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1 Introduction

We study weakly regular Well-Posed Linear Systems (WPLSs) [Def2.1] presented in
Weiss: TransferIl and Weiss*2. The class of weakly regular WPLSs is a generalization
of both the class of finite-dimensional systems and the class of Pritchard—Salamon
systems, but weak regularity allows them to still be written in the familiar form

2'(t) = Axz(t)+ Bu(t) (1)
o) = Cur(t) + Du(d

for almost all ¢ [Weiss: Transfer]:Th2.3] [Prop4.3c|; here C,, is (the weak) extension
[Def4.2] of the output operator C' presented in Salamon:InfDim (cf. Def2.2), where
WPLSs were first introduced. The input space U, the state space H and the output
space Y are Hilbert spaces.

We use the notation introduced by Staffans (see the symbol lists starting on pages
6 and 10). Thus the equations (1) are written in the integral form

r = Azxg+ Bru
y = Cxo+Du

(see Definition 2.1 for details), where u,y € L? and xq € H is the initial state (at ¢ = 0).
Here A is the infinitesimal generator of the semigroup A, Czg = CypAxg Vg € Dom(A)
and the equations

t t
(Bru)(t) = / A(t — s)Bu(s)ds, (Du)(t) = Cw/ A(t — s)Bu(s)ds + Du(t)
0 0
hold in a certain sense, see St:StQuadr:Sec7, Weiss: Transfer]:(2.16)&Th4.6 or Weiss: TransferIl:Sec:

for details. The weak regularity of a WPLS is, roughly speaking, equivalent to the as-
sumption that the system has a feed-through operator D.!

!The equations (1) are true also for systems satisfying an even weaker regularity assumption
[M:SubregInfrareg], but the use of that assumption would make the formulation of the results awk-
wardly complicated, hence they are not presented here.



In the (full information infinite horizon) H? or linear quadratic regulator (LQR)
problem the aim is usually to choose the control umin(20) for a given initial state 2y to
minimize the cost ) = ||y||z2 (or a more complex cost function, see Definition 2.3).

The solution for WPLSs with a uniformly positive Popov operator (that is, 7y D*Dmry >

eI) was found independently by Staffans [St:StQuadr:Th27] [St:Quadr:Th4.4] and M.
& G. Weiss [Weiss*2:Lemma8.2], and it was extended to the non-definite but invert-
ible case in St:Crit:Th16, see Theorem 5.4. The uniform positivity of the Popov
operator is equivalent to the existence of a spectral factorization [Def5.1] of D*D
[St:Quadr:Lemma?2.4i].

In the (full information infinite horizon) minimax H* problem the input (now [, ]
instead of ) is separated into two parts, namely the control v and the disturbance w.
The aim is to find a causal, time-invariant control law u = Uw such that the norm of
the mapping w — y becomes less than a given number v > 0.

Under a certain coercivity assumption (the minimax .J-coercivity of D [Def8.2]) the
optimal control u.;; and the worst disturbance w;; form a minimax solution that is a
saddle point of a two player dynamic game [St:StHinf].

The existence of a solution that can be represented in state feedback form is equiv-
alent to the existence a spectral factorization of D*JD with a sensitivity operator
compatible with the minimax form of the problem [Prop8.5&Th8.7].

For (weakly) regular systems having a regular [Def4.2] spectral factorization with
an invertible feed-through operator, the Riccati operator corresponding to the optimal
or minimax solution was shown to satisfy an algebraic Riccati equation, namely

AT+ A+ C*JC = (BII+ D*JO)Y(X*SX)"(B:Tl + D*JC)

(this is explained in Theorem 5.5), see St:Quadr:Th6.1v and Weiss*2:Th12.8 for the
H? problem and St:StHinf:Th12 for the H* problem.

Here we extend these results to the class of weakly regular WPLSs having a weakly
regular spectral factorization with a right-invertible feed-through operator [Thb5.5].

After that we proceed with the main result of this work, Theorem 6.7, which ad-
dresses the converse question: in Section 6 we assume II to be a self-adjoint stabilizing
solution [Def6.3] of the Riccati equation corresponding to a weakly regular WPLS?
and prove that the system has a spectral factorization which is weakly regular and
has an invertible feed-through operator (these properties are implicitly contained the
definition of the solution). We also prove the uniqueness of the solution [Prop6.9] and
examine it further.

