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INTRODUCTION

Three approaches of algebraization of the First Order Logic (FOL) are well-
known; the first: the Cylindric Algebras by Tarski [15], and the second one: the
Polyadic Algebras by Halmos [5] (we will call them in this work as Halmos Algebras
(HA)). The third approach has been proposed by Lawvere [7]. It is based on
categorical considerations.

There exist many works in which several algebraizations of FOL and their
properties were investigated. Ch. Pinter [10] showed that the system of axioms of
Halmos Algebras may be simplified in comparison with the system of axioms that was
defined by Halmos. One chapter about Cylindric Algebras is devoted in the book of
Monk [9]. Connections between ideals of Polyadic Algebras and Monadic Algebras
have been studied by F.B. Wright [19]. Note that ideals and filters in Halmos Algebras
are defined simply and naturally. A fundamental work of W.Craig is devoted to
Boolean Algebras with operators [3]. Later works belong to LNemeti [9], H.Andreka
[1] and I.Shain [14].

The idea of categorical description of algebraic theories has been formulated
by Lawvere [7]. Deducing from this point of view, a certain category called algebraic
theory is determined. This category describes a syntax of Algebras of the theory and
all the algebras may be considered as a functor from an algebraic theory (category) to
the category, (for instance) SETS .

Using these ideas E.Beniaminov [2] has defined special algebraic structures
for studying the algebraic models of Relational databases. These algebras were called
Relational Algebras (RA). In our opinion, in this case the term "Relational” looks to a
certain extent unsuitable, since it "was occupied" by another structure. But in the
present work author will use the term "Relational Algebra" in the sense of
Beniaminov.

In 1983 Prof. B.Plotkin defined Halmos Algebras and Relational Algebras,
which have been specialized in some variety 6 (in short, HA, and RA,, respectively)

[11]. This is generalized notion and we can obtain the pure Halmos Algebras and
Relational Algebras as a particular case of HA, and RA,.

While Halmos Algebras and Cylindric Algebras are being thoroughly
investigated, Relational Algebras (according to Beniaminov) were not widely known.
In particular, important notions of a filter and an ideal of RA-s which were not
described earlier, were given by the author [16] and we will discuss this question in
chapter 1. Note also that relation between Halmos Algebras and Cylindric Algebras is
simple and was described by B.A.Galler [4] in 1957.

The problem of connecting HA-s and RA-s has been stated by B.Plotkin in
Riga Algebraic Seminar. It has arisen in connection with the problem of algebraic
relational databases model construction. This model was defined by B.Plotkin in 1984
and it can be constructed starting from various algebraizations of the First Order
Logic. Therefore it was very important to get the equivalence of different approaches
to algebraization of FOL. This equivalence leads to the equivalence of corresponding
relational database models. All these problems, as well as several others, are
considered in the fundamental work of B.Plotkin [13].

Note that all the results which we will describe in this work have been derived
by the author in 1986 (see [18]). However, all the works in which the main results
were described were published in Russian. Therefore the aim of this paper is to



present the English version of the Dissertation (which was first published in 1989 in
Russian ) and some increments to it.

This work consists of three chapters. The first one is devoted to construction
of functors from the categories of Halmos Algebras to the categories of Relational
Algebras. The questions of relation between axiomatics of HA-s and RA-s are
considered in the second chapter. Transition from the categories of RA-s to the
categories of HA-s is described in the third chapter. Almost all the results of the paper
may be expanded on HA, and RA,.

I'am grateful to my Adviser Prof. B.1. Plotkin for his patient help.

I wish to thank Associate Professor G.Vainikko and Assistant Jarmo Malinen
of the Helsinki University of Technology for help in the preparation of the English
version of this work.



CHAPTER 1
1.1. The Quantifier Algebras

First we define the scheme of a Halmos Algebra (HA) as a mapping
nml—T where I' is a set of sorts of variables. So there is a splitting
I=(l,,lel)and each I, - is a countable set. Halmos Algebra is a Boolean

Algebra (BA) with supplementary operations.

DEFINITION 1.1.
A quantifier (or, more explicitly, an existential quantifier) on BA H is a mapping
& H — H such that

El. 30=0,

E2. 3h>h,he H;

E3. 3hnh)=3h 3k ,h ,h € H.
Dually, a universal quantifier on BA H is a mapping V: H — H such that

Ul. V1=1,

U2. Vh<h,he H,

U3. V(h, Uh,))=Vh UV h, h ,h, € H.
To each existential quantifier, a universal quantifier can be associated by
Vh= Ei-ﬁ, h e H. On the other hand, Jh = ‘v’ﬁ, he H. Thus, there exists a one-to-

one correspondence between all existential quantifiers and all universal quantifiers on
BA-s.

DEFINITION 1.2.

A Quantifier Algebra is a triple (H, 3, 1), where His BA, I=(I,,leI)isa
system of sets, whose elements are called variables and each I, is a countable set.

Here T" is a set of sorts and 3 is a mapping from subsets of I to quantifiers on H,
satisfying the following conditions:

Ql. 3°h=h,heH,
Q2. 3"32h=3""n, he H.

We can define an universal quantifier V”’ for every quantifier 3’ setting V'h = 3h,

1.2. The Halmos Algebras

Let, further, for any /eI, S, be a semigroup of transformations of I, into
itself and denote by §=S§ X..X§, the cartesian product of semigroups S,,...,S,

where lI‘ }: k.

DEFINITION 1.3.

A Halmos Algebra (or a Polyadic Algebra) in scheme n:I — T" is a Quantifier
Algebra in scheme n:/ — I' for which there is a representation of semigroup § as
the semigroup of Boolean endomorphisms of H and for which the following
conditions have to be satisfied:

SI. s,3’h=s5,3"h,he H,s,,5,€ S, s, (@) =s,(a),0el, J=I\J.

S2. 3’sh=s3"’h if s is an injective transformation on s J.



It is necessary to formulate one more important condition for the
representation of semigroup S as the semigroup of Boolean endomorphism of H.
We will regard that the identity endomorphism on H corresponds to the identity
transformation of § and any monomorphism H  corresponds to one-to-one
transformation of S. Denote this condition by S3.

DEFINITION 1.4.

Now we can define an identity on HA H as a set of mappings d :{d, ) GI‘}
where d, is amapping d,:I, xI, - H and the following axioms hold (for all «, 3
such that n(a) =n(f) )

EQI. d(ot,a) =1,

EQ2. sd(ct, B) = d(sat, sP),

EQ3. d(a,B)Nh < sPh where s” is replacement such that s%(y) =y
forall y+# o and s’ (o) =pB. Wedenote d(at,)=d,(ct,B) for a,fel,,leT.

1.3. Supports of elements of a Halmos Algebra

Let H be a Halmos Algebra. To each element he H we can associate a
special set Jwhich we will call a support. We will say that subset Jc I isa
support of an element he H (or h will be supported by J ) if 3’A=h  where
J=1I\J. We will say that an element % is independent of the set J,if 3"h=h.
Soa set J < I supports anelement he H if h is independent of I\ J.

It is important to describe also another "kind" of support. Assume J < I and
let 5,0 be two elements from S such that s(a)=o0c(x),x e J. The element
he H is called s-—supported if sh=och. It is easy to show [11] that if he H is
s—supported by aset J then h is supported by J and vice-versa; if any
he H is supported by a set J, then h is s-supported by the same J.

The notion of the support is very important and we will frequently use it.
For that reason it is useful to get the main properties of supports.

Pl.Ifaset J, is a support of someelement e H theneveryset J,J, ¢ J
is also a support of A.

P2.1f J, and J, are supports of some element he H then the set J, N J,
is also a support of A.

P3. Assume J isanysupportof he H andlet J,cI be any
subset. Then 3’h=3"""p.

P4.1f an element he H is supported by any set J then h is
also supported by the set J.

P5. Assume aset J, isasupportofanelement s andaset J, isa
support of an element h,. Then the set J W J, isa support of both h Uk,
and i Nh,.

Anelement he H is called the element with a finite support if there exists
a finite set among all the supports of h. Halmos Algebra will be called locally finite iff
eachelement he H be supported by some finite set Jc 1.

Denote by X the category of locally finite HA-s with an identity.

Denote by R, the category of Quantifier Algebras over the scheme n:/ —T.



Let X, be a category of Halmos Algebras (H,3,1,G) where
G =G, x..XG,, [Il=k and each G,,lel' is a group of all one-to-one
transformations of the set I, into itself.

Now we proceed to describe Transformational Algebras over the scheme
ml—>T.

DEFINITION 1.5

A Transformational Algebra is BA for which there exists a representation of S
to the semigroup of Boolean endomorphisms of H. So we can say about locally
finite algebras (refer to the notion of s-support).

Denote by X, a category of locally finite Transformational Algebras over
the scheme n:1 — T

Now let us consider several common algebraic notions for Halmos Algebras.

1.4. Ideals and filters in the Halmos Algebras

DEFINITION 1.6.

Assume H, H, be any HA-s from the category X over the scheme
n:I - I'. The mapping &6:H, > H, is called HA-s homomorphism if § is a
homomorphism of BA-s H,, H, and & preserves existentional quantifiers and
Boolean endomorphisms on H, and H,, i.e.

H1. §@3'h)=3'6h,he H,,J 1,

H2. 6(sh) =sbéh,he H,,s€ S.
A homomorphism §:H, — H, is called an isomorphism of HA-s if § is an
isomorphism of BA-s H,,H,.

Now we will introduce some important notions of ideals and filters of HA-s.

DEFINITION 1.7.

