Introduction to numeric and symbolic
computing

Antti Rasila, Susanna Liesipohja, Juha Kuortti

May 16, 2011



Contents

1 Introduction to MATLAB 2
1.1 Basics . . . . . .. 2
1.1.1 Output. . . ... . ... . 4

1.2 Vectors and matrices . . . . . .. ... ... ... ... ..., 6
1.2.1 Random numbers . . . . . . .. .. ... ... .. 9

1.3 Branch and loop structures . . . . . . . . ... ... ... ... 9
1.4 Defining functions . . . . . . . . ... 13
1.5 Polynomials . . . . . ... ... o 14
1.6 Plotting and drawing . . . . . . .. ... 15
1.6.1 Plotting 3D graphics . . . . .. .. ... ... ... .. 16

1.7 Useful links . . .. ... ... ... ... ... ... 16
2 Linear algebra 17
2.1 Linear equations . . . . . . . . .. .. .. ... . ... .. 17
2.2 Matrices and vectors in MATLAB . . . ... ... ... .... 19
2.2.1 Solving linear equations in MATLAB . . . . .. .. .. 27

2.3 Gaussian elimination . . . . . ... ... ... .. ... ... 28
2.4 Matrix decompositions . . . . . . ... 30
2.4.1 LU-factorization. . . . . . . .. .. ... ... ..... 30
2.4.2  Cholesky-decomposition . . . . . ... ... ... ... 34
2.4.3 QR-decomposition . . ... ... ... ... ... .. 36
2.4.4 Singular value decomposition . . . .. ... ... ... 40

2.5 Linear least squares . . . . . . . . . ... .. 43
2.5.1 Least squares and MATLAB . . . . ... ... ..... 48

2.6 Symbolic linear algebra in MATLAB . . ... ... ... ... 50



3 Interpolation 53

3.1 Polynomial interpolation . . . . . . .. .. ... .. .. ... 23
3.1.1 Lagrange interpolation . . . . . .. ... .. ... ... 53
3.1.2  Determining coefficients . . . . .. ... ... ... .. 55

3.2 Runge’s phenomenon . . . . .. ... 56

3.3 Piecewise linear interpolation . . . . ... ... ... ... .. o7

3.4 Splines . . . .. 59
3.4.1 Cubicspline . . ... ... .. ... ... o 60

3.5 Additional methods for interpolation in MATLAB . . . . . .. 63

4 Numerical differential and integral calculus 67

4.1 Numerical derivation . . . . . ... .. ... L. 67
4.1.1 Estimating derivative with polynomial . . . . . . . .. 72

4.2 Jacobian matrix . . . . ... Lo Lo 73

4.3 Numerical derivation on complex plane . . . . . .. .. .. .. 75

4.4 Numerical integration . . . . . . .. .. .. ... ... 7
4.4.1 Trapezoidrule. . . . . ... ... ... ... ... .. 7
4.4.2 Simpson’srule. . . . ... 79
4.4.3 Numerical integration in MATLAB . . .. ... .. .. 81
4.4.4 Numerical integration on complex plane . . . . .. .. 83
4.4.5 More advanced integration methods . . . . . . . . . .. 86

4.5 Symbolic differential and integral calculus . . . . . . ... .. 93

5 Nonlinear equations 98

5.1 Root finding algorithms . . . . . . ... ... ... 99
5.1.1 Bracketing . . . . . . ... oL 99
5.1.2 Fixed point iteration . . . . . . .. .. ... ... ... 100
5.1.3 Secant method . . . ... ... ... L. 103
5.1.4 False position method . . . .. ... ... ... .... 105
5.1.5 Newton’s method . . . . . ... ... ... ... ..., 106
5.1.6  Brent’s method . . .. ... .. ... .. ........ 110
5.1.7  Roots of polynomials . . . . . ... ... ... ... .. 114
5.1.8 Root finding in MATLAB . . .. ... ... .. .... 117

5.2 Minimization algorithms . . . . . . . ... ... L. 118
5.2.1 Golden section search . . . . . . ... ... 119
5.2.2 Brent’s method . . .. ... ... ... ... ..., 121
5.2.3 Search methods for multivariable functions . . . . . . . 124
5.2.4 Searching minimum in MATLAB . .. ... ... ... 128



6 Differential equations 130

6.1

6.2
6.3
6.4

Numerical solutions to ODE’s . . . . . . ... ... .. .... 132
6.1.1 FEuler’s method . . ... ... ... .. ... ...... 133
6.1.2 Runge-Kutta methods . . . . ... ... ... .. ... 136
Solving ODE’s in MATLAB . . . . .. ... ... ... .... 139
Boundary value problems . . . . . . ... ... ... L. 141
Partial differential equations . . . . . .. . ... ... 142
6.4.1 Wave equation . . .. .. ... ... ... ... 143
6.4.2 Heat equation . . . . . .. ... ... ... ... 146



Chapter 1

Introduction to MATLAB

MATLAB is an interactive computing environment for doing numerical com-
putations with vectors and matrices. It is suitable for a variety of different
tasks involving scientific and technical computations. MATLAB was cre-
ated by Cleve Moler in the 1970’s as a small program for teaching matrix
calculations. It was created by using Fortran. LINPACK and EISPACK
library routines were used internally for computations. MATLAB was ini-
tially a shareware program, and it quickly spread to other universities. In
1984, Cleve Moler, Jack Little and Steve Bangert founded MathWorks and
commersialized MATLAB. The current versions are commercial products,
written in C. Several extensions have been added to the original MATLAB.

1.1 Basics

As mentioned above, MATLAB can be used interactively as a sort of calcu-
lator. In this case, the commands will be written directly into the MATLAB
prompt >>. One can exit the prompt by writing quit or exit.

The program can also be written into a file ending with .m, for example
myfile.m, and run from the prompt by typing the filename, in this case
myfile.

The MATLAB commands are organized into different topics. Typing help
will give a list of all the topics and typing help [topic] will give a list of all
the commands grouped under that topic. Typing help [command] will give
a short description of the specific command.

The MATLAB commands issued and the results obtained can be saved using



the diary-command. For example,

>> diary test.dry
>> a=1; b=0;
>> atb
ans =
1
>> diary off
>> type test.dry

a=1; b=0;
atb
ans =

1
diary off

Calculations are done in floating-point precision (approximately 16 digits in
the decimal system). The output can be changed using the format command,
but it will not change the precision of the calculations. The default output
precision is short, which is of 5-digit precision. For example

>> pi

ans =
3.1416

>> format long

>> pi

ans =
3.141592653589793

A variable is given a value with the = operator. The most commonly used
variable is ans, it always contains the result of the previous command. More
precisely, if a command does not assign a value to a named variable then it
is stored to the variable ans.

Some names are reserved for certain constants, such as pi (for 7), and both
i and j represent the imaginary unit. Other reserved names are, among
others, realmax, realmin, eps, Inf and NaN. Different values can be assigned
to these constants, but they will revert back to the default values after re-
starting the program or using the command clear.

A short example:

>> 1/0
ans =
Inf



>> 0/0
ans =
NaN

>> NalN=5
NaN =
B

>> clear

>> NalN

ans =
NaN

1.1.1 Output

A simple way to output data is to display a variable. This can be accom-
plished by giving its name (without a semicolon) in interactive mode. Al-
ternatively you can use the disp function, which shows values without the
variable name, as in:

x=42;
>> disp(x)
42

For a fancier output, MATLAB has various functions for creating strings
from numbers, formatting data, etc... One such is fprintf, which can also
be used for printing into a file. The syntax for this is:

fprintf([fileId], [format], [input values])

If [fileId] is omitted, the function will print directly onto the screen.
[fileId] refers to the file identifier returned when opening the file for writing
with fopen. For example, fileId=fopen(’myfile.txt’,’w’) would open
myfile.txt for writing. The command fclose(fileId) would close the file.
[format] is a string in single quotation marks that describes the format of
the output fields. It can include combinations of the following:

e A percent sign followed by a conversion character, such as %s for strings
and %d for an integer. Floating-point numbers can be printed with %f
for fixed notation and %e for exponential notation.



e Field width and precision. For example, %6 .2f would refer to a floating-
point number of field width 6 and precision 2.

e Flags, such as - for left-justified and + for printing a sign character (+

or —). For example, %+-d would print a signed integer justified to the
left.

e Literal text to print.

e Escape characters, such as \n for a new line \t for tab and %% for the
percent sign.
Below are some examples on the use of fprintf.
a=5; s=’Hello world?’;

>> fprintf (’)d is an integer and %s is a string\n’,a,s)’;
5 is an integer and Hello world is a string

>> fprintf (’Now %+d is a signed integer\n’,a)
Now +5 is a signed integer

b=1.23456789; c=0.0015;

>> fprintf (’Printing with precision 2: %.2f\n’,b)
Printing with precision 2: 1.23

>> fprintf (’\t or with width 20: %20f\n’,Db)
or with width 20: 1.234568

>> fprintf (’Printing as %f and as %e\n’,c,c)
Printing as 0.001500 and as 1.500000e-03
For printing into a file, one can do the following:

>> fid=fopen(’output.txt’,’w’);
>> fprintf (fid, ’%s\n’,s);
>> fclose (fid);

Now the sentence Hello world (and a row-change) can be found in the file
output.txt.



1.2 Vectors and matrices

In MATLAB, the basic data structure is matrix. The most efficient way of
programming MATLAB is to treat every variable as a vector or a matrix.
Assigning vector values can be done in the followong ways:

>>x = 1:1:4; I, expression a:h:b produces a vector with
% numbers from a to b with interval h. If
% no h is provided, 1 is assumed, eg. 1:10

>>y = [0 1 0 1]; % Vector values can be
% given individually also.

Vector dimensions have to be taken into account when performing arith-
metics. The product xxy is not defined for two n-vectors, but the pairwise
operations x.*y and x+y are:

>>X . ky
ans =
0 20 4
>>x .ty
ans =
1 3 35

In the case of vectors, the product is defined as if they are n x 1-matrices:
hence we need to transform one vector from a row vector to a column vector.
We do this with the transpose operator .

>>x

B w N -
O O O O
B w N -



>>X*y’
ans =
6

If your vector (or matrix) contains complex numbers, you need to take into
account that the transpose operator will also change a complex number to
its complement, i.e., if z = a + bi then z = a — bi.

>> xi=[2+i 2 -i 4];

>> xi?
ans =
2.0000 - 1.00001
2.0000
0 + 1.00001
4.0000

The power operator is =, and again, it only works elementwise:

>>x .7y
ans =
1 21 4

Elementary functions are also available for vectors:

>> sin(x)
ans =
0.8415 0.9093 0.1411 -0.7568
>>exp (y)
ans =
1.0000 2.7183 1.0000 2.7183

You can define a matrix just as you defined a vector: to indicate a row
change, use ;

>>A = [1 2 ; 3 4]

1 2
g 4
>>b= [5; 6]; % b must be a row vector

% You can now obtain inverse of A and multiply
% b with it
>>iA = inv (A)



-2.0000 1.0000
1.5000 -0.5000
>>x = iAx*b

-4.0000
4.5000

% It is generally faster and easier to use MATLABs
% built-in linear solver operator \

>> x = A\b

= =
-4.0000
4.5000

Some useful matrix commands are also: eye (produces an identity matrix),
zeros (produces a matrix of all zeros) and ones (produces a matrix of all
ones). It is also possible to select specific elements, rows och columns from
a matrix. The command for this is A[i,j], where A represents a matrix, i
the row of that matrix and j the column. Here, i and j can be scalars or
vectors.

% We create a 3x3-matrix of all ones
>> A=ones (3)

A =
1 1 1
1 1 1
1 1 1

% To pick a specific element from matrix A, use A(i,j).
% To pick a whole row (or column), replace j (or i)
% with
>> A(1,:)
ans =
1 1 1

>> A(2,:)=[2, 3, 4]
A =

10



>> A(3,2)=42
A:
1 1 1

1 42 1

1.2.1 Random numbers

Random numbers can be generated by using the commands rand and randn.
The command rand(m,n) will produce an m x n-matrix of uniformly dis-
tributed random numbers on (0, 1) and randn(m,n) will produce a matrix of
normally distributed random numbers with mean 0 and standard deviation
1.

dist = zeros(6,1);

for j=0:99
k = round (5*rand(1)+1);
dist(k) = dist(k)+1;

end
disp(dist)
Output:

1: 14

2: 15

g 13

4: 18

5: 18

6: 22

1.3 Branch and loop structures

The branch and loop structures available in matlab are: for, while, if and
switch. The main principle is that you should only use these as a last resort.
If possible, you should use efficient vector operations instead.

The syntax of the for statement is:

for [variable]=[vector]

end

11



If one wants to repeat the loop k times, it is handy to use the vector statement,
1:k, which produces a list of numbers 1,2, ..., k.

# Example: 2nd powers of positive integers
for x = 1:4

XX = X*X

fprintf (?%d * %d = %d’,x,xx)
end

Output:
1x1 =
2%2 =

3*x3 =
4%x4 =

= O D =

6
The syntax of the if statement in MATLAB is:

if [condition]
éiéeif [condition]
else

end

The elseif and else branches may be omitted. The commands in the if
branch are executed if the condition is satisfied, if not then the conditions
in the elseif branches are evaluated. If none of the conditions given is
satisfied, the commands in the else branch are executed.

The most common conditions used are the comparison operations <, <=, ==,
~=,>= and >. Note that for equality, the expression == is used in order to
avoid confusion with the value assignment operator =!. The expression ~= is
used for inequality.

A while statement is used when one wishes to repeat the loop until some
condition is no longer satisfied. This structure is very useful when reading
input from a file or from the user.

The syntax of the while statement is:

while [condition]

end

IThis is significant, as in e.g. the C language, the condition if (x=1) ... is always true.

12



To avoid an infinite loop, inside the loop there must naturally be something
to invalidate the condition when the desired number of loops is reached.

x = b;
guess = O0;
while guess 7= x
guess = input(’Guess a number:’);

if (abs(guess - x)>10)
disp(’Your guess is very wrong’)
end
end

Output:

Guess a number:6

Guess a number :100

Your guess is very wrong
Guess a number:5

The syntax of the switch statement is:

switch [switch expressionl]
case [case expression 1]

case [case expression 2]

otherwise
end

The statements associated with a certain case will be executed when the
switch expression equals the case expression in question.

4 Color evaluation
color=’aqua’;
switch color
case {’red’,’pink’,’rose’} / multiple case ezpressions
disp(’The color is red.?’)
case {’blue’,’turquoise’,’aqua’}
disp(’The color is blue.?)
case ’yellow’
disp(’The color is yellow.?’)
otherwise

13



disp(’Unknown color.?’)
end

Remark. One should avoid comparing non-integers with the == operator.
For example, pi==3.14159265... is actually false. The MATLAB pi is
only calculated to a specific length, and thus, does not actually equal 7. The
following program will demonstrate this fact:

/4 Desired accuracy of approzimation
tol=10"-4;
mypi=1;
while mypi~™=0
mypi=input (’Guess the value of pi (0 exits):’);
if mypi==pi
disp(’Comparison to MATLAB pi is true’)
else
disp(’Comparison to MATLAB pi is false?)
end
if (abs(pi-mypi)<tol)
disp(’Close to pi!?)
elseif (abs(pi-mypi)>1)
disp(’Far from pi!?’)
else
disp(’Not close enough to pi!?)
end
end

cd Output:

Guess the value of pi (0 exits):3.141592653589793238
Comparison to MATLAB pi is true

Close to pi!

Guess the value of pi (0 exits):3.141592653589793258
Comparison to MATLAB pi is true

Close to pi!

Guess the value of pi (0 exits):3.14

Comparison to MATLAB pi is false

Not close enough to pi!

The first guess is an accurate approximation of 7, but the second one is not
(the second-to-last digit is wrong). However, the comparison to MATLAB
pi is correct in both cases.

14



1.4 Defining functions

A function can be defined with the function statement. The syntax of this
statement is:

function [output]=[function name] ([input])

This function should be saved in an m-file and the name of the file must be
the same as the function name. For example, the function below should be
saved as solve2.m.

function x = solve2(a,b,c)
D= b~2 - 4x*xaxc;
4 Floating point number should not be directly
4 compared to zero
if (abs(a)<le-6)
disp(’Error?)

return
else if (abs(D)<1le-6)
Xx = -b/2*a;
return
else
x(1) = -b + sqrt(D)/2*a;
x(2) = -b - sqrt(D)/2*a;
end
end
Output:
>> solve2(1,0,0)
ans =
0
>> solve2(1,0,1)
ans =
0O + 1.00001 0 - 1.00001
>> solve2(1,0,-1)
ans =
1 -1

The above function solve?2 solves the roots of a given second order equation.
The input parameters given for the function are three numbers a, b and c,
corresponding to the coefficients of the equation to be solved. In the first

15



example, the equation 22 = 0 is solved (one root at 0); in the second case, the
equation is 22 +1 = 0 (only imaginary roots) and in the third case 22 —1 =0
(two roots +1).
For simpler functions, it may be easier to define the functions "directly” into
the program. This can be done with the inline command or, more recently,
the function handle @.
>> f=inline (’exp(x."2)’,%x?)
f =

Inline function:

f(x) = exp(x."2)
>> g=0(x) x.72
g =

@(x)x."2

1.5 Polynomials

In MATLAB, a polynomial is represented by a vector which consists of its
coefficients. To create a polynomial one can simply enter each coefficient of
the polynomial into the vector in descending order. For instance, consider
the following polynomial:

p(z) = 22" — 2® + 50 + 17

To give this in MATLAB, just write the vector
>> p=[2 0 -1 5 17];

One may find the value of a polynomial using the polyval function. For
example, to find the value of the above polynomial at ©x = 2,

>> polyval(p,2)
ans =
55

The roots of a polynomial can be obtained with roots ([your polynomiall).
For example, the roots of the polynomial above are

>> r=roots (p)

r =
1.2663 + 1.35911
1.2663 - 1.35911

16



-1.2663 + 0.92731
-1.2663 - 0.92731

If one knows the roots already, the coefficients can be found using the inverse
function poly. Two polynomials can be multiplied by using conv([poly1], [poly2])
and dividing can be done in a similar way with the deconv function.

1.6 Plotting and drawing

Curves can be drawn with the command plot. For example, to plot a sine
curve, one can do the following:

>> x=0:.1:2%pi;
>> plot(x,sin(x))

It is possible to plot several curves at once. The appearance of the curves
can be changed. For example, the command

>> plot(x,sin(x),’r’,x,cos(x),’.b?)

plots the sine curve in red and the cosine curve as blue dots.

1=

0.8
0.6
0.4

0.2

One may label the axes with the commands x1abel (’ [1abelname]’), for the
x-axis, and ylabel (’ [labelname]’), for the y-axis. A title can be added to

17



the graph with title(’ [title]’). Curves can be labeled with the command
legend ([curvel], [curve2], [curve3],[... etc.]).

1.6.1 Plotting 3D graphics

Spatial curves given in parameters can easily be plotted with the function
plot3 simply by adding z-coordinates.

Surface plotting can be done with the function surf. But first, one should
generate the appropriate X and Y arrays using the function meshgrid.

In the example below, where we are plotting the function f(x,y) = e Y
X and Y represent the "plane” and Z represents the “height”.

Y

>> x=-2:.1:2; y=x;

>> [X,Y]=meshgrid(x,y);
>> Z=X.xexp(-X."2-Y.°2);
>> surf(X,Y,Z)

Output:

1.7 Useful links

18



Chapter 2

Linear algebra

2.1 Linear equations

An equation with variables x; ...z, that can be written in the form

a1x1 + asxy + - - - + ayxr, = b, n>1

is called linear equation. The coefficients a; . .. a,, and b can be real or complex
numbers.

A system of linear equations is a collection of one or more linear equations
involving the same variables. Using matrix algebra, the linear system

a11T1 + a2 + ... + ATy, = bl,

a21T1 + A22T2 + ... + AT, = bg,

A1 1 + AT + . ..+ ATy = by,

can be written in the form

ayr ... Qip T bl

a21 ... QA9p To bz
Ax=bA=| . Tlox=|"7] b=

Aml -+ CGmn Up, b

The matrix A is a m X n matrix, the vector x a vector with n components
Let A € C"". A is said to be invertible, if there exists such B € C"*",
that AB = I, where I € C"*" is the identity matrix. Then the matrix B is

19



called the inverse of matrix A, and is denoted A~!. If A~! exists, A is called
invertible. Using this definition, we get following theorem.

Theorem 2.1. The linear system of equation Ax = b, A € C"" x €
C",b € C™ has a single solution only if A is invertible. The solution is
x = A~ 'b.

Generally, system of linear equations can have an exact solution only if it
has exactly as many linearily independent equations as it has unknowns. In
this situation the system of linear equations

a1171 + a1oTs + ... + a1,T, = by,

9171 + A2 + ... + QonTy = bQ,

Ap1T1 + Ap2X2 + ... + AppXy = bna

translates into a n X n matrix and n vectors. However, number of equations
and unknowns do not always coincide. In this case we get a system

1121 + A2 + ... + ATy = bl,

a21T1 + Q22T + ... + AT,y = bg,

Am1T1 + QpoXs + ..o+ G Tp = b,
This system can be written as a matrix equation
Ax =Db,

where A is a m X n matrix, x an n-vector, and b a m-vector.

If m < n, that is, if there are fewer equations than there are unknowns,
system is called underdetermined. Solving an underdetermined system of
equations will not usually produce an exact solution, but the solution will
have degrees of freedom depending on the coefficient matrix: the number of
which is determined by how many unknowns remain in the solution vector
x. The solution can be interpreted as a space where the objects defined by
the equations intersect.