In Section 7 we summarize the above results on the equivalence of the existence of
a self-adjoint stabilizing solution of the Riccati equation and the existence of a weakly
regular spectral factorization [Th7.1]. Then we apply Theorem 7.1 to the standard
and nonstandard H? problems, i.e., we establish the equivalence of the existence of a
solution of the H? problem and the existence of a solution of the corresponding Riccati
equation, under the regularity conditions mentioned above.

In Section 8 we review some H results from St:StHinf and apply Theorem 7.1 to
establish the equivalence of the existence of a solution of the H* minimax problem
and the existence of a solution of the corresponding Riccati equation, this again under
certain restricting assumptions [Th8.7].

For general (weakly) regular WPLSs, the coefficient S (the sensitivity operator) in
the Riccati equation need no longer be equal to D*JD (where J = I in the standard

2We need some assumptions on the system to be able to define the coefficients in the equation;
these assumptions are true in the case mentioned above [Lemma6.4]).



H? problem), but S has to be calculated in a more complex way, as noted by Staffans
[St:Quadr:Cor7.2] and M. & G. Weiss [Weiss*2:Rem12.9] (originally in St:SSQuadr).
This forces us to make some extra assumptions that complicate the formulation of a
stabilizing solution [Def6.3]. There is a slightly less general class of systems, the Wiener
class®, for which several aspects of the theory simplify as shown in Theorems 7.2 and
8.10.

For the Wiener class, the coefficients in the Riccati equation (see Theorems 7.2 and
8.10 and, in particular, their footnotes) are the same as those in the finite-dimensional
case [GreenLim:(5.2.29)&p.251], or those in the case of WPLSs with bounded input and
output operators (B € L(U,H) and C,, = C € L(H,Y)) [CurtOostv(1)] (cf. Remark
2.5), or those in the Pritchard—Salamon case [Keulen:(3.60)&Rem3.13&(4.11)],* (except
that for the Wiener class we still have to use the adjoint of the input operator B in
the extended form (B*,)), hence Theorems 7.2 and 8.10 are, formally, straight-forward
extensions of the classical results.

For a theory and results, similar to those of this paper, for discrete systems, see Ma-
linen:WPD and Malinen:NDT. For a different approach to WPLSs and their Riccati
equations, see FlandLasTrig (where the assumption of weak regularity has been re-
placed by the assumption of the boundedness of the output operator ', and, according
to the authors, this assumption can easily be weakened).

When writing this paper, we tried to make it readable per se, although readers
unfamiliar with WPLSs may find it hard to follow. Hence, on the first few pages, we
mainly recall definitions, results and figures presented in papers by Staffans. Of course,
the proofs still contain quite a few references to other papers. These references often
point not to the original results but to papers that have the needed results in a form
that best suits our needs.

We are very grateful to professor Staffans, who encouraged us to study this “converse
direction”, and whose suggestions have been very valuable to this work. We also want
to thank professor G. Weiss, who gave us access to his unpublished study on weak
regularity [Weiss: TransferII].

3With this we mean that the input/output map D of the system belongs to the Wiener class, i.e.,
Du = (Léog + f) x u, where L € L(U,Y) A f € LY (R4, L(U,Y)).

4The three cases mentioned above are special cases of regular WPLSs in an increasing order of
generality.

The class of regular WPLSs contains the class of all possible discrete time systems, and, as noted
by Staffans [St:DCRicc], this fact forces the Riccati equation to take a form similar to the classical
finite-dimensional discrete time Riccati equation (see also Proposition 5.6 and its footnote).

The same phenomenon can be seen in our results too, e.g., Theorem 8.7 has the standard features
of the discrete case [GreenLim:ThB.2.2] not visible when the system belongs to the smooth Pritchard—
Salamon class [Keulen:Th4.20].



1.1 Notation

We use the following notation (for the correspondence with the notation used by G.

and M. Weiss (among others), see p. 10):

[Def2.1]: A reference to Definition 2.1 of this text; sometimes we write just [2.1].
[St:StQuadr:SecT] is a reference to Section 7 of St:StQuadr (see “References”
at the end of this text). [Weiss:Transferl:p.831] is a reference to page 831
of Weiss:Transfer. (4) is a reference to equation (4) of this text etc. When
the reference is a part of a sentence, the brackets are removed (e.g., “see
Weiss:Repr for more”).

