very small ,% there is no point in%
ontinuing.
tr =
tr +1if (abs(dx) < tol)z = x0;returnendendz = x0;5.1.8 Root �nding in MATLABMATLAB o�ers tools for �nding roots of �nding single variable fun
tions.First one is the fun
tion fzero, whi
h is a built-in implementation of theBrent's method. It attempts to �nd a root lo
ated near a parameter lo-
ation x0. The fun
tion fzero works on any single variable fun
tions, butreturns only one root. For polynomials there exist the fun
tion roots, whi
hwill
ompute all the roots of given polynomial; remember that MATLABhandles polynomials as ve
tors
ontaining the
oe�
ients a0 . . . an, in or-119

der an, an−1, . . . a0. The fun
tion roots is based on the
ompanion matrixmethod.5.2 Minimization algorithmsMinimization algorithms, or more generally, optimization, is a �eld of math-emati
s that studies sele
ting the best possible element from some set ofalternatives. Usually this
an be redu
ed to �nding minimums and maxi-mums of a real valued fun
tion. Finding maximums
an in turn be redu
edto minimizing problem: �nding maximum of fun
tion f is same as �ndingminimum of −f .As with �nding roots of non-linear fun
tions, minimization �nds its basisin great theorems of
al
ulus: the extremal value theorem, proved KarlWeierstrass in 1860, says, that a
ontinuous, real valued fun
tion on a
om-pa
t set attains its maximum and minimum value. These values are lo-
al to the
ompa
t set. This allows the bra
keting idea we already pre-sented with the root-�nding algorithms: if there exist points x, y, z so that
f(y) < min{f(x), f(z)}, then there exists a minimum at some y0, x < y0 < z.Optimization problem is
alled
onstrained, if the variable have some a priorirestri
tions. Generally this makes the problem easier, as it makes possible toapply the extremal value theorem. Also, sin
e problems fa
ed in real worldare also usually
onstrained, it is not an unreasonable supposition. As willbe seen, there are minimum sear
h methods, that require an un
onstrainedspa
e to work.If the studied fun
tion is di�erentiable, the problem of minimums be
omeseasier:
al
ulus tea
hes us, that fun
tions extremal values are lo
ated eitherat the fun
tions
riti
al points, or at the boundary of the domain. Criti
alpoints of fun
tion f : Rn → R are points x0 where partial derivatives ∂f(x0)

∂xi
=

0 for all i = 1 . . . n. However, a
riti
al points may be minimum, it is notne
essarily so: it might be a lo
al optima, or a saddle point. If the fun
tion istwi
e di�erentiable, it is possible to distinguish minima, maxima and saddlepoints using the se
ond derivatives test (so
alled Hessian matrix). Twi
edi�erentiability is a restri
ting
ondition, and even if fun
tion f were twi
edi�erentiable, �nding the
riti
al points
an be di�
ult. In these
ases anumeri
al study of the problem is
alled for.Optimization is a area of mathemati
s, that, while it has been widely studied,is based on heuristi
s. Many of the methods are extremely
omplex, and the120

proofs of their
onvergen
e, if they even exist, even more so. The methodspresented here are only the proverbial tip of the i
eberg, and meant only toserve as an example: there are many more, most of them guaranteed to workbetter in some situation than those presented here.5.2.1 Golden se
tion sear
hGolden se
tion sear
h is a method for �nding the minima of a unimodalsingle variable fun
tion f . It is based on the idea of bra
keting by su

essivelynarrowing the interval on whi
h the extremum is known exist. This is possibledue the unimodality requirement: it means that there exists an a < m < b,and that for all a < x ≤ m f is monotoni
ally de
reasing, and that for all
m ≤ x < b f is in
reasing. The algorithm gets its name from maintainingtriples of points, whose distan
es form a golden ratio.The algorithm works as follows: you have points x1, x2, x3 so that x1 < x2 <
x3 and f(x2) < min{f(x1), f(x3)}. This means, that the minimum mustlie on the interval (x1, x3). Then sele
t the new interval by
onsidering two
ases:1. If x2 − x1 > x3 − x2 sele
t x0 ∈ (x1, x2) ful�lling the golden ratiorequirement.If f(x1) < f(x0), the new interval is de�ned by (x0, x3) with x2 beingthe best estimate for minimum.If f(x0) < f(x2) the new interval is (x1, x2) and x0 is the new bestestimate for the minimum.2. If x2 − x1 < x3 − x2 we sele
t x0 ∈ (x2, x3) so, that the distan
es forma golden ratio.If f(x1) < f(x0), the new interval is de�ned by (x0, x3) with x2 beingthe best estimate for minimum.If f(x0) < f(x2) the new interval is (x1, x2) and x0 is the new bestestimate for the minimum.Keep iterating the steps 1 and 2 until the length of the interval (x1, x3) isvery small.The easiest way to implement the golden se
tion sear
h with
omputers is touse re
ursion. As has been stated previously, as a rule re
ursion should be121