A subset Uofany HA H isanidealof H if:
I1. U is an ideal of the Boolean Algebra H,
R.If aeU thenforany Jc I, Fael,
I3.If aeU thenforany seS, sael.
Similarly, a subset F of the Halmos Algebra H is afilter of H if:
F1. F isafilterof BA H,
F2.1If ae F then, forany Jc I, V’aeF,
F3.IfaeF then saeF, seS.
The notions of ideal and filter are dual. So it is clear that 0e U where U is

any ideal of HA. Similarly, if F is a filter of HA H then 1€ F . These statements
follow from the definitions.

Let &6:H,—> H, be a homomorphism of HA-s. Consider two sets
U={nheH & =0}, F={nheH & =1} Then U is an ideal of H, and
F isafilterof H, .Both U and F are called kernels of o.

It is a well-known result (see [13]) that any subset U < H where H is HA
is an ideal of H iff U isanideal of BA H and aeU implies 3’a € U. Dually,
F is afilterof HA H iff F isafilterof BA H andif beF implies
V'beF.



1.5. The Halmos Algebra of subsets.

To get HA of subsets over the scheme n:/ —T", let D denote a family of
sets, l.e. D= {D, ,le I‘}. In other words the family D consists of the sets which may

contain elements of different sorts. Denote by D the cartesian product of D,iel
i.e. anDa,aeI , where D, =D

n(o)*

Then the power set D of the set D is
BA.Forany AeD andforany Jc I we candefine 3’A by the rule: a € 3’ A
if there exists b € A such that a(a) =b(et),cc € I\ J.

Now we can define a representation of the semigroup S to the semigroup of
Boolean endomorphisms of H .

First we define the action of any se€§ on D. For aeD we set
(as)(ct) = a(sar) . Then the action of elements from S on D can be defined by
setting

sA = {a[as € A}.

It was shown (see [13]) that the algebra which has been just defined is really a
Halmos Algebra.

Let us define an identity on D in the following way
d(a aﬂ) = Da,ﬁ
where D, , is a set of all ae D such that a(a) = a(B). It may be shown [13]
that all necessary axioms hold. Note that from the definition of a support it follows

that, an element A c D is supported by J c [ iff from the equation a(x) =b(x)

we have that if ae A then be A . In other words, if we have to check whether
a € A then we can do it only for o € J, where J is asupportof A.

1.6. Relational Algebras

We introduce the notion of the Relational Algebra (RA) by Beniaminov [2].
First we describe the scheme in which RA will be defined. The scheme of RA is a
certain category K . Objects of x are mappings of the foom n,:J — T where J

is a finite set, I" is a set of sorts. Morphism of two objects n,:J, — T and
n,:J, > T isamapping y:J, — J, such that the following diagram




is commutative. ( We suppose that K does not contain empty objects). To each
object n,:J — I from K one can assign Boolean Algebra R(J), while to each

morphism y:J, — J, correspond two mappings
V.:R(J,) > R(J,) and y":R(J,) = R(J))

where Y, is a homomorphism of BA-s and W' is such a mapping that for every
a,b e R(J,) thereholds y"(aub)=y auy’b.

We are going to define one more operation on the Relational Algebras
denoted by X. Given objects n,:J, = T'and n,:J, — T'denote by J, I1J, the

co-union of the sets J, and J, . Furthermore, let
g, > J 1IJ, and ¢, :J, = J, 11,

be the canonical morphisms of the co-union. So, to any two elements a € R(J,)
and b e R(J,), there is a new element axXb which can be defined by

axb=(g,).an(g,;).b.

DEFINITION 1.8.
Let n,:J — T be an object of K. Then a system R of BA-s is called a

Relational Algebra over K if the following axioms are satisfied:

RI1. y,:R(J,) = R(J,) is a homomorphism of BA-s,

R2. y":R(J,)—> R(J,) is a mapping which preserves operation of
disjunction.

R3.a (Wy,). =vi.¥,.. (Wy,) =y, "y, forany v, y,,

b. (1,),,(1,)":R(J)— R(J ) are identity mappings,

R4. yy'a>a, wyb<b for allelements ae R(J,) and be R(J,),

R5. Given morphisms y:J, —J, and 1,:J;—J;, denote by
wlt, )., 17, - J,1J, the co-union of the morphisms. Then for any
a € R(J,) and b € R(J,) the following holds:

(wlI1,) (axb)=y axbh.

We make some remarks about the definition of Relational Algebras. A
Relational Algebra is a functor from category K to the category of Boolean Algebras
BOOL. In fact, we deal with two functors. One of them is covariant and the second
one is contravariant. As it was shown by the author (with V.Sustavova) [17],
axiom R5 may be generalized. More precisely, by using the axioms R1 -R5 we will
prove in chapter II that the following axiom holds:



R6. Given morphisms y:J,—=J, and ¢ :J,—J,, denote by

(wle):J, UJ, = J,11J, aco-union of these morphisms. Then for any a € R(J,)
and b e R(J4) , WE have

(vl ) (axb)y=y axe’b

It is also easy to check (see chapter II) that under the above-mentioned conditions,
forany ce R(J,) and d € R(J,), the following always holds:

(wloe).(cxd)=y.cxod.

Now we proceed to describe a definition of pure RA-s introduced by
B.Plotkin (see [12] and [13]).
Let us consider the following addition properties of category-scheme K.

Assume that n,:J — T is any object where J = {(xl,...,an } Then there exist
special projections &):J — ¢, for all k, forcing to be a product
J=0ox.x,. So the Relational Algebra now is a contravariant functor
R: K — BOOL such that the following axioms satisfied:

M1. For any morphism y:J, — J, the Boolean homomorphism v, = R(y)
is considered as a functor between order categories R(J,) and R(J,), and y, admits

the left adjoint y*:R(J,) = R(J,),
M2.Forall y:J,—J, and ¢ :J,— J,, aeR(J,) and be R(J,)

(W x@ ) (axb)=y axe’b

where y X ¢ is the natural product map, and
axb=(m,).an(x,).b,
and 7,:J, xJ; > J, 7, J,XJ;— J; are projections.
It is easy to show that the axiom M1 and axioms R1-R4 are equivalent (if
we consider K according to B.Plotkin [13] ). On the other hand the axiom M2

regulates a relation between operations X and .
At last, it is necessary to describe two additional claims of RA.

The first one is the following. Assume that [ = {I sle I‘} is a system of sets

and let every I, be a countable set. Suppose, further, @ ,(I) to be a set of all the
finite subsets of [ . We will claim that for any object n,:J —I', there exists

Jeg@,(I)and forany Je g, (I) thereexistsanobject n,:J —1T.

Before describing the second claim let us make some remarks. Let
n,:Jy—>Tand n,:J, > be objects of the category-scheme K . For any object

n,:J — T denote by sort(J) the set of all the elements y eI, such that
n,(a)=y,00€J, ie.

sort(J)= {y € I"}n, ()y=v,a¢€ 1“} .

10



A morphism v:J, = J, is said to be compatible if the equality
sort(J,) =sort(J,) holds. Assume now that for the morphism y:J, — J,, the
insertion sort(J,) ¢ sort(J,) takes place. It is easy to see that any morphism

y:J, = J, can be always written in the y = sff(p where ¢ is the corresponding
compatible morphism and ef :J, = J, 1is an identity morphism.

PROPOSITION 1.1.

1. Lety:J,—J, be any injective compatible morphism. Then
V.:R(J,) > R(J,) is a monomorphism of BA-s and ™ :R(J,)— R(J,) is an
epimorphic mapping of BA-s.

2. Assume that y:J, — J, is an epimorphic compatible morphism. Then
V.:R(J)) > R(J,) is an epimorphism of BA-s and y :R(J,)— R(J,) is an
injective mapping of BA-s.

PROOF 1. First for wy:J,—J, we make an opposite morphism
©:J, > J, bysetting @B =0 forevery «aelJ, suchthat w(o)=p. For the
remaining elements S e J, let ¢ act arbitrarily. We have oy =1 s and then using

the axiom R3 we get @y, =(1,), and Ve :(ljl)*. Since (1, ), and (1,1)*
are both identity mappings of BA R(J,), theitem 1 is proved.

2. The proof resembles the one just discussed. We just have to construct an
injective ¢ for y . The rest of the proof is the samee

And now we are ready to formulate the second claim. Assume that
y:J, = J, is any injective morphism such that sort(J,) c sort(J,). We will

claim that y,:R(J,) > R(J,) and w":R(J,)— R(J,) which correspond to
y:J, = J, are monomorphism of BA-s and epimorphic mapping, respectively. We
will denote the condition (axiom) by R6.

1.7. Homomorphisms of Relational Algebras

DEFINITION 1.9.
Let R,,R be RA-s over the scheme-category K andlet © =0©(J) bea

set of homomorphisms of BA-s ©(J):R(J) — R (J) for each object n,:J -»T
of K. We will say © is a homomorphism of RA Rl,R' if each @©(J) acts in

accordance to the corresponding mappings for morphism y:J, — J,, i.e. the
following diagrams

eJ,)
R(J})) —> R(J,))
V. V.
e(/,)

R(J,) —> R'(J,))

11



ed/,)

R(JD) SR,

£ R

4 v

e(/,)
R(J,) —>R'(J,)

are commutative. In other words, forany a € R(J,), be R(J,), we have

o, w.a=vy .0(J)a, y O(J,)b=0(J)yb.

A homomorphism © between RA-s is an isomorphism if for every object
n,:J =T of K the homomorphism ©(J) is actually an isomorphism of BA-s.