20



Example 2.2. Solve an underdetermined system of equations

1 3 3 2] |™ 1
Ax=b=1]2 6 9 5| ™| =15
€3
1 -3 30 5
XLy

Using elementary row operations we get the solution:

—2 —3ZL‘2 — X4

The vector x is a solution for the equation Ax = b with arbitrary values of
x1 and x4, thus giving an infinitely many solutions.

If in system 7?7 m > n, the system is called overdetermined; that is, there
are more equations in the system than there are unknowns. Computing an
exact solution to a overdetermined system may be possible. However, the
more there are constraints (equations), the less likely it is that they all hold
for a specific point. Thus solving overdetermined systems usually includes
searching a best possible solution: a solution that does not necessarily hold
for all the equations in the system, or any of them, but it almost holds for
all of them. This is usually achieved by linear least squares, which will be
discussed in depth in later chapters.

Later we will introduce some methods for finding the inverse of a matrix in
MATLAB.

2.2 Matrices and vectors in MATLAB

The basic data type in MATLAB is a real valued matrix, and default assump-
tion for every operation is that the operands are matrices. Some operations
are, however defined also elementwise, so as to make certain operations easy
and efficient, and it requires a certain amount of alertness to avoid any ob-
vious pitfalls.

The basic multiplication, denoted by *, is matrix multiplication. It is defined
for matrices A and B, where A € C™" and B € C"**. Tt also works on a
scalar multiplication, that is cA is a legitimate operation, for ¢ € C. If the

21



matrix dimensions do not match, MATLAB will produce an error. One can
obtain an elementwise product with operator .*. The elementwise operator
will produce the Hadamard product of two matrices of same dimensions.

4 Define two square matrices and two
4 mon square matrices

>> A = [3 2 3; 34 3; 4 5 1]
A =
8 2 8
g 4 &
4 B 1
>> B =[12 4; 1 4 6; 17 71;
>>D = [1 2; 4 3 ; 7 6]
D =
1 2
4 8
7 6
>> K=[3 4 5; 5 6 7]
K =
8 4 B
5 6 7

4 Multiplication of two square
/4 matrices works

>> AxB

ans =
8 35 45
10 43 57
10 35 53

4 Hadamard product of two square
/4 matrices

>> A.xB
ans =
3 4 12
3 16 18
4 35 7
4 Product of 3z2 and 2z3 matrices
>> DxK
ans =
13 16 19
27 34 41

22



51 64 77
4 Elementwise product doesn’t work
>> D.xK
??? Error using ==> times
Matrix dimensions must agree.
4 Multiply B by four

>> 4%B

ans =
4 8 16
4 16 24
4 28 28

Same applies to the power operator: the operator ~ literally means that the
first operand is multiplied by itself as many times as the second operand
orders. If the first operand not a square matrix, the operation is not defined.
Thus the the power operator should be used only as an elementwise operation:

~

/4 Examples of the power operator:
4 First on real number

>> 375
ans =
243
/4 then on a square matriz
/4 Note that this is a defined
/4 operation because A*4 is a
/4 defined operation.
>> A2
ans =
27 29 18
33 37 24
31 33 28

4 We try then the elementwise
4 power operator. Notice the
/4 difference with the regular
/4 power operator.

>> A."2

ans =
9 4 9
9 16 9

23



16 25 1
4 Power operator doesn’t work om a non
4 square matrixz because D*D is not defined
>> D~4
??7? Error using ==> mpower
Matrix must be square.
4 However, an elementwise operator is defined:
>> D."4

ans =
1 16
256 81
2401 1296

The usual division sign - /, should be used only on matrices with a single
value. In case of single value, it works as one would expect: it performs
a division. However, if given matrix values, the values it produces are not
what one would expect, and obtainable in much more intuitive way through
the backslash-operator, which we will discuss later. Those interested in us-
ing it should familiarize themselves with the mldivide manual page. The
elementwise version of division-operator is ./, which is useful on a number
of occasions. Because sometimes both elementwise operation, and matrix
operation can be invoked, caution is required.

Addition and subtraction are elementwise operations: A 4+ B is the standard
matrix addition, which requires that both A and B have the same dimen-
sions. The addition and subtraction operators have also been overloaded to
include operations like 2 + A. This operation is defined as "add 2 to every
element of A.” There, however, is not an elementwise operation, that would
allow one to add two matrices having the same number of elements, but dif-
ferent dimensions, together. All of the above holds for the subtraction as
well.

/4 Ezamples of addition
4 Sum of two matrices of equal sizes 1is ok

>> A+B

ans =
4 4 7
4 8 9
5 12 8

/4 So is adding 2 to every element of 4

24



>> 2+A

ans =
5 4 5
5 6 5
6 7 3

/ This doesn’t work because K and L have
/4 different dimensions
>> K = [1 2 3]

K =
1 2 3
>> L = [1;2;3]
L =
1
2
3
>> K+L
??? Error using ==> plus

Matrix dimensions must agree.

Most of MATLAB’s built-in functions, like exp, sin and cos are defined
elementwise.

/4 Define an even spaced rTeal valued vector H
> H = 1:0.5:3

H =
1.0000 1.5000 2.0000 2.5000 3.0000
4 Take an sin of each element of the wvector
>> sin(H)
ans =
0.8415 0.9975 0.9093 0.5985 0.1411

Another topic that will require some attention is the matrix and vector di-
mensions. As mentioned, almost all the operations are dependent on the
dimensions of the operands. Oftentimes, like when crafting a function, one
does not wish to fix the matrix dimension, but dynamically adapt to the di-
mensions. The way to do this is to use functions length and size. Function
length is primarily meant for work with vectors, and it returns the largest
dimension of argument. For example length(ones(4,2)) would return 4.
The function size returns a vector containing all dimensions. It is more
versatile than length, but to work, it requires an assignment. For example,
if one wishes to know the number of rows in a vector a, this works:

25



>> dims
>> rows

size(a);
dims (1) ;

Another operation that is frequently needed in order to handle the dimen-
sions is the transpose. MATLAB defaults the transpose to conjugate version,
working as transpose on real matrices, but returning the conjugate transpose
on complex matrices. The conjugate transpose operator is the ’>. If one
wishes to obtain a non-conjugate transpose, a function transpose is avail-
able. For work on more complex structures than two-dimensional arrays,
MATLAB provides the function permute.

4 Create a complexz matriz C

/4 Recall that 4 is overloaded

/ to act as a complexr coefficient
>> C = A+Bx*i

c =
3.0000
3.0000
4.0000

+ 1.00001 2.0000 + 2.00001 3.0000 + 4.00001
+ 1.00001 4.0000 + 4.00001 3.0000 + 6.00001
+ 1.00001 5.0000 + 7.00001 1.0000 + 7.00001

/4 Notice the conjugate or hermitian transpose,

>> C?

ans =
3.0000
2.0000
3.0000

- 1.00001 3.0000 - 1.00001 4.0000 - 1.00001
- 2.00001 4.0000 - 4.00001 5.0000 - 7.00001
- 4.00001 3.0000 - 6.00001 1.0000 - 7.00001

4 Should you ever need it, a mom hermitian transpose

/ is also

avatlable.

>> transpose (C)

ans =
3.0000
2.0000
3.0000

+ 1.00001 3.0000 + 1.00001 4.0000 + 1.00001
+ 2.00001 4.0000 + 4.00001 5.0000 + 7.00001
+ 4.00001 3.0000 + 6.00001 1.0000 + 7.00001

4 Transpose of a real walued vector

>> K?
ans =
1

3

The matrices can be indexed with two numbers, as usual, the first being the
row-index, the second being the column index, and indexes starting from 1.

26



This is the way matrices should be indexed. There is, however, an alternate
way to index matrices. Matrices can be indexed with a single number, the
index running down column wise. That is, A(3) = A(3,1). While one may
do this, for the sake of clarity, it is highly discouraged. The reason this
option is available is due to the properties of computer architecture and C,
the language that MATLAB is written with.

MATLAB allows accessing entire rows, columns, and submatrices of any
matrix. This is achieved with the range operator :. If not given any range, it
defaults to whole row or column, for example: the command A(:,1) returns
the first column of A, while A(2, :) would return the entire second row of A.
Instead of selecting the entire row or column, one can select only a part of
it by giving the range operator parameters: A(1:5,1) would return the first
five elements the first column of A. Selection of submatrices follows suit:
instead of giving one range, we give two: A(2:3,3:4) would return a matrix
that would contain A’s elements as 3, as 4, as s and as 4. This selection can be
extended further: selection index can be any collection of positive integers,
and the selection still works, as long as they are within index bounds of A,
for example selection A([1 3 5],2) returns elements aqo, azs and ass.
Selection methods are not limited to numerical indexing; it is also possible
to invoke so called logical indexing. Logical indexing is achieved through
creating a logical array, and giving it as a index. Logical arrays are returned
by logical operators, & ,| and ~ , relational operators, such as ==, ~=,>
and <, as well as any logical functions, such as any, isinf and isequal.
Using these operators and logical indexing, we can, for example, select all
the positive elements of a matrix.

4 Define a large enoug a matriz
> A =[-2324 -40; -3 -4 -5 -11 2 4
3 -53234; 1 -32-45 -6; 123 -46 5]

A =
-2 3 2 4 -4 0
-3 -4 -5 -11 2 4
3 -5 3 2 3 4
1 -3 2 -4 5 -6
1 2 3 -4 6 5
4 Select the third row of the matric
>> A(3,:)

27



ans =

3 -5 3 2 3 4
4 The alternate indexzin way: 4(12) <s the
/ the same as A(rem(12,5),mod (12,5)+1).
4 While there are situations it can be
4 more efficient than the usual way, readability
4 suffers.
>> A(12)
ans =

-5
4 Selecting submatrices is quite similar to
4 single elements or rows and columns: just
4 give to ranges
4 Here we have selected rows 2 3 4 and 5, and
4 columns 3 4 &5 and 6.
>> A(2:5,3:6)
ans =

-5 -11 2 4

3 2 3 4

2 -4 5 -6

3 -4 6 5

4 Finally a look into the logical selectionm routines:
4 select all the elemnts of A less than -4
>> A(A<-4)

ans =
-5
-5
-11
-6
4 A more complicated logical condition: select
4 elements of A smaller than 0 but greater than
1 -5.
4 Note that this requires the use of a elementwise
4 logical operator &, which ts defined for the use
4 with logical matrices and vectors.

>> A((A<0)&(A>-5))
ans =

-2

-3

-4

28



There are several matrices, that come up often in linear algebra, most no-
table being the unit matrix. Most of these are provided in MATLAB’s matrix
library, which generates them according to given parameters. The command
eye produces the unit matrix of given dimensions. The command ones pro-
duces a matrix composed entirely of ones, and the command zeros, accord-
ingly, produces a matrix made up of zeros. Some of the more exotic built-in
matrices are, for example, the Hilbert matrix and the magic square. The
Hilbert matrix is produced by command hilb. The Hilbert matrix is de-
signed to have certain very poor numerical properties. The magic square is a
square matrix with equal column, row and diagonal sums, and it is produced
by the command magic.

2.2.1 Solving linear equations in MATLAB

The primary tool for solving linear equations in MATLAB is the \-operator.
To solve a linear equation of the form Ax = b we use the command x = A \b.
The backslash operator is very versatile: if the matrix A is overdetermined,
i.e, there are more rows than there are columns, a solution in least-square
sense is provided. If the system is underdetermined, it finds the basic solution
with at most m nonzeros. Here are a few examples:

4 Ezample concerning the Hilbert matriz
>> A= hilb(10);

>> x ones (10,1);

>> b = Axx;

>> sol = A\b;

>> norm(x-sol)

ans =

8.7188e-04
4 The previous lsq-example with the backslash-operator

> A =[11; 2 1; 31 ; 5 1; 7 1; 9 1 ; 10 17;
>> b = [444 458 478 506 523 543 571];
>> b = b?;

29



13.0798
434.1498

2.3 Gaussian elimination

Probably the most famous method for solving an n x n system of linear
equations is the Gaussian elimination algorithm, named after Carl Friedrich
Gauss. The idea of the algorithm is to, for each column of the coefficient
matrix, eliminate the elements below the diagonal using row operations, and
when an upper triangular matrix is achieved, we do a backward substitution,
solving z,, from the last equation, and substituting the solution to the second
last equation, and thus gaining solution to x,_1, and so forth.

Example 2.3. Solve a system of linear equations using Gaussian elimination,
when the system is:

311 — T2 + T3 =2,
—x1 + 319 — 223 =1,
2.1’1 + 2.1’2 — X3 = —3,

Eliminate all the elements below the first element on the first column: we
add the first row multiplied by % to the second. Then add the first multiplied
by —% to the third row, and we get:

31’1 — To + T3 = 2,
01’1 + 81’2 — 5373 = 5,
01‘1 + 81‘2 + T3 = —13,

Then eliminate the second element of the third row by adding the second
row multiplied by —1 to it, and you get:

31’1 — To + T3 = 2,
01’1 + 81’2 — 5373 = 5,
O0xq1 + 0xy + 623 = —18,

30



We then obtain z3 = —% = —3, and place it in the equation on the second
row, and get xy = —%, and finally we get x; = %.
The algorithm for Gaussian elimination in MATLAB code is:

Listing 2.1: Algorithm for Gaussian elimination
function x = gauss_el (A,Db)
n = length(A);
4 part a - elimination
for i = 1:n-1
for j = i+l:n

4 calculate scale factor

m = A(j,i)/A(i,1);

4 perform row operation:

4 eliminate the elements below diagonal

4 on column %

ACj,:) = A(j,:) - m*xA(i,:);

b(j) = b(j) - mxb(i);

end
end
4 part b - backward substitution
x = zeros(n,1);

x(n) = b(n)/A(n,n);

for i = n-1:-1:1
x(i) = (b(i) - A(i,i+1:n)*x(i+1:n))/A(i,1i);
end

(GGaussian elimination is prone to numeric instability when working on nearly
singular matrices. The Hilbert matrix is one example of a nearly singular
matrix. Problems rise if at some part of the algorithm the absolute value
of the divisor ay; (i.e. a diagonal element after k-steps of elimination) is
very small. This easily leads to loss of precision due to the nature of floating
point arithmetic, and causes the error to accumulate. These situations can
generally be avoided through pivoting the matrix, that is, changing the order
of rows and/or columns, and applying the same permutations both to the
solution vector and the right-hand side of the equation.

Example 2.4. We now establish why Gaussian elimination without pivoting
is not a stable algorithm. The function gauss_elim is the same as the
previous one. We try to numerically solve a system of linear equations Ax =

31



b where A is a Hilbert matrix (the Hilbert matrix is composed as follows:
H;; =1/(i+j — 1)) using Gaussian elimination.

>>X = ones(13,1);

4 We set up a synthetic solution to be a

4 vector composed of ones

>>A = hilb(13);

4 MATLAB provides some special matrices ready,

4 Hilbert’s is one of them

>>b = AxX

>>sol = gauss_elim(A,Db);

4 sol mow holds the solution yielded by gauss_el
>> norm(sol-x)

ans =

11.05627

As is obvious, the Gaussian elimination does not provide accurate results
when dealing with matrices that are badly conditioned. In numeric cases,
it is recommended to use the matrix decompositions, which we will discuss
next.

2.4 Matrix decompositions

It is often difficult to solve the equation Ax = b. Therefore in numeric
matrix computation we usually try to present A as a product of two or more
matrices of some simpler form. This kind of representation is called matriz
decomposition. As we will see, matrix decompositions will often give us not
only an easier way to solve the linear system, but give us information about
the decomposed matrix as well.

2.4.1 LU-factorization

In the Gaussian elimination the matrix A is first reduced into an upper
triangular form, from which it is easy to obtain solutions through back sub-
stitution. The idea behind the LU-factorization is to present A as a product
of two matrices, L and U, of which U is upper triangular, and L is lower
triangular. We then can solve the equation Ax = b by solving two triangular

32



matrix equations:

Ux =2z , that is, Ax=LUx=Lz=Db
Lz=Db

The working idea of the LU-algorithm is to perform the Gaussian elimination
algorithm on matrix A, and take record of the multiplier that was used to zero
the elements below the diagonal on each column. Here is a quick example:

Example 2.5.

1 -1 3
A=1|3 -5 12
0 2 -10

We see that in order to eliminate the elements as; and as; the first row must
be multiplied by 3 and 0 respectively before subtracting from the second and
third rows. Thus we get

1 -1 3
3) 8 3
0) 2 -10

where numbers in parenthesis represent the recorded multipliers. These will
form the lower triangular matrix L. On the second step we get

1 -1 3
3) 8 3
0) (3) —%

The diagonal elements can be included either in L or U. The other matrix
will have ones on the diagonal. Now we have the L and U,

100 1 -1 3
L=1(310/,U=1]0 8 3
0 1 1 0 0 -2
that satisfy
LU = A.

When doing calculations with paper and pen, it is generally easier to use the
so called Doolittle algorithm. In this algorithm, the diagonal elements of L

33



are fixed to ones.

apy a1 ... Qip 1 0 e 0 uipr U2 ... Uin
as1 ... Qo B l21 1 0 Usy  Uss

1 0 U(n—1)n
an1 coe Qpp lnl . ln(n—l) 1 0 0 Unn

Here is an example.
Example 2.6. Let’s form the LU decomposition for the matrix A, when

6 5 12 1 0 0 U1 U2 U3
A= 30 18 51 = l21 1 0 0 Ug2 U23
—24 —-76 —-98 l31 132 1 0 0 Uus3

The 3 x 3 matrix gives us 9 equations, each with only one unknown. From
the first row we get

Uil = 6,U12 == 5,U =13 =12.
On the second row, we get

loyury = 30 & 1y =5,

loruig + 1 - ugy = 18 & ugy = 18 — lyjuge = —7,

lo1u13 + 1 - ug3 = 51 & ugz = 51 — lyyurz = —9,
and on the third

l31u11 =-24 < l31 =—4
l31u12 + l32u22 + U9z = —76 & l32 = (%22) — (76 — lglulg) = (L)(—76 — (—4 . 5)) =8

ls1urs + l3ou0s + ugs = —98 < ugz = —98 — (Is1u13) — (Is2uas) = 22
and thus:
6 5 12 1 00 6 5 12
A=LU= | 30 18 51| =[5 100 =7 =9
—-24 —-T76 —98 —4 8 1 0 0 22

The Doolittle algorithm stops, if there appears a zero element on the diagonal
of U, but it is not limited to invertible matrices, in fact it can be computed
on matrices C € C"™*", In this case the L € C™*" and U € C"™*", and the
elements below ug,, k = 1...m, will be zeros.

34



LU-decompositions in MATLAB

MATLAB can compute the LU-factorization on any complex matrix A with
the command lu. The result, however, is not true a lower triangular matrix:
MATLAB permutes the parameter matrix A so as to achieve maximum effi-
ciency, and the L it gives is the product of the permutation matrix and the
actual L. To get true lower- and upper triangular matrices, we get a third
return value: the permutation matrix P.

Example 2.7. Here is an example on how to use LU-decomposition in MAT-
LAB.

>>A = [-1 1 4;-6 -4 0; 0 4 1]

A =
-1 1 4
-6 -4
0 4 1
>>[1 u ] = 1u(h)
l=
0.1667 0.4167 1.0000
1.0000 0 0
0 1.0000 0
u=
-6.0000 -4.0000 0
0 4.0000 1.0000
0 0 3.5833
>>norm(l*u-4)
ans =
1.1102e-16
>>[1 u p 1 = 1u(A)
l=
1.0000 0 0
0 1.0000 0
0.1667 0.4167 1.0000

35



-6.0000 -4.0000 0
0 4.0000 1.0000
0 0 BREIEIRE
p =
0 1 0
0 0 1
1 0 0
>>norm(l*u-p*A)
ans =
1.1102e-16

2.4.2 Cholesky-decomposition

Another matrix decomposition is the Cholesky-decomposition, named after
André-Louis Cholesky. It is not as general as LLU-decomposition, but the
number of computations required in order to do the decomposition is smaller.
The matrices it can decompose are also common in real-life applications.

Definition 2.8. Matrix A € C™*" is said to be Hermitian if it holds true
that A* = A, i.e., A is its own conjugate transpose. This is analogical to
the symmetry of the real matrices. Note that MATLAB’s ’-operator gives
you the conjugate transpose.

Definition 2.9. A Hermitian matrix A € C"*" is positive definite if (u, Au) >
0 for all u e C"\{0}.

A matrix A € C™*" that is hermitian and positive definite can be presented
with a single upper triangular matrix, as a product

A =U"U.

When you have this U, you can simply use the method presented in LU-
decomposition to solve the linear system Ax = U*Ux = U*z = b. Because
U* is a triangular matrix, this can be solved through back substitution.

36



The algorithm to produce U is:

k—1
Uk = Al — Z \Ulk\z
=1

If the number under the square root is ever negative, A is not positive definite
and the algorithm halts, thus making the Cholesky-decomposition an efficient
tool in studying the positive definity of the matrix.

Example 2.10. Compute the Cholesky-factorization of the matrix A, when,

13 11 6
A= |11 11 4
6 4 10

Values of upper triangular matrix U can be computed with this table:

entry | general formula value for U
U1 \V a11 V13
11
U2 a21/U11 Vi3
6
U13 a31/U11 Ve
2 121
U922 A22 — Uy 11 — (1—3)
6 11 121
Uz | (a2 — uruns)/uge | (4 — Vi3 —\/ﬁ)/ 13
2 2 36 121

You get an upper triangular matrix U:

11 121
V13 NeE 11— (&
_ 121 6 11 121
U=10 Nn-(F) -7 m)/is |
0 0 V10— % — (11— 12

having the property A = UTU.