A:=B: “Aisequal to B by the definition of A”.

L(U,Y), L(U): The set of bounded linear operators from U into Y or from U into

itself, respectively.

I: The identity operator.
(s—A) (s—A):=s]— A when s €C.
JA-1 There exists a bounded inverse of the operator A (in particular, A is one-

to-one and onto).

ag(A): The spectrum {s € (C‘ (s — A)7'} of A.

WA: The growth rate wy := inf;5o[t " log||.A(¢)]|], when A is the infinitesimal
generator of a semigroup A (cf. Pazy:Th1.5.3).

A*, A*:  A* is the (Hilbert space) adjoint of the operator A; see Definition 2.2 for
AX.

Dom(A): The domain of the (unbounded) operator A.

Ran(A): The range of the operator A.

R, Ry, R_: R:=(—o00,00), Ry :=[0,00), and R_ := (—o0,0].

CH, Cy: Cf:={s€C| Res>uw}, C; :=Cf.

H>*(C,,X): bounded holomorphic functions F : C; — X.

u: The (bilateral) Laplace transform of u, i.e., @i(s) := [, e™*u(t) dt.

P(J;L(U,Y)): The set of functions F' : J — L(U,Y) for which Fug : J — Y is
strongly measurable Yug € U.

PP(J; L(U,Y)): The space of (equivalence classes of) functions F € P(.J; L(U,Y)) for
which ||F||pr < oo, where ||F||pr := sup,p || Fu|| e

L*(J;U): The set of U-valued L*-functions on .J.

Li(J;U): The set {u e L (J;U) ‘ (t = e “tu(t)) € L*(J;U) }

Wh2(J;U): The set of functions in L(.J; U) with a (distribution) derivativein L?(.J; U).
C(J,U):  The set of continuous functions J — U.

C'(J,U): The set of continuously differentiable functions J — U.

(
C.(J,U): The set of compactly supported functions f € C(J,U).
(-, )y The inner product in the Hilbert space H.
) The bilateral time shift operator 7(¢)u(s) = u(t+s) (this is a left-shift when
t > 0 and a right-shift when ¢ < 0).
Ty (myu)(s) :=u(s)if s € J and (myu)(s) :=0if s ¢ J. Here J is a subset of
R. This operator is used both as a projection operator L?(R) — L*(R) and
as an embedding operator L?(.J) — L*(R).
Ty, T_: T4 i=mr, and T_ 1= TR_.
A>B: ffB<AiIff{(A—- B)x,z)>0 V.
A >> B: iff B << A iff for some € > 0 we have ((A — B)xz,z) > ¢€||z|]* Vz.



TI(U,Y): The set of operators D € L(L*(R,U); L*(R,Y)) that are time-invariant (i.e.,
7(t)D = D7 (t) Vt € R).

TIC(U,Y): The set of operators D € TI(U,Y) that are causal (m_Dry = 0).

W, (U,Y): The set of measures of the form F+ Ldy, where F € L'(R,, L(U,Y))A L €
L(U,Y) and §p*u = u Yu € L? (the delta distribution).® Note that, by the
Riemann-Lebesgue lemma, F/—I-ES()(S) — 0, when C, 3 s — oo.

Wy x (U,Y): D e Wi iff D € TIC is such that for some v € W, we have Du =
v *u Yu € L2

WPLS, CWPLS, OSCWPLS: See Definition 2.1.

U,H,Y; U,Y: Hilbert spaces of arbitrary dimension [Def2.1&Rem?2.5].

U, U* A B,C,D: See Definition 2.1.

A B, C; W, V,V*W*, Wg, Vi, A*: See Definition 2.2.

D: The feed-through operator of D. See Definition 4.2.

Q,J: The cost function and the cost operator, respectively. See Definition 2.3.
Ui, £, F:  See Definition 3.3 and Theorem 5.4.

S, X The sensitivity operator and the spectral factor, respectively [Def5.1].

II; NoM; O, A5, By, ... See Lemma 2.4 and Theorem 5.4.

Cuw, Ky, BX: The weak Weiss extensions of C, K and B*, respectively [Prop4.3].
s.t.: “such that” or “so that”.

iff: “if and only if”.

admissible: See Definitions 3.1 and 3.3.