avoided, but sin
e depth of the re
ursion is unlikely to be very deep, hen
eits use in this example:fun
tion m = golden(f,x1,x2,x3)% The golden se
tion sear
h finds% the minimum of unimodal fun
tion% f,% parameter f should be an inline% fun
tion or a fun
tion handle ,% x1 and x3 should define the% interval known to
ontain a% minimum and x2 should be the% initial guess for the minimum.tol = 1e-8;phi = 2- ((1+sqrt(5))/2);% 2 - the golden ratiox4 = x2 + phi*(x3-x2);% a value between x2 and x3,% the new guess for the fun
tion% minimum.% This will end the algorithm , when the interval% is small enough. Please note that there is no%
he
k on the re
ursion depth , but MATLAB defaults% to maximum of 500 re
ursions.if(abs(x3-x1)<tol*(abs(x2)+abs(x4)))m = (x3+x1)/2;returnend% Sele
t the new interval for the% sear
h , and
all re
ursively.if(f(x4)<f(x2))m = golden3(f,x2,x4,x3);returnelsem = golden3(f,x4,x2,x1);return 122

end5.2.2 Brent's methodBrent's method presented previously as a root �nding tool
an be modi�ed foruse in optimization tasks. The method
an be roughly summarized like this:on ea
h iteration a quadrati
 polynomial is �tted on three existing points,gained through either previous iterations, or initial guess. The minimum ofthis parabola is then taken as a guess for the fun
tions minimum. If it liesbetween the interval that we know holds the minimum, then it is a

epted asan interpolating point, and used to generate a new, smaller interval that holdsthe minimum. If the point is una

eptable, then a regular golden se
tion stepis taken.The idea is very mu
h like in the root �nding version: we attempt to speed thealgorithm by interpolation. In this
ase �tting a parabola to three existingpoints, and taking the minimum of the parabola as the best guess for thefun
tion minimum. Then a test is made: if the point lies within the boundsof the
urrent interval, it is a

epted and used to generate a new, shorterinterval. If it is not a

epted, a golden se
tion sear
h step is taken.fun
tion [xmin fxmin℄ = brentmin (F,ax,bx,
x)itmax = 100;% The 1-1/(golden ratio) for% golden se
tion sear
hgolden = (1/ sqrt(5))/2;gold = 1-1/gold;xmin =0;fxmin= 0;zeps = eps*1e-6;iter =0 ;tiny = 1e-8;f = f
n
hk(F);% Distan
e moved on the last stepd = 0;% Distan
e moved on the step before% laste = 0; 123

% Set up the bra
ket limits
orre
tlyif(ax<
x)a = ax;b =
x;elsea =
x;b = ax;end% Set up the initial guess for the% fun
tion minimum lo
ation and% valuex = bx;w = bx; v =bx;xm = 0.5*(a+b);% Set up the numeri
al toleran
etol1 = abs(x)*tiny+zeps;% The sear
h loop
he
ks for maximum iterations% and the lenght of sear
h intervalwhile(iter <itmax && (abs(x-xm)<= abs(2*tol1 -0.5*(b-a))))xm = 0.5*(a+b);tol1 = abs(x)*tiny+zeps;% Che
k if step before last was big enough to try a% paraboli
 step. Note that this will fail on first% iteration , whi
h must be a golden se
tion step.if(abs(e)>tol1)% Constru
t a trial paraboli
 fit through x, v and wr = (x-w)*(f(x)-f(v));q = (x-v)*(f(x)-f(w));p = (x-v)*q-(x-w)*r;q = 2*(q-r);if(q<0)p = -p;endq = abs(q);etemp = e;e = d;% Let 's
he
k if the parabola minimum is indeed124

% on the intervalif(abs(p)>=abs (0.5*q*etemp)||p<=q*(a-x)||p>=q*(b-x))% The parabola minimum is not on our interval% so we take a golden se
tion step insteadif(x>=xm)e = a-x;elsee = b-x;endd = gold*e;else% The minimum IS on our
urrent interval% so we take a paraboli
 stepd = p/q;u = x+d;if (u-a < 2*tol1 || b-u < 2*tol1)d = sign(xm-x)*tol1;endendelse% The step before was not big enough , so% we take a golden se
tion stepif(x>=xm)e = a-x;elsee = b-x;end d = gold*e;end% Now we make sure the step is big enough.if (abs(d)>= tol1)u = x+d;elseu = x+sign(d)*tol1;end% At this point u holds our best estimate for% fun
tion minimum lo
ation . Now we evaluate% fun
tion at u and judge , if it really is.% Remember , x is the old best estimateif(f(u)<=f(x)) 125

% The
urrent estimate was better than old% so we sti
k with itif(u>=x)a = x;elseb = x;endv = w;w = x;x= u;else% The newer estimate wasn 't better , so% we
an limit the sear
h to the interval% it did not
overif(u<x)a = u;elseb = u;endif(f(u)<=f(w)||w==x)v=w;w=u;elseif(f(u)<=f(v)||v==x||v==w)v=u;endendxmin = x;fxmin = f(x);% If one wishes to observe the%
onvergen
e or non -
onvergen
e% un
omment%disp([xmin fxmin℄)end5.2.3 Sear
h methods for multivariable fun
tionsPowell's methodPowell's method is one method of �nding minimums of multivariable realvalued fun
tions. It is based on the fa
t that if the fun
tion f(x0 . . . xn)has a minimum at (x00
. . . xn0

), then the fun
tion f rea
hes its minimum inthe dire
tion of the ve
tor ei at f(0, . . . xi0 . . . xn). Simplisti
ally, the idea of126

Powell method is to perform n single dimension minimizations along ea
h ofthe axes.The algorithm pro
eeds as follows:
• Set ui = ei, i = 1, . . . , N

• Save the initial point P0.
• While = 1, . . . , N move from Pi−1 to (Pi−1, ui) minimum Pi