37



Cholesky-decomposition in MATLAB

To obtain the Cholesky-decomposition in MATLAB, use the function chol:
>>A = [4 3 6; 47 6; 6 2 14]

A =
4 & 6
4 7 6
6 2 14
>>A=A%A"
61 73 114
73 101 122
114 122 236
>>u = chol(A)
ans =
7.8102 9.3467 14.5962
0 3.6931 -3.9062
0 0 2.7735
>>norm(u’*u-A4A)
ans =
1.8201e-14

2.4.3 QR-decomposition
Any complex square matrix A € C"*" can be decomposed as
A = QR,

where Q is a unitary matrix, and R is a upper triangular matrix. If A is
nonsingular, then the factorization is unique, if it is required that the diagonal
elements of R are positive.

Definition 2.11. A matrix A € R™" is orthogonal if AAT = ATA =1.
A matrix A € C"" is unitary if AA* = A*A =1

QR-decomposition is often used to solve problems in leas square sense. It is
the used in an algorithm for computing the eigenvalues of a matrix.

38



There are several methods to compute the QR-decomposition, such as House-
holder transformations and Givens rotations. We use the Gram-Schmidt pro-
cess. The Gram-Schmidt process is applied to columns of the matrix A of
full column rank, using the inner product (u,v) = u*v.

Definition 2.12. Let V be an n dimensional vector space. A projection of
a vector x € V onto the subspace spanned by a vector b is the vector u
into the same direction as b with length |u| = |x|cos@, where 0 is the angle
between the vectors x and b. Because

x-b

cosf =
|x[|bl

and because u is in the direction of b we get

x-b 3
x|[b| [b|’

u = |x|

Hence we can define: a projection of a onto the subspace spanned by e is

y—projection

vector v
of v

x

x—projection of v

39



Orthonormalize the columns of A = [a;,ay...a,].
up

u = ai, € = ICRIE
_ ; _ _up
Uz = QA — Projgas, € = Tual]?
o . . s
U, — az— Proje;as — projeas, €3 = Tus]]
_ _ n—1 : __ _up
Up = 8n =) jo; PrOje;an, €n = T,

By rearranging the above equations so that the a;’s are on the left hand side,
and using the fact that e;’s are unit vectors you get:

ap = <81, a1>81;
A = (el,ag)el + <e2,a1>e2,
az; = (ej,as)e; + (e, a3)es + (e3,a3)es,
a, = Y5 (ejan)e;.
This can be written in the matrix form
A =QR,
where
<elu a1> <e17 a2> <el7 a3>
0 ey, a €, a
Q:[elez...en] and R = 0 <20 2> <2 3>

2 1 3
A=|-1 0 7
0 -1 -1
The columns of A are:
2 1 3
a; = —1 , Ay — 0 ,a3 = 7
0 -1 -1

ap V5
Q=77 | &
Yl T |

40



)

013‘ o

= (A2 - 223?) Tl

V/30
1
qs = (a3 o <a37Q1> . <a37q2>) 1 _ ﬁ
(ai,qi1) (a2, q2)/ ||as]| f
V6
Thus you obtain the orthogonal matrix Q:
2 L
V5 V30 /6
A |1 2%
0 -7% %
The matrix R is
(ara) () (asa)] [V5 E
R = 0 (a2, q2) (az,a3)| = | 0 7
0 0 (az, qs) 0 0 %

The QR-decomposition is:

2 1 1 2 1

2 1 3 R V5 F
A=QR=\-1 0 7|=/=% 75 |0 W V%
0o -1 -1 0 __5 1 0 0 16

E
5

The QR-decomposition can be computed more generally for an m x n matrix
A, as long as m < n.

QR-decomposition in MATLAB

QR-decomposition is offered as a MATLAB function qr. Here is a brief ex-
ample on how to solve linear systems using QR-decomposition. The function
triusolve is a self-made function to do the back substitution; creating one
is an exercise task.

Example 2.14. Here is an example on how to use QR-decomposition to
solve a system of linear equations.

41



>>A = [3 -5 7; 0 4 5; -6 -9 -8]

A =
8 -5 7
0 4 5
-6 -9 -8
>>x = ones(3,1);
>>b = Ax*xx
b =
5
9
-23

>>[q r]l = qr(A)

>> ba = q’*b;

>> xs = triusolve (r,ba);
>>norm(A*xs-b)

ans =

6.6465e-15

2.4.4 Singular value decomposition

Every m X n matrix with complex entries can be presented as the product
A =USV",

where U € C™*™ and V € C™*" are orthogonal matrices, and S € C™*"
is a diagonal matrix with entries sorted by magnitude. If the matrix A is
invertible, the inverse is

A7l =VSsTlu~.
This is easy to compute, as the inverse of a diagonal matrix is just a diagonal
matrix with inverses of the original diagonal elements.
MATLAB uses the QR-algorithm to compute the singular value decompo-
sition. If one wishes to compute it manually, the following procedure is
propably the easiest:

1. Find the eigenvalues and orthonormalized eigenvectors of A*A; i.e.,

A"A =VAV™".

42



2. Sort the eigenvalues according to their magnitude, and let o; = \/\;.

3. Find the first r columns of U via
u; :Oj_lAVj,j =1,...,r.
4. Pick the remaining columns so that U is unitary.

Example 2.15. Compute the singular value decomposition UXV? for ma-
trix A, when

1 2
A=1(2 2
2 1
Begin by getting the A*A:
a9 8
wa-ll Y.

Continue by computing eigenvalues for the A*A, and obtain Ay = 17 and Ay =
1. The corresponding eigenvectors are :

e [ v [1].

Thus, by taking the square roots of the eigenvalues you get

V17T 0
=10 1
0 0

and by normalizing the eigenvectors you get

To get U compute

1A 1 1
U = ——=Av; = ——
1 1 \/ﬁ\/ﬁ

3

W

3



and

1 2 ~1
1 1 1

U = 1Avyo=— |2 2 =— 1|0

i V2 2 1 {_1] 211

To determine ug you need only satisfy:
uju3 = d;3, where j =1,2,3.

With this in mind, you can pick

1 23
ug = —/— | — )
VT,
and get
3 =1 _2
1 2 31 vz voo| |[VIT Ol T o
A=USV =12 2| =|z= 0 2110 1|2 Y3].
2 1 3 1L 2 0 0| Lv2 V2
V34 V2 V1T

Condition number

When studying how well the matrix behaves numerically, its determinant,
the usual method of determining, whether a system has solutions, does not
give accurate estimates on the expected error. This is because matrices
A and AA have same numerical properties, but det(AA = A"det(A)). A
better estimate on numerical properties of a matrix is given by a condition
number, defined by:

cond(A) = 2,

On

where o1 and o, are the biggest and the smallest singular value of the matrix
A, respectively.
The bigger the condition number, are numerical properties of the matrix.
For example the condition number of the Hilbert matrix presented earlier is
approximately 1.5-10'°. In MATLAB the condition number is computed by
the function cond.

44



SVD in MATLAB

MATLAB?’s built-in function svd gives out the singular value decomposition
of any matrix given to it. As an example we solve a linear system involv-
ing the the Hilbert matrix. Recall that this didn’t work with the Gaussian
elimination algorithm.

>> a = hilb(8);
4 We use MATLAB’s matriz library to get the Hilbert matriz
>> cond (a)

ans =
1.5258e+10

>> [u s v] = svd(a);

>> x = ones(8,1);

4 The predetermined solution %s a vector comsisting of omes.
>> b = axx;

>> sol = v*(eye(8)/s)*u’*b;

>> norm(sol - x)

ans =

3.8549e-06

The problem with this method of solution is inversing the diagonal matrix
S. While this is easy from the theoretical point of view, it may numerically
be extremely difficult, as it requires the computation of numbers 1/« where
« is very small.

2.5 Linear least squares

We have been given N pairs (z;,7;), and we believe that the y;:s follow a
model of the form f(z,ay,as,...ay). The question now is: how do we best
choose the parameters a;, so that the model f(x,a1,as,...ap) best fits the
data (z;,y;). The model f is said to be linear if it is linearly dependent on
the parameters a;, otherwise it is non-linear. To fit the model we usually

45



apply the least-square method, where we minimize the sum

N
S = Z(yi — f(ziaq, ... an))>

To solve this, we needs to satisfy:
oS
da; -

In case of a linear model, one can interpret the model f applied to observation

points as a matrix, and the parameters a; as unknowns, and thus gain the
linear equation

0,i=1,...M.

Fa=y
where F € CM*N a ¢ CM and y € CV.

Theorem 2.16. If A € C"™*" then the equation A*Ax = A*y has at least
one solution x € C", and

lly — Ax|| < ||y — Az|| VzeC™

Example 2.17. Fit a linear model to the points:
Yi | T
444
458
478
506
523
543
571 | 10

Fitting a linear model means that you will minimize the sum

O ~ Ot W N =

7

S(a) =Y (v — (aw; +b))*

i=0
which yields the equations

a+b = 444

2a+b = 458

3a+b = 478

ba+b = 506 .

Ta+b = 523

9a+b = 543

10a+b = 571

46



This linear system can be written in matrix form Ax = b where

[444]
458
478
506
523
543
571

>
I
© N T W N

e e e

>
Il

1

> Q

| S
on
Il

—_
[en}

You then obtain the LSQ-solution by solving x = (ATA)"'ATb. The matrix
ATA is

269 37} . . {i —ﬂ} P {19582]
,its inverse is | 5l 1, and A'b is .
{37 7 -0 = 3523

Thus you gain the solution vector x:

13.08}

6723
X = l225311%3] , or numerically [434.15

514

580

560

540

y-values
a1
N
o

T

al

o

o
T

480

460

440

12

x-values

47



Example 2.18. The linearity in linear least squares does not limit its uses
to fitting lines: only the linearity of coefficients is required. This example
will showcase this. We have some data points (zg, yx):

Ti | Y
21 | 21
23 | 43
25| 90
27 | 164
29 | 221

Quick study of the values shows, that fitting a line will not work this time.
However, the distribution of the data points suggests, that a polynomial of
second degree might work. Now, instead of fitting line ax + b, fit a quadratic
polynomial az? + bz + c.

The data points and quadratic polynomial give us a system of equations

(4410 +21b+c =21
529a + 23b+c¢ =43
6250+ 25b4+ ¢ = 90
7290+ 27b+c¢ = 164
(841a+29b+c =221

This yields an overdetermined linear system

Ax=D
where ~ _ -
441 21 1 21
529 23 1 a 43
A=1625 25 1|,x=|[b|,b=1]90
729 27 1 c 164
1841 29 1] | 221 ]

Now solve this as in previous example: compute the AT A and seek solutions

to equation
ATAx = A"b

by obtaining the inverse (ATA)~! and multiply from left both sides of the
equation with it.

48



For the final solution x = (ATA)~'ATb MATLAB’s symbolic toolkit gives:

97/56
x = | —4239/70
147079/280

Considering, that the data was synthetically generated by getting values

of the function f(z) = 22 — 200 and adding some error, this falls quite

far. However, graphical study indicates, that the solution fits the data quite
nicely.

300

250

200

150 -

100

50

20 21 22 23 24 25 26 27 28 29 30

The least square method is not limited to fitting linear models. Though the
linear interpretation of the model is lost, the premise of the problem does
not change: one wishes to minimize the sum

N

S(e) =) (yi — flwi, ).

i=1
Doing this manually may turn out to be extremely difficult, but in numerical
sense, it is possible to gain a good solution through standard minimization
algorithms. Different methods of seeking function minimums are discussed
later, but an example is given, that illustrates the idea of seeking the mini-
mum.

49



2.5.1 Least squares and MATLAB

In MATLAB one can use the ’-operator, and form the matrices as in the
previous example, or one can use the Moore-Penrose pseudo-invariant that
yields the same results. It is given by MATLAB function pinv. Also the
standard method for solving linear equations in MATLAB, discussed more
previously, automatically gives the LLSQ solution if the system is overdeter-
mined or otherwise unsolvable. Here is the previous example in MATLAB:

> A =[11; 2 1; 31 ;5 1; 7 1; 91 ; 10 1];
>> b = [444 458 478 506 523 543 571];
>> b = b’?;
>> x = pinv(A)*b
x =
13.0798
434 .1498

The fitted model need not be linear: the proper solution would be gained
through computing the partial derivatives in respect to parameters, and solv-
ing the system of equations they give, but as this is usually cumbersome a
process, it is possible, and oftentimes even preferable to use a function min-
imum seeking algorithm.

Example 2.19. In this example we wish to study the age doctorate students
in math department complete the Ph.D. It is believed, that the function
f(z, B) = prar?e P2 fits the data we have, and wish to find a /3, that satisfies
the least square condition.

50



Figure 2: Age Distribution of 2001-2002 EENDR Respondents

Frequency

20 25 30 35 40 45 50 55 60 65
Age

The following code does the minimum search.

Listing 2.2: Non-linear fit

clear; close all;
x = 20:65;
y [0 OO0 1 2 3 15 65 71 80 55 48 46 26 25 25 16 9 18
88 6465526420011 10110000010 0];
f = inline(’beta(1l)*x.~2 .* exp(-beta(2)*x.~2)’,’x’,’beta’);
fobj= inline(’norm (fmodel(x,lam)-y)’,’lam’,...
>fmodel’, ’x’, ’y’);
beta0 = [2 0.01 ];
[beta fval eflag]l = fminsearch(fobj,betal,[],f,x,y);
bar (x,y,’c’);
hold on;
plot (x,f(x,beta),’r’);
xlabel (’Age of Ph.D’); ylabel(’Number of Ph.Ds’);

When plotted, the f(z, /), = € [20,65], and [ the vector produced by the
previous algorithm, produces this graph.

51



o @ ~ ®
=} =} =) =}
T T T

Number of Ph.Ds
B
S

07 ‘ mﬂﬂ’r WH HHHHHHHHHH@O e o

10 20 30 40 60 70
Age of Ph.D

2.6 Symbolic linear algebra in MATLAB

MATLAB’s symbolic toolbox contains a number of tools with which to per-
form linear algebra symbolically. Here we present a short introduction to
symbolic linear algebra with MATLAB. Most of the functionality of the nu-
merical MATLAB is available in the symbolic toolbox as well. Now the focus
is shifted on the symbolic matrix and vector operations.

A list of variables can be designated symbolic with the command syms, or
for just a single variable, or number, sym. The variable designated symbolic
can now be used to define a matrix just as usual. The symbolic matrix can
now be operated just as a numerical one; most of the operations defined
on numerical matrices are defined also on symbolic ones. One should keep
in mind though, that fairly fast numeric operation does not translate into
fairly fast symbolic one. For example, invoking decomposition algorithms
on symbolic matrices can take an exorbitant amount of time. The full list
of operations available in symbolic toolbox can be seen at help page help
symbolic.

Here is an example of how to determine a symbolic matrix, and to obtain
it’s inverse.

>> B =[sym(2) sym(3) sym(8);
sym(-13) sym(5) sym(6);
sym(-1) sym(13) sym(9)]

B:

52



L 2, 3, 8]

[ -13, 5, 6]

I: _1, 13’ 9]

>> inv (B)

ans =

[ 3/95, -7/95, 2/95]
[ -111/1045, -26/1045, 116/1045]
[ 164/1045, 29/1045, -49/1045]

It is also possible to include non-numeric symbols to matrices, thus gain-
ing more general solutions. Here is a symbolic matrix, and its null space,
characteristic polynomial, and determinant.

>> A = [2 b c ; 4 2%b 2%xc ; a 1 b]

[ 2, b, c]
[ 4, 2xb, 2xc]
I: a, 1’ b]
>> null (A)
ans =
-(b~2-c)/(-2+bxa)
-(-2%b+a*c)/(-2+b*a)
1
>> poly(A)

ans =

X"3-3*x"2xb+2%x*kb "2 -2*%Cc*kx-2*%xX " 2+2*%x*b-a*xCc*x

53



>> det (A)
ans =

0

To make use of the generalisations, we use the substitution function subs
to replace the symbols with the values we wish calculate it with. Here is
an example. A symbolic matrix is defined , and its symbolic determinant
acquired, and used to compute the values of the determinant at 2, —1 and 4.

>> syms a b ¢
>> A = [a b 3;
T*a -c 2%Db;

c -2*xa c]

A =

[ a, b, 3]
[ T7x*a, -c, 2xb]
I: C’ —2*&, C]

>> d =det (A)
d:

—a*xc”~2+4*b*xa~2-T*xa*xc*b-42*%a~2+2*xc*b~2+3*%c~2

>> subs(d,{a,b,c},{2, -1, 4})
ans =

-104

54



Chapter 3

Interpolation

Interpolation is a method of constructing new data points within the range of
a discrete set of known data points. If the goal is to generate new data points
outside of the range of the presented set of data points, we are discussing
extrapolation, which is considerably more hazardous.

This chapter will serve as an introduction to a few of the more common meth-
ods of interpolation, such as polynomial, linear and spline (more specifically,
cubic spline) interpolation.

3.1 Polynomial interpolation

Given n points in the plane, (zx,yx), & = 1,2,...,n, with distinct x;’s,
there is a unique polynomial in x of degree less than n whose graph passes
through the points. There are many different formulas for this polynomial,
but they all define the same function. The polynomial in question is called
the interpolating polynomial because it exactly reproduces the given data

P(.’L‘k>:yk, ]{Z:L...,n.

3.1.1 Lagrange interpolation

One representation on the interpolating polynomial is the Lagrange form

P =Y [T | we
k=1 | j=1 J
J#k

%)



Example 3.1. Let us consider the following data set

>> x = 0:3;
>> y = [-5 -6 -1 16];

The Lagrangian form of the polynomial interpolating this data is

R CEH (AL R LA
x(z — ?2@ —3) (—1) + At 15);(:6 ~2 16

By defining
>> xi=0:.01:3;

>> yi=lagrange (x,y,xi);

where the function lagrange interpolates the values using the lagrange method
(homework problem).
The resulting polynomial can now be plotted with the command

>> plot(x,y,’or’,xi,yi,’-?)

Output:

20

15

10

0 0.5 1 15 2 2.5 3

56



3.1.2 Determining coefficients

Polynomials are not usually represented in the Lagrange form, but in its
power form,

P(z)=ciz" ' + x4+ -+ cpiz F Cp.

The coefficients of the power form can, in principle, be computed by solving
a system of simultaneous linear equations

n—1 n—2 1

Zq Zq R ] C1 Y1
n—1 n—2

T T ceeoxe 1 Cy Yo
n—1 n—2

‘/En ‘/En e xn ]_ Cn yn

The n x n-matrix V' in the linear system above is called the Vandermonde
matrix. Its elements are ’
,Ukv.] = xzij'
Example 3.2. Define x and y as
>> x=0:3;
>>y = [-56 -6 -1 16];
The Vandermonde matrix can be generated in MATLAB with the command
vander:

>> V=vander (x)

vV =
0 0 0 1
1 1 1 1
8 4 2 1
27 9 3 1

Now, the linear equation Vc=y’ can be solved with

>> c=V\y’

c =
1.0000
0.0000
-2.0000
-5.0000

In conclusion, the resulting interpolating polynomial is

P(z) = 2* — 22 — 5.

57



3.2 Runge’s phenomenon

The idea with polynomial approximation is that the degree of the polynomial
increases as the amount of sample points increases. This does not usually
have the desired effect, and as the amount of sample points increase, the less
accurate the approximation is. One such example is Runge’s phenomenon.
Observe the equally spaced polynomial approximation of the function f(x) =
1/(1 + 2?) in the interval [—5,5]. As the amount n of sample points z; =
—5+4 (k—1)-10/(n — 1), (k = 1,...,n), increases, the function starts to
wildly oscillate close to the end points of the interval. Thus, the interpolated
polynomial will only produce useless results.

Example 3.3. When plotting the polynomial interpolation of the function
above for 7 sample points and comparing it with the graph of the original
function, one can clearly see a difference. If the number of sample points is
increased, the oscillations will become even wilder.

%» Runge’s phenomenon
%» Files needed: lagrange.m
xi=-5:.01:5;
n=7; %number of sample points
k=1:n;
=-5+(k-1).*%10./(n-1); % sample points
f=0(x) 1./(1+x.~2); %Runge’s function
yi=lagrange (x,f(x),xi); % interpolated values
plot (xi,f(xi), xi,yi, x, f(x), ’or?)
legend (’original function’, ’interpolated function?’,
’data points?’)

28



Output:

1.2 ‘ ‘
original function
interpolated function

1t O data points -

-0.2 L L L L L L L L L
-5 -4 -3 -2 -1 0 1 2 3 4 5

Lesson: Methods for polynomial approximation (like Lagrange interpolation)
should not be used for large values of n (n > 6). If there are many sample
points, one could, for example, use a piecewise cubic interpolation method
(like cubic spline).

3.3 Piecewise linear interpolation

A simple picture of a data set can be created by plotting the data twice, once
with circles at the data points and once with straight lines connecting the
points.

99



To create the lines, MATLAB uses piecewise linear interpolation. First, the
interval index k must be determined, so that

Tp ST < Ty

Now, a line between the points (xy, yx) and (241, Yr+1) can be mapped using
analytical geometry. The interpolant between the points can be written as:

Liz) =y + (xz — x
(@)= v+ Tr+1 — Tk

where

Lyl — T T — T
A="21_~ and B=—"-
T1 — Tk Tr1 — Tk
The points x; are sometimes called breakpoints or breaks.
The piecewise linear interpolant L(z) is continuous in reference to z, but its

derivate is not continuous. The derivate is

(3.5)

L,(l‘) _ Yk+1 — Yk
T1 — Tk

for all € [z, xx11], and it jumps at the breakpoints.