In fact, it is easy to see a homomorphism of Relational Algebras is a natural
transformation of the functors.

1.8. Ideals and filters in Relational Algebras

DEFINITION 1.10.
Let R be RA over the scheme K. Assume that I={],} is a system of

ideals of BA R(J) for every object n,:J — T . The system I is an ideal of a

Relational Algebra R if for any morphism y:J, — J, the following conditions
are satisfied:

.y, clI, where y.I, ={I/I*aaelll},

2. If a-bel, then y'a-y'bel, ,where a~b=anb.
Dually, let F= {F ,} be a system of filters of BA R(J) for every object
n,;:J =T . Asystem F is afilter of RA R if for any morphism w:J, — J, the

following conditions hold:
Fl.y.F, cF,,

F2.If a—>beF, then ya—y'beF, where a—b=auUb.

We have to check that the above notions are well defined. We will carry out it
only for filters because the necessary proof for ideals is the same as for filters. Let

12



©:R— R be a homomorphism of RA-s. Denote F,_ = {F,} a system of kernels
of homomorphisms ©(J) for every object n,:J — 1T ,ie. {F, } = ker®(J).
THEOREM 1.1. Assume ©:R— R is a homomorphism of RA-s. Then the

system F, :{F ,} of kernelsis afilter of RA R.
PROOF. Assume y:J, — J, is any morphism. First it is necessary to
show that w,F, c F, . let aeF, be arbitrary element. Using the following

commutative diagram (see the definition of a homomorphism of RA-s)

o))
R(J,) —>R'(J,)

V. v,

e(J,)
R(J,) —> R'(J,)

we get  O(J,)w.a =y .O(J,)a. Because a € F,, {F,}z ker®(J), it follows that
O a=1g is the unit of BA R(J,). Hence
v.0(J)a=1

Now it is necessary to show that a ->be F, implies Y ‘a—>y'beF 5 -

where 1 %)

and therefore O(J,)y.a=1 . This implies y.aeF, .

R'(Jy) R'(Jy

Remember that forany a,b € R(J) the following takes place:
(a—=>b=1sa<bh.

So assume that a — b € F, . Then we obtain

O, a—b)y=1_ =(O,)a—0,)b)=1_ = 0(J,)a<06(,)b.

R (1) R'(4y)

Since ©(J,)a<O(J,)b, it follows v O(J,)a<y ©(J,)b. Using the
commutative diagram

0(J,)

R(J) SR (J,)

* %

v v

0(J,)
R(J,) —>R'WJ,)

13



we get v O(,)a<y O(J,)b= 0, )y a<OU,)y'h. This implies
Oy a—OJ)w'b = 1%.(11)
o)W a—-y'bh)=1

We introduce the following notations.
First denote by R the category of RA over K .Denote, further, by K, a

and therefore

ie. y'a—y'beF, o

Ry’

subcategory of K in which we will consider the morphisms .&‘,Jf:J1 —> J, where
J, < J, . Denote by R, the category of RA-s over the scheme K, .

Consider K, as a subcategory of K having only injective morphisms. Denote
by R, acategory of RA-s over the scheme X ,.

And, finally, let R, be category of RA-s over the scheme K, and suppose
that for every algebra from 3R, only a homomorphism v, of BA-s for any
morphism y:J, — J, is defined.

1.9 Transition from the category of the Halmos Algebras
To the category of the Relational Algebras

Now we would like to describe the construction of the functor rel from the
category of HA X to the category of RA R. It clear that the functors

rel;:X, - R,
rel,:X, - R,,
rel;: X, - R,

will arise naturally from rel. Unfortunately, we do not have here the possibility to
give a detailed description of the construction of the corresponding functors.
Therefore we will consider only general scheme of the constructions of the functor
rel. The Reader can find the omitted proofs in [13] and [18].

Let HeObX. We are going to associate with H the Relational Algebra relH.
First, on the bases of the scheme n:/—I" we will construct the scheme - category K.
To do this, we consider all the finite subsets Jc I and all the restrictions of the
mapping n:I—I" on these finite Jc L.

These restrictions will be the objects of the category- scheme K. The
morphism y of two objects n,:J, = and n, :J, =T is amapping y:J, = J,
such that the diagram

is commutative.

14



Now we associate to every object n,:J — I' the Boolean Algebra H(J).

Let H(J) be a set of all elements of H such that Fh=h, ie. every he H(J)
is supported by J. It is a well-known fact [13] that H(J) is a BA.

So for every object n,:J — I from K we have a BA H(J). For any two
objects n,:J, > T'and n,:J, > I' letus denote by v morphism y:J, — J,
and let seS be an element such that sae=ya, oe J,. Here S is the corresponding
semigroup.

DEFINITION 1.11. For every he H( J,) we set

Y, h=sh.

All the necessary properties of the definition considered in [18]. Now we
have to construct w* for any morphism y:J, = J,.Let J, = {al ,...,ocn}. Consider
case J, NJ, = We set forany heH(J, ),

v h=3"(hnd(a,,ya,)n..nd(a, , ye,)) .

General case and all the necessary proofs are given in [18].

From the scheme n:I—I" we have constructed the category-scheme K. Then
for every object n,:J — T we obtained BA H(J) and for any morphism
v:J, = J, wehave two mappings v, H(J,)—> H(J,) and y :H(J,)— H(J)).
Furthermore, the mapping 1y, is a homomorphism of the corresponding BA-s and the
mapping ¥~ preserves the operation of the disjunction of BA-s. Denote by relH all

these BA-s over the scheme-category and all mappings w, and y~ that correspond
to morphisms from K.

THEOREM 1.2. Let H be HA over the scheme n:/—I" and let relH be a
construction which was mentioned above . Then relH is a Relational Algebra over the
scheme K.

By using this theorem we can construct a functor from the category of Halmos
Algebras X to the category of Relational Algebras R.

Let H,, H, be any algebras from the category X over the scheme n:[—T
and let p:H, — H, be a homomorphism of HA-s. Denote by R,, R, the Relational
Algebras rel( H) and rel( H,) correspondingly. Note that the homomorphism u
preserves supports of the elements from H, and therefore y  induces homomor-

phisms u(J):R,(J)— R,(J) for every object n,:J — I' from the category K.
Denote rel (i )=6 where 6={6(J)} for every object n,:J — I fromK. Itis easy
to show (see [18]) that rel (y ) is a homomorphism of the corresponding RA.
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CHAPTER 2

OPERATIONS OF HALMOS ALGEBRAS
IN RELATIONAL ALGEBRAS

In this chapter we will show that Boolean Algebras R(J) (considered
together with the semigroup S, ) of RA-s from the various categories may be

presented as new algebraic structures over the scheme n,:J — T .

First, it is necessary to consider some elementary properties of a Relational
Algebra. These properties are useful for the further proofs. They were investigated by
W.Craig (see [3]). We will use them frequently without citation.

PROPOSITION 2.1 Let y:J, = J, be a morphism of two arbitrary objects

n,:Jy—>T and n,:J, > T from the category-scheme K, and assume that
ae R(J,),be R(J,). Then:

Ly vy a=vy'a,

2y wb=yb,

3.If a<y.b then y'a<b,

4.1f w'a<b then a<y.b,

5.wanb=0 ifand only if a ny.b =0.

PROOF. 1. According to the axioms of RA-s for ae R(J,) we have
W.W a>a which implies y y.y'a>y’'a. On the other hand, if we denote
v “a = ¢, then we can write (using the axioms of a RA)

Y y.c<c= Yy a<y’a andfinally wyya=y'a.

2.For be R(J,) we get Y y.b<b= w.y y.b<y.b.Then denote y,b=d .
We have Y.y 'd >d = .y w.b > y.b and thus, Wy w.b=y.b .

3. Assume that a <y.b. Then W a <y y.b and y a<b.

4. Assume that ¥ a <b . Then Y.y a <y.b and a <y.b.

5. Assume that Y a b = 0. Then we have

yanb=0ovy'a<b a<yb @a<ifib ©anybe

PROPOSITION 2.2. 1. Let y:J, — J, be an injective morphism. Then
Vw.a=a,aeR(,).

2.If y:J, — J, is abijective morphism then W.w'b=b, be R(J,).

PROOF. 1. By proposition 1.1 (item 2) we can write Y.y W.a = W.a . Since v
is an injective morphism, Y. is a monomorphism of the corresponding BA-s (see axiom

R1). Therefore, ¥ W.a=a.

2. Proof is the same as in item 1, it is only necessary to use item 1 of
proposition 1.1. e
Now we are going to consider the category R, of the Relational Algebras over the

scheme-category K in which morphisms for any objects n wJi—=>ID and n, :J, »T

are defined only when J, ¢ J, and they are identity injections and look as 81112 =,

Let us fix a Relational Algebra R from the category R, .
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THEOREM 2.1. Let R be a Relational Algebra over the scheme-category K.

Then any BA R(J) of the Relational Algebra R may be transformed to a Quantifier Algebra
over the scheme m:J — I'.
We will divide the proof of the theorem in several lemmas and propositions. First, we

define existential quantifier 3“}‘ :R(J) = R(J) of the Boolean Algebra R(J) for any proper
subset J, < J.
DEFINITION 2.1. For any a € R(J) we set
Ira= ({;‘f2 )*(Sf2 )a,
where J, = J/ J,.