We extend an L2-function u defined on a subinterval .J of R to the whole real line
by requiring u to be zero outside of .J, and we denote the extended function by mju.
Thus, we use the same symbol 7; both for the embedding operator L*(J) — L?*(R)
and for the corresponding orthogonal projection operator L*(R) — Ran(7). With this
interpretation, 7, L*(R;U) = L*(R,;U) C L*(R;U) and 7_L*(R;U) = L*(R_;U) C
LY R;U).

2 A Review of Well-Posed Linear Systems
We recall the following basic definition from St:Crit:

Definition 2.1 Let U, H, and Y be Hilbert spaces, and let w € R. A Causal w-stable
Well-Posed Linear System on (U, H,Y) (CWPLS, (U, H,Y)) is a quadruple ¥ = [4 5],
where A, B, C, and D are bounded linear operators of the following type:

1. A(t): H — H is a strongly continuous semigroup of bounded linear operators
on H satisfying sup,cg, |le™"A(t)|| < oo,

2. B: L2(R;U) — H satisfies A(t)Bu = Br(t)m_u for all u € L:(R;U) and
t e R+,’

8. C: H— LE(R;Y) satisfies CA(t)x = w7 7(t)Cx for allx € H and t € Ry;

4. D: L2(R;U) — L}(R;Y) satisfies 7(t)Du = Dr(t)u, n_Dryu =0, and 7, Dr_u =
CBu for allu € L*(R;U) and t € R.

5We could have, equivalently, defined the Wiener class to be P' 4+ £J, instead of L' 4 LJy, because
n :=dimU < oo implies that £(U,Y) = Y™ and hence P'(J, L(U,Y)) = L'(J, L(U,Y)).



T4+U

Figure 1: Input/State/Output Diagram of ¥

If, moreover, e™* A(t)xr — 0 ast — oo for all x € H, then ¥ is strongly w-stable. If
conditions (1) and (i1) hold for some w and conditions (111) and (iv) hold for w = 0,
then U is an Output Stable Causal Well-Posed Linear System (OSCWPLS,).®

The different components of ¥ are named as follows: U is the input space, H the
state space, Y the output space, A the semigroup, B the controllability map, C the
observability map, and D the input/output map of W. In the initial value setting with
initial time zero, initial value xo € H, and control u € L2 (R, U), the controlled state
x(t) € H at time t € Ry and the observation y € L2(R,,Y) of U are given by (cf.
Figure 1)

-1 o) -]

In the time-invariant setting, the controlled state x(t) € H at timet € R and the output
y € LA(R,Y) of ¥ with control u € L:(R,U) are given by

z(t)|  [Br(t)u
V-1
We call U a causal well-posed linear system on (U, H,Y) (CWPLS(U, H,Y)) iff it
is an w-stable causal well-posed linear system on (U, H,Y) for some w € R. We also
use CWPLS to denote the class of such operators, stmilarly for OSCWPLS ete.
We call O* := [4« §.] (the adjoint or the anti-causal dual of U) an anti-causal well-

posed linear system iff ¥ € CWPLS.” A WPLS is a causal or anti-causal Well-Posed

Linear System.

Intuitively, the controllability map B maps past controls into the present state,
the observability map C maps the present state into future observations, and the in-
put/output map D maps inputs into outputs in a causal way. The condition “4.”

6These definitions are as in St:Crit except for the concept of output stability, which seems the
weakest reasonable assumption for the purposes of this paper. Output stability is equivalent to the
condition that the system maps the initial state 2o € H and input u € L? continuously to the output
y = Cxo+ Dru, i.e., 1t 1s equivalent to the stability assumption used in Weiss*2:Sec2.

Staffans’ results for stable systems [St:StQuadré&Crit&Hinf] hold also in this output stable case,
because the stability of A and B is not used in the proofs (and in St:StQuadr .4 is not even assumed
to be stable), as pointed out to us by Staffans (cf. St:Quadr:Rem2.7).

"The state z*(¢) and observation u*(t) of ¥* are defined as for ¥ but with reversed time-axis,
e, x*(s) := A*(=s)xg + C*7(s)y* A u* = B*zog + D*y* Vs < 0 in the initial value setting and
z* :=C*ry* A u* =D"y" in the time-invariant setting.

We need ¥* just to simplify some proofs, hence we do not present it more deeply. For more
information on ¥* see St:Coprime:Def2.13 (or St:StQuadr:Def8&Def9) and note that the adjoints 5*,
C* and D* are taken with respect to L? (i.e., (L2, L? ), not (L2, L2)) inner product [St:Coprime].