60



3.4 Splines

Spline interpolation is a built-in function in MATLAB and can be accessed

with the command spline([datapoints], [datapoint values], [interpolant]).
The function returns the interpolated values.

There are several methods for spline interpolation, but what all the methods

have in common, is its piecewise polynomial nature. It works in a similar way

as piecewise linear, but instead of linear functions, one uses polynomial func-

tions of a fixed degree whose derivatives are continuous at the breakpoints

(called knots when discussing spline).

The classical approach is to use polynomial functions of degree 3, this is the

case of cubic spline, which MATLAB also uses.

Example 3.6. Plot the spline interpolation of Runge’s function (presented
in the section on Runge’s phenomenon).

xi=-5:.01:5;

n=10; %number of data points

k=1:n;

x=-5+(k-1) .%10./(n-1); % data points

f=0(x) 1./(1+x.~2); %Runge’s function

yi=spline(x,f(x),xi); % interpolated values

plot (xi,f(xi), xi,yi, x, f(x), ’or?)

legend (’original function’, ’interpolated function?’,
’data points?’)

61



Output:

‘ ‘ ‘
original function

0.9 interpolated function |4
O data points

In contrast to polynomial interpolation, here the accuracy will increase as
the amount of data points increases.

We will now have a closer look at the theory behind cubic spline.

3.4.1 Cubic spline

The polynomials used in cubic spline are of third degree, and must have
continuous second derivatives and satisfy the interpolation constraints.
Suppose, that in addition to the tabulated values of y; one would also have
the tabulated values to the function’s second derivatives, that is, a set of
numbers y/. Now, one can add to the right-hand side of the equation for
piecewise linear interpolation, i.e.

L(z) = Ayx + Byp+1, (3.7)
where . - v
A="F1"" and B= 7k, (3.8)
Th+1 — Tk Th+1 — Tk

62



a cubic polynomial whose second derivative varies from y; at the left of the
interval and y;,; at the right. This will produce the desired continuous sec-
ond derivative. By also constructing the cubic polynomial so that it has
values of zero at z; and at x;,;, then adding it in will not change the be-
haviour at the knots (i.e. the value y; at z, in the interval [z, _1, 2] is equal
to the value y; at xj in the interval [z, 51 1]).

This can be achieved with

y = Ay + Byr1 + Cyy + Dyiy, (3.9)

where A and B are defined as above in (3.8), and

1 1
C =G = A)app —2)?  and D= 2(B* = B)(wp — 2)”. (3.10)

One can easily check that y” is in fact the second derivative of the interpo-
lating function. The derivatives of equation (3.9) with respect to = can be
taken by using the definitions of A, B, C' and D to compute dA/dx, dB/dz,
dC'/dx and dD/dzx.
The first derivative is now

dy  yp —uyr  3AT—1 , 3B?—1

(@41 — z) Yk + T(Sﬂkﬂ — Tk)Yy (3.11)

dr  Tpi1 — T 6

and the second derivative is

d*y
ol Ayy + By (3.12)
11

In the calculations above, it was assumed that the y;’s were known. In order
to calculate them, one must require that the first derivative of the polynomial
is also continuous. Now, the required equations can be obtained from (3.11)
by setting the value for x = x; in the interval [zj_1, )] to be equal to the
value for z = zj in the interval [xy,zj1]. With some rearrangement, this
gives

Ty — Tk-1 o Tpt1 — Tk-1 4 L+1 — Tk g Y+1 — Yk Y — Yk—1
g Yk + — 3 % + 6 Yk T -

forallk=2,...,N — 1.

Now gy, where £k = 1,... N, can be solved from this system of N — 2 linear
equations. In order for the solution to be unique, the boundary conditions
at rpyq and xp must be specified. The most common ways of doing this is to
either

Tt+1 — Tk T — Th—1

63



e set one or both of y{ and y%, to zero, which will give us the, so called,
natural cubic spline, or

e set either of y] and y}; to values calculated from (3.11) so as to give the
first derivative of the interpolating function at either or both boundaries
a specific value.

Example 3.13. Let the set of sample points (zy, yx) be (1,2), (2, 1), (3,5), (4, 3).
Using equations (3.8) for A and B, we get the following

U [ — 1
A= 13—z and B=|x—2
4— x| |z —3
Using these values for A and B, and equations (3.10) for C' and D, we get
H@2—aP—2+a) (o —1)P— 2+ 1)
C=|z(B—2)®-3+uz) and D= |3(z—2)?°—2+2)
H{d—2P —4+a) Lz —3)*—2+3)

In equation (3.9) the piecewise cubic polynomial was defined as
y = Ay, + Byp1 + C?/k + Dyk+1

By using the derivate (3.11) of this polynomial and rearranging it, as de-
scribed, and investigating it at the knots, we receive the following linear
system equations

{éyi’ + 595 + 595 =5
§Ys + 3ys + gyl = —6
which has the solutions
Y=t
yg = tl —|— t2 + 52
yé/ — E tl t2 58
Yy = ta
The values for t; and ¢, can now be set to zero and the piecewise cubic
polynomial is

ti1,ts € R.

B3 — B2 4 33+ 3, when z € [1,2]

15
y=1q-4 3+@x2—ﬁx+231,when$€[2 3]
%_gxs 116952 + 133395 — 105, when x € [3, 4]

64



3.5 Additional methods for interpolation in MAT-
LAB

One function in MATLAB, that allows the user to specify the desired inter-
polation method, is interpl. It can be accessed with the command

interpl ([datapoints],[datapoint values],[interpolant],...
...[method],[extrapolation]).

The argument [method] specifies the specific interpolation method, available

methods are

e ’linear’, which specifies linear interpolation. This is the default
method, and will be used if no method is specified.

e ’nearest’, which uses nearest neighbor interpolation. The interpo-
lated value in a specific point will be the same as the value of the
nearest datapoint.

e ’spline’, which uses piecewise cubic spline interpolation.

e ’pchip’, which uses shape-preserving piecewise cubic interpolation,
also known as piecewise cubic Hermite interpolation.

e ’cubic’, which is the same as >pchip’.

e ’vbcubic’, which is cubic interpolation used in MATLAB 5. This
method does not extrapolate and if the datapoints are not equally
spaced, ’spline’ is used instead.

Example 3.14. Define the datapoints and the interpolant as

>> x=1:10;
>> y=rand(1,10);
>> xi=1:.1:10;

The nearest neighbor method:

>> yi=interpl(x,y,xi,’nearest’);
>> plot(x,y,’or’,xi,yi)

Output:

65



0.3F

0.2

0.1f

The shape-preserving piecewise cubic method:

>> yi=interpl(x,y,xi,’cubic?);
>> plot(x,y,’or’,xi,yi)

Output:

66

10



The argument [extrapolate] can be used to evaluate points outside of the
given interval of data points.

If the argument is specified as ’extrap’, the function will use the specified
method to evaluate any out of range values in [interpolant].

Example 3.15. Let x and y be defined as in the last example, and define
the interpolant as
>> xi=1:.1:11;

Now, the interpolant is defined outside of the range of datapoints, and the
points outside of the range must be extrapolated.

>> yi=interpl(x,y,xi,’spline’,’extrap’);
>> plot(x,y,’or’,xi,yi)

Output:

67



The [extrapolation] argument can also be specified as a scalar to be re-
turned for any out of range values. Here, 0 and NaN are often used.

The function can also be defined, for example, as

pp=interpl(x,y, [method], ’pp’),

which will use the method specified in the arguments (except for >vbcubic?’)
to generate the piecewise polynomial form of the datapoint values. Then
ppval can be used to evaluate that piecewise polynomial. For example,
ppval(pp,xi), where pp is defined as above, is equivalent to
interpl(x,y,xi, [method], ’extrap’).

68



Chapter 4

Numerical differential and
integral calculus

4.1 Numerical derivation

The derivative of a function measures how its values changes as its parameters
change. It is defined via limiting values of difference quotient.

Definition 4.1. The derivative of function f at x is the limit

£(x) = lim f(xg+h)— f(xo).

h—0 h

When f is a function of one real variable, the derivative is the slope of the
tangent line drawn to the graph of the function at real number z.

From the perspective of the numerical computation the definition is skewed:
it tells the behaviour of the function either before or after the derivation
point. Applying it numerically will give results with error term proportional
to h.

One wishes to know behaviour of the function both before and after the
derivation point. This is achieved by fitting a secant line travelling through
the points ((xg — h), f(zo — h)) and ((zo + h), f(zo + h)), and computing its
slope. As h approaches 0, the secant line approaches the tangent line of the
function at zq:

fl@+h)— flz—h)

fl(x) ~ o7 , if h = 0. (4.2)

69



In numerical sense, using this so called three point rule, will yield results with
error terms proportional to h2.

In order for the formula 4.2 to work, the parameter h must be selected ap-
propriately; while the intuition says, that the smaller the |h|, the better the
results, the truth is, that a small value of A will result in extremely bad
loss of precision. Literature on the subject suggests that usually selection
h = (meps)®S yields the best results. Furthermore, it may be necessary
to ensure that the selected h is presentable in floating point arithmetic. If
it is not, then the difference of xy and xg + h is not exactly h, which will
lead to additional accumulation of error. Considering this phenomenon in
MATLAB is not necessary because of the optimization procedures, but in
compiled languages one should take steps to ensure proper representation of
h. The formula 4.2 is susceptible to bad properties of function: if the values
of the function f vary widely on the interval (z — h,x + h), the results it
provides are not accurate. Here is an example code on how to implement

this in MATLAB:

Listing 4.1: Numerical derivative

function df = numdif (f,x,h)

/ x is an n-wvector

[m,n] = size(x); one = ones(m,n);

df = (feval(f,x+h*one)-feval(f,x-h*one))/(2%xh);

Here is an example on how to use the function numdif, and then an example,
why this method of derivation should be only applied with care.

Example 4.3. We numerically derivate a function whose derivative is easy
to define:
f(x) = cos(4x) — sin(2z),

and then compare it to the real derivative,

f'(z) = —4sin(4x) — 2 cos(2x).

Listing 4.2: Example of numerical derivative

>> f inline(’cos (4*x)-s8in(2*x)°,’x7);
>> x 0:0.02:3;

4 We mow compute the numerical

4 derivative on the interval

4 eps 18 MATLAB built-in value

70



/4 for machine epsilon

>> df = numdif (f,x,eps."0.5);

4 To establish the accuracy of

/ the numertic derivative,

4 we compare it to the actual derivative
>> y = -4%sin(4*x) - 2%cos (2xx);

4 we plot the difference of the numertic
4 an the actual derivative

>> plot(x, y-df);

2.5

As can seen, the maximum error seems to be of magnitude 6 - 107, which is
comparably tolerable. Next presented is a warning example on the effects of

a poor choice of h:

Listing 4.3: Consequences of poorly selected h

>> f = inline(’cos (4*x)-sin(2*x)’,%x’);

71




>> x = 0:0.02:3;

4 We mow compute the numerical derivative
4 on the interval =

>> df = numdif (f,x,eps);

4 To establish the accuracy of the

/ numeric derivative,

4 we compare it to the actual derivative
>> y = -4%sin(4*x) - 2%cos (2xx);

4 we plot the difference of the numertic
4 an the actual derivative

>> plot(x, y-df);

As is obvious, selecting too small an A can yield staggeringly bad results.

Example 4.4. There are situations where not even a proper choice of param-
eters can help to salvage the accuracy of numerical derivative. To showcase

72

2.5




this the behaviour of numerical derivative of function

f(2) = sin(a*)

on the interval (3,6) is studied. It is then compared to the true derivative of

f

f(z) = 2% cos(x*)

>> f = inline(’sin(x."4)’,’x’);

>> fd = inline(’(4*x."3).*%(cos(x."4))’,°x?);
>> x = 3:0.02:6;

>> plot(x,numdif (f,x,eps.~0.5)-fd(x));

The picture shows, that the errors are of magnitude 4-10~°, which, while not
unbearable, can in certain situations be meaningful. One should also note,
that the function’s variation in values continues to increase in frequency, thus

73



making numerical derivation highly suspect.

In addition to poorly behaving functions, there are functions that are not dif-
ferentiable, either at specific points or at all, but whose numerical derivatives
can be obtained. For example, it is well known that the function f(z) = |z|
does not have derivative at 0. However, when computed with the function
numdif this is not instantly obvious.

>> numdif (@abs ,0,1e-8)
ans =
0

Only times the numerical derivative is not technically obtainable are at dis-
continuity intervals of the evaluated function. One should however keep in
mind that even if a derivative is numerically obtainable, it does not mean
that it exists.

4.1.1 Estimating derivative with polynomial

The previous estimate for a derivative of a function was based on linear
approximation of the function on the interval (x — h,z + h). This leads one
to wonder, whether it is possible to increase the accuracy of the derivation
through better approximation of the function.

If a function f is approximated with a polynomial, basing the approximation
on points x; = x +th,i = —n, ..., n, one can acquire a polynomial using the
Lagrange interpolation method. Suppose then that n = 2 has been chosen,
and been used to created the estimate py, with po(z;) = f(z;). The derivative
can now be approximated:

f'(x0) = py(wo).

Different approximations to functions derivatives, and their accuracy have
been widely discussed in literature. We rest the matter by giving the result
the previously presented polynomial estimate yields, though without proof.

1

) (G5 -a) = 3@ + 3 1(wa) = 151 (wa)).

Here is the MATLAB implementation to the five point rule:

74



function dy = diff(y,h)
The 5-point rule
the parameter y s
the wvalues of the
function on the interwval
we wish to obtain the
dertvatives, h is the step factor
To compute dy at single point z0
set interval T = z0-2%h:h:x0+2%h
y=f(z), and tnvoke diff
dy = diff(y,h);
p =-2:2
a= (2*%p~3-3%p~2-p+1)/12; b= (4*p~3-3*%p~2-8*p+4)/6;
c= (2xp~3-5*p)/2;
d= (4*xp~3+3%p~2-8xp-4)/6; e= (2*p~3+3*p~2-p-1)/12;
coe=[coe; [a -b ¢ -d ell;
end ;
4 We mow make sure that y is of proper stize
[d1,d2]=size(y);
if ((min(d1,d2)>1) | (max(d1,d2) <5))
error (’Argument error in numder’);
end ;
dy =v;
dy (1)=(1/h)*sum(coe(l,:).*xy(1:5));
dy(2)=(1/h)*sum(coe(2,:).*xy(1:5));
for p=3:d2-2
dy(p)=(1/h)*sum(coe(3,:).*xy(p-2:p+2));
end ;
dy(d2-1)=(1/h)*sum(coe (4,:).xy(d2-4:42));
dy (d2)=(1/h)*sum(coe(5,:) .xy(d2-4:d2));

ST SR SR ST D% B e e e

Hh
(o]
=

4.2 Jacobian matrix

When studying functions with more than one component and variable, a
best tool to observe the differentiation of a function is the Jacobian matrix.
Jacobian matrix contains all first-order partial derivatives of a vector- or
scalar-valued function on it’s columns.

75



Suppose F': R" — R"™ has components

F(ry...xn) = (Fi(zy...x)), oy .o xn) o Fo(Tr ... x)).

Then its Jacobian matrix is

or OF,
o1 o OTn
OFn OFm
o1 e OTn
As one can see, if (zq,...,x,) are the orthogonal Cartesian coordinates, as

usual, the k:th row of Jacobian is the gradient of the k:th component of the
function F.

To numerically compute the Jacobian matrix we use the method in one di-
rection at time, filling the Jacobian matrix column wise.

Listing 4.4: Algorithm for numerical Jacobi matrix

function Jf = jacobian_matrix(f,x,m,n)

4 here f is the function to be derivated,

4 x is the point of derivation,

4 m ts the number of component functions,

4 and n is the number of parameters.

/4 we begin by initializing Jf

Jf = zeros(m,n);

h = eps.”0.5;

4 e will define the direction we wish to partially derivate
e = zeros(n,1);

4 function f wtll produce m partial derivatives,
/4 thus filling the column

for j=1:n
Jset the direction
e(j) = 1;
Jf(:,j) = (f(x+ex*h) - f(x-exh))/(2%h);
e(j)=0;
end

Jacobian matrix describes the orientation of the tangent plane of the function
at a given point; one can think it a generalized gradient.

Jacobian matrix can through the inverse function theorem say, whether a
function has an inverse at some point or not. The inverse function theorem

76



states, that matrix inverse of the Jacobian matrix of an invertible function
is the Jacobian matrix of the inverse function. Hence,

Jr-1(f(p)) = J¢(p)~".

Because the existence of inverse function is usually more interesting than
actually determining what it is, it is often enough to compute the determinant
of the J¢, called Jacobian determinant, or just Jacobian. The Jacobian plays a
large role in many fields of mathematics, such as partial differential equations.
Jacobian matrix can also be used to linearly approximate the function on
short intervals, and it is essential when applying the Newton method on
vector functions.

4.3 Numerical derivation on complex plane

It is often desirable to perform numeric differential calculus on complex func-
tions. This is possible in MATLAB using the built-in complex variables ¢ and
j.

Complex functions are functions that map complex variables into complex
plane. Any complex number can be separated in to real and imaginary parts:

z=x+ yt,

where z € C,z,y € R. Similarily any complex function can be divided into
real and separate parts:

f(2) = u(z,y) +iv(z,y),

where u,v: R?> — R and z,y € R.
Complex derivation at point 2y € C is defined as a limiting value on a complex

function f
f'(eo) = lim HE 1) =[]

where h € C.

One should notice, that while this definition seems very much like like its
counterpart on the real line, the fact that h € C makes matters a bit compli-
cated. Instead of two possible directions of approach, there are now in fact
infinitely many directions from where h can approach 0. It usually pays to

77



express the complex number in polar coordinates to make the determination
of the limiting value easier.
Evaluating the derivative numerically may sometimes be deceivingly easy:
while the method need not necessarily be different than the one we observed
before for real functions. As a rule MATLAB does not need any special
instructions on how to deal with complex variables:
>> f = inline(’z.°27,°z?)
ST—

Inline function:

f(z) = z.72
>> numdif (f,2+2%1i,1e-8)
ans =

4.0000 + 4.00001

Problems rise when we encounter functions that are not differentiable; when
dealing with complex functions these are not always easy to identify. For
example the complex conjugate: f(z) = f(z +iy) = x — iy = Z is not differ-
entiable anywhere on complex plane, but numdif still provides the numeri-
cally evaluated derivative. This is somewhat deceiving, because the partial
derivatives for the similar real valued function f(z,y) = (z, —y) exist and
are continous at every point of R2.

Usually differentiability at any one single point is not an interesting property.
If U is some open disk of C and a complex function f is differentiable at every
point of U, f is called holomorphic in U. The holomorphity of a complex
function, while similar in nature to differentiability of a real valued function,
is much more strict a requirement. There is a link between the two, however.
If we separate the real and imaginary components of a complex function
f(x +iy) = u(x,y) + iw(x,y), in order for f to be holomorphic, the real
valued functions u and v must satisfy the partial differential equations

Ju  Ov ou v

—=—oand — = ——.

oxr 0Oy oy ox
These are called Cauchy-Riemann equations. Holomorphism is an important
concept in function theory. It will be revisited when complex integration is
studied.

78



4.4 Numerical integration

Integrals are an area of mathematics where numerical solutions are often
sought out, because for many functions it is impossible to define an exact
integral. Even if it is possible, oftentimes it takes far less work and yields
good enough results to make numerical solutions sufficient. The term numer-
ical quadrature, or just quadrature, is more or less synonym for numerical
integration.
The basic problem considered by numerical integration is to approximate a
solution to a definite integral

b

a

First thought would probably be to count function’s Riemann sums with suf-
ficiently dense partition, but while Riemann sums provide a good theoretical
tool for defining the integrals, in applications the skewed results they provide
are usually insufficient.

4.4.1 Trapezoid rule

The idea of partitioning the interval is a useful one, but instead of approx-
imating the function on the short interval in partition by a constant value
at either end, like the Riemann sums do, function’s values are approximated
with a line drawn through the functions values at the endpoints of the inter-
val. This method produces us a number of trapezoids, whose area is easily
determined, and the sum of those areas is, depending on the smoothness of
the function, and the selected partition, a good approximation of the inte-
gral.
Using the knowledge that area of any trapezoid is defined as

b

PR CE3 0]
approximate the defined integral:

b 1

INCLET > (o= ) (o) + S i)

In the formula N is the number of intervals studied. It depends on the inte-
grand and the interval [a, b] what the N should be, and should the intervals
[z;_1,z;] be of uniform length or not.

79



40

Figure 4.1: Trapezoids drawn on curve y = 2% + 2x + 4.

Trapezoid rule in MATLAB

MATLAB has a built-in function called trapz. It takes two vectors as argu-
ments, containing the values z; and y;.

Here is another way to implement the trapezoid rule: one that uses uniform
interval length, and takes a function as an argument.

Listing 4.5: Algorithm for trapezoid rule

function A = trapez(f,a,b,n)
h = (b-a)/n;
A = 0;
for i = 1:n-1
X = a + hx*xi;
A = A + 2xf(x);
end
A=A+ f(a) + £(b);

A = 0.5%Axh;
The function trapez is used like this

>>trapez(@sin, 0, pi, 10)

80



1.9835
Since integral of sin from 0 to pi <S8
cos (0) - cos(pi) = 2
this 18 qutite accurate with as few as 10
intervals ..

o
=
%}

SN

Expanding the formula to more dimensions is not impossible, or difficult,
though one should keep track of the quantity the trapezoids present.