Now we need to show that this is well defined, i.e. we have to check that for any
a,b e R(J), the following axioms hold:

1.3 =0,
2.3ta>a,
3.3 (@anItby=3tanI)b.
We use the following lemma, by W.Craig [2].
LEMMA 2.1. Let y:J, — J, be a morphism. Then for any ae€ R(J,),

b e R(J,) there holds:
vianwyb) =y anb.
PROOF. We have ¥ (any.b) <y'a and " (any.b) <y w.b<b. It
implies
v (anyb)<yanb
On the other hand,
anyb<yy (any.b)=anybnyy (anyb) =3 =
Sany.bny @nyb)=0= W anb)ny (anyb) =T =
(Wanb)<y (any.b)e
PROPOSITION 2.3. For any proper subset J, < J, the mapping
37 R(J) = R(J)
is an existential quantifier of BA R(J).
PROOF. Let us consider three conditions for an existential quantifier which were

pointed above. It is easy to see that the first and the second conditions hold. This follows
from axioms R3 and R4 of the definition of a Relational Algebra and from the fact that for

any morphism ¥ both mappings ¥, and l//* preserve zero elements of BA-s. So, let us
check the third condition. We have :

3 @n3b) = (g;).(e]) [an(g;).(g]) b] =
= (&;,).I(g;,)"an(e;)"b]
Here we used lemma 2.1 and item 1 of proposition 2.1. Since (.*3;2 ). 1is a homomorphism of
BA-s, we get
(g5,)-I(e;) an(e]) bl=(&;).(€;) an(e]).(g;) bl =

=3Tan Ej‘b .
Hence, the mapping 3;‘ defined this way is really an existential quantifier for any
proper subset J, < J .
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Now we would like to show that for any BA R(J) from an arbitrary RA, the
following axioms of a Quantifier Algebra hold:

Q1. B?a =a,a € R(J);
Q2. 373%a=37""a, where J, , J, , J, U J, - are proper subsets of the set J,
aeR(J).

It is easy to understand that the first condition takes place. Indeed, by definition 1.1
we get

F2a=(g}).(e]))a=(,).(,)a=a.

We will divide the proof of the second axiom in three propositions.
PROPOSITION 2.4. Assume J, < J, < J . Then forevery a € R(J)

FpIra=3)"a=3ra.
PROOF. Denote J, =J\J,, J, = J\J, Itisclear that J, C J,. Then we have
3/3ra=(g)).(;,) (e]).(g;) a=
=(]).(7) (e], -€;).1(e),) a =
= (&],).(&])"[(e]). - (€] 1)) a =
(7). 0(8]) " (€]). 1€ (€1) a = (g1 ).(e]))(e]) a =
= (g5, -&,)-(€;) a=(g]).(e]) a=F}ae

Now it is useful to write the fifth axiom (more exactly, the special case of it) of a
Relational Algebra before the next proposition.

Assume n,tA =1, ng:B—>T, n.:C—-T, n,:D—T and let ny,:E — Tbe
any objects of the category K such that ANC=0, BNnC=J, AuC=D ,
BUC=E . Suppose that s;: A — B is a morphism, and let s: D — E be such morphism

that sot =s,00 if € A and so. =0 for ox € C. In these conditions for every a € R(B),
b e R(C), the following equation holds:
s'l(es)an(€F).bl=(e)).s5;an(el).b,
or equivalently
s (axb) = s;axb.
PROPOSITION 2.5. Assume that J, < J, J, ©J and J,nJ, = . Then
In3ra=3""a, ae R().
PROOCF. Denote J, = J\J,, J, = J\J,. By the definition we get
3737a=(g]).(e]) (e]).(e]) a,
and Eif,‘”’?a=(£,’W4)*(8;’W4)*a.
Note here that for arbitrary J” < J we can always write
CARCAN I CANCAWINCANRCARE

where J"=J\J', 1is the unit of the Boolean Algebra R(J) and X - is an operation which was
defined earlier (see the definition of RA). So we obtain

373ra= () [(e]) ax(e]) 1x(g;) 1.
Let us consider the expression
(e7) [(e]) ax(g;) 1.

18



We are ready to use the fifth axiom here. Really, if we consider (ei2 ) Iy, Iy J,, J,and

J, instead of s,D,A,Band C, respectively , then we get
(7)) [(g;) ax(e)) = (g}, )E)) ax(e]) 1=

Jyndy
J J * JN\* J * JN\*
=(e,4 'ijm4) ax(elz) lz(e,wd) ax(g,ﬁ) I=

J J * J J ¥ J: J *
= (8133m14 )*(813,-\14 ) an (8123 ) (812 ) 1= (81:,\,4 )« (813m14 ) a.

Thus
3730 a = (€100 (€1,n,,) ax () 1= (£7) (81,4 (€],,,) a0

Jyendy Jinndy
J JN* J I3 J * J J N1
M (811 )*(811 ) I= (813 - 81;\14 )*(8J3mj4 ) am (811 )*(Sjl ) 1=
J J * Jiud,
=€),y )+ (E)ny,) a= 337 ae
Now it is necessary to complete the definition of quantifier 3;‘ for J, =J.

DEFINITION 2.2. Let n,:J — T" be an object of the category K and assume
n,:J; = I' be an object such that J < J,. We set

Fia=(g/) (;).(6,) (e]).a,
where J, = J, \J.
Let us make some remarks about this definition. If we will define the quantifier 3]
according to definition 2.1 then we get Hja = (Sé ),,(Sé Y'a, a e R(J), but there does not
exist the empty object ny:J —T' in the scheme-category K, (see the definition of a

Relational Algebra), therefore there does not exist the Boolean Algebra R(J)in RA R.
That is why it is necessary, first, to embed the Boolean Algebra R(J) into the Boolean
Algebra R(J,) by the monomorphism (€]'). and then by the usual way we can define the

quantifier 3;1 . After that we return to BA R(J) using the mapping (ei‘ )" But this definition

requires the proof of its independence from the choice of J, .
PROPOSITION 2.6. The definition 2.2 does not depend on the choice of J, .
PROOF. Assume n,:J" =T, n,:J"—T be any objects such that Jc J’,
J c J” . We have to prove that
(&]) (g;)(e]) (&) )ea=(e]) (e]).(e]) (€] ).a,
where J, =J'\J, J, =J”\J, a € R(J).Examine two cases.
CASEI Assume J' < J” . We get

(/) (e])ue]) (€] )a =
=(&]) (7)) (€]7).(&5).(e]) (€))u(e) )ea =

= (/) (&) (] ) (] ).a.
Note here that J N J'=J, J,nJ" =J,, J,NJ, = J,. Using these correspondences, we
have

CHNCHNCHNCHI N

= (e ) (e]).(e]) (€]).(e]) (&) )a=

= (/)" (e]).(e]) (€].,). (€] ,) (&) )ea =

=(&]") (e]).(e7) (6] (]) (6] ) (€] )ua =

JIN*p T VANV ¢ P AP i
=(g; ) (&;,).(€;,) (&) ).(&; ) (g )ea=
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JON* T JIN* g I” 7" L
= (&]") (el () (€] ) (e ,) (6] Vea =

=(e]) (e]). (€)Y (] ).a
Note that we used proposition 1.5 here.
CASE 1. Let n,:J" > 7T, n,.:J”—>T be any objects, such that Jc J’,

Jc J” . Denote I =J U J”. Using CASE 1, we obtain
(&) (€]).(€5) (€] )ea= (]) (]).(e]) (€)).a,
(&) (e;,):(€5) (&) sa=(£])"(e)-(e5) " (€))a,
aeR(J), J/=1I\Je

Now we are ready to complete the proof that the axiom Q2 holds for the case
JyuJ,=J. We will prove it for the case J,NJ, =0, because it is easy to

understand that the general case follows from all those considered.
PROPOSITION 2.7. Assume that for any objects n,:J; = I' and n,:J, > T

such that J, < J, J, ©J takes place J,NJ, =and J, U J, =J. Then for every
ae R(J)
343%a = 3.
PROOF. Assume that n,:] — I' be an object such that J < I. Then
373a=(e]).(e]) (e]).(€]) a,
where J, = J\J,, J, = J\J,. We obtain
A3 ra =
=(€7)7(&)).(€]).(&7) (£]) (€] (€7, (e]) (€]) (€))ua =.
=(g;)7(e1,)-(g;) (e1,).(€) ) (€]).a
On the other hand, using the propositions 1.5 and 1.6, we get
Fja=(g7) (&)u(€)) (£])ea=(&]) (€] )+ (€5;n,0) (€)).ar,
where Jo=I\J ,Js=1I\J,, J/=1\J,. Then
(&) (Egs0)- (ellénJ{)’)* (g)).a=
=(€;) (g5,).(€5,) (e1).(£5) (€]))ea =
=(&;)"(g,)-(])7(g5,). (85, (1) (£7,)"(£]). (£7) " (¢))ea =
= (€))7 () )+ (€1nsg) (Errn)< (€1 s) (€])a =

=(g) (e5).(e;) (€],).(€],) (€]))ua

because of SN Jy=J,, INJS=J, e
So, we completed the proof of the theorem 1.1.

1.1 Operation of Halmos Algebras without equality

In this section we will consider the category R, of the Relational Algebras over
the scheme-category K ,, in which only injective morphisms between the objects were
defined. Fix an arbitrary Relational Algebra R € ObR, .