M. & G. Weiss use the causal dual ¥ instead of U* [Weiss*2:Prop6.1]. All though they have to
use it in the anti-causal way [Weissx2:Sec8] as Staffans does, the causal definition removes the need
to duplicate their definitions results and for the anti-causal case.



imposed on D with w = 0 requires that D € TIC(U;Y) and that the Hankel operator
[St:StQuadr:Def3] induced by D is equal to CB3. The definitions of this section are more
widely explained in St:StQuadr, St:Crit, St:Coprime and St:Quadr.

Definition 2.2 Asin St:StQuadréQuadrésCritédStHinf, we denote the generators (and
feed-through operators) with the same letters as corresponding maps, e.g., we denote
the generators of U :=[4 8] € CWPLS,, by [4 F].2

Choose o € o(A)°. We define W := Dom(A) (with the graph norm) and V := the
completion of H with under the norm ||[(a — A)™' - ||g (thus W € H C V). Similarly
V* = Dom(A*) C H C W* := cljg—ax-1.,(H). Note that the unique extension Ay
of A onto V is a semigroup isomorphic to the original A and the generator of Ay is
an extension of A (cf. St:StQuadr:Sec? or Weiss: Transferl:p.831 etc.) which will be
denoted by A.

We extend (w, $><W7w*> = (w,z); Yw € W Va € H continuously to W x W* to get
an interpretation of W* as the dual of W, and we do the same for <:1;,v*><v’v*> =
(vx)y Yo € H Yv € V* [St:StQuadr:Sec?] [Keulen:Subsec2.5]. As above, A*
Dom(A*) — H means the adjoint of the unbounded operator A. By A* € L(H,W™)
we denote the “adjoint” of the bounded operator A € L(W, H), defined by (Aw,z), =
(w, AX@) iy Yw € WV € H?

Finally, we define Wg := (a — A)"'[H + BU] = {zg € H ‘ Jug € U [Axg + Bug €
H]} C H with ||z]|w, = inf{||(2, w)||pxv ‘ (a — A" + Bu) = z}, similarly V5 :=
(o — A)7'H 4+ C*Y] C H with ||z|lv := inf{]|(z,y)||mxy |(a— A2+ Cry) ==}
[St:StQuadr:Lemma82).

Next we recall some further definitions and results from St:Crit.

Definition 2.3 [St:Orit:Def28Def{] Let U = [4 5] be a stable well-posed linear system
on (U HY), and let J = J* € L(Y). Define the cost function @) by (cf. Remark 2.5)

Qo) = / (y(s), Ty(s))y ds.

where y = Cxg 4+ Dryu is the observation of U with initial value v € H and control
u € L*(Ry;U). A control uei(xo) is J-critical if the (real) Fréchet derivative of Q with
respect to u vanishes at (g, Uerit(T0)).

The system U is J-coercive iff its input/output map D € TIC(U,Y) is J-coercive
iff the Toeplitz operator (“Popouv operator”) m, D*JDr, is invertible in L(L*(Ry;U)).

If ) is strictly convex, then there is a unique J-critical control w.;, namely the unique
(-minimizing control (cf. St:StQuadr:Lemmal3ii). In the minimax H> control prob-
lem treated in Section 8 we seek a saddle point of (), i.e., the J-coercivity of the control
is again a necessary condition for the solution of the problem [St:Crit:Secl]&[St:StHinf:Sec1& Lemm

8This means that A is the infinitesimal generator of A, and B € L(U,V) and C € L(W,Y)
are such that ©o € H A u € I2 A 2 = Axg + Bru = 2’ = Az + Bu in V ae. on R, and
g €W Ay =Cxy — y = Cz on Ry; see, e.g., St:StQuadr:Prop29 or Weiss: TransferI for more
details. Note that [A B] generates infinitely many different systems, since it does not determine

c
D uniquely. However, if U is weakly regular [Def4.2] with feed-through operator D, then [2 5]

determines ¥ uniquely (and vice versa), e.g., D= Cy(s— A)~'B+ D [Prop4.3], and, in that case, by
generators of ¥ we mean [4 Z].
®Note that all the inner products and other pairings here are sesquilinear, as usually. We need A

only to simplify Riccati equations [Th5.5b].