• While = 1, . . . , N − 1, set ui := ui−1.
• Set uN = PN − P0.
• Move from PN to (PN , uN) minimum, and denote the point with P0.
• Repeat as long as fun
tion values get smaller.Powell's method is useful when trying to �nd lo
al optima of fun
tions, thatare
ontinuous but whose derivatives are either di�
ult or impossible toobtain. The e�
ien
y of the algorithm itself is very mu
h dependent on themethod used to �nd the minimums along the sear
h ve
tors. One
an
hoosebetween any sear
h algorithms made for fun
tions of one variable.Steepest des
ent methodIf the studied fun
tion is di�erentiable, but the zeros of derivatives are eitherdi�
ult to �nd or there are none, one option is to use geometri
 intuition: thelo
al minimum is probably in the dire
tion of the fun
tion's deepest des
ent.The idea deepest des
ent method is to determine the dire
tion of deepestdes
ent at initial point, determine the minimum on this point, move to thatpoint, and iterate, until a lo
al minimum is found.The
onvergen
e of this method is very mu
h dependent on the good numer-i
al properties of the fun
tion, as well as the properties of the derivative andthe method of �nding the minimum on the dire
tion of the deepest des
ent.There are examples when this algorithm takes extremely long time to �ndthe fun
tion minimum of a di�erentiable fun
tion. The Rosenbro
k fun
tionis one su
h example.

127

Quasi-Newton methodsQuasi-Newton methods are a set of algorithms, that use the Newton's methodto �nd a stationary point of the fun
tion where the gradient of the fun
tionis 0. These algorithms assume, that the fun
tion
an be approximated with aquadrati
 polynomial in some area around the minimimum. It then uses thegradient and Hessian matrix (�rst and se
ond derivatives in single dimension)to �nd the stationary point.The idea is built on the se
ond order expansion of Taylor series of fun
tion
f at x0 + δ.

f(x0 + δ) ≈ f(x0) + f ′(x)δ +
1

2
f ′′(x)δ2.The fun
tion f attains its minimum when δ satis�es the equation

f ′(x) + f ′′(x)δ = 0.The left hand side of the se
ond order Taylor expansion gives
f ′(x − δ) = f ′(x) + δf ′′(x).If the fun
tion f is twi
e di�erentiable and well enough behaved, and providedthe initial guess x0 is reasonably
lose to the fun
tion's
riti
al point, usuallydenoted by x∗, the sequen
e yielded by previous equations:

xn+1 = xn − f ′(xn)

f ′′(xn)will
onverge towards the
riti
al point of f .One should bear in mind that gradient of 0 at some point x0 does not guar-antee that there exists a lo
al optimum at x0. For di�erentiable fun
tions itis a ne
essary but not su�
ient
ondition.Like its root �nding relative, quasi-Newton methods
an be generalized intohandling fun
tions of more than one variable. It is a
hieved by substitutingthe �rst order derivative with its generalization, the gradient ve
tor, and theinverse of the se
ond derivative by the inverse of the Hessian matrix. Withthese substitutions the sequen
e gets the form
xn+1 = xn − (Hf(xn))−1∇f(xn),where Hf(xn) is the Hessian matrix of the fun
tion f evaluated at xn. Thequasi-Newton methods avoid
omputing the Hessian matrix, and use di�erentapproximations for it instead. 128

Here is a very simple implementation of Newton's minimum sear
h in MAT-LAB.fun
tion [fmin ,xmin ℄ = newtmin(f,n,x0)% Minimization using Newtons method.% Fun
tion will attempt to find the% root of gradient (f).% parameter f should be a fun
tion handle% of the studied fun
tion .% f should take only one argument : a ve
tor% with n
omponents , and it should return a% real value.% n is the size of the argument ve
tor% x0 is the initial guess for the minimum.x = x0;for i = 1:20x = x-inv(Hessian(f,n,x))* numgrad(f,x,n);endfmin = f(x);xmin = x;fun
tion H =Hessian (f,n,x0)% Fun
tion Hessian attempts to%
ompute the Hessian matrix of% the argument fun
tion at point% x0.% f should be a fun
tion handle of a% fun
tion whi
h takes ve
tor arguments ,% n should be the size of the argument% ve
tor ,% x0 is the point at whi
h the Hessian% is determined.% Note this fun
tion uses of the% the Symboli
 toolkit.% Define a symboli
 ve
tor to use as% a parameterfor i = 97:97+n-1A(i-96) = sym(
har(i)); 129

endH = sym(zeros(n,n));% First take a Ja
obian matrixJ = ja
obian (f(A));% Then derivate ea
h
olumn againfor i=1:nH(:,i)= (diff(J,A(i)));end% finally do the substitutionH =subs(H,A,x0);fun
tion D=numgrad(f,x0,n)D = zeros(n,1);h = 1e-6;e = zeros(n,1);for i = 1:ne(i) = 1;D(i) = (f(x0+e*h)-f(x0-e*h))/2*h;e(i) =0;end5.2.4 Sear
hing minimum in MATLABMATLAB provides some very sophisti
ated tools for �nding the fun
tionsminima: �rst and foremost is the fun
tion fminsear
h, that attempts to �ndthe fun
tions minimum using the Nelder-Mead algorithm. The number ofvariables is not
onstrained, but there must be a
learly de�nable minimum.A fairly a

urate initial guess is required. The fun
tion fminbnd attemptsto �nd a fun
tion minimum on the interval [x0x1]. At the most simple formfminsear
h takes as a parameter only the fun
tion handle and the initialguess. However, as was dis
ussed in linear algebra se
tion, it is possible touse the fminsear
h to �t parameters to a model so that it will �t the givendata.Here is one idea how to implement the parameter �t using the fminsear
h.fun
tion lam = paramfit (fm, xdata , ydata , initguess)% fun
tion paramfit attempts to find% the parameters that best fit the% model fm to data (x,y). 130