Since the category K, is a subcategory of the category K, theorem 2.1 holds for
any RA from the category R, . Therefore any BA R(J) of RA R is a Quantifier Algebra.
Then for every object n:J — I" of the scheme-category K, denote by S, the semigroup
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of all the transformations (morphisms) s of J, which fixed the sorts of elements from J.
Then, according to the axioms of a Relational Algebra, for every s€ S, we have an

endomorphism of the Boolean Algebra

s R(J) — R(J).
Thus we defined an action of an element s€ .S, as an endomorphism of the Boolean
Algebra R(J) and according to the axioms of RA the unit of §, acts as the identity

endomorphism of R(J).
It is not hard to understand that any Boolean Algebra R(J) here can be presented as a
Transformational Algebra. For any morphism s € S,, we have defined a representation s

as an endomorphism s, of the Boolean Algebra R(J).
THEOREM 2.2. Let R be a Relational Algebra over the scheme-category K, .

Then every Boolean Algebra R(J) of the Relational Algebra R may be transformed to a
Halmos Algebra (without an identity) over the scheme n:J — I, i.e. the following axioms
(in this case) hold:

Ls.3%a=s.3%a, J cJ, s,s,€S, and s,00=s,0 forall
aeJ\J,, aeR(J)

23%s.a=53"a, J,c ], seS,, s"J,={odsae J,}ands
acts injectivly.
We will divide the proof of the theorem into several lemmas and propositions.
Note here that for the case J, = J the proof of item 1 of theorem 2.2 is trivial, in

the same time the second axiom of the theorem for the same case will look like
J - J
dis.a=s35a

and we will prove it later.
PROPOSITION 2.8. Let J, < J, 5,5, € §; and s, =s,0¢ for all xe J\J,.

Then for any a € R(J)

s,3ta=s,.37a.
PROOF. We have
se3ta=s.(€;).(8;) a=(s,-€]).(e]) a, J, =J\J,.

Let us examine the following diagram:

J_ S o]
A

;
€, 5,
J

812
— T

J, J

It is clear that it is commutative, i.e.

S, E 0=5 € 00€ .
Therefore
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J J JN\* J J\*
s;-3ra=(s-€;).(5) a=(s,-€;).(g,) a=
J JNF J
=55.(€;).(€;) a=s,-Fjae

We begin the proof of item 2 of theorem 2.2. For this in particular, we need the
following important lemma.

LEMMA 2.2. Let s:J, — J, be an arbitrary morphism of any objects and assume
that n, :J; = ' be an object such that J,NJ, =&, J;NJ, =, Let us denote

J'=J,uJ;, J"=J,0J; and consider morphism s:J — J”, where s'a.= o for
e J; and s"ou = sou for o € J,. Then the following two commutative diagrams hold:

1. S/*

R(J") €<—R(J")

y p
(€3,)s (&3, )

*

S
R(J,) € R(J,)

ie. (ei’)*s*a = s'*(efl”),,a,a € R(J,).
2.

’

S«
R(Jy€—R(J")

(e5) Gl
Se
R(Jl) <_—R(J2)

ie. (g5 ) sib=s.(g; ) b,be R(J").
PROOF. 1. We can write
(&)es’a=s"(€] )5 an (&) Vg, -
Using the fifth axiom of a Relational Algebra we get

7 * * I” * 7 * Vi ”
(€7).5a=5s"(& )us an (e Ny, =5"l(e] )*am(sjg Mpyl=

= S,* (Ej;)*a

Thus diagram 1 holds.
2. We want to show first, that

(g7 ) silbc s.(g5 ) bbe R(J).
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We have
J7\* 7N * J JN* J7N* J JNE
(&;,) sibc(g; ) si(e;).(g;) b=(g; ) (s"€;5).(g; ) b.

Using commutativity of the following simple diagram

JI S J”

v 77
€y 812

s
—_—
Ji P
i.e. using the correspondence Sil'sa = s’gfl'oc,oc € J,, we get
"% * ’ JIN % 7\ * i T\ %
(65 )°(s"-£;).(8;) b=(g; ) (g5 -9).(g; ) b=
” % ” T\ *
=(&; ) (&7, )us.(; ) b=
]' *
=s5.(€; ) b
Now we have to check that the correspondence
(g7 ) slb>s.(g;)b
for any b # Oholds. Denote t = s. (8,1; Y b\ (8,’2" ) slb . So we have
(A) tCs.(e5 )b,
B) tN(g) ) sb=0.

Assume t # 0. Let us suppose that t=0. According to items 3 and 4 of
proposition 2.1 we can write for the expression (A)

tes.(e) ) b=s1c(e) )b
Using the item 5 of proposition 1.1, we get for item (B)
t(g; ) slb=0= (] )t Nslb=0= 5" (g; )t Nb=0.
By the hypothesis ¢ # 0, we want to check if s'*(ef; ).t #0and st #0 hold.
Indeed, assume t # 0 and let us propose (EJJ; ).t = 0. It implies (8,’2” ) (8,12” )ut = (Sf; )t
i.e. t=0. Assume, further, that (SJJ:)J # Oand let 5" (SJJ: ).t =0.Then we get
s’*(e‘,’;)*t =0= Sis'*(ef:)*t =50 Sis'*(efz")*t =0.
However we have contradiction, because
(8,“’2")*t c Sis’*(ef;)*t and Sis’*(e,’z”)*t =0.
So we checked that since ¢ # 0, it follows that s” (8,1” ).t # 0 .The condition

t#20=5t#0
can be proved similarly.

So, we have §'f C (8111')*17 and s’*(e,’;)*tmb =0, but using item 1 of the present
lemma we get
s’*(sf;)*t = (8;: ). s L.
Hence
s (€] )t Nb=0=3 (g7 ).stNb=0=3 5"t (g] ) b=0,
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ie. st=0 (because of (8,11, Y'b # 0). This is a contradiction, from which it follows that

t=0. Thus, we have
(e7 ) sibCs.(e; ) band s.(€] ) b\(g;, ) sb =0
therefore (SJJ: Y sib =s. (8}2' Y'be
LEMMA 2.3. Let s;:J; — J, be an injective morphism and assume n, :J; = T

be an object such that J,NJ, =0, Jy,NnJ,=. Let us denote J' =J, UJ,,
J”=J,UlJ, and consider the morphism s:J’— J”, where st =0 for @ € J, and
so. = s,0. for ¢ € J,. Then the following commutative diagram holds:

Sy

R(J") —>R({J")
(e5,)" (e1,)
R(J;)

ie. (¢;) s.a= (g ) a,a e R(J").

PROOF. 1t is easy to see that the following commutative diagram

S
J,——-_—-————% JI/

takes place, ie. S'EJJ;OC = 8,13”06,05 €J,. It implies (s-ejjjl)*a = (8,’3")*(1 and then
(SJJ;)*s*a = (8}3’,)*61,61 € R(J’).. Since s is an injective morphism we have
s s.a=a,a € R(J). Therefore
TN * . TN * - J7\N*
(8,3) a= (8,3) s s.a= (6,3 ) s.ae
Now we can prove item 2 of theorem 1.3. First we will make it for the case when
J, is a proper subset of J.

PROPOSITION 2.9. Assume that J, is a proper subset of J where n,:J — I is
an object, s € S, and let s act injectively on s™'J, = {alsa € J,}.Then for Va € R(J)

Is.a = S*E‘;U‘a.
PROOF. We have
Hjls*a = (&'JJ2 )*(SJJZ)*S*a,J’2 =J\J;
s*Ef,_lj‘a = Sag(e,ﬁ)*(&‘f3 Ya,J,=J\s"J,.
So, we must prove that
(€).(€]) s.a=s.(€;).(g]) a.

Since s injectively acts on s~ J, then So:J5 — J, is an injective morphism, where s is a
restriction s on J;.
Consider the following diagram :
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Since it is commutative, i.e. s'sjjsa = Si S5, O € J3’ , we get
J J
S*(SJS)*a = (812 )*so*a,a € R(J,).
Returning to our correspondence we have
J J\* J IN*
s*(sjs)*(eja) a= (sjz)*so*(e,g) a.
Hence it is necessary to check that
(8‘,’2 ) S, (sf3 Ya = (8»,12 ),k(sf2 ) s.a.
Taking into account that (6,]2 ). is a monomorphism of the corresponding Boolean Algebras
we have to prove that
JN* o TN
Sy (813) a —(812) S.a.

Now let us consider the diagram

8§y 8,
J > J’ >J
3 ¥ ]
€y, gy, I\ €y,
So 1y
J3 - ‘]2 “ Y2

where J'=J, U J,, n,:J; = T isan arbitrary object such that there exists a bijective

morphism 0:J, — J5. If we define s, and s, by the rules
{ S0, 0 € J,

5,00 = _
: oo, es”J;

so”a,a e J,
8,00 = ’
o,oe J,;

then it is simple to see that the above diagram is commutative. It naturally implies the
commutativity of the following diagram:

Sf S..
R(S———> R(J'————>R(J)
(€3,) (e5,) (e1,)

. a,).

R(Jgr_L‘)R(Jg)—__""’R(Jz)

Indeed, the left part of it is commutative by lemma 2.2 (item 2) and right one by lemma
2.3. So we have

AN Jo*
(g;,) szxsl*a:(ljz)*sox(eh) a
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for a € R(J). Thus, we get
J\F - J\F _ T\ *
(€,,) sps.a=(g;) s.a= s, (€5,) a
since 5,.5.a = (8,8).a=s.ae
Consider the last case J, = J for axiom 2 from theorem 2.2.

PROPOSITION 2.10. Assume s:J — J is a bijective morphism for any object
n,:J =TI .Then

3's.a = s.3a,a € R(J).
PROOF. Let n,.:J"— IT" be an object such that J is a proper subset of J’. By

definition 2.2 we have
s.3ja=s.(e]) (g]).(e]) (e] ).a,
sa=(e]) (g]).(;) (6] )usua, J, = J'\ .