4.4.2 Simpson’s rule

Simpson’s rule is based on interpolation of the integrand function with a
quadratic polynomial P(z). The polynomial P(z) takes the same values as
integrand at the endpoints a and b, and at the midpoint m = “T“’ Using
Lagrange interpolation method, it is discovered, that

(x —a)(z —b)
(m —a)(m —0b)

0.5

P(x) = The interpolant

-0.5f

f(x)=exp(—x)—sin(x2)+2*cos(x)

-15F

_2.5 L

2 2.2 24 2.6 2.8 3 3.2 34 3.6 3.8 4

The interpolant P(x) is polynomial of second degree, and hence easy to

81



integrate:

/abP(x)da:: bga(f(a) +4f(“‘2”)) +f(b)).

One should notice, that in order for the Simpson’s rule to produce good
approximations, the integrand function should be relatively smooth over the
interval [a, b]; relatively meaning that the quadratic interpolant is accurate
some acceptable degree. However, if the integrand function oscillates heavily
or it lacks derivatives at some points, or it has some other "bad” property,
an accurate interpolation over a long interval may be impossible.

To correct the situation where integrand function behaves badly the usual
approach is to break the interval [a,b] into a number of subintervals. The
Simpson’s rule can then be applied to each subinterval individually, and the
sum of these approximations is usually a good approximation of the definite
integral over the entire interval.

Suppose that f is the integrand function, and the interval [a,b] is divided
into n subintervals, n being an even number. Then the composite Simpson’s
rule gives

n/2—1 n/2

/ab f(z)dz ~ g(f(xo) +2 z; fwgy) + 42 Flza;-1) + f(xn)),

where z; =a+ jh for j =0...n and h = (b— a)/n. Here is an implementa-
tion in MATLAB code

function S = simpson(f,a,b,n)

4 f is the name of the integrand,
4 a and b define the interval

4/ n 1s the desired number of

/4 subintervals

/4 Here’s the first term of the sum
S = f(a);

n = 2%n;

/ make sure n is even

h ©7s the length of the
subdivision.

B RS

82



1 = (b - a)./n;

/ the uneven additions
for j = 1:2:n-1

a + 1xj;

S + 4xf(x);

X
S

end
/ the even additions
for j = 2:2:n-2

X = a + 1x%xj;

S = S + 2%f(x);
end
S = S+f(b);
S = h*S/3;

Simpson’s rule can be extended to more than one dimensions, but is limited
to studying rectangular shapes.

4.4.3 Numerical integration in MATLAB

MATLAB offers a range of built-in functions to numerically calculate definite
integrals. Most of them are based on adaptive Simpson’s rule, so they can
be expected to produce accurate results on functions that are relatively well
behaved.

The simplest one to use is the function quad. It uses the Simpson’s rule to
estimate the definite integral of a function of single variable on an interval
[a,b]. Tt's variant, quadl takes the same parameters, but uses the Lobatto-
quadrature instead. The previously mentioned function trapz essentially
computes the integral using trapezoid rule. Here are a few examples on how
to use these functions.

4 First we set up the integrand functions,
/ and the integral functions to observe the
4 accuracy of different methods.

f = inline(’sin(2*x) + 4*xcos(2*xx)’,’x’);

g = inline(’x.~3 + 2*%x -57,%x’);

F = inline(’2*sin(2*x)- 0.5*cos (2*x)’,’x?);
G = inline(20.25%x."4 + x.72 - bB*x?’,’x’);

/4 first the trapezoid rule

x = 0:0.2:4;

83



sl = trapz(x,f(x));

s2 = trapz(x,g(x));

1

disp(sl - (F(4) - F(0)) )
A prints

4 -0.0341

disp(s2 - (G(4) - G(0)) )
A prints

/1 0.1600

/4 we then use the quad function
sl = quad(£f,0,4);

s2 quad(g,0,4);

disp(st - (F(4) - F(0)) )

V4 prints

A 3.7260e-09

disp(s2 - (G(4) - G(0)) )

V4 prints

A -7.1054e-15

4 Finally we observe the quadl - the Lobatto rule
sl = quadl(f,0,4);

s2 = quadl(g,0,4);

disp(s1i - (F(4) - F(0)) )

A prints

A 8.5916e-11

disp(s2 - (G(4) - G(0)) )

V4 prints

A -7.1054e-15

MATLAB’s integration methods are not limited only to functions of sin-
gle variable: the functions dblquad and triplequad compute the integrals
over rectangular planes and volumes respectively. The syntax they use is
dblquad(f,xmin,xmax,ymin,ymax), where f is a function handle to func-
tion that takes two parameters, a vector x and a scalar y, and returns values
in a vector V containing the values of the integrand.

84



4.4.4 Numerical integration on complex plane

Integral of complex function f is called complex integral. It is notated as

ﬂazlj@w

where C'is a path on complex plane. Before discussing what this notation ac-
tually means, one needs to define a path and a integral of a complex function
over real interval.

Definition 4.5. Let [a, b] be an interval on real line, U be an open subset of
C, and let 7y : [a,b] — U be continous. Then ~ is called a path. If y(a) = ~(b)
path ~ is called a closed path. For the purposes of complex integrals paths
are usually chosen so that they are also differentiable.

Definition 4.6. Let [a,b] be an interval on real line , and let f : [a,b] — C
be a continous function f(¢) = v(t) + iu(t), where v and u are real valued
functions. Integral of function f over the interval

l%@@:l%@@ﬂl%@@

With the two previous definitions we can define a complex integral over a
curve C. Let v map some real interval [a, b] to the path C. Now the complex
integral is

/C f(2)dz = / F )Y ().

Example 4.7. Integrate f(z) = 2z + 3i over paths C; and Cy, when C] :
[—1,1] — C, Cy(x) = iz, and Cy : [-Z,Z] — C, Cy(x) = cos(z) + isin(zx).

272

85



R s
3

Derivative of the path Cj(x) = iz is simply 7. This means that the complex
integral is:

1 1
/ 22 4 3idz = / (2is + 3i)ids = / —25 — 3ds = —6.
C1 -1 ~1

Derivative of the path Cy = cos(z) +isin(x) is Ci(z) = —sin(x) + i cos(z) =
i(cos(x) +isin(z)). Using this yields the complex integral

/ 224+ 3i = /2(2(COS(S) +isin(s)) + 3i)i(cos(s) + isin(s))ds =
Cs z

2

z( / " (cos(s) +isin(s))ds + / g3i(cos(8)+isin(s))ds) _

us us

2 2

i(3i - 2) = —6.

The reason the two complex integrals yield the same result is that the in-
tegrand function, f(z) = 2z + 3i is holomorphic. It also means, that it
is path independent: the value of the complex integral does not depend
on the selected path, provided that the function is holomorphic on the en-
tire path. Observe now a complex integral of g(z) = |z| along the paths

86



C7 and C5. We use Euler’s formula to make the C; more manageable:
Cy(x) = cos(x) +isin(x) = e, and Ch(z) = ie'™.

1
/ g(z)dz:/ lis|i ds =1,
C1 -1
/ g(2) :/ ’ le*|ie*ds :/ " et = 2.
C”2 s s

2 2

while

3

Because ¢ is not holomorphic, the integrals along different paths differ.

Computing complex integrals in numerically does not differ greatly from
real integrals: essentially the idea of dividing the interval and summing the
trapezoids works in complex case as well.

>> f = inline(’2%z+3%i’,2z?)
f =
Inline function:
f(z) = 2%z+3*1
4 function trapez is the same one
/4 defined in the section on trapezoid
/4 integrals
>> trapez(f,-1i,1,100)
ans =
-6
4 MATLAB’s own <integral tool has no
4 problems either
>> quad(f,-1i,1)
ans =
-6

Numerically the real and complex integrals do not differ, when dealing with
holomorphic functions. When the only the endpoints of the integral path
matter, the integral can always be evaluated along the straight line from
the beginning of the path to the end of the path. However, if the integrand
function is not holomorphic, this is not the case, as was seen in the previous
example. In these cases it is necessary use the definition to compute the
integral.

>> quad (@abs,-1i,1i)
ans =

87



0 + 1.00001
>> g=inline(’abs(cos(x)+i*sin(x))*i.*(cos(x)+i*sin(x))’)
>> quad(g,-0.5%pi,0.5%pi)
ans =

0 + 2.00001

4.4.5 More advanced integration methods
Boole’s rule

Boole’s rule approximates the integral

/:5 f(z)dz

by computing values of f at five equally spaced points, so that z, = z; +
(k —1)h and h = =72, In the Handbook of Mathematical Functions with
Formulas, Graphs, and Mathematical Tables, the estimate is expressed as:

/ = () 4 821 () 4 12f (1) + 82f(20) + 7 (1) + exror.

x1

The error term is: 8
A {C)
ol ()
where ¢ € [z1,x5]. Here is an example of Boole’s method implemented in

MATLAB.

function I = boole(f,a,b)

h = (b-a)/4;

S [f(a) f(a+h) f(a+2*h) f(a+3*xh) f(a+4xh)];

I 2%xh/45% (7*S(1)+32%S(2)+12%S(3)+32%xS(4)+7*S(5));

Because the only factor that can be affected in the error term is the length
of the integration interval, it might be a good idea to adapt the method for
intervals too long. Here is an example on how to implement the adaptation.
A word of warning though: this example makes use of recursion. Recursion,
as a rule, is extremely resource consuming, and should be avoided at all costs.

function S = boole_rec(f,a,b)
if (abs(a-b)<0.5)
S = boole(f,a,b);

88



return;
end
middle = (a+b)/2;
S = boole_rec(f,a,middle) + boole_rec (f,middle,b);

Romberg’s method

Romberg’s method creates a triangular array consisting of numerical esti-
mates of the definite integral it approximates. It applies Richardson extrap-
olation continuously on the trapezoid rule, until desired accuracy is achieved.
The method can be defined inductively:

R(0,0) = 3(b—a)(f(a)+ (b))
R(n,0) = 2R( —1,0) +h, >0, f(a+(2k—1)h )
R(n,m) = R(n,m—1)+ 5 (R(n,m —1)—R(n—1,m— 1))

4m—1

where h,, = %b

With n and m sufficiently large,

[ e ~ Rom.n)

with the maximal error estimate for the R(m,n) being O(h2™+?).

First column of this triangular array, that is, values R(7,0),i = 0...n, are the
trapezoidal integrals calculated with 2™ + 1 points. The first extrapolation is
equivalent to the integral approximation using the Simpson’s rule with 2" +1
points.

As far as computation is concerned, the recursive calls within the loops are
not efficient at all. A better solution is to table the values, and update
the table as we move along the algorithm. While some small inefficiency is
suffered by not being able to preallocate the matrix R, it is a small price to
pay for avoiding the deep recursions that would otherwise be necessary.
Here is an example implementation of Romberg integral in MATLAB.

function q = romb(f,a, b, tol)
/4 Approximates the integral from a to b of f(z)dz

4 to tolerance of tol by using the trapezoidal
4 rule with repeated Richardson

89



4 extrapolation.

4 Make first estimate using one interval.

n

= 1; h = b-a;

fval = [f(a); f(b)];
R(1,1) = .5%h*(fval(1)+£fval(2));

4 Keep doubling the number of subintervals
desired tolerance %138 achieved or max no.

z

Jsubintervals (2710 = 1024) is reached.

z

The array R wtll hold the triangular

Aarray of estimates for F(b)-F(a)

err = tol+80;

4 Initialize err to something > tol.
disp (° q error est’)
s = 0;

while err > tol && s < 10,

SRS e

B

s = s+1; n = 2%*n; h = h/2;
fvalnew = zeros(n+1,1);
Store computed wvalues of f to reuse
when h 1s cut wn half. We preallocate
for speed.

for i=1:2:n+1

fvalnew (i) = fval((i-1)/2 + 1);
end ;

untel

Compute f at midpoints of previous intervals

for i=2:2:n
fvalnew (i) = f(a+(i-1)*h);

end ;
fval = fvalnew;
trap = .5%(fval(1)+fval(n+1));

for i=2:n

trap = trap + fval(i);
end ;
Use trapezoidal rule with new h walue
to estimate integral. fval holds the
endpoints of

90



R(s+1,1) = hx*trap;
4 Store new estimate in first column of tableau.

Perform Richardson exztrapolations.

That 4s, we fill the slots R(s,2) to R(s,s+1)
for j=2:s+1,
R(s+1,3)=((4.~(j-1))*R(s+1,j-1)-R(s,j-1))/(4.~(j-1)-1);
end ;
qg = R(s+1,s+1);

B RS

Estimate error. Thts ts usually an overestimate of
the error wn q.

It 4s a more appropriate approzimation for the
error at previous Sstage.

The error will decrease, as either m or m grows.
err = max ([abs(q-R(s,s)); abs(q-R(s+1,s))1);

ST S e e

Print out approximation to <ntegral and error at each
step, for monitoring convergence. For industrious
use, comment away. (Print is a costly operation)
disp([q err])

BRI

end ;

Monte Carlo - methods

Monte Carlo methods form a class of computational algorithms, that rely on
evaluating repeated random samples to compute an approximate result to the
given problem. Because of their reliance on large number of pseudo-random
numbers, they are almost uniformly suited for computers, and tend to be
used when acquiring the deterministic solution is impossible or unfeasible.
The term itself was invented in Los Alamos National Laboratory by physicists
working on nuclear weapon project during the second world war.

Our interest in Monte Carlo methods concern numerical integration. The
previously presented methods of numerical integration are based on taking
a number of evenly spaced sample points, and determining the quadrature.
However, there are cases when computing the definite integral in some de-
terministic way, even numerically, may turn out to be too difficult. In these
cases Monte Carlo integration method may prove to be a good choice.

91



Informally, the idea of Monte Carlo integration is to approximate definite
integral over domain D, by picking a simple domain F, whose area is easily
determined, and which contains C. Random points are then selected in F,
knowing that some of these will also fall in C'. The estimate for the integral
D is the area of E multiplied by the fraction of random samples in D.

/D f () ~ arca(E)

where n is the number of random samples that fell within D and N is the
total number of random samples. As the number N grows, the approximation
converges towards the definite integral.

Monte Carlo integration methods are very well suited to situations, when
there is little or no mathematical structure behind the integrand: for exam-
ple integration of a noisy experimental data. For this reason Monte Carlo
methods are eminently used in computational physics, while in other areas
of mathematics deterministic methods are used.

In order for Monte Carlo- integration to produce good results, the method
for producing random points must be selected with care; traditionally the
random points are uniformly distributed over the domain E, though other
methods have been suggested to decrease the error.

Example 4.8. In this example Monte Carlo integration is used to estimate
the volume of a cube with a radius of one. To do this, take a number of
random samples from [—1,1] x [—1,1] x [—1, 1], and perform the evaluation.

4 we estimate the wvolume of a sphere
4 with radius of one
4 using Monte Carlo integration

we get m random triples from cube
[-1,1]xz[-1,1]z[-1,1]

2t contains the sphere with radius

of omne

n=input (’How many random samples do you want?’);
hit = 0;

e v v e

for i = 0:n
a = 2xrand (1) -1;
b = 2*xrand (1) -1;
c = 2*xrand (1) -1;

92



if (a~2+b"2+c~2 <= 1)
hit = hit + 1;
end
end
disp(’Estimated volume?’)
disp(8*hit/n);
disp(’Real volume?’)
disp (4/3%pi);

Testing shows, that 3000 samples seems to produce quite good results, with
error of magnitude of 10~%.

Gaussian quadrature

The concept of orthogonal functions, first defined in theory of vector spaces,
gives us a useful tool to approximate a definite integral numerically.

Definition 4.9. First, define a vector space with continuous functions de-
fined on the interval [a,b]. Let f and g be such functions, and let W be a
third function, a weight function. Define then the inner product for functions
f and g with

b
<fa9>:/ W(z)f(x)g(x)dx.

If (f,g) = 0, the functions are orthogonal. If (f, f) = 1,, f is said to be
normalized. If every function in a set of normalized functions is orthogonal
with each other, it is said to be orthonormal.

Using the previous definition, one can create a set of polynomials having
exactly one polynomial p;(x) of the degree j,j =0,1,2,....
The construction is as follows. First set

p_1(z) =0,po(z) =1,

then
pi1(@) = ( — a;)p;(x) — bjpj-1 ()
where
0 — <$pj,pj>7bj __Papi) 93
(pjs ;) (pj-1,Pj-1)

The factor by can be selected arbitrarily, usual choice is zero.

93



Now, when approximating definite integral

/ W(z)f(x)dx ~ ijf(a:j)

one can select the weights w; and abscissas x; so, that the formula holds
as equivalence for all polynomials of at most 2N — 1 degree; the evaluation
points are the roots of the orthogonal polynomials, constructed as shown
before. The weights depend on the polynomials as well.

One of the most commonly used set of polynomials are the Legendre poly-
nomials P,(x). It can be defined as a contour integral

b _ 2\ —1/2,—n—1
P.(z) = = j{(l 2z +t7)" 7t dt.

The contour should enclose the origin, and no other singular points, and it
is traversed counterclockwise.

Scale the integrand function to interval [—1, 1], and select the weight function
W(x) = 1. The evaluation points, or Gauss nodes, z; will then be the i:th
root of the P,, where n is the degree of the Legendre polynomial to be applied.
The weights w; will be

2
(1= 2)(F(x:)?)

Here is an example code for Gaussian quadrature using Legendre polynomi-
als.

w; =

function I = gauss_quad2(f,a,b,n)
I = 0;
4 The function must be scaled to
4 [-1 1]. wp and ws are scaling
4 weights.
wp = (b-a)/2;
ws = (a+b)/2;
4 Find the abscissas
R = legroots(n);
4 define a step for derivation
h = sqrt(eps);
for i= 1:1length(R)
r = R(i);

94



Built 2m Legendre funmction:
subsequent rows represent
increasing order: the first
row t1s the 0Oth order Legendre
function, 1.e. Leg. polynomzal.
= legendre (n,[r-h r+h]);
y = (y(1,2)-y(1,1))/(2xh);
Determine the weights

ST SR Se A

N A

w =2/ (1-r.~2) * (dy."~2) );
I =1 + f(r*xwptws)*w;

end

function r = legroots (N)

The function r = legroots (N) computes the roots of the
Legendre polynomial of degree N. For the purposes of
this course, just have faith that <t does what 1t
promises.

= 1:N-1;

n./sqrt (4*n.~2-1);
diag(d,1)+diag(d,-1);
eig(J);

SRS e

Indices

Create subdiagonals
Create Jacobt matriz
Compute eigenvalues

R oo B
Il
RN W

The Gaussian method can be made more accurate by increasing the degree of
Legendre polynomial, or by selecting a different set of orthogonal polynomials
and weight function altogether. In case of the latter, common choices include
weight function \/11_7 with Chebysev polynomials, and e ™ with Laguerre

polynomials.

4.5 Symbolic differential and integral calculus

While MATLAB is designed to be primarily a tool for numerical comput-
ing, since 2008 MATLAB symbolic math toolkit has included the MuPAD
computer algebra system, capable of performing symbolic computations. It
is somewhat inferior to its more famous competitors, Maple and Mathemat-
ica, but it provides a good enough foundation on which to perform symbolic
operations.

If used from MATLAB command line, the MuPAD functionality is accessed
through defining a variable symbolic with the command sym. After declaring
a variable symbolic it does not hold a numeric value, like variable usually

95



would. It is now considered a symbol, and all operations performed on it
are now done through the MuPAD kernel, rather than MATLAB. Here is an
example:

4 First we define two symbolic wvartables, z and a.
>> x sym(’x);

>> a = sym(’a’);

4 We mow test the artthmetics

>> a * xx*a

ans =

a"~2%x
> a + a + a +a + a

ans =

S5*xa

4 Numbers can also be given symbolic
4 representation.

>> sym(11)/sym(22)

ans =

1/2

In addition to the basic operators, the symbolic toolbox offers a wide variety
of different operators. In this section we, however concentrate on those that
have to do with basic calculus, starting with the obvious ones: derivation
and integration. Symbolic operators diff and int perform the derivation,
or integration, if possible. They must be given a symbolic expression as a
parameter in order for them to work. Here are examples.

4 First define a symbolic wariable.
>> x=sym(’x’);

/4 Then define a symbolic function:

/ tt’s only parameters are symbolic
/ variables.

>> t = 8*x~3 + 16%x"2 - b56%x + 8;

/4 We integrate the polynomial with

/4 respect to z

>> int (t,x)

96



ans =
2%xx"4+bxx"3-28%x"2+8%*x

4 We then derivate in respect to
>> diff (t,x)

ans =

24%xx~2+30*x-56

4 Then something more complezx

>> t = 1/(1+x72);

>> int (t,x)

ans =

atan (x)

4 Integration over areas works also
>> y = sym(’y?);

>> t = x72+y72;

>> int(t,x,y)

ans =

1/3%y~3-1/3%x"3+y~2x(y-x)

4 partial derivation works also...
>> diff(t,x)

ans =
2%x
/ so do second derivatives

>> diff (diff (t,x),x)

ans =

97



/4 and finally the gradients
>> h = x73+ 4xy;

>> A=[t h];

>> diff (A, x)

ans =

[ 2xx, 3*%xx~2]

In addition to integration and derivation operators, MuPAD offers tools to
observe limits of functions, convergence of series, and finally, to find Jacobian
matrices and Taylor series for given functions. Here are examples.