% fm should be a fun
tion handle , inline% fun
tion or a string
ontaining the% fun
tion . It must be in form% f(x,parameters), and parameters must% be
ontained in one single ve
tor.% xdata and ydata must hold two ve
tors% of equal length.% The minimum is sear
hed around initguess% whi
h must be of proper length , and
lose% enough to% make sure fm is fun
tionfmodel = f
n
hk(fm);% set up the obje
t fun
tion ...% fobj = S(lambda) = Sum(f(x_i ,lambda)-y_i)^2% We wish to find the lambda that provides the% smallest value of fobj.fobj = inline('norm((fmodel(xdata ,lambda)-ydata))' ,...'lambda','fmodel ','xdata','ydata');lam = fminsear
h(fobj ,initguess ,[℄,fmodel ,xdata ,ydata);

131

Chapter 6Di�erential equationsDi�erential equation is an equation for some unknown fun
tion y, that relatesthe values of the fun
tion with its derivatives. If fun
tion y has one variable,the equation will be
alled ordinary di�erential equation. If y has morethan one variables, it will be
alled partial di�erential equation. Order ofdi�erential equation is de
ided by the highest order of derivatives that ispresent in the equation.In order to obtain unique solutions for any di�erential equation, one needssome a priori knowledge of the problem. These are usually given in the formof initial values: y(x0) = y0. If di�erential equation has set initial value, itis
alled initial value problem.Sometimes solution for a di�erential equation is only wanted on some giveninterval. In these situations initial
onditions are usually given at the end-points of the interval. Di�erential equation with these kinds of
onstraints is
alled boundary value problem.Ordinary di�erential equation of �rst order with initial values
an be writtenin as
y′(x) = f(x, y(x)); y(x0) = y0, (6.1)where f : R2 → R is dependent on both x and y(x). The goal is to �nda fun
tion y(x), that realizes both the di�erential equation and the initialvalue problem. Solutions are sought by integrating both sides of the equationwith respe
t to x. This gives us

y(x) = y0 +

∫ x

x0

f(s, y(s))ds.132

However, �nding an exa
t integral for arbitrary is usually impossible. Forthis reason, numeri
al solutions play a large role in appli
ations
on
erningdi�erential equations.Other things to
onsider are the existen
e and uniqueness of the solution.The Pi
ard-Lindelöf theorem states, that a initial value problem has a uniquesolution, if the right-hand side of the 6.1 is Lips
hitz-
ontinuous
ontra
tion.Example 6.2. Solve an initial value problem
y′(x) = x2 − 2 − y(x); y(0) = 2.Integrating both sides dire
tly will not work, but by multiplying both sideswith an integrating fa
tor ex, one gets

exy′(x) + exy(x) = ex(x2 − 2).Using the produ
t rule of di�erentiation reversely simpli�es the equation to
d

dx
(y(x)ex) = ex(x2 − 2).Now integrating both sides gives

y(x)ex =

∫

ex(x2 − 2) = ex(x2 − 2x) + C,where C ∈ R is the integration
onstant. By multiplying this equation with
e−x one gets

y(x) = x2 − 2x + e−xCWe apply y to initial value
ondition y(0) = 2 and get
y(0) = C = 2and �nally one gets

y(x) = x2 − 2x + 2e−x.This y �lls both the di�erential equation and the initial value
ondition.As one
an see, solving even a fairly simple di�erential equation
an be ane�ort
onsuming proje
t.Solutions for di�erential equations in MATLAB
an be obtained symboli
allyusing the MuPad kernel, or numeri
ally.Symboli
ally the solution happens like this133

>> dsolve('Dy = x^2-2-y','y(0)=2','x')ans =-2*x+x^2+2*exp(-x)It is also useful to study systems of di�erential equations, where both y and fare ve
tors: y = (y1 . . . yn), f = (f1 . . . fn). Systems of di�erential equationsare important when one
onsiders di�erential equations of higher order: one
an redu
e solving the di�erential equation
y(n) + g1(x)y(n−1) + . . . gn−1y

′ = gn(x)into solving a system of equations
y(n) = f(x, y, y′, . . . y(n−1)).Before moving on to numeri
al solution to di�erential equations,
onsiderthe problem for a moment; to be well posed the problem must have solution,and the solution must be unique. There are di�erential equations, that donot have solutions at all; if a solution exists, there is little guarantee, thatit is unique. For the purposes of this
ourse the existen
e and uniquenesstheorem of Pi
ard and Lindelöf is su�
ient.Theorem 6.3. Let fun
tion f be
ontinuous in strip S = {(x, y) : a ≤ t ≤

b, y ∈ R} with a, b ∈ R. Let there exist a
onstant L so that
|f(x, y1) − f(x, y2)| < L|y1 − y2|,when x ∈ [a, b] and y1, y2 ∈ R. If these
onditions hold, and the initial values