Take into consideration the following commutative diagrams

, s’ , , S ,
J—_—] > |

4
J
¥ I ¥ ¥
£ € g ' l €,
s ] 111

J — J 1 ‘]1

where s”:J” — J’ is a morphism which we define according to the rule s’ot = so if ae J
and s"a=0o for ¢ e J'\ J. It is clear that both these diagrams are commutative. In other
words, we can write for the first diagram and for the second one, respectively

g sor= S'Sfoc,a eJ; 8;1, 1, o= s'sjll’a,a €J,. Using these expressions we get
J AN J’ J'\* J AR J’ JINF !
Jis.a=(g/) (g]).(;) (&) s).a= (&) (g5 ).(&;) (€] )ua =
INE T N 7
=(g;) (&;,).(€;,) si(g) ).a.
Since (SJJI')*SIb = (gjjl')*b,b € R(J") (by lemma 2.2) we have for a € R(J)

I/s.a=Ta
On the other hand ,

J JNEp o d INEr T
S*HJ :S*(gj ) (Ejl )*(811) (8_/ )* =

TN J JN\F* I
=(g; ) si(g; ).(g; ) (&) )ua=

VN J IN*p T VNP I .
=(€/) (s7€;)). (&5 ) (&) )ea=(&] ) (5 1,).(¢]) (&) )ua=

= (&) (e]).(e]) (¢] )a=Tjae

Thus the proof of theorem 2.2 is complete.
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2.2 Operations of Halmos Algebra with equality

Now we will study the category R of the Relational Algebras over the scheme-
category K , in which we will consider arbitrary morphisms. It is clear that theorems 2.1 and
2.2 hold here, moreover, theorem 2.2 holds for any BA R(J) of RA from the category R,
it means that items 1 and 2 of theorem 2.2 take places for any corresponding morphism
(not only injective).

Now we want to define an identity in any BA R(J) of a Relational Algebra R from
the category R.

DEFINITION 2.3. For any elements ;,0, € J of the same sort, i.e. such that

n,(oy) =n,(c,), we set

dpon(ay,0) = (SZ,Z) leery
where S;Z :J — J is the replacement of J such that SZf () =0, and SZ? acts identically
for therestof € J, 1, is the unit of BA R(J).

Note that we could not define an identity in any BA R(J) of RA because there exist
only injective morphisms in category K, , and it is clear that no replacement is an injection.

THEOREM 2.3. The axioms of an identity hold in every Boolean Algebra R(J) of a
Relational Algebra R:

Los.(s2) 1=(s;7) 1, s€8,,
2. (s3)'1=1,
3. an(s) 1 (s,)) a.

It is obvious that the second axiom holds. As above we divide the proof for several
lemmas and propositions.
The following lemma allows us to understand the simple fact that for any BA R(J)

the element (S;?)*l ry 18 supported by the set {OLI,OCZ} (more precisely, the set

{0(1 ,0(2} is a minimal support of the element (Sf:f )1 R -
LEMMA 2.4. Assume that n,:J — I is an object of the scheme K, o, a, € J
and R(J) is the corresponding Boolean Algebra. Denote J, = {061 , Oy } Then
(s2) 1=(e]).(&5) (s;)"L.
PROOF. We have
(&5)-(&,) (s22) 1= (g ). (s52€])" 1.
Evidently the necessary diagram

%3

is commutative, i.e. for & € J,
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€7 Oy O =S, €; L,
where O';: *:J’— J’ is the corresponding replacement. Using this we get
J Iy J J ook J Nt rad N
(&;)-(s57€7) 1= (€] ). (€] 0,7) 1= (€] ).(0,7) (g5 ) 1=

=(£;).(0,) (€)1 (g5).(])1,
where J, = J\ J,. Now we are ready to use the fifth axiom of a Relational Algebra. So
we can write

(&7)-(022) (&;) 10 (g]). (€)1 =

(2 [(eD)- (1) 1N (e1).(e1) 1= (52) 1o
LEMMA 2.5. Assume that s;,s, €S, are two elements such that 5,0 = s,0,

5,0, = 5,0, 0,0, € J, and let action of s;,s, be arbitrary for the rest of the elements
from J. Then

$p (S ) 1=5,(s,7) 1.
PROOF. Using lemma 2.4 and item 1 of theorem 2.2 we have
s (se2) 1= (8] ). (&) ) (sg7) 1= (g] )u(e) ) (sg2) 1=
o *
=5,.(8, ) 1o
PROPOSITION 2.11. The first axiom of theorem 2.3 holds, i.e. for any object
n,:J =T of the category K the following holds
5. (s ) 1= (s5)°1, s€S,.
PROOF. Consider any BA R(J) and assume ¢ ,0;, € J, s€ S, . Let us examine two

cases.
CASE L. Assume SO; # SOL,. Denote s, =f, so, =7.. Construct the morphism

S, € S by the rule sy0 =s0, =f8, 5,0, =80, =Y, SB=0,, s,¥y =0, and let the
action 8, for the rest of the elements from J be identical. It is clear that s, is a bijection.
Assume also o, # [} # 0, # Y. Note that 5,3, = 1,. Then by lemma 2.5
$u (8 ) 1= 5, (s5,7)" 1.
We have
(Se) 1= () 1=(5 -8, -59) 1 =857 (557) 8 1 =87 (552) "8, (5, ) =

sty
=8 (5,8 )(Se2) (84 8. ) =(8,5.)s,. (s22) 1=5s_.(s0*) 1=
0 Yo" M\ oy 0 ¢ 0 %¢" 0" Ve 0oy
=5.(5,) L.

Now we are going to show that the case when O, or 0., are equal to B or v, it
reduces to the just considered CASE 1. Indeed, assume, for instance, o, =, i.e. in this
case

s & — »y * . y *
(s0,) 1=1(s5) 1=(s) L
So we have to prove that
Oy« * *
5.(8,,) 1=(s;) L

Assume, first, that J contains at least two different variables 8,,8, of the same kind as
o, ie. 8, #8, #0o, #0, and n, (@) =n,(6)=n,(8,). Let us construct s,,s, €S by
the rules s,00; =8,, 5,0, =0, and let s, act identically on the rest of the elements
from J;
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$,8, =0,, 8,0, =7y and s,00=01, X € J\{(g)‘l,ﬁ2 } According to lemma 2.5, we get
su(sg) 1=s0(sg)"L,
where s € S, and s’a, =sa,, s'0, =s0l, and s‘OL=0, X e J\{ocl,oc2 } Using the

above proved statement, we can write
* % * *
8. (550 ) 1= 81(557) 1= (88,). (552) 1= 55,8, (s72) 1=

=5, (see) 1= 5, (s5) 1= (s25) 1= (s7) 1.
Assume now that J does not contain two required variables. Thenlet n,.:J" — T"
be any object such that the set J’ contains required elements. We have
(o) 1= (s2)"(e] ) (&) ) 1= (] -52) " (]).1.
It is easy to understand that the following diagram

— 0y

Jl O 3 Jl

ety . . .
where 5,° € S, is commutative, i.e.

e seo=5, € aael.

&

We continue
(se) 1=(&] -s;) (e )= -] @) (g] )1 =
=(&]) (5:) " (g] )1,
and therefore
s (57) 1=5.(8]) (5,) (). 1.
And now, according to lemma 2.2 (item 2) we have
s.(8]) ) (]).1=(€]) 5150 (e]). 1.

Here s’ =so,0c € J and s’oc=ot,00 € J'\ J. So we arrive at the case we have already
studied. So
VN -y N* e S JNF p=Sag Nt )
(&) si(5,7) (&) 1=(g] ) (5;,°) (&) ).1,

and since s'¢; = s, s, = s@,, we have
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s.(s;2) 1= (&) (50,2) (8] ). 1= (e] ) Gie) (e] ). 1=

s'ay
=S L JNF T AN
= (57 &, ) (8; )*1=(81 'S,:Zf) (Ej ).1=

sy

— (Ss% )*(8}],)*(8'}]’)*1 — (Ssoc2 )*1

soy sy
We just used the following commutative diagram

— 0y

S

— 50,

. J’ 7 N
Le. S, €, a=¢€; s,laae ]

504
sty

CASE 1II. Assume so = s¢,. So, it is obvious that (s°°2)"1=1. We have to
check that S*(S(Zz)*lz 1. Since s. is an endomorphism of the Boolean Algebra R(J),

then s.1=1land 5.5 1=1 (the last follows from the axioms of RA). Since soy = sa, ,
it follows that the following diagram is commutative

ie. sa=s-5, 0, 0 €J . Using this get

5. (s, Y'l= (555 )u(s52) 1= s.[(s32).(s;2) Ti=1e
Now we will prove that the third axiom of the theorem 2.3 holds.
PROPOSITION 2.12. For any object n,:J — I and for every a € R(J)

an(sy) 1c (s;7).a.
PROOF. We have
an(s;) T=an(s;) (s an (sy).a]=
=an((s;) (s;).au(sy) (sy).a]=
=lan(s,) (s).alulan(sy) (sy0).al.