Lemma 2.4 [St:Orit:Lemmab&Def6] Let U = [4 58] € OSCWPLSy(U, H,Y) be J-
coercive, where J = J* € L(Y), and define

Ay = A—Brr(n,D*JDr ) ‘7, D*JC,
Co = (I—Dryp(ryD*JDry) "7y D*J)C,
Ko = —(myD*JDry) 7 D JC,
I = C*(J—JDrp(nyD*JDry) ' myD*J) C.

Then, for every xg € H, there is a unique J-critical control uci(g), and it is given
by ucrit(xO) = ICOJ;O'

The corresponding critical state teic(o), the critical observation yYet(xo), and the
critical value of () are given by

Tarit(T0) = Ao, Yarit(®0) = Coxo, and Q(xo, Ueric(0)) = (w0, z0)

We call T1 the Riccati operator of ¥ (with cost operator .J ).

Another (equivalent) way to define a (causal) well-posed linear system (alias an
abstract linear system) is to replace the controllability map B with a family of oper-
ators (®;);>0 (with &, = Br(t)m)o,) and define the state to be z(t) = A(t)zo + Pyu
[Weiss: Transferl:Def2.1]. However, we have chosen the above definitions mainly bor-
rowed from St:Crit, because this makes the formulation of some arguments more fluent
and simplifies the references to the papers by Staffans. As noted in St:Coprime:Lemma?2.6,
an abstract linear system (as defined by Weiss) is always a CWPLS,, for any w greater
than the exponential growth rate of the semigroup A, hence the definitions used by
Weiss and Staffans are equivalent.

Thus, the notation used by Staffans (in, e.g., in St:StQuadr) and this paper (with
the exception that we use C and C,, instead of C and O, etc.) relates to the G. Weiss’
and M. Weiss’ notation (in, e.g., Weiss:Transfer] and [Weiss*2]) in the following way
(Staffans’ notations = Weiss’ notation):

H = X (the state space), U = U (the input space), Y =Y (the output space) (com-
plex Hilbert spaces of any dimension).
A(t) =T, € L(X) Vt > 0 (the semigroup), A = A (the infinitesimal generator of A).
B e L(m_L}(R,U); X)) (the controllability map) is the operator for which we have
Br(t)mon = P,
C=V, € L(HnL2(R,Y)) (the observability map) (7 4C = T;),
De L(L2(R,U); L2(R,Y)) (the input/output map) is the causal, time-invariant oper-
ator for which Dr} = F (and hence mp gDy = F;).1°

[AB]=[475] (the generating operators of ), see Def2.2 or Weiss: Transferl.

W = X; :=Dom(A), V = X_; := clja—n)-1(H) [Weiss:Transfer]:p.831], in particu-
lar, W C HCV;

V* = Zy :=Dom(A*), W* = Z_; := cljja—ax)-1(H) similarly [Weiss*2:Sec6].
Wg={xg € H ‘ Jug € U [Azg+ Bug € H]} [Def2.2] [Prop4.3];
VO_{xoeH\HyoeY[A zo+ C*yo € HI}.

B = (B*)y = B} = lim,4o B*s(s — A*)7', C = Cy, K = K, [Prop4.3].1
D=H (the transfer function) [Prop4.1].

7T_|_§J7)7T+ = II (the Popov function), II = X (the Riccati operator), X = = (the

10Note that D is uniquely determined by Dry = F.,, and that ||D||z = [|D74||c.
In this paper we prefer Cy to C' and we mainly use the weak extensions B} := By, Cy =
Chr,, Ky = K, where C' C Cy C O etc., cf. Proposition 4.3.

10



spectral factor [5.1]) X = D (its feed-through operator) (in particular, X*SX = D*D
for S>> 0), K = F (the state feedback operator) D*JD = R (see Remark 2.5).

Remark 2.5 We get the formulation of the Riccati equation used by Weiss [Weissx2:Th12.8]
AT+ TA+C*QC = (B:I + NOY(X*X)"Y(B:I1 + NO)

from Staffans’ formulation [Th5.5b], if we set Y (= Y x U, U :=U, J := []Q\), ]]V;]
D .= [Dll], C := [%s], where Dy € TIC(U,Y) is the unique TIC-estension of T,
normalize the feed-through operator of D to be to D =[] € L(Y X U), and suppose
that w1, D*JDmy >> 0 as in Weissx2:Sec2 (cf. St:Quadr:Cor8.1).1% In this case, the

cost function [Def2.8] can be written in the form [Weissx2:(2.8)]

o= [C([% ] L] Lol )

The simple proof of the following often used lemma is left to the reader.