4 We start with simple limit:

/4 the wvalue of Napier’s constant e
>> n = sym(’n’);

>> s (1+1/n)"n

4 The limit defaults to

4 0 if no wvalue is given

>> limit(s, n, inf)

ans =

exp (1)

/ Then another limit, this time at 0
>> x = sym(’x’);

>> f sin(x)/x;

>> limit (£)

ans =

4 Now we shall attempt to find a Taylor series
Afor a complicated function at z_0 = 0;

/ the command syms ts shorthand for creating

4 lists of symbolic wvariables.

>> syms x ¥y

>> f = sin(x)*x + exp(x) + 8

>> taylor (f)

98



ans =

9+x+3/2*xx"2+1/6*%x~3-1/8*xx~4+1/120%x"5
4 Without specifications the function
4 taylor finds the Taylor polymomial
4 at 0, and computes five first terms
>> taylor (exp(-x),3,6)

ans =

exp(-6)-exp(-6)*(x-6)+1/2%xexp(-6)*(x-6)"2
4 Here we specified that we want the first
4 three terms computed at z_0 = 6

4 Finally we take a look at the symbolic
/4 Jacobian matric

>> f = [x"2+y*x; x*y+x; exp(x+y)];

>> jacobian (f,[x yI1)

ans =

2% x+y, x]

[
[ y+1, x]
[ exp(y+x), exp(y+x)]

99



Chapter 5

Nonlinear equations

In previous chapters different methods of solving systems of linear equations
were studied. Now more general types of equations are studied. Generally,
object is to find a vector x = (z1,...x,),x € R" that satisfies the system of
equations

filx) =b
. (5.1)

fn(x) = b,

where the functions f; are non-linear. If the vector x satisfies the system
of equations, it is called root. The methods that were available for solving
linear systems of equations are no longer generally valid, and one must find
other methods of solutions.

Before trying to seek exact solutions to a non-linear system of equations, you
must make sure the solution exists. In case of linear algebra this was easily
gleaned from theorems of linear algebra, in non-linear case there is no single
way of determining the existence of a solution.

There is also no general algorithm of solving a system of non-linear equa-
tions, if there are more than on equation. In case of just one equation, the
bracketing method is general, since it requires knowledge only about the val-
ues of function. For a system of equations, there are algorithms, that work,
if some fairly light assumptions can be made about the functions f;. In order
for several of these algorithms to work, somewhat accurate initial guess is
required.

Most of the algorithms to find the root of 5.1 are based on iterative methods.
Since it is usually impossible to numerically find the exact root, one needs to

100



have some preset condition to halt the iteration once the desired accuracy is
achieved. It should also be noted, that the iterations do not always converge
toward the root, and to avoid infinite loops, a halting condition should be
set, for this eventuality as well.

5.1 Root finding algorithms

5.1.1 Bracketing

Bracketing, or bisection method, is a very general algorithm for discovering
the roots of a function of one variable. Only thing it requires is, that there
exist an interval [a, b], where the function is continuous, and that the function
changes sign on the interval, i.e. f(a)f(b) < 0. Bracketing makes use of the
intermediate value theorem, which says, that a function f is continuous on
the interval [a, b], it gets at least all the values [f(a)f(b)]. Should the f(a)
and f(b) have different signs, it implies that there is a value c,a < ¢ < b,
so that f(c¢) = 0. The basic idea of the bracketing is this: first check that
interval endpoints have different signs. Then evaluate the function at the
midpoint m = bg—“ If the f(m) = 0 or numerically close enough, stop the
algorithm and return m. If not check the signs of f(m)f(a) and f(m)f(b).
If f(m)f(a) is positive, it is known that the root lies on the interval [m, b,
and if it is not, it’s known that the root lies on the interval [a,m]. Then
select the appropriate interval, and repeat the iteration, and keep repeating
it until you reach the root.

Bracketing is very robust algorithm: it produces good results and does not
require complex procedures to acquire the root. It is not without its weak-
nesses, however. As a rule, the bracketing method converges slowly when
compared to other root finding methods. Also, it finds only one root; and
only that root. Finding other roots requires a priori knowledge where the
roots lie, or adaptive implementation of the algorithm. Here is an example
implementation of bracketing in MATLAB.

function x0 = bracket (f,xmin,xmax)
4 finds a root of the function f on the
4 interval zmazr, zmin. f should change <its
4 sign on this <nterval at least once
if (f (xmax)*f (xmin) >0)
error (’Positive or negative endpoints?’);

101



end
m= (xmax-xmin)/2;
m = xmin+m;
while abs(f(m))>1e-8
disp(f(m));
if (f(m)*f (xmin) >0)
xmin =m;

else
Xmax = m;
end
m = (xmax-xmin)/2;
m = xmin + m;
end
x0=m;

5.1.2 Fixed point iteration

The iterative methods to solve the system 5.1 are almost uniformly based
on the fixed points of function. The point x is said to be a fixed point of
function f, if x = f(x). The idea is to write the iteration in the form

T = flzp).
The x is not restricted into being a real or complex number: it can be a

vector, or even a function. If the sequence (z) converges towards some
value x(, and the function f is continuous, it holds that

zo = f(20).

This method for finding the root of equation xy = f(x¢) is called fized point
iteration. Next sufficient and necessary properties for function f to have in
order for the sequence () to converge are studied

Banach’s fixed point theorem

In 1922 a polish mathematician named Stefan Banach proved a theorem
that stipulates when a function has fixed points, and guarantees that they
are unique. He presented his theorem for metric spaces, which allows the
fixed point iteration to be used in not only real- and complex spaces, but,
for example, in the space defined by continuous functions on some interval.

102



Definition 5.2. Let B be a complete vector space with scalar field C. B is
a Banach space, if it has a norm || - || so that

L. |jz|| >0 Vze B,
2. ||z]] =0< x =0,
3. [|yell = |, ¥y € C,Vx € B,
4z +yll < lzll + Iyl Yo,y e B .

Definition 5.3. Let (X, dx) and (Y, dy) be metric spaces. The function
f:X—=Y

is called Lipschitz-continuous, if there exists a real constant K > so that for
all T1,T2 € X

dy (f(z1), f(22)) < Kdx(z1,12).
If 0 < K < 1, the function f is called contraction.

Theorem 5.4. (Banach’s fized point theorem). Let A be a closed subset of
Banach space B, and let the function f be Lipschitz continuous contraction.
Then the function f admits one, and only one fixed point xo. Furthermore,
the iterative sequence x, = F(x,_1) converges to xy regardless of the selection
of the initial point.

Proof. First remember, that B is a complete vector space and hence, every
Cauchy sequence converges, and that the sequence () is a Cauchy-sequence
if for every € > 0 there exists a number n, so that

||zm — xn|| < €, when m,n > n,.
The fixed point iteration xy = f(x;_1) gives us:
zrrr — @l | = |[f (k) = f(me-)|] < Kl|lze — 21| =

K| f(2r1) = flar-2)l| < K?||ap —ap2= ...

this gives us inductively

lzrr — @il < K — .

103



Then show that (z) is a Cauchy-sequence:

Zkpm — Tkl = [|Thrm — Thom—1 + Thpme1 — - — x|
k+m—1
< 0 gl S KMETT KT 4 K A1) — |
j=k
1— K™

Because 0 < K < 1, () is a Cauchy-sequence. Therefore the closed subset
A contains the limiting value

s=limz,, sé€A.

Furthermore f(s) = f(limxy) = lim f(zg) = limagy = s, so s is a fixed
point of f. Show then, that this fixed point is unique through counter as-
sumption: suppose that s; and sy are fixed points of f, and ||s; — sa|| > 0,
we get

|51 = s2f| = |[f(s1) = f(s2)[| < K[]s1 — 52|

which leads to situation K > 1, which contradicts the supposition that the
function f is a contraction. Therefore s; = sy, and fixed points are unique.
U

You can now use the fixed point iteration to solve equations of the form
f(x) = x, if the function f satisfies the required conditions. Checking the
contraction-condition is can be simplified in Euclidean spaces: function f is
a contraction, if |f'(x)] < ¢,c € (0,1).

Here is a simple implementation of how fixed point iteration could be imple-
mented in MATLAB.

function fp = banach(f)

f is assumed to be a function
of single wvector wariable.

4 fized point of f is
returned tf 1t was found

in less than 100 iterations.
Otherwise 0 ts returned.

= 0;

ctr = 0;

SRS ST e A :

h
o]

104



h = sqrt(eps);
4 We make an elementary check of
4 Lipschitz property
if ((£(fp+h)-f(fp-h)/2%h)>1)
error (’Not a contracting function’)

end

while ((abs (fp-f(£fp))>1e-8) && (ctr<100))
fp = £(£fp);

end

5.1.3 Secant method

Secant method uses sequence of secant lines drawn to the graph of the stud-
ied function. Roots of these lines will, given good enough an initial guess,
converge towards the root of the function. Good enough guess means, that
one must have knowledge, that a root exists on some interval (a,b).

Secant line of a curve is a line that locally intersects with curve at two
different points. Secant method uses the line that is drawn to intersect the
curve of the function at the points of initial guess ass interpolant for the
function on this interval. It then makes a new estimate on a new interval,
using the root of the secant line as a new endpoint. Here is the recurrence
formula for the secant method:

Tp—1 — Tn-—2

f@n1) = f(zna)

The two values, zy and x;, required for the first recursion are the initial
guess, and ideally should lie close to the root.

Lp = Tp-1 — .f(l‘n—l)

105



Secant method, when it converges, is somewhat slow, but usually better
than bracketing method. There are, however, cases when bracketing will
prove to be more efficient: especially if a smooth function’s second derivative
changes sign near the root. Secant method can be extended to more than on
dimensions: it is then call Broyden’s method. Here is an example MATLAB
implementation of the secant method in one dimension.

function x = secant(f,x0,x1)
4 Secant method for MATLAB
4 parameter f t¢s a function
/4 handle or inline function.
/4 20 and z1 are the initial
4 guess points.

xold = x0;
xnew = x1;
ctr =0;

4 initialize znew as z0
4 for comnvenience purposes
4 We set up a halting conditions
/4 both for finding the root
/4 and for the case that
4 the sertes (z_m) does not
/4 converge.
while (abs (f (xnew))>1e-8)
aux = xnew;

106



xnew = xnew - f(xnew)x*((xnew-x0ld)/(f(xnew)-f(xo0ld)));

xo0ld = aux;
ctr = ctr+1;
end
X = Xhew;

One should note, that the algorithm makes no suppositions for the initial
values: the root does not have to lie between them. This means, that the
method does not necessarily converge at all. Next an algorithm is presented
that requires the root to be bracketed between the interval’s endpoints.

5.1.4 False position method

False position method (sometimes called Regula Falsi-method) combines
bracketing and secant methods. It begins as the bracketing method does:
by selecting an interval, with function values at interval ends having oppo-
site signs. Then, instead of choosing the midpoint for new interval endpoint,
choose the root of secant line drawn at these two points, and then choosing
the new interval so, that the function values at the endpoints have different
signs. Formally:

f(bx)ar, — flax)by,
f(bw) — f(ar)

agr1 = ¢ if f(ex)f(ar) <0
bk+1 = ¢, if f(Ck)f<bk) <0

In case the studied function is continuous and the initial condition f(ag) f(by) <
0 holds, one will always find a root with this method. This method is gener-
ally faster than bracketing, but as with secant method, there are cases when
finding the functions roots requires many iterations.

C =

107



f(xy)

Here is a MATLAB implementation of method of false position.

function x = regfalsi(f,a,b)

if (£ (a)*£f(b)>0)
error(’no sign change on interval’);

end

xnew = a;
x0ld = b;
ctr = 0;

while (abs (f (xnew))>1e-8 && ctr<100)
c = (f(xold)*xnew-f(xnew)*xo0ld)/(f(xo0ld)-f(xnew));
if (f (xnew)*f (c)<0)

x0ld = xnew;
Xnew = C;
else
Xnew = C;
end
end
X = Xnew,;

5.1.5 Newton’s method

Probably the most famous method for finding roots of a function is the New-
ton’s method, named after sir Isaac Newton. The method will find succes-
sively better approximations for roots of a real valued function using tangent

108



lines fitted to the function. Newton’s method requires that the studied func-
tion is differentiable.

The idea behind the method is to use approximation gained by calculating
the functions Taylor series:

T(f50) = flao) + /(@) — w0) + 5" (@0)(z — )" + ...
at point zy + €. Obtain

flxo+e) = f(xo) + f(wo)e + wg...

When € is very small, one can approximate the function value by keeping
terms only to the first order:

fxo +€) = f(xo) + f'(wo)e.

If you now set f(x +¢€) = 0, and use the previous approximation to compute
the €, you get:
f (o)

€0 f/<,j(;0) .
One can see, that the approximation is the equation of the tangent line of the
function f at the point (zo, f(z0)). It intercepts the x-axis at point (z,0).
Set now, that x; = x¢ + €. This gives an idea for an algorithmic approach
for finding a root: set

€np — —

and calculate x,, by
Tp = Tp—1 — €p.

If the obtained sequence (z,) converges, it converges towards a fixed point,
which is precisely the root. This gives us the traditional formula for Newton’s
iteration:

S TS
Whether the sequence given by Newton’s iteration converges is a complicated
question; however for the purposes of this course it is enough to say, that
in a sufficiently small neighborhood of a simple root of a twice differentiable
function, Newton’s method converges quadratically to that root.

109



Figure 5.1: First two steps of Newton iteration

f(x)

f(xg)+f '(x O)x

Another interesting question is that if a function f has more than one root,
which one will it converge towards, if it converges at all. The answer is
somewhat unexpected: on complex plane roots of functions with more than
two roots yield a rational map of C, and the Julia set of this map is a fractal,
or to put it more poetically: this is a manifestation of chaos.

Here is an example MATLAB implementation of Newton’s method in single
dimension.

function root = mynewt (f,x0)

4 f ts the funmction we whose
roots we wtsh to find, z0 <s
the initial gquess.

mynewt uses the numdtf function
that was introduced in the
numerical calculus section.

If a suitable solutzon <s

not found in 100 tterations
attempt <s abandoned.

B I I I T B

110



h = sqrt(eps);

while (abs(f(x))>1e-8 && ctr<100)
df = numdif (f,x,h);
x = x - (f(x)/4f);
ctr = ctr+1;

end

root = x;

Newton’s method can be generalized for vector functions F' : R” — R" by
substituting the the functions derivative by Jacobian matrix of the function.
This puts somewhat more requirements for the function, as the Jacobian
matrix must be invertible at the evaluation points, and as we remember
from the calculus section, this means the function must have an inverse in
some small environment near the evaluation point.

Searching for the root of the function F' is analogous to solving a system of
equations

fl(ZL'l...ZL‘n) =0
f2<$‘1...l’n) =0

Assuming that the function F' = (fi(x),... f,(x))T,x = (z1...2,) is differ-
entiable, following holds:

F(xo +0) = F(xo) + J¢(x0)d,

where Jp(z0) is the Jacobian matrix of F' evaluated at x.
As in one dimensional case, using successive linearisation approximations for
the function F' yield:

0~ F(xp41) = F(xn) + Jr(%) (Tni1 — Xn).-
This gives us the Newton-iteration step:
Xpi1 = Xp — Jp(%,) T F(X,,).

If the initial guess X is located close enough to the root, the sequence (x,,)
converges to the root.

111



Here is an one MATLAB implementation of the Newton’s method in multiple
dimensions.

function root = vectorNewton(f,x0)

4 f is a inline function or a function handle.

4 f should an nzl! vector as a parameter, and

/ it should return an nxl wvector.

x = x0;

ctr = 0;

while ((abs (norm(f(x)))>1e-8) && (ctr<100))
jf = jacob(f,x,length(x0), length(x0));
x = JE\N(jf*x-f(x));
ctr = ctr +1;

end

root = x;

function Jf = jacob(f,x,m,n)
4 f ts a function with m components,
4/ T 15 a vector with m components,
4 the result is an m by n matriz.
Jf = ones(m,n); h = 1le-4;
for j =1:n
e = zeros(n,1); e(j) = 1;
Jf(:,3) = (feval(f,x+h*e)-feval(f,x-hxe) )/(2%h);
end ;

5.1.6 Brent’s method

Since there exist situations where secant method and false position - method
lose in efficiency to the bracketing method, one can pose a question: can these
methods be combined in a way which makes best use of the best properties
of all three methods? It turns out that there is: Brent’s method combines
the secant method, bracketing and inverse quadratic interpolation.

The idea is as follows: you wish to solve an equation of the form f(z) = 0. As
with bracketing method, you need two points, a and b, so that f(a)f(b) < 0.
This means that if f is continuous, according to intermediate value theorem,
it must have a root between a and b.

Before presenting the Brent’s method, we will study the so called Dekker’s
iteration, on which the the Brent’s method is based on. Dekker’s iteration

112



uses three points at each step of the iteration: b,, the most recent estimate for
the root of f, a,, is a point for which f(a,)f(b,) <0, and |f(b,)] < |f(an)],
and the previous iterate, b,_;. For the first iteration set b_; = ay.

At each step of iteration, two possible values for the next iterate are com-
puted; first one by the secant method:

b bn - bnfl
s=b, — /7,
f(bn) - fnfl
and the second using the bracketing method:
ap + bn
m = .
2

If b < s < m, then b,.; = s, otherwise, b,,; = m. Then a new contra
point is selected. If f(a,)f(b,+1 < 0), no change is necessary, and a,1 = a,
otherwise a, 11 = b,. finally test, if |f(ans1)| < |f(bpy1)|. If the inequality
holds, then a1 is (probably) a better estimate for the function root, so swap
the values a, 1 and b, 1.

Brent’s method introduces several additional tests to ensure a fast conver-
gence. First, if f(a,), f(b,) and f(b,_1) are distinct, the method uses inverse
quadratic interpolation instead of secant method.

Inverse quadratic interpolation is another root finding method for function
f(z), using Lagrange’s quadratic interpolation to approximate the inverse of
f. The quadratic inverse formula is a recurrence relation:

N _ f(wp_1)f(zn)
" (F@nme) = F@ao)(f(@a2) — flza))

f(xn2)f(zn)
(f(@n-1) = f(@n-2))(f(@n-1) — f(zn))
f(@n2)f(@n1)
(f(zn) = f(@n—2))(f(2n) — fzn-1))

Second, set some tolerance J, and, if previous step used bracketing, an in-
equality

xn72+

xnfl—i_

T

10] < |b, — br—1]

must hold. If it doesn’t, next iteration will also use bracketing.
If previous iteration used inverse quadratic interpolation or secant method,
an inequality

|5| < |bn71 - bnf2|

113



must hold in order for another interpolation to be made: otherwise bracketing
will be used.

These tests are performed, because in Dekker’s method a situation may arise,
where |b,11 — b,| will be very small, leading to extremely slow convergence
of (by).

Additionally, in order for an interpolation to be performed at step n of algo-
rithm, if step n — 1 used bracketing this inequality has to hold:

1
5= bal < 5lb = bai]

in order to perform a interpolation at step n. If step n— 1 used interpolation,
an inequality

1
|S - bn| < i‘bnfl - bn72|

has to hold to continue performing interpolations.

These inequalities ensure, that consecutive interpolation step sizes halve ev-
ery two iterations, and furthermore, ensure that interpolation step size will
be less than 9§, thus forcing the use of bisection method, once the root has
been localised to a small enough an interval.

Brent’s method is somewhat complicated, but it is very popular method of
finding roots: for example MATLAB’s function fzero uses it. Here is an
example implementation in MATLAB.

function root = brent (f,x0,x1)

The function brent will attempt

to find the function root on

a given tnterval. The function

must a single wvartiable real wvalued
functzon, and it must change sign
on the given interwval

The parameter f is function handle
or a string holding the function name
z0 and 1 must be real numbers that
satisfy f(z0)*f(z1)<0.

ST SR ST e DR B e e e

/ Check the initial condition
if (£ (x0)*£f(x1)>0)

error (’no sign change on (a,b)’);
end

114



a= x0;
b = x1;
4 make sure the endpoints
4 are in right order
if (abs (£f(x0))< abs(f(x1)))
b = x0;
a = x1;

c = a;

s = a;

4 mflag keeps track of the previous step:
4 tf true(l) previous step was bisection
4 tf false(0) <t was an interpolation

4 or secant step.

mflag = true;
delta = le-4;
d = 0;

/4 conditions for ending the iteration:
4 small emough a function value or small
/4 enough a an interval
while (abs (f(b))>1e-8||abs(f(s))>1e-8]||abs(b-a)<le-10 )
4 Do we use interpolation or the secant rule ?
if (norm(f(a)-f(c))>le-11 && norm(f(b)-f(c))>le-11)
s = inversequadratic(f,a,b,c);
else
/ Secant rule
s = b-f(b)*x((b-a)/(£(b)-f(a)));
end
4 Now a list of conditions that define,
4 if we take a bisection rule instead
cl = (0.25%x(3*xa+b)<s || s<b);
cb = (mflag == 1 && abs(s-b)>= abs(b-c)/2);
c2 = (mflag == 0 && abs(s-b)>= abs(b-c)/2);
c3 = (mflag == 1 && abs(b-c)<delta);
c4d = (mflag == 0 && abs(c-d)<delta);
if(clllc2]1c3]]c4llch)
s = (a+b)/2;
mflag = true;
else

115



mflag = false;

end
d = c;
cC = b;

4 Define a new tinterval: determine
4 the enpoints
if (f (a)xf(s)<0)
b = s;
else
a = s;
end
4 put the points in right order
if ( abs(f(a))<abs(£f(b)) )

aux = a;
a = b;
b = aux;
end
end
root = b;
function s = inversequadratic(f,a,b,c)

s = (axf(b)*f(c))/((£f(a)-f(b))*x(f(a)-£f(c)));
s = s + (bxf(a)*f(c))/((£f(b)-f(a))*x(£f(b)-f(c)));
s s + (c*xf(a)*xf(b))/((£f(c)-f(a))*x(£f(c)-f(b)));

5.1.7 Roots of polynomials

The root finding methods presented thus far have not made little distinction
on the functions whose roots we have wished to find: there have been re-
quirements to be sure, but finding the roots has been based on the functions
derivatives, or Lipschitz-continuity or intermediate value theorem. If the
studied function is a polynomial, one can take advantage of the properties of
the function itself.