Note that a M (S;? ) *(s;? ).@ c ana =0. Finally we get
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am(sgf)*lz
=[an(s;) (s;).alulan(sy) (sg).alcan(sy) (sg).a=
=am(s§?)*(s§f -sgf)*a =

=an(sy) (s;).ds).alcan(sy).ac(sy)).ae
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CHAPTER 3

EQUIVALENCE OF THE CATEGORIES OF HALMOS ALGEBRAS
AND RELATIONAL ALGEBRAS

First, we describe the construction of the direct spectrum of algebras and the
direct limit of the direct spectrum [13]. A partially ordered set I is called directed if for

any o,flel there exists an element yel suchthat a<y and B<y A set of algebras
M,, enumerated by the elements of a directed set I is called a direct spectrum of

algebras if for arbitrary elements o, el there exists a monomorphism ¢: M, — M 5
such that a<B<y implies
Poy = Pog Py -

We will say that a set a of the elements a, € M, is athread if a, ea implies that
a contains also all the images a,¢,;, for B>a and all the preimages a,¢;,, 6<a

for which such preimages exist.

It is easy to check that the set of all threads has the same structure as initial
algebras. A set of all the threads is called the direct limit of the direct spectrum of
algebras M.

Let us consider category-scheme K and let R be any Relational Algebra over K.
For any objects n,:J;, »T and n,:J, »>T such that J < J, consider the

monomorphism of the Boolean Algebras
(&;).:R(J}) = R(J,).

By this all the Boolean Algebras R(J) of the RA R are organized in a spectrum of BA-s.
Denote by H a direct limit of the spectrum. H is a Boolean Algebra and for an object
n,:J — I contains subalgebra H(J) with the isomorphism

U(J):R(J)—= H(J).

By the theorem 2.3 any Boolean Algebra R(J) from a Relational Algebra R may
be considered as a Halmos Algebra over the scheme n,:J — T .

Therefore, the direct limit H of the direct spectrum of all the Halmos Algebras
R(J) 1is also a Halmos Algebra. All the details are given in [18]. Denote this Halmos
Algebra by Hal(R).

THEOREM. 3.1. The construction Hal is a functor from the category R to the
category .

PROOF is considered in [13] and [18].
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Thus we have the following functors:

1.Hal: R -\,
2. Hal:R, - K,
3. Hal,:R, - R,
4. Hal; R, - X, .

Let L and D be two categories and let f:L->D and g:L->D be functors.
Then natural transformation of a functor £:L->D to a functor g: L->D (see [13])
is a function 7, which corresponds D-morphism 7, £ (a)->g(a) to every object
ae ObL . Furthermore, for every L-morphism f:a->b, the following diagram

T
f@ ~ 8@
f® 2(f)
f(b) T g(b)

v

is commutative.

A natural transformation is called natural isomorphism if for every object a from
L the morphism 7, is an isomorphism (in the categorical terms).

So, the functor f:L->Dis called an equivalence of the categories L and D if
there exists a functor h:D->L together with natural isomorphisms T:1, ->h-f and
G6:1,->f-h. We say that the categories L and D are equivalent, that is, L=D if there
exists an equivalence £ : L->D.

The following theorem is the main result of the work.

THEOREM 3.1. The following categories are equivalent:

1.R=NX

2. R, =X,
3.RK, =R,
4. R, =R,

PROOF. We have already built the necessary functors between the corresponding
categories. To complete the proof of the theorem we examine only item 1 of the
theorem, because items 2 - 4 will follow from it. Besides, we prove the necessary
properties by dividing the proof into several theorems and propositions.

THEOREM 3.2. Suppose that Re Ob. Then there exists an isomorphism of the
following RA-s
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X:R->rel(HalR).

PROOF. Denote HalR=H, relHal=relH=R’.We have to construct an
isomorphism X:R->R’. By theorem 1.1, HalR is a Halmos Algebra and H is a
collection of all H(J) with the isomorphisms [ (J) :R(J)->H(J). On the other
hand, R”is a set of Boolean subalgebras R’ (J) in Hand R’ (J)=({heH |3’ h=h}.
By [PL], R'(J)=H(J). So, for every finite set J we have an isomorphism
W(J):R(J)~->R' (J) andfor Vae R (J) we set

X (J)a=p(J) a.

Thus, for any J, we get an isomorphism ¥(J) of the corresponding Boolean
Algebras. We have to show now that by the definition of a homomorphism of the
Relational Algebras, for arbitrary morphism y:J,->J, the diagrams

R(T) 4 R'(J) R 4 R
R(w) v
R{y) R, (W) v
R(J,) 0(J2) R R &) R1J)

are commutative. We consider the case when J,1 J,#&. It is clear that the general
case follows from this.

Examine the first diagram. It is necessary to prove that for VaeRr (J,)
R'« (WU (J,)a=u(J,) R« (W)a.
Denote, R« (y)a=b, beR(J; ) and p(J, )b=h,. We have to check
R'«(Y)h,=h, , where h;= L (J,)a . By the definition, R’ (Y)h, =L (J’) R+ (s)c, where
s€S . is the corresponding element, J'=J,UJ,. , c€R(J’) and W(J')c=h, .
Obvious that c=R« (€7 )a . Consider the diagram

S

J' J'

v

S S
[

v
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The commutativity of the diagram yields for VdeR(J;)
Ru(s)Rde7) d = R«e7) R«(Y)d.
Using this we have
R« (Yh,=1(JT")Ru(8)c=l (T )Re(S)Re (€], )@=l (T')Re (€],) Ru(Y)as=
=W (T')R. (€], ) b.
Therefore, since u(J, )Jb=h, we have

1L(J")R. (€] ) b=h,

as desired.

Let us prove the commutativity of the second diagram. Assume J; ={¢,..., &},
Jo ={By,.... Bn}. We have to prove that for any ae R(J>),

R (w2 )a=p(J )R (w)a.

Assume R'(y)=b, beR(J,). Denote h;=y (J,)b and hy=p(J,)a. Itis necessary
to show that R '* () h,=h,. By the definition,

R (Why=3 % (h,nd (o, we,) . . .Nd (o, yar,) ) .

But we have defined an existential quantifier 7 % and d(qo;, yoy), i=1,...,n through the
operations » and * in a suitable Boolean Algebra R(J). We set J =J,UdJ , and let us write

the expression hod( oy, wouy )N . . . Nd(oy, woy,) through the means of BA R(J'). This
implies

h,=iL(J"')R. (€], ) a.

By the corresponding definition (see [18]),
d(a,, yo,)=p(J')R (s*)1, i=1,...,n,
where 1 is the unit of BA R (J ') . So, we obtain
h,Nd (0, Yor) M. . .Nd (0, Yor,) = (T ') Re (€5, ) ari (T ) R' (s ) 1.0
AR(T )R (si") 1=l (T ") [Re(€},) aNR" (L% ) 1N...ANR" (s¥% ) 1] .
Then
Eé(hzmd(oclr yo,) Ne.nd(on, YWol))=
=1 (T") [Re (€] )R (€],) (R (€3)@n R (st ) 1N...AOR" (s¥*)1) ],
where Jy =JAJ; =J; . Then we get
E{Jz(hzmd(ocll yo)N...Nd(0n You)) =
=1 (T ) [Ra (€], )R (€, ) (Ru(€] )R (W) 0=t (T") [Re (€] )b=h, e
THEOREM 3.3. Assume HeOb«X. Then there exists an isomorphism
v:H~>Hal (relH) .
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is commutative for the corresponding homomorphisms v and v, .
PROOF. Assume heHand let heH(J) for the arbitrary JeA (h). We
have
£/v(h)=pu, (J) fu (T)U(J) (h)=u,(J) £ (h)=v,f (h)e

3.2. Relations between homomorphisms.

As a conclusion of the chapter we examine a question of relations between
several kinds of the homomorphisms of HA-s and RA-s. Let us fix the category it
of RA-s over the scheme category K and the category X of the Halmos Algebras over
the scheme n:I->I". Consider R, R’€eObJ . Remember that the system of the
mappings 8 = {0(J) an:J_>I‘eObK } is a homomorphism of the RA-s, if:

1. 6(J):R(J)->R'(J) is a homomorphism of BA-s;

2. For any morphism y:J; ->J, the diagram

0(J,)
R(J}) R1J))
RAy) R. (y)
R(J>») 6(J2) R1J)

is commutative,
3. For any morphism y:J, ->J, the diagram

6(7J1) .
R(J1) R1JY)
R'(w) R (w)
R(Jz) G(JZ) R R/(Jz)

is commutative.
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DEFINITION 3.1 A homomorphism 6:R->R’' of the RA-s is called
insufficient if conditions 1 and 2 hold and the third is true only for the injective
morphisms y:J, ->J,.

DEFINITION 3.2. A homomorphism 6:R->R’ is called essentially
insufficient if only the first and second conditions hold.

DEFINITION 3.3. A homomorphism 6:R->R' is called boolean if only
condition 1 takes place, while the second holds only for the injective morphisms.

Now consider H, H'eObX . Let us get, like above, definitions of several
homomorpisms of H and H' .

DEFINITION 3.4. A homomorphism p:H->H"' is called insufficient if p is a
homomorpism of Boolean Algebras H and H' , besides [ preserves existential
quantifiers and elements of S (so, u does not preserve an identity).

DEFINITION 3.5. A homomorphism pg:H->H' is called essentially
insufficient if 1 is a boolean homomorphism and y preserves the elements of S; .

DEFINITION 3.6. A homomorphism p:H->H' is called boolean if u is a
homomorphism of Boolean Algebras Hand H'.

COROLLARY 3.1.