(x0, y0) ∈ S (with y0 = y(x0)), the initial value problem
y′(x) = f(x, y(x)); y(x0) = y0,has a solution, and it is unique.6.1 Numeri
al solutions to ODE'sThe methods available for solving ordinary di�erential equations are numer-ous, but most are based on dis
retization the initial value problem 6.1, and
reating an estimate for the values of y at x1 < x2 < . . . < xn, where

xn+1 = xn + hn. The sele
tion of dis
retization largely di
tates the a

ura
y134

of solution: later on methods will be introdu
ed that have built-in dis
retiza-tion.Generally the estimate values yk ≈ y(xk) depend on the values yk−1 . . . yk−j.If j = 1, the method in question is single step method, and if not, it ismultistep method.Single step methods
an always be written either in form
yn+1 = yn + φ(xn, yn, hn),when the method is expli
it, or in form

yn+1 = yn + φ(xn, yn, yn+1, hn),when the method is impli
it.6.1.1 Euler's methodProbably the most famous expli
it single step method for obtaining numer-i
al solutions for initial value problems is the Euler's method, named afterLeonhard Euler. The goal of the method is to estimate values of the fun
tionat dis
rete points x1 . . . xn, xi−1 < xi, xi = xi−1 + h. The in
rement h is
alled step size.To derive the Euler's method,
onsider initial value problem
y′(x) = f(x, y(x)), y(x0) = y0.Taylor series of fun
tion gives estimates for fun
tion's values in the vi
inityof its origin based on its derivative. Computing the �rst two terms of theTaylor expansion of fun
tion y(x) at x0 yields

T (y, x0) = y(x0) + y′(x0)(x − x0).Using the ODE gives form to the derivative:
T (y, x0) = y0 + f(x, y(x))(x − x0).Euler's method makes the assumption that this is a good estimate for thebehavior of the y, and uses this to
ompute the estimate for the y(x1) =

y(x0 + h):
y1 = y0 + f(x, y(x0))(x1 − x0) = y0 + hf(x0, y(x0)).135

This gives is the general iteration step for the Euler's method:
yn+1 = yn + h(f(xn), yn).Here is an example of Euler's method in MATLAB.% An example using Euler 's method to% solve a differential equation% numeri
ally% The example equation :% dy/dx = y, y(0) = 1% h is sele
ted to be 0.3,% and the solution interval% is [0, 4℄h = 0.3;X = 0:h:4;Y = zeros(size(X));Y(1) = 1; % the initial valuefor i = 2: length(X)Y(i) = Y(i-1) + h*Y(i-1);end% Then
ompare it to the real solutionYR = exp(X);plot(X,Y,'b',X,YR,'r')

136

0 0.5 1 1.5 2 2.5 3 3.5 4
0

5

10

15

20

25

30

35

40

45

50

Euler method
True solution

Criti
ism of the methodAs the previous example shows, Euler's method is sus
eptible to error, whenthe study interval is big: this is due to the fa
t, that se
ond degree Taylorpolynomial is not very a

urate method of estimating values of the fun
tion,and whatever error it produ
es, is a

umulated into the next iteration. Hen
e,the estimates produ
ed by the Euler's estimate invariably deteriorate as onemoves further away from the initial value point. To
ombat the deterioration,the step size must be usually set quite small, thus requiring many iterationsIt is mostly be
ause of this phenomena that Euler's method serves mostlyas a histori
al
uriosity, rather than a viable method for a
tually solving adi�erential equation numeri
ally.Ba
kward Euler methodInstead of �nite di�eren
e approximation, ba
kward Euler estimates thederivative with
y′(t) ≈ y(t) − y(t − h)

h
.137

This leads to following iteration step:
yn+1 = yn + hf(xn+1yn+1).Ba
kward Euler method is an example of impli
it method: in order to
om-plete the iteration step n, one needs to solve the given equation for yn. Thereare several ways to do this numeri
ally: you may �nd suitable methods inprevious
hapter. While
omputational requirements are
onsiderably morethan that of regular Euler's method, the numeri
al stability is notably better.Exponential Euler methodAnother example of expli
it single step methods is the exponential Eulermethod. If it so happens, that the ODE of the initial value problem takesthe form

y′(x) = K − Ly(x),then a approximate numeri
al solution
an be obtained through iteration
yn+1 = yne

−Lh +
K

L
(1 − e−Lh).In some spe
i�
 situations this method
an be very a

urate, but generallythe error term is
omparable to that of the Euler's method.6.1.2 Runge-Kutta methodsRunge-Kutta method is not so mu
h a one single method, rather than a
ol-le
tion of both expli
it and impli
it multistep methods. They were developedat the end of 19th
entury by German mathemati
ians C. Runge and M.W.Kutta.The idea behind the Runge-Kutta methods is to in
rease the number ofevaluation points in the interval [xn, xn+1]. This is a
hieved by using a teststep at the middle of the interval to
an
el out error terms of lower order.The method introdu
ed here is the �
lassi
al Runge-Kutta method�, or thefourth order method, usually known simply as RK4.Given an initial value problem

y′(x) = f(x, y(x)), y(x0) = y0138

de�ne terms
k1 = f(xn, yn),
k2 = f(xn + h

2
, yn + 1

2
hk1),

k3 = f(xn + h
2
, yn + 1

2
hk2),

k4 = f(xn + h, yn + hk3).Terms ki de�ne the slope of the estimated solution during the interval: k1estimates the slope at the beginning of the interval [xn, xn + h]. The term
k2 estimates the slope at midpoint of the interval [xn, xn + h] using k1 todetermine a value for the y at xn + h