The fundamental theorem of algebra states, that nth polynomial p(x) has n
roots in the complex plane, so a root will always be found. Also, polynomials
are differentiable and continuous on entire real line. Using these properties
allows us to develop algorithms for finding the roots of polynomials. While
one can use any of the previous algorithms to find roots of polynomials, as
well as any other function, methods crafted for polynomials tend to be more

116



accurate and converge faster than the more general ones. As an example of
an root finding algorithm for polynomials, we present the Laguerre’s method.

Laguerre’s method

According to the fundamental theorem of algebra, we can write every poly-
nomial p(z) of nth degree in form

p(z) = C(z —x1)(x — x9) ... (x — x,),

where x;,7 = 1...n are the roots of p. To get the Laguerre’s method, study
the natural logarithm, and logarithmic derivatives of the p.

log |p(x)| =log |C| + log |x — x1| + log |x — x| + ... + log |x — z,],

dlo 1 1 1
glp(x)| _ n - |
dx T— X X — T T — Ty
d?1 1 1 1
sl 1
dx? (x —x1)?  (z— 1) (v —xp)?

Denote the first and second derivatives of p with

_ dlog|p(z)| Glz) = d*log |p(z)|

F
() dx ’ dx?

Now some assumptions are required: assume, that the root we are currently
looking for, x; is a certain distance a away from our current estimate x, while
all other roots are at same distance b away from our current best estimate.
Denote : a = —x; and b = x — x;,7 = 2...n. This allows you to express
F and G in terms of a and b:

1 n-—-1
F=-
a+ b’
1 n—1

Solving these equations for a gives

TP/ oDH -

where the sign is selected to give the largest magnitude for the denominator.

117



This gives an approach for an algorithm: Select an initial guess xg, and on
every iteration k, compute F = Z((ff)) and G = F? — zﬁ_ Then set a as
previously:

“TTFE Vi Dnd -G

and choose the sign appropriately. Finally we set x5 1 = x1 — a.

One should note that if the set of assumptions made in the derivation of the
method does not hold for some polynomial P, P can be transformed into
polynomial () for which the assumptions do hold true. Finding all the roots
can be derived through finding one root: if a + b is a root, a — ib is also a
root; if zg is a root of a polynomial P, P = (z —x0)Q(x) for some polynomial
@ of (n — 1)th degree, and factor (z — x¢) can be reduced away.

Here is an example implementation of Laguerre method to find one root of
a polynomial in MATLAB.

function z = laguerre ( p, x0, tol, itmax )
the parameter p should be Ilzn or nzl
vector holding the coefficients of
polynomial P(z).
z0 should be an wntttal guess for the
root, and i1t determines, towards which
root the method converges
tol and <tmaxz determine the halting
condttton for the method: it halts
if f(zn)<tol or if nmumber of <terations
erceed the ttmaz.
= length(p)-1;
dp = polyder(p);
dp2 = polyder (dp);
ctr = 0;
4 Here we use the butlt-in function
4 polyder that provides a derivative
4 for polymomial.
while (ctr<itmax)

px = polyval(p, x0);

dpx = polyval(dp, x0);

dp2x = polyval(dp2, x0);

Ats the current guess ok?

if (abs (px) < tol)

z = x0;

ST SR ST DR BN B e e e

=]

118



return
end
/4 Here we compute the F
F = dpx/px;
4 And here the G
G = FxF-dp2x/px;
/4 here’s the square Toot part of
4 a
disc = sqrt((n-1)*(n*G-F*F));
4 Here we dectde if we choose
4 positive or mnegative sign
if (abs(F-disc) < abs(F+disc))

denom = F+disc;
else

denom = F-disc;
end
dx = n / denom;

4 update the z0
x0 = x0 - dx;
4 if the change is wvery small,
/4 there is mo point in
4 continuing.
ctr = ctr +1
if ( abs(dx) < tol )
z = x0;
return
end

x0;

5.1.8 Root finding in MATLAB

Brent’s method.

MATLAB offers tools for finding roots of finding single variable functions.
First one is the function fzero, which is a built-in implementation of the
It attempts to find a root located near a parameter lo-
cation x0. The function fzero works on any single variable functions, but
returns only one root. For polynomials there exist the function roots, which
will compute all the roots of given polynomial; remember that MATLAB
handles polynomials as vectors containing the coefficients aq...a,, in or-

119



der a,,a,_1,...a9. The function roots is based on the companion matrix
method.

5.2 Minimization algorithms

Minimization algorithms, or more generally, optimization, is a field of math-
ematics that studies selecting the best possible element from some set of
alternatives. Usually this can be reduced to finding minimums and maxi-
mums of a real valued function. Finding maximums can in turn be reduced
to minimizing problem: finding maximum of function f is same as finding
minimum of —f.

As with finding roots of non-linear functions, minimization finds its basis
in great theorems of calculus: the extremal value theorem, proved Karl
Weierstrass in 1860, says, that a continuous, real valued function on a com-
pact set attains its maximum and minimum value. These values are lo-
cal to the compact set. This allows the bracketing idea we already pre-
sented with the root-finding algorithms: if there exist points z,y, z so that
f(y) < min{f(x), f(2)}, then there exists a minimum at some yg, z < yo < 2.
Optimization problem is called constrained, if the variable have some a priori
restrictions. Generally this makes the problem easier, as it makes possible to
apply the extremal value theorem. Also, since problems faced in real world
are also usually constrained, it is not an unreasonable supposition. As will
be seen, there are minimum search methods, that require an unconstrained
space to work.

If the studied function is differentiable, the problem of minimums becomes
easier: calculus teaches us, that functions extremal values are located either
at the functions critical points, or at the boundary of the domain. Critical
points of function f : R™ — R are points X, where partial derivatives % =
0 for all 2 = 1...n. However, a critical points may be minimum, it is not
necessarily so: it might be a local optima, or a saddle point. If the function is
twice differentiable, it is possible to distinguish minima, maxima and saddle
points using the second derivatives test (so called Hessian matrix). Twice
differentiability is a restricting condition, and even if function f were twice
differentiable, finding the critical points can be difficult. In these cases a
numerical study of the problem is called for.

Optimization is a area of mathematics, that, while it has been widely studied,
is based on heuristics. Many of the methods are extremely complex, and the

120



proofs of their convergence, if they even exist, even more so. The methods
presented here are only the proverbial tip of the iceberg, and meant only to
serve as an example: there are many more, most of them guaranteed to work
better in some situation than those presented here.

5.2.1 Golden section search

Golden section search is a method for finding the minima of a unimodal
single variable function f. It is based on the idea of bracketing by successively
narrowing the interval on which the extremum is known exist. This is possible
due the unimodality requirement: it means that there exists an a < m < b,
and that for all @ < x < m f is monotonically decreasing, and that for all
m < x < b f is increasing. The algorithm gets its name from maintaining
triples of points, whose distances form a golden ratio.

The algorithm works as follows: you have points x1, 9, 3 so that 1 < x5 <
xg and f(x9) < min{f(xy), f(z3)}. This means, that the minimum must
lie on the interval (z1,23). Then select the new interval by considering two
cases:

1 If @y — 21 > x3 — 9 select xy € (x1,29) fulfilling the golden ratio
requirement.

If f(x1) < f(xo), the new interval is defined by (xg, z3) with x5 being
the best estimate for minimum.

If f(xg) < f(xg) the new interval is (z1,x9) and zy is the new best
estimate for the minimum.

2. If oy — 21 < 23 — 9 we select zg € (9, x3) so, that the distances form
a golden ratio.

If f(x1) < f(xo), the new interval is defined by (xg, z3) with x5 being
the best estimate for minimum.

If f(zg) < f(xa) the new interval is (z1,x9) and z( is the new best
estimate for the minimum.

Keep iterating the steps 1 and 2 until the length of the interval (xy,z3) is
very small.

The easiest way to implement the golden section search with computers is to
use recursion. As has been stated previously, as a rule recursion should be

121



avoided, but since depth of the recursion is unlikely to be very deep, hence
its use in this example:

function m = golden(f,x1,x2,x3)
The golden section search finds
the minimum of wunimodal function
fs

parameter f should be an inline
function or a function handle,
zl and =3 should define the
interval known to contain a
minimum and x2 should be the
initial guess for the mintimum.
tol = 1e-8;

2- ((1+sqrt(5))/2);

4 2 - the golden ratio

ST SR SR ST e B N e

o
=
l_l.

L}

x4 = x2 + phi*(x3-x2);

4/ a value between z2 and z3,

4 the new guess for the function
4 minimum.

This will end the algorithm, when the interwval

28 small enough. Please note that there 1s no
check on the recursion depth, but MATLAB defaults
to mazimum of 500 recursions.

SRS S

if (abs(x3-x1)<tol*(abs(x2)+abs(x4)))
m = (x3+x1)/2;
return

end

4 Select the mnew interval for the
4 search, and call recursively.
if (f (x4)<f(x2))
m = golden3(f,x2,x4,x3);
return
else
m = golden3(f,x4,x2,x1);
return

122



end

5.2.2 Brent’s method

Brent’s method presented previously as a root finding tool can be modified for
use in optimization tasks. The method can be roughly summarized like this:
on each iteration a quadratic polynomial is fitted on three existing points,
gained through either previous iterations, or initial guess. The minimum of
this parabola is then taken as a guess for the functions minimum. If it lies
between the interval that we know holds the minimum, then it is accepted as
an interpolating point, and used to generate a new, smaller interval that holds
the minimum. If the point is unacceptable, then a regular golden section step
is taken.

The idea is very much like in the root finding version: we attempt to speed the
algorithm by interpolation. In this case fitting a parabola to three existing
points, and taking the minimum of the parabola as the best guess for the
function minimum. Then a test is made: if the point lies within the bounds
of the current interval, it is accepted and used to generate a new, shorter
interval. If it is not accepted, a golden section search step is taken.

function [xmin fxmin] = brentmin(F,ax,bx,cx)
itmax = 100;

4 The 1-1/(golden ratio) for

/4 golden section search

golden = (1/sqrt(5))/2;

gold = 1-1/gold;

xmin =0;
fxmin= O;

zeps = eps*le-6;
iter =0 ;
tiny = 1e-8;

f = fcnchk(F);

4 Distance moved on the last step

d = 0;

4 Distance moved on the step before
4 last

e = 0;

123



4 Set up the bracket limits correctly
if (ax<cx)

a = ax;

b = cx;
else

a = Ccx;

b = ax;
end

4 Set up the initial guess for the
4 function minimum location and

4 value

x = bx;w = bx; v =bx;

xm = 0.5x(a+b);

4 Set up the numerical tolerance
toll = abs(x)*tiny+zeps;

4 The search loop checks for mazimum <iterations

4 and the lenght of search interval

while(iter<itmax && (abs(x-xm)<= abs (2*xtoll-0.5%(b-a))))

xm = 0.5x(a+b);
toll = abs(x)*tiny+zeps;

/4 Check if step before last was big enough to try a
4 parabolic step. Note that this will fail on first

4 tteration, which must be a golden section step.

if (abs(e)>toll)

4 Comstruct a trial parabolic fit through =z,

r = (x-w)*x(f(x)-f(v));
q = (x-v)*(£f(x)-f(w));
p = (x-v)*xq-(x-w)*r;
q = 2*%(g-1);
if (q<0)
P = -b;
end
q = abs(q);
etemp = e;
e = d;

v and w

/4 Let’s check if the parabola minimum %s indeed

124



/4 on the interwal

if (abs(p)>=abs (0.5*xqg*xetemp) | |p<=g*x(a-x)||p>=q*(b-x))
4 The parabola minimum ts not on our interval
/4 so we take a golden section step instead
if (x>=xm)

e = a-x;
else
e = b-x;
end
d = goldxe;
else

/ The minimum IS om our current interval
/ so we take a parabolic step

d = p/q;

u = x+d;

if (u-a < 2*toll || b-u < 2xtoll)
d = sign(xm-x)*toll;

end

end
else
4 The step before was not big emough, so
/4 we take a golden section step
if (x>=xm)

e = a-x;
else

e = b-x;
end

d = goldxe;

end
4 Now we make sure the step 4is big enough.
if (abs(d)>= toll )
u = x+d;
else

u
end

4 At this point u holds our best estimate for
4 function minimum location. Now we evaluate
4 function at u and judge, tf it really is.

/ Remember, = 1s the old best estimate

if (£ (u)<=£f(x))

x+sign(d)*toll;

125



end

/ The current estimate was better

/ so we stick with 2t
if (u>=x)

a = x;
else

than old

4/ The newer estimate wasn’t better, so
/ we can limit the search to the interwal

4 it did mot cover
if (u<x)
a = u;
else
b = u;
end
if (f(u)<=f(w)||lw==x )
v=u;
W=l
elseif (f(u)<=f(v) | |v==x|]|v==w)
v=u;
end
end
xmin = Xx;
fxmin = f(x);
4 If one wishes to observe the
/4 comvergence or mon-conuvergence
/ uncomment
Adisp ([zmin fzmin])

5.2.3 Search methods for multivariable functions

Powell’s method

Powell’s method is one method of finding minimums of multivariable real
valued functions. It is based on the fact that if the function f(zg...x,)
has a minimum at (xo, ... x,,), then the function f reaches its minimum in
the direction of the vector e; at f(0,...z, ..

126

.xy). Simplistically, the idea of



Powell method is to perform n single dimension minimizations along each of
the axes.
The algorithm proceeds as follows:

e Setu;=¢;, 1=1,....N

e Save the initial point F.

While = 1,..., N move from P, ; to (P;_1,u;) minimum P,

While =1,...,N —1, set u; := u;_1.

Set uy = Py — .

Move from Py to (Py,uy) minimum, and denote the point with Fj.

Repeat as long as function values get smaller.

Powell’s method is useful when trying to find local optima of functions, that
are continuous but whose derivatives are either difficult or impossible to
obtain. The efficiency of the algorithm itself is very much dependent on the
method used to find the minimums along the search vectors. One can choose
between any search algorithms made for functions of one variable.

Steepest descent method

If the studied function is differentiable, but the zeros of derivatives are either
difficult to find or there are none, one option is to use geometric intuition: the
local minimum is probably in the direction of the function’s deepest descent.
The idea deepest descent method is to determine the direction of deepest
descent at initial point, determine the minimum on this point, move to that
point, and iterate, until a local minimum is found.

The convergence of this method is very much dependent on the good numer-
ical properties of the function, as well as the properties of the derivative and
the method of finding the minimum on the direction of the deepest descent.
There are examples when this algorithm takes extremely long time to find
the function minimum of a differentiable function. The Rosenbrock function
is one such example.

127



Quasi-Newton methods

Quasi-Newton methods are a set of algorithms, that use the Newton’s method
to find a stationary point of the function where the gradient of the function
is 0. These algorithms assume, that the function can be approximated with a
quadratic polynomial in some area around the minimimum. It then uses the
gradient and Hessian matrix (first and second derivatives in single dimension)
to find the stationary point.

The idea is built on the second order expansion of Taylor series of function
f at ZTo + 5

Flao +0) ~ o) + f1(2)6 + 31" (0)0"

The function f attains its minimum when ¢ satisfies the equation

f'(@) + f"(x)d = 0.

The left hand side of the second order Taylor expansion gives

f'w—=0) = f'(z) +0f"(x).

If the function f is twice differentiable and well enough behaved, and provided
the initial guess xq is reasonably close to the function’s critical point, usually
denoted by x*, the sequence yielded by previous equations:

[ ()

anrl - xn - f”({]jn)

will converge towards the critical point of f.

One should bear in mind that gradient of 0 at some point xy does not guar-
antee that there exists a local optimum at x. For differentiable functions it
is a necessary but not sufficient condition.

Like its root finding relative, quasi-Newton methods can be generalized into
handling functions of more than one variable. It is achieved by substituting
the first order derivative with its generalization, the gradient vector, and the
inverse of the second derivative by the inverse of the Hessian matrix. With
these substitutions the sequence gets the form

Xpt+1 = Xp — (Hf(Xn))_1Vf(Xn),

where H f(x,) is the Hessian matrix of the function f evaluated at x,. The
quasi-Newton methods avoid computing the Hessian matrix, and use different
approximations for it instead.

128



Here is a very simple implementation of Newton’s minimum search in MAT-

LAB.

function [fmin,xmin ] = newtmin (f,n,x0)
Minimization using Newtons method.
Function will attempt to find the

root of gradient (f).

parameter f should be a function handle
of the studied function.

f should take only one argument: a wvector
with n components, and 2t should return a
real value.

n ts the size of the argument vector

z0 ts the initial guess for the minimum.

ST SR ST e DR B e e e

x = x0;
for i = 1:20
x = x-inv(Hessian (f,n,x))*numgrad (f,x,n);
end
fmin = f(x);
xmin = Xx;

function H =Hessian(f,n,x0)

Function Hessian attempts to

compute the Hessian matriz of

the argument function at point

z0 .

f should be a function handle of a
function which takes wector arguments,
n should be the stize of the argument
vector,

z0 ts the point at which the Hessian
18 determined.

Vote this function uses of the

the Symbolic toolkit.

ST SR T DL DR B N e e A A

4 Define a symbolic wector to use as
4 a parameter
for i = 97:97+n-1

A(i-96) = sym(char(i));

129



end
H = sym(zeros(n,n));
4 First take a Jacobian matriz
J = jacobian(f(A));
4 Then derivate each column again
for i=1:n
H(:,i)= (diff(J,A(i)));
end
4 finally do the substitution
H =subs(H,A,x0);

function D=numgrad (f,x0,n)

D = zeros(n,1);
h = 1e-6;
e = zeros(n,1);
for i = 1:n
e(i) = 1;
D(i) = (f(xO+exh)-f(x0-e*h))/2%*h;

e(i) =0;
end

5.2.4 Searching minimum in MATLAB

MATLAB provides some very sophisticated tools for finding the functions
minima;: first and foremost is the function fminsearch, that attempts to find
the functions minimum using the Nelder-Mead algorithm. The number of
variables is not constrained, but there must be a clearly definable minimum.
A fairly accurate initial guess is required. The function fminbnd attempts
to find a function minimum on the interval [xoz;]. At the most simple form
fminsearch takes as a parameter only the function handle and the initial
guess. However, as was discussed in linear algebra section, it is possible to
use the fminsearch to fit parameters to a model so that it will fit the given
data.

Here is one idea how to implement the parameter fit using the fminsearch.

function lam = paramfit (fm, xdata, ydata, initguess)
/4 function paramfit attempts to find

/4 the parameters that best fit the

/4 model fm to data (z,y).

130



fm should be a function handle, inline
function or a string containing the
function. It must be in form
f(z,parameters), and parameters must

be contained inm one single wvector.

zdata and ydata must hold two wvectors

of equal length.

The minimum %s searched around i1nitguess
which must be of proper length, and close
enough to

BRI I I I I

4 make sure fm is function

fmodel = fcnchk(fm);

4 set up the object function...

4 fobj = S(lambda) = Sum(f(z_%i,lambda)-y_1) "2

4 We wish to find the lambda that provides the

4 smallest wvalue of fobj.

fobj = inline(’norm((fmodel (xdata,lambda)-ydata))’,...
>lambda’,’fmodel’,’xdata’,’ydata’);

lam = fminsearch(fobj,initguess,[],fmodel,hxdata,ydata);

131



Chapter 6

Differential equations

Differential equation is an equation for some unknown function y, that relates
the values of the function with its derivatives. If function y has one variable,
the equation will be called ordinary differential equation. If y has more
than one variables, it will be called partial differential equation. Order of
differential equation is decided by the highest order of derivatives that is
present in the equation.
In order to obtain unique solutions for any differential equation, one needs
some a priori knowledge of the problem. These are usually given in the form
of initial values: y(xg) = yo. If differential equation has set initial value, it
is called initial value problem.
Sometimes solution for a differential equation is only wanted on some given
interval. In these situations initial conditions are usually given at the end-
points of the interval. Differential equation with these kinds of constraints is
called boundary value problem.
Ordinary differential equation of first order with initial values can be written
in as

y'(z) = flz,y(@):  yl(zo) = o, (6.1)
where f : R? — R is dependent on both x and y(z). The goal is to find
a function y(z), that realizes both the differential equation and the initial
value problem. Solutions are sought by integrating both sides of the equation
with respect to x. This gives us

y(z) = yo + /I f(s,y(s))ds.

132



However, finding an exact integral for arbitrary is usually impossible. For
this reason, numerical solutions play a large role in applications concerning
differential equations.

Other things to consider are the existence and uniqueness of the solution.
The Picard-Lindelof theorem states, that a initial value problem has a unique
solution, if the right-hand side of the 6.1 is Lipschitz-continuous contraction.

Example 6.2. Solve an initial value problem
y'(z) =2 =2 —y(x); y(0)=2.