I Suppose that H,, H,EObN and let relH, and relH, be two
corresponding Relational Algebras. Then:

1.To an insufficient homomorphism of HA-s H; and H, there corresponds
an insufficient homomorphism of RA-s relH, and relH,;

2.To an essentially insufficient homomorphism of HA-s  H, and H, there
corresponds an essentially insufficient homomorphism of RA-s relH, and relH,

3.To a boolean homomorphism of HA-s H, and H, there corresponds a
homomorphism of RA-s relH, and relH,;

II. Suppose that R;, R,e Ob%t and let HalR; and HalR, be the corresponding
Halmos Algebras. Then:

1.To an insufficient homomorphism of RA-s R, and R, there corresponds an
insufficient homomorphism of HA-s HalH, and HalH, ;

2.To an essentially insufficient homomorphism of RA-s R, and R, there
corresponds an essentially insufficient homomorphism of HA-s HalR, and HalR,;

3.To a boolean homomorphism of RA-s R, and R, there corresponds a
boolean homomorphism of HA-s HalR,; and HalR,..
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APPENDIX

ABSTRACT. We would like to consider two results in this Appendix. The first of
them is devoted to the proof of facts, which are connected with different structures RA
from the category R.

The second one was proved by the author together with V.Sustavova and this
theorem is one of the several results from [18]. We will show here that the fifth axiom of
the Relational Algebras in the sense of Beniaminov may be generalized, i.e. it may be
presented like the second axiom in the definition of the Relational Algebra which was given
by B.Plotkin (see [13] and chapter I). Note, however, that definitions of the RA-s which
were given by E.Beniaminov and B.Plotkin, respectively, were considered over different
categories-schemes (we mean the pure RA-s).

Let us make some remarks before theorem I. According to theorem 2.3 of the
main text of the present work any Boolean Algebra R(J) of arbitrary Relational Algebra
from the category R may be presented as Halmos Algebra over the corresponding scheme
n,:J — I'. Thus, using the functor Hal we can again transform this Halmos Algebra R(J)

over the scheme n;:J — I' to the Relational Algebra. In particular, using the means of

the Halmos Algebra R(J) (which were originally created by the means of RA R) we can

define the operations s and s, for s€ S ;- Moreover we must get the same results.
THEOREM 1. Assume that n,:J;, = I', n, :J, > T are any objects such that

Jnl, =0, J, ={a,,...,a2}, and let s:J, — J, be a morphism. Then for every
a € R(J,) the expression
sa= (&), )*[(.S,’2 ean(s,) IN...ns, )11,
holds. Here = J, U J,, 1 is the unit of BA R(), s, €S,,i=1,...,n.
PROOF. Note the obvious commutativity of the following diagram

ie & so=0-ga, ael,, where ca=s0, aeJ, and if coo=0, oxel\J,

this implies
s'(e;)'b=(g;) 0'b, beRU).
So for any a € R(J,) we have
sa=5(g;) (e]).a=(g;) 0 (¢} ).a.
Let us denote (.9,’2 ).a=b and (s;f‘ Y 1. .ms(f:" )'1=D, where 1 is the unit of BA R(I).

Note that 0*b=o;(ej2)*a=(cfs,’2)*a=(ej2)*a=b,
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because of the commutativity of the simple diagram

ie. O 8}205 = 8}'2 -1 5,00 € J, . Now using the axioms of the identity and of RA we get
o.(bnD)=band c'0.(bNnD)cbNnD=0'bchND.
Thus for a € R(J,)
s'a=(g;) 0" (g;).a (&) [(e])can (s,) IN..A(sy*) 1.

Let us prove the inverse inclusion. It is clear that ¢'b = 6 b D . On the other hand we
have

c'b=c'(bno.D)co (6.0'bno.D)=c"0.(c’hnD)co6.bN D,
and this implies 6 b = 6 b D. Then
6'b=0"bND=(5.").0'bND=(s.).(s;7).0bND = (5" - 5,").6b N

s, so
ND=.=(s,"...5,

P50 bND=0.0'bND2bN D,
ie. 60’b2bN D . Here we used the following obvious property of the equality
e (sy) 1= (s )N (sy)'1,
where c€ R(I),s, €S,,i=1,...,n.
So we get
s'a=(g) 0" (g;).a2(e;) [(e])ean (s,") IN..A(sy") 1]

and finally

s'a=(g;)1(e},).an (s) IN..N(s,) 1]
as desired e

THEOREM II. Assume that s,:J, = J,, s,:J, = J, are the morphisms such

that JynJ, =, JynJ, =@ . Letusdenote I, =J, U J,, I, =J,UJ, and consider
the morphism s:1; — I,, where so. = s,0 for @ € J, and st =s,0 for ¢ € J,. Then for
every a € R(J,), a € R(J,) the following equalities hold:

s (axb)=s,axs,b,

* I 1 1 * 7 *
s [(8,;)*41(\(8]3)*1)}=(8,1‘)*Sl an(e;).s, b.

PROOF. CASE L Assume that J,nJ,NJ,nJ, =D. Let J, =1{at,...,0},
J, ={ﬂ1,...,ﬁk}anddenote I,=1,Ul,. Then

sUEr).an(er).bl=s"(e) ().l(e)).an(e}).bl.

Let us consider the commutative diagram
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1 o 1
0 B m——
I, I,
S 1 812
S
[ ———1,

where o0t = sot for ¢ € I; and =0 v € I, \ I, .It's commutativity gives
s'&) c=(g) 0'c, ceRJ,).
Then
w0 It T I, 1, Ign* s Ay 1,
s (&) (&;).[(e)can(e;).bl=(g,') o (g)).(e})an
N (&) (€).b1= () 0 [(e)an(e)).b] =
= (&) (€)@ (€)b AV (SE™) Ty O
S0y N * 5B\ * 5 ¥
O ) Trayy O E) gy O (s55) 11
Here we used the result of theorem 1 of the Appendix. Denote
D(J) = (557) Tpgpy M (5™ Ty
BN 52\ *
D(J,) =(s5) Ly Mo N85 ") gy s
D =D(J,)n"D(J,).

Using theorem 1 once more we obtain

(&) I(e).an (g).bND]= () [(e,)an D(J,) N

N (&b D)= (&) [0, (€,).an o, (g).b]

where 0,,0, €S, and c,oo=s,00 if € J, and cjo0=0 if el \J}; 0,0 =s,00 if

o€ J, and 6,00 =0 if we I\ J,. Then we get the following expressions:
I
J:u13

I I Tyl
(g;, B = (€550, “E;) DB.Bel,.

Consider two diagrams

1 Jyuld
(e)a= (e -e,juz)a,aeJ3,

62
Gl IO_—_._.>IO
IO > IO
A A A A
Iy I I, I,
81, ul, EII SJ,;UJ,
T T2
! |, —>J],uJ
Rl 2
I J,ulJ ! 4 !
! 3 2 A A
A A
1 ]
el J3ul, €y e
5 I3
8, S,
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where T,00=s,0 if € J, and To0=0 if weJ,; T,a=s,00 if ¢ J,and @€ J,

T,00=0 if @€ J,.Itis easy to see that both these diagrams are commutative. Using this
we get the commutativity of further diagrams

O, c;
R(Iy) €< R(,) R(Iy) € R{,)
N A A A
(). CHY Er). (€ s,)-
’E: 1:;
R(I,)) €— R(J;UJ,) R(I)) ¢——— R(J,UJ))
N A N A
&) (7). (e)). (&)™),
S: s;
R(J,) €——R(J,) R(J,) ¢« R(J,)

Commutativity of these diagrams follows from lemma 1.3. So we get
* I * I Jyuld. ® 1 Jyud,
0, (SJ;) )+a =0, (gljulz '8133 *).a=o0, (€qu12 )*(8,]: Ya=

1 * JyulJ, I 1 *
= (&)t 1(e)")a= ().} )5, ’a, aeR(,);

* 1 * I JeoJ; * I Tyl
0, (812)*b =0, (Eljull '81: .b=0, (ngqu)*(SJ: b=
1 * Jad
=(&,).T, (&,

R =(g).(€))s3b, beR(J,).
Finally we have

s (axb)=s"[(e)an (e2).bl= () [0, (e)").an o, (e)).b] =
= (&) (")) - sjan(e)). - s;p1= (€] ).s;a N (€] ) 53b =
=s;axs,b.

Thus the proof of case I is completed.

CASEIL J nJ,=0, JynJ,=. Take into consideration two objects
ngJi =T, n,:J; =T suchthat J{NJ; =&, besides both J; and J; are mutually

non-intersected with the sets J,,J,,J; and J, and there exist two bijections s;:J, = J/,
s5:d, = J;.

So we have two commutative diagrams

$ 5
J\ /) " J\ / )
S J7 sy S5 J! sy

”_7

where s{and s are the morphisms which are constructed in a natural way such that
ssoe=ssjo,o0eJ; and s, =55,

=§,5,a, € J,.. Now let us construct two morphisms

o1, = J{UJj and 6:J] U J; = I, (remember that [, =J, U J,, I, =J,UJ,) by
the following rules :

ac’au=saifoel, c’a=soif ceJ,;
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b.oa=so if ¢ e J|, cou=sja if ce J;.
Thus we have one more commutative diagram

JiulJ,

ie. s =00’ce, € l,. And now using the previously examined case I of the theorem,
we have for every h e R(J)), g€ R(J;), ae R(J;), be R(J,)

0 (hxg)=shxs}'g, 6 (axb)=s"axs]b.

Denote h=s]"a and g = s, b. Then

sy hxsy g=s"s! axs} sy"b=(s5)) ax(s)s;)'b=staxsb.
On the other hand
sihxs)g=0"(hxg)=0"(s""axs]'b)y=0""(c"(axb)) =(c0") (axb) =
=s (axb)e
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