2
using the Euler's method; k3 does thesame, but using k2 as the slope. Term k4 is the estimate for the slope at theend of the interval.The �nal estimate for the slope on the interval [xn, xn + h] is obtained as aweighted sum of the estimates for the slope: slope k will be:

k =
1

6
(k1 + 2k2 + k3 + k4).The iteration step will be same as in Euler's method, only instead of usingjust f to estimate the fun
tion progression, use the k.

yn+1 = yn + hk = yn +
h

6
(k1 + 2k2 + k3 + k4).RK4 is a fourth order method, meaning that the value yn is dependent onfour previous values of y. It also means, that the error term of this methodwill be of order O(h4) .Note the similarity between the numeri
al methods: if f is independent inrespe
t to y(x), then the RK4 is the Simpson's numeri
al integration method.Here is an example implementation of Runge-Kutta method for a samplefun
tion. In a
tuality, though, there is little reason to implement Runge-Kutta methods yourself. There are many fun
tions to a
hieve this in MAT-LAB fun
tion library.% Example of using Runge -Kutta method% of the fourth order to solve a% differential equation% dy/dx = -2y+x, y0 = 2.h = 0.5;X = 0:h:8; 139

Y = zeros(size(X));% for simpli
ity 's sake , define% f as inline fun
tionf = inline(' -2*y+x','y','x');Y(1) = 2;for i = 2: length(X)k1 = f(Y(i-1),X(i-1));k2 = f(Y(i-1)+0.5* h*k1,X(i-1)+0.5* h);k3 = f(Y(i-1)+0.5* h*k2,X(i-1)+0.5* h);k4 = f(Y(i-1)+h*k3,X(i-1)+h);Y(i) = Y(i-1)+h/6*(k1+2*k2+2*k3+k4);end% Che
k the solution versus symboli
% result.syms x y;y = dsolve('Dy = -2*y+x, y(0)=2','x');x = 0:0.02:8;y = subs(y,x);plot(X,Y,'r.',x,y,'b');

140

0 1 2 3 4 5 6 7 8
0.5

1

1.5

2

2.5

3

3.5

4

RK4 at evaluation points
Actual solution

As one
an see, the numeri
al estimates fall ni
ely alongside the a
tual solu-tion. This parti
ular fun
tion, however, is of well behaved variety;
omput-ing the solution with Euler method will yield nearly identi
al solution. Thismeans, that the sample equation, y′ = −2y + x is not sti�. A sti� ODEis an equation, that will work parti
ularly poorly under numeri
al solutionmethods.6.2 Solving ODE's in MATLABMATLAB has a range of fun
tions dedi
ated to solving di�erential equationsnumeri
ally. There are methods of high and low orders, impli
it and expli
itand for sti� and non-sti� equations. The fourth order Runge-Kutta methodthat was introdu
ed earlier,
an be found in the fun
tion ode45. All of theode methods are invoked similarly: for example ode45(f,[0,8℄,5.5). Firstargument is the right-hand side of the ODE, se
ond argument de�nes thebeginning and endpoints of the interval where the solutions are sought, and141

the �nal obligatory argument is the initial value at the beginning of theinterval.Example 6.4. Solve a se
ond order initial value problem y′′ +3.5y′+4y = 0with initial values y(0) = 2, y′(0) = 0 and give a numeri
 approximationfor solution in at x = 2. Manual solutions would lead to
omputing the
hara
teristi
 equations for the y, but for MATLAB solution, the ODE iswritten in form y′′ = −3.5y′ − 4y. By denoting y1 = y, y2 = y′ solving these
ond order di�erential equation is equivalent to solving the system
{

y′
1 = y2

y′
2 = −3.5y2 − 4y1

.To get MATLAB solution, �rst one needs to
reate the di�erential equation,or rather, the right hand side of one:% First set up the right hand side of the differential% equation>> dy = inline('[y(2); -3.5*y(2)-4*y(1)℄','x','y')dy = Inline fun
tion :dy(x,y) = [y(2);-3.5*y(2)-4*y(1)℄% Note the in
lusion of x in the equation , even though% it is not used in it: this is the requirement of the% ode fun
tionsAfter that, solve it and plot the solution. In this
ase, use ode23 fun
tion.[t y℄ = ode23(�deqex , [0 2℄, [2 0℄)% In this example , t is the variable% Remember the initial values:% y'(0) = 0, y(0)=2.% After this there is a n-ve
tor t, and% nx2 ve
tor y. y(:,2) holds the solution% for the y', the y(:,1) for the y.plot(t,y(: ,1)); grid% Numeri
 estimate for the y(2) is the% last element of the y(:,1) = 0.0801.Plotted solution on the interval [0, 2] looks like this. Note that solving thisequation symboli
ally is not possible in MATLAB.142

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

t

y

6.3 Boundary value problemsInitial value problems are not the only type of problems that fa
e di�eren-tial equations: in real life appli
ations a more
ommon situation is, when asolution is sought on some �nite interval, and initial values are given at theendpoints of the interval. Di�erential equations with these kinds of restraintsare
alled boundary value problems, and the restraining
onditions boundary
onditions.Solving boundary value problems is signi�
antly more di�
ult than initialvalue problems, even in numeri
al sense.Numeri
al solutions for boundary value problems are obtained through �nitedi�eren
e methods. Let's observe a boundary value problem of form
y′′(x) = p(x)y′(x) + q(x)y(x) + r(x) a < x < b; y(a) = α, y(b) = β.Denote h = (b−a)/N with some N ∈ N and xj = a+ jh with j = 0, 1, . . .N .Approximate the derivatives using Taylor polynomials:

{

y(x + h) = y(x) + hy′(x) + h2

2
y′′(x) + O(h3)

y(x − h) = y(x) − hy′(x) + h2

2
y′′(x) + O(h3)

.143

Summing up y(x − h) and y(x + h) yields
y(x− h) + y(x + h) = 2y(x) + h2y′′(x) + O(h3),from whi
h you
an solve y′′:
y′′(x) =

y(x + h) + y(x − h) − 2y(x)

h2
+ O(h).Likewise, one
an solve y′(x), and get the usual �nite di�eren
e:

y′(x) =
y(x + h) − y(x − h)

2h
+ O(h2).Using these approximations one
an write:











y′(x) =
y(xj+1)−y(xj−1)

2h
+ O(h2)

y′′(x) =
y(xj+1)−2y(xj)+y(xj−1)

h2 + O(h).Having done denote yj = y(xj), and substitute into the problem:
yj+1 + 2yj + yj+1 = p(xj)

h

2
(yj+1 − yj−1)h

2(q(xj)yj + r(xj)). (6.5)Solving this equation for j = 1, . . . N −1, and using the boundary
onditions
y0 = α, yn = β, leads to tridiagonal system of linear equations.















a1 c1 0
b2 a2 c2.

bn−2 an−2 cn−2

bn−1 an−1





























y1

y2...
yn−2

yn−1















=















w1

w2...
wn−2

wn−1















.The
oe�
ients aj , bj, cj , as well as the right hand side are obtained from theequation 6.5.6.4 Partial di�erential equationsIf a di�erential equation
on
erns a fun
tion of more than one variable, and itspartial derivatives, it is
alled partial di�erential equation. Partial di�erential144

equations are often used to formulate problems
on
erning many variables,su
h as propagation of heat or sound.Solutions to partial di�erential equations in
lassi
al sense are di�
ult toobtain, and thus the numeri
al methods play a huge role in seeking solutionsto these kinds of problems. The di�
ulty arises from the fa
t, that unlikein the
ase of one variable problems, there is no universal theorem to statewhen there exists a solution, and whether it is unique.Partial di�erential equations are usually
lassi�ed into prototypes. Some ofthe most important prototypes are the wave equation
utt = c2uxx,the heat equation
ut = αuxx,and the Lapla
e equation, and it's inhomogeneous variant, the Poisson equa-tion

∂2u

∂x2
+

∂2u

∂y2
= 0

∂2u

∂x2
+

∂2u

∂y2
= f(x, y); u|∂D = g(x, y).Classi
 study of partial di�erential equations has
on
entrated on study of
hara
teristi
s of these prototypes,
lassi�
ation of equations a

ording tothese prototypes. In this
ourse the theory behind these equations is notdis
ussed, just the numeri
al solutions.6.4.1 Wave equationWave equations are the ar
hetype of a hyperboli
 partial di�erential equa-tions. It
on
erns a fun
tion u(x, t), where variable t parametrizes the time,and the ve
tor x the lo
ation on the plane. Fun
tion u is a solution for awave equation, if it satis�es an equation

∂2u

∂t2
= c2∂2u

∂x2
,and whatever boundary
onditions have been spe
i�ed. Usual boundary
onditions in
lude at least

{

u(x, 0) = f(x),

ut(x, 0) = g(x)
.145

These
onditions mean, that state of the studied system is known at moment
t = 0 with respe
t to x, and the speed of
hange in system is known at themoment t = 0.Wave equations, as the name suggests, des
ripts the behavior of wave-likemotion, be it light, sound (three-dimensional equations), some liquid (two-dimensional) or a vibrating string (one-dimensional). The
onstant
oe�-
ient c in the equation is the speed of the wave, and solution u will be themagnitude of the wave in lo
ation spe
i�ed by x at the time t.Simpli
ity of solutions depend largely on the dimension of x, and on whether
x is
onstrained or not. If the equation is posed in single dimension withunrestri
ted x, then the solution is yielded by the D'Alembert's formula:

u(x, t) =
1

2
(f(x − ct) + f(x + ct)) +

1

2c

∫ x+ct

x−ct

g(s)ds.There are similar formulas available in higher dimensions. If the solutionis limited to some �nite area, no formula exists: rather, the solutions areobtained through separation of variables whi
h will lead to Fourier series. Ifrestri
ted to some �nite interval of real line, and for some �nite duration, thewave equation will take form


















∂2u
∂t2

= c2 ∂2u
∂x2 , 0 < x < L, 0 < t < T

u(x, 0) = f(x),

ut(x, 0) = g(x),

u(L, t) = u(0, t) = 0

.To numeri
ally solve the equation, denote by R = {(x, t) : 0 < x < L, 0 <
t < T}. R is a re
tangle on plane. The idea is now to subje
t R to samekind of �nite di�eren
e study that was introdu
ed with ordinary di�erentialequations. This is a
hieved by dividing the R into (n− 1)(m− 1) re
tanglesof equal size. Denote the division interval of x-axis with ∆x = h and of t-axiswith ∆t = k. Also, denote with xi = ih and tj = jt; the real fun
tion valueat (xi, tj) = u(xi, tj) and the numeri
al estimate uij.To move forward use the familiar formula to approximate the se
ond partialderivatives:

uxx(x, t) ≈ u(x + h, t) − 2u(x, t) + u(x − h, t)