Integrating both sides directly will not work, but by multiplying both sides
with an integrating factor €*, one gets

ey (x) + e"y(x) = e*(z* — 2).
Using the product rule of differentiation reversely simplifies the equation to

a4
dx

Now integrating both sides gives

(y(@)e”) = e"(z* - 2).

y(x)e” = /e”ﬁ(aj2 —2) = e"(2* — 22) + C,

where C' € R is the integration constant. By multiplying this equation with
e~ " one gets
y(r) = 2* — 2v + e *C

We apply y to initial value condition y(0) = 2 and get
y(0)=C=2
and finally one gets
y(z) = 2% — 20 + 277,
This y fills both the differential equation and the initial value condition.

As one can see, solving even a fairly simple differential equation can be an
effort, consuming project.

Solutions for differential equations in MATLAB can be obtained symbolically
using the MuPad kernel, or numerically.

Symbolically the solution happens like this

133



>> dsolve(’Dy = x°2-2-y7,°y(0)=2?,7x"?)
ans =
-2%x+x " 2+2%exp (-x)

It is also useful to study systems of differential equations, where both y and f
are vectors: y = (y1...Yn), f = (f1... fn). Systems of differential equations
are important when one considers differential equations of higher order: one
can reduce solving the differential equation

Y™+ gi(2)y "D + g1y = galT)

into solving a system of equations

= flz,y, ... y™Y).

Before moving on to numerical solution to differential equations, consider
the problem for a moment; to be well posed the problem must have solution,
and the solution must be unique. There are differential equations, that do
not have solutions at all; if a solution exists, there is little guarantee, that
it is unique. For the purposes of this course the existence and uniqueness
theorem of Picard and Lindelof is sufficient.

Theorem 6.3. Let function [ be continuous in strip S = {(z,y) : a <t <
b,y € R} with a,b € R. Let there exist a constant L so that

|f(:c,y1) - f(x,y2)| < L‘yl - y2‘7

when z € [a, b] and y;,y2 € R. If these conditions hold, and the initial values
(70,y0) € S (with yo = y(xg)), the initial value problem

y'(x) = f(z,y();  y(zo) = Yo,

has a solution, and it is unique.

6.1 Numerical solutions to ODE’s

The methods available for solving ordinary differential equations are numer-
ous, but most are based on discretization the initial value problem 6.1, and
creating an estimate for the values of y at 1 < x5 < ... < x,, where
Tni1 = Tpn + hy,. The selection of discretization largely dictates the accuracy

134



of solution: later on methods will be introduced that have built-in discretiza-
tion.

Generally the estimate values y;, ~ y(zy) depend on the values yj_; ... y5—;.
If 5 = 1, the method in question is single step method, and if not, it is
multistep method.

Single step methods can always be written either in form

Yn+1 = Un + ¢(xn> Yn, hn)a

when the method is explicit, or in form

Ynt1l = Yn + Qb('rna Yns Yn+1, hn)7

when the method is implicit.

6.1.1 FEuler’s method

Probably the most famous explicit single step method for obtaining numer-
ical solutions for initial value problems is the Euler’s method, named after
Leonhard Euler. The goal of the method is to estimate values of the function
at discrete points xy...x,, ;1 < x;, ¥; = x;_1 + h. The increment h is
called step size.

To derive the Euler’s method, consider initial value problem

Y'(x) = f(z,y(2)), y(zo) = yo.

Taylor series of function gives estimates for function’s values in the vicinity
of its origin based on its derivative. Computing the first two terms of the
Taylor expansion of function y(x) at zq yields

T(y, o) = y(w0) + ¥ (z0) (¥ — T0)-
Using the ODE gives form to the derivative:
T(y, o) = yo + f(z,y(z))(z — 20).

Euler’s method makes the assumption that this is a good estimate for the
behavior of the y, and uses this to compute the estimate for the y(z;) =
y(zo + h):

Y1 =yo + f(2,y(x0)) (21 — T0) = Yo + hf (20, y(20))-

135



This gives is the general iteration step for the Euler’s method:

Yn+1 = Yn + h(f(ﬂfn), yn>

Here is an example of Euler’s method in MATLAB.

An exzample using Euler’s method to
solve a differential equation
numerically

The example equation

dy/dz = y, y(0) = 1

h 2s selected to be 0.3,

and the solution interval

ts [0, 4]

32 3¢ 3¢ S e e e W

h 0,838
X O:h:4;
Y = zeros(size(X));
Y(1) = 1; / the initial wvalue
for i = 2:1length(X)
Y(i) = Y(i-1) + h*xY(i-1);

end
4 Then compare tt to the real solution

YR = exp(X);
plot (X,Y,’b?,X,YR,’r?)

136



50

T
Euler method
True solution |

45

35 .

301 N

25 .

201 N

10 : 4

Criticism of the method

As the previous example shows, Euler’s method is susceptible to error, when
the study interval is big: this is due to the fact, that second degree Taylor
polynomial is not very accurate method of estimating values of the function,
and whatever error it produces, is accumulated into the next iteration. Hence,
the estimates produced by the Euler’s estimate invariably deteriorate as one
moves further away from the initial value point. To combat the deterioration,
the step size must be usually set quite small, thus requiring many iterations
It is mostly because of this phenomena that Euler’s method serves mostly
as a historical curiosity, rather than a viable method for actually solving a
differential equation numerically.

Backward Euler method

Instead of finite difference approximation, backward Euler estimates the
derivative with
y(t) —y(t —h)

h

y'(t) ~

137



This leads to following iteration step:

Ynt1 = Yn + L (Tns1Ynt1)-

Backward Euler method is an example of implicit method: in order to com-
plete the iteration step n, one needs to solve the given equation for ,,. There
are several ways to do this numerically: you may find suitable methods in
previous chapter. While computational requirements are considerably more
than that of regular Euler’s method, the numerical stability is notably better.

Exponential Euler method

Another example of explicit single step methods is the exponential Fuler
method. If it so happens, that the ODE of the initial value problem takes
the form

y'(z) = K — Ly(x),

then a approximate numerical solution can be obtained through iteration

K
Yni1 = Yne UM+ f(l — e’Lh).

In some specific situations this method can be very accurate, but generally
the error term is comparable to that of the Euler’s method.

6.1.2 Runge-Kutta methods

Runge-Kutta method is not so much a one single method, rather than a col-
lection of both explicit and implicit multistep methods. They were developed
at the end of 19th century by German mathematicians C. Runge and M.W.
Kutta.

The idea behind the Runge-Kutta methods is to increase the number of
evaluation points in the interval [x,, z,11]. This is achieved by using a test
step at the middle of the interval to cancel out error terms of lower order.
The method introduced here is the "classical Runge-Kutta method”, or the
fourth order method, usually known simply as RK4.

Given an initial value problem

y'(x) = f(z,y(2)), y(xo) = Yo

138



define terms

kl - f(xnayn)a
ke = f(z, + %,yn + %h/{;l),
k:?) = f(xn + gayn + %th)a

Terms k; define the slope of the estimated solution during the interval: &y
estimates the slope at the beginning of the interval [x,,,z, + h]. The term
ko estimates the slope at midpoint of the interval [x,,x, + h] using k; to
determine a value for the y at z, + % using the Euler’s method; k3 does the
same, but using ky as the slope. Term kj is the estimate for the slope at the
end of the interval.

The final estimate for the slope on the interval [z, z,, + h] is obtained as a

weighted sum of the estimates for the slope: slope k will be:

1
k - 6<l€1 + 2]€2 -+ kg -+ k4)

The iteration step will be same as in Euler’s method, only instead of using
just f to estimate the function progression, use the k.

Yn+1 = Yn + hk =y, + %(lﬁ + 2k + k3 + ky).

RK4 is a fourth order method, meaning that the value y, is dependent on
four previous values of y. It also means, that the error term of this method
will be of order O(h?) .

Note the similarity between the numerical methods: if f is independent in
respect to y(x), then the RK4 is the Simpson’s numerical integration method.
Here is an example implementation of Runge-Kutta method for a sample
function. In actuality, though, there is little reason to implement Runge-
Kutta methods yourself. There are many functions to achieve this in MAT-
LAB function library.

Example of using Runge-Kutta method
of the fourth order to solve a
differential equation

dy/de = -2y+z, y0 = 2.

SN 3

=
I
(@}

.5;

X = 0:h:8;

139



Fh N e <

Y(1) =

for i
k1
k2
k3
k4

2;
2:1length(X)

Y (i)

end

= zeros(size(X));

for simplicity’s sake, define
f as 2nline function

= inline (’-2*%y+x’,%y’,%x’);

f(Y(i-1),X(i-1));
f(Y(i-1)+0.5xh*xk1l,X(i-1)+0.5%h);
f(Y(i-1)+0.5%h*k2,X(i-1)+0.5%h);
f(Y(i-1)+h*k3,X(i-1)+h);

= Y(i-1)+h/6%(k1+2*xk2+2*%k3+k4);

4 Check the solution wversus symbolic

4 result.

syms x y;

dsolve (’Dy = -2*y+x, y(0)=2’,%x7);
0:0.02:8;

subs(y,x);

y

X

y

plot (X,Y,’r.’,x,y,’b?);

140



4 T T T T T T T

O  RK4 at evaluation points
Actual solution

As one can see, the numerical estimates fall nicely alongside the actual solu-
tion. This particular function, however, is of well behaved variety; comput-
ing the solution with Euler method will yield nearly identical solution. This
means, that the sample equation, yy' = —2y + x is not stiff. A stiff ODE
is an equation, that will work particularly poorly under numerical solution
methods.

6.2 Solving ODE’s in MATLAB

MATLAB has a range of functions dedicated to solving differential equations
numerically. There are methods of high and low orders, implicit and explicit
and for stiff and non-stiff equations. The fourth order Runge-Kutta method
that was introduced earlier, can be found in the function ode45. All of the
ode methods are invoked similarly: for example ode45 (f, [0,8],5.5). First
argument is the right-hand side of the ODE, second argument defines the
beginning and endpoints of the interval where the solutions are sought, and

141



the final obligatory argument is the initial value at the beginning of the
interval.

Example 6.4. Solve a second order initial value problem y” +3.5¢y' + 4y = 0
with initial values y(0) = 2,¢'(0) = 0 and give a numeric approximation
for solution in at x = 2. Manual solutions would lead to computing the
characteristic equations for the gy, but for MATLAB solution, the ODE is
written in form y” = —3.5y' — 4y. By denoting y; = y,y2 = ¢ solving the
second order differential equation is equivalent to solving the system

yi = Y2
Yo = —3.5y, — 4y

To get MATLARB solution, first one needs to create the differential equation,
or rather, the right hand side of one:

4 First set up the right hand stde of the differential
/4 equation
>> dy = inline(’[y(2);-3.5*xy(2)-4*xy(1)]1°,’x?,%y?)
dy =

Inline function:

dy (x,y) = [y(2);-3.5%xy(2)-4%y(1)]
4 Note the inclusion of z in the equation, even though
4 it s mot used in it: this is the requirement of the
4 ode functions

After that, solve it and plot the solution. In this case, use ode23 function.

[t y] = ode23(@deqex, [0 2], [2 0])

In this exzample, t s the wariable
Remember the initial wvalues:

y?(0) = 0, y(0)=2.

After this there %s a m-vector t, and
nz2 vector y. y(:,2) holds the solution
for the y’, the y(:,1) for the y.
plot(t,y(:,1));grid

4 Numeric estimate for the y(2) is the

4 last element of the y(:,1) = 0.0801.

N S N I

Plotted solution on the interval [0, 2] looks like this. Note that solving this
equation symbolically is not possible in MATLAB.

142



1.8} N

16 .

14 .

1.2F .

0.8 N

6.3 Boundary value problems

Initial value problems are not the only type of problems that face differen-
tial equations: in real life applications a more common situation is, when a
solution is sought on some finite interval, and initial values are given at the
endpoints of the interval. Differential equations with these kinds of restraints
are called boundary value problems, and the restraining conditions boundary
conditions.

Solving boundary value problems is significantly more difficult than initial
value problems, even in numerical sense.

Numerical solutions for boundary value problems are obtained through finite
difference methods. Let’s observe a boundary value problem of form

y'(x) = p(@)y () + q(x)y(z) + r(x) a <z <b yla)=oyb)=p.
Denote h = (b—a)/N with some N € N and z; = a+ jh with j =0,1,... N.
Approximate the derivatives using Taylor polynomials:

{y@s +h) = y(@) + hy' () + Ly (2) + O(h?)
y(x — h) = y(a) — hy'(z) + 24" (x) + O(h?)

143



Summing up y(x — h) and y(z + h) yields
y(@ —h) +y(e +h) = 2y(x) + K%y (z) + O(1?),
from which you can solve 3”:

x+h)+y(r—h)—2y(x)
72

Likewise, one can solve y/(z), and get the usual finite difference:

y'(z) = ¥ o).

Using these approximations one can write:

y/<x> _ y(xj+1)2*hy(93171) + O(h2)

y'(z) = y($j+1)—2y]§923j)+y(93j—1) +O(h).

Having done denote y; = y(z;), and substitute into the problem:

h
Yi +295 + Y = p(e5) 5 (Y5 - yi-)h*(q(z;)y; + r(z;)).

Solving this equation for j = 1,... N — 1, and using the boundary conditions

Yo = a,y, = [, leads to tridiagonal system of linear equations.

a; € 0 n wq
by as C2 Y2 w2
bn72 Ap—2 Cp—2 Yn—2 Wp—2
i bn—l an—l_ _yn—l_ _wn—l_

The coefficients a;, b;, ¢;, as well as the right hand side are obtained from the

equation 6.5.

6.4 Partial differential equations

If a differential equation concerns a function of more than one variable, and its
partial derivatives, it is called partial differential equation. Partial differential

144



equations are often used to formulate problems concerning many variables,
such as propagation of heat or sound.

Solutions to partial differential equations in classical sense are difficult to
obtain, and thus the numerical methods play a huge role in seeking solutions
to these kinds of problems. The difficulty arises from the fact, that unlike
in the case of one variable problems, there is no universal theorem to state
when there exists a solution, and whether it is unique.

Partial differential equations are usually classified into prototypes. Some of
the most important prototypes are the wave equation

2
Ut = C Ugy,
the heat equation
Ut = QUgy,

and the Laplace equation, and it’s inhomogeneous variant, the Poisson equa-
tion
0u N Pu
ox2  oy?
Pu  u
02 + o = f(z,y); ul0D = g(z,y).

0

Classic study of partial differential equations has concentrated on study of
characteristics of these prototypes, classification of equations according to
these prototypes. In this course the theory behind these equations is not
discussed, just the numerical solutions.

6.4.1 Wave equation

Wave equations are the archetype of a hyperbolic partial differential equa-
tions. It concerns a function u(x,t), where variable ¢ parametrizes the time,
and the vector x the location on the plane. Function u is a solution for a
wave equation, if it satisfies an equation

Pu 0%

o2~ 9a?
and whatever boundary conditions have been specified. Usual boundary
conditions include at least

{u(x, 0) = f(z),
ui(,0) = g(x)

145



These conditions mean, that state of the studied system is known at moment,
t = 0 with respect to x, and the speed of change in system is known at the
moment t = 0.

Wave equations, as the name suggests, descripts the behavior of wave-like
motion, be it light, sound (three-dimensional equations), some liquid (two-
dimensional) or a vibrating string (one-dimensional). The constant coeffi-
cient ¢ in the equation is the speed of the wave, and solution u will be the
magnitude of the wave in location specified by x at the time .

Simplicity of solutions depend largely on the dimension of x, and on whether
X is constrained or not. If the equation is posed in single dimension with
unrestricted x, then the solution is yielded by the D’Alembert’s formula:

1 1 x+ct
e t) =5 Fle = ct)+ S e) + oo [ glsds
T—ct

There are similar formulas available in higher dimensions. If the solution
is limited to some finite area, no formula exists: rather, the solutions are
obtained through separation of variables which will lead to Fourier series. If
restricted to some finite interval of real line, and for some finite duration, the
wave equation will take form

Pu=29u 0<ao<L0<t<T

U(I,O) = f(ZL‘),

ut<x7 0) = g(l’),

u(L,t) = u(0,t) =0

To numerically solve the equation, denote by R = {(z,t) : 0 < z < L,0 <
t < T}. R is a rectangle on plane. The idea is now to subject R to same
kind of finite difference study that was introduced with ordinary differential
equations. This is achieved by dividing the R into (n — 1)(m — 1) rectangles
of equal size. Denote the division interval of z-axis with Ax = h and of ¢t-axis
with At = k. Also, denote with x; = ih and t; = jt; the real function value
at (z;,t;) = u(z;,t;) and the numerical estimate w;;.

To move forward use the familiar formula to approximate the second partial
derivatives:

u(z + h,t) — 2u(x,t) + u(x — h,t)
h? ’

u(z,t + k) — 2u(x,t) + u(z, t — k)
k2 '

Ugz (T, 1) A

Ut (flf, t) ~

146



Then replace the exact function values with estimates wu;;, and the original
equation gives:

Uigat = 25 + i1 pUiv1y — 2Uij + Uic1y

k2 h?

Then denote r = ck/h, and substitute:
2
Uigar = 2ug + w1 = 17 (Ui — 2ug + Ui ).
This equation gives an explicit formula for u; j;1:
= (2 2 2
Uigar = (2= r7)ui; + 77 (wigrj + Uio15) — Uit

To compute values on row j = 2, one needs both the rows j =1 and j = 0.
These are obtained from the boundary conditions:

u(z, k) = u(z;,0) + u(x;, 0)k = f(z;) + kg(z;) = win

and with these one can compute the u; . Numerical solution is now obtained
by iteratively computing the rows of the lattice.

Example 6.6. As an example, solve a wave equation concerning a vibrating
string
Uy = g, 0<x<3;0<t <2,
u(0,t) =u(3,t) =0; 0<t<2,
u(z,0) = f(z) = sin(nzx) + sin(2rx); 0<z <3,
u(z,0) = g(x) =0.
Select h = 0.1,k = 0.05. The constant r, required for the formula, is r =
ck/h =2-0.05/0.1 = 1. Thus the linear equation for u;; becomes u; ;11 =
Uig1,j + Uj—15 — Ujj—1-
4 attempt to numerically estimate solutions to
4 wave equation u_ (tt) = 4u_(zz), 0<x<3, 0<t<2
4 with boundary conditions
4 u(z,0) = sin(z*pi)+tsin(2*xz*pi)
2 u(0,t) = uw(3,t) = 0;

clear; clc;close all;

147



/4 function defining boundary wvalues

f = inline(’sin(x*pi)+sin(2*pix*x)?’,’x?);
h = 0.1;k=0.05;

tl = 2;

x1 = 3;

M = zeros(tl/k+1,x1/h+1);
x = 0:h:x1;
[mn] = size(M);
4 these come from initial conditions
M(1,:) = f(x);
M(2,2:n-1) = 0.56*%(f(x(1:n-2))+f(x(3:1n)));
4 fill the mesh, retatin boundary values.
for 1 = 3:m

M(1,2:n-1) = M(1-1,3:n)+M(1-1,1:n-2)-M(1-2,2:n-1);
end
4 draw
mesh(fliplr (M));

6.4.2 Heat equation

Heat equation is the primary prototype for the parabolic differential equation.
It describes the heat distribution or temperature variation in a determined
object over time. One dimensional heat equation has the form

Up — Uy

Heat equation can be generalized into more dimensions by replacing the
second z-derivatives by spatial Laplacian operator:

w = A,

To obtain any but the most general solutions, one needs to set some boundary
conditions: initial values at boundaries must be known, as must be the initial
heat distribution in the object. Thus we gain the equation:

U — gy 0<a<L,0<t<T

u(0,t) = u(L,t) =0;

u(z,0) = f(x)
Note that this equation assumes, that the temperature at the boundaries
of the studied object is constant at all times. For more realistic model one

148



should replace the constant expression with time dependent functions g(t)
and h(t). This does, however, make the symbolic solution much more com-
plicated, and is therefore disregarded in this presentation. Solutions for this
equations are usually sought through separation of variables, giving access
to solutions with the form w(z,t) = X (x)T'(t). This will lead to solution:

u(z,t) = Z ¢y Sin (n_zx) e /L%t
n=1

Cpn = %/OL sin (?)f(x)dx,

that is, ¢,’s are coefficients of the Fourier sine series.

To numerically solve a heat equation, use the familiar finite difference method:
define a rectangle R in which you wish to obtain the solution, then create
the discretization by dividing R into (m — 1)(n — 1) rectangles of equal size
hk. Let h be Ax, that is, the height of one rectangle on z-axis, and k the
length of the rectangle on ?-axis. Denote points z; = ih and ¢; = jk, and
u; ; the numerical approximation for u(x;,¢;). Then one can approximate the
derivatives.

where

w(tiyr, x) — u(t;, x)

? )
Time derivative is the forward looking version instead of the usual three point
rule.

ut('ru tl) ~

U(I‘Z‘Jrl, t) — 2U<.§L’Z, t) + U(l’i,h t)

h? '
By substituting these into the heat equation, and replacing the true function
values with estimates, you get

Uil = Uig _ plivlj — 2Uij + Uiz

k h?

By solving this equation in respect to u; j1; you get

_ 27, Yitl,j i,J i—1,j
Ui g1 = Uiy + Tk 2

By denoting r = ¢*k/h? you get an equation
Ui j4+1 = TUi41,5 + (1 — QT)UZ‘J -+ TUi—1,5-

149



This equation is called the forward time, centered space approximation to the
heat equation, because of the forward looking approximation to derivative.
It also means, that this approximation only yields good solutions, if solved
forward in time.

150