h2
,

utt(x, t) ≈ u(x, t + k) − 2u(x, t) + u(x, t − k)

k2
.146

Then repla
e the exa
t fun
tion values with estimates uij, and the originalequation gives:
ui,j+1 − 2uij + ui,j−1

k2
= c2ui+1,j − 2uij + ui−1,j

h2
.Then denote r = ck/h, and substitute:

ui,j+1 − 2uij + ui,j−1 = r2(ui+1,j − 2uij + ui−1,j).This equation gives an expli
it formula for ui,j+1:
ui,j+1 = (2 − r2)uij + r2(ui+1,j + ui−1,j) − ui,j−1.To
ompute values on row j = 2, one needs both the rows j = 1 and j = 0.These are obtained from the boundary
onditions:

u(xi, k) ≈ u(xi, 0) + ut(xi, 0)k = f(xi) + kg(xi) = ui,1and with these one
an
ompute the ui,2. Numeri
al solution is now obtainedby iteratively
omputing the rows of the latti
e.Example 6.6. As an example, solve a wave equation
on
erning a vibratingstring


















utt = 4uxx; 0 < x < 3; 0 < t < 2,

u(0, t) = u(3, t) = 0; 0 < t < 2,

u(x, 0) = f(x) = sin(πx) + sin(2πx); 0 ≤ x ≤ 3,

ut(x, 0) = g(x) = 0.Sele
t h = 0.1, k = 0.05. The
onstant r, required for the formula, is r =
ck/h = 2 · 0.05/0.1 = 1. Thus the linear equation for uij be
omes ui,j+1 =
ui+1,j + ui−1,j − ui,j−1.% attempt to numeri
ally estimate solutions to% wave equation u_(tt) = 4u_(xx), 0<x<3, 0<t<2% with boundary
onditions% u(x,0) = sin(x*pi)+sin(2*x*pi)% u(0,t) = u(3,t) = 0;
lear;
l
;
lose all; 147

% fun
tion defining boundary valuesf = inline('sin(x*pi)+sin(2*pi*x)','x');h = 0.1;k=0.05;t1 = 2;x1 = 3;M = zeros(t1/k+1,x1/h+1);x = 0:h:x1;[m n ℄ = size(M);% these
ome from initial
onditionsM(1,:) = f(x);M(2,2:n-1) = 0.5*(f(x(1:n-2))+f(x(3:n)));% fill the mesh , retain boundary values.for l = 3:mM(l,2:n-1) = M(l-1,3:n)+M(l-1,1:n-2)-M(l-2,2:n-1);end% drawmesh(fliplr(M));6.4.2 Heat equationHeat equation is the primary prototype for the paraboli
 di�erential equation.It des
ribes the heat distribution or temperature variation in a determinedobje
t over time. One dimensional heat equation has the form
ut − c2uxx.Heat equation
an be generalized into more dimensions by repla
ing these
ond x-derivatives by spatial Lapla
ian operator:
ut = c2∆xu.To obtain any but the most general solutions, one needs to set some boundary
onditions: initial values at boundaries must be known, as must be the initialheat distribution in the obje
t. Thus we gain the equation:











ut − c2uxx; 0 < x < L, 0 < t < T

u(0, t) = u(L, t) = 0;

u(x, 0) = f(x)

.Note that this equation assumes, that the temperature at the boundariesof the studied obje
t is
onstant at all times. For more realisti
 model one148

should repla
e the
onstant expression with time dependent fun
tions g(t)and h(t). This does, however, make the symboli
 solution mu
h more
om-pli
ated, and is therefore disregarded in this presentation. Solutions for thisequations are usually sought through separation of variables, giving a

essto solutions with the form u(x, t) = X(x)T (t). This will lead to solution:
u(x, t) =

∞
∑

n=1

cn sin

(

nπx

L

)

e−c2(nπ/L)2t,where
cn =

2

L

∫ L

0

sin

(

nπx

L

)

f(x)dx,that is, cn's are
oe�
ients of the Fourier sine series.To numeri
ally solve a heat equation, use the familiar �nite di�eren
e method:de�ne a re
tangle R in whi
h you wish to obtain the solution, then
reatethe dis
retization by dividing R into (m − 1)(n − 1) re
tangles of equal size
hk. Let h be ∆x, that is, the height of one re
tangle on x-axis, and k thelength of the re
tangle on t-axis. Denote points xi = ih and tj = jk, and
ui,j the numeri
al approximation for u(xi, tj). Then one
an approximate thederivatives.

ut(x, ti) ≈
u(ti+1, x) − u(ti, x)

k
.Time derivative is the forward looking version instead of the usual three pointrule.

uxx(xi, t) ≈
u(xi+1, t) − 2u(xi, t) + u(xi−1, t)

h2
.By substituting these into the heat equation, and repla
ing the true fun
tionvalues with estimates, you get

ui,j+1 − ui,j

k
= c2ui+1,j − 2ui,j + ui−1,j

h2
.By solving this equation in respe
t to ui,j+1 you get

ui,j+1 = ui,j + c2k
ui+1,j − 2ui,j + ui−1,j

h2By denoting r = c2k/h2 you get an equation
ui,j+1 = rui+1,j + (1 − 2r)ui,j + rui−1,j.149

This equation is
alled the forward time,
entered spa
e approximation to theheat equation, be
ause of the forward looking approximation to derivative.It also means, that this approximation only yields good solutions, if solvedforward in time.

150