Lemma 2.6 Let A, B, C, D, S, T, U, V, x, y and z be continuous linear operators
between some topological vector spaces such that the following formulas are well defined
(e.g., A, S,z € LX) ANC, Uz e LIX,)Y)ANB,T,ye LIY,X) AN D,V € L(Y) where
X and Y are TVSs). Then the following claims hold (here, as elsewhere, the inverses

are required to be continuous and everywhere defined):'3
(al) (I + Z)_l =(I+ Z)_lz =I—-(I+ Z)_l, if (1 + Z)_l.
(a2) I —2y)™' = I —y2)' =T +y(I —ay)~'e Ayl —ay)™ = (I —yz)'y.

(1) Let 3[4 817 = (31,
Then 357! <= 3ID~'. Moreover, if 1S~!, then D~' =V —US™!'T.

(b2) Let JA™'. Then 3[4 IB)]_I iff (D —CA™'B)~'. Moreover, if I(D — CA~'B)7!,
then [A B1=1 _ [AT'+AT B(D-CA~ By~ 04~ —A~' B(D-CA~' B)~!
en[gpl = —(D=CA='B)~1C A (D—C A~ B)~!

3 Output Feedback

We formulate the solutions to the H? and H* problems by using output feedback,
hence in this short section we recall shortly a part of St:StQuadr:Sec5 adapted for
output stable systems (as noted in a footnote to Definition 2.1, the same proofs apply).

In the output feedback we feed a part = = Ly of the output y of a well-posed linear
system ¥ back into the input, as Figure 2 shows. Here L is a bounded linear operator
from the output space into the input space. Then, in the initial value setting with
initial value z¢ and input v, we find that the effective input u, the state x(¢) at time
t > 0, the output y, and the feedback control signal z satisfy the equations

u = z+4+myv, x(t) = A(t)xo+ Br(t)u, (3)
y = Cxq+ Du, z = Ly,

which can be uniquely solved in terms of x¢ and 7 v iff (I — DL) is invertible (cf.
Weiss:Feedback:Prop3.6). We call such an L admissible:

12The assumption D = [?] does not reduce generality, because one can set R to be D*.JD.
13This lemma is clearly true, if all the operators (and inverses) are required to belong to TIC.
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Figure 2: Static Output Feedback
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Figure 3: State Feedback Connection

Definition 3.1 [St:StQuadr:Def19] Let ¥ = [4 5] € OSCWPLSy(U, H,Y). The op-
erator L € L(Y,U) is called an admissible stable output feedback operator for U iff
(I — LD)™! € TIC(U), i.e., iff (I — DL)~" € TIC(Y).

As proved in Weiss:Feedback:Sec6, » and y in (3) can be interpreted as the state
and output of another well-posed linear system:

Proposition 3.2 [St:StQuadr:Prop20] Let U = [4 B8] € OSCWPLSy(U, H,Y) and
let L € L(Y;U) be an admissible stable output feedback operator for W. Then ¥j, €
OSCWPLS((U, H,Y'), where

[A+BrL(I-DL)'C B(I-LD) '~

Vi = {AL BLT} B { (I-DL)™'C D(I—LD)™" |

Cr Dp

We call Uy, the closed loop system with output feedback operator L. In the initial value
setting with initial time zero, initial value xq, and control v, the controlled state x(t)
at time t and the output y of ¥y, form the unique solution of equations (3).

A state feedback can be reduced to an output feedback as follows. The appropriate
connection has been drawn in Figure 3.

Definition 3.3 Let U = [4 5] € OSCWPLSy(U, H,Y) and let L € L(Y;U) be an ad-
massible stable output feedback operator for ¥. The pair (/C .7:) 18 called an admissible
stable state feedback pair for U iff the extended system

A B
T = | (C\ (D\| € OSCWPLS,(U, H.,Y)
K) \F

and L := (O I) is an admissible stable output feedback operator for Wey, t.e., I(I —
F)~l e TIC(U).

12



4 Strong and Weak Regularity

To formulate Riccati equations [Thb.5], we need certain feed-through operators. The
existence of a feed-through operator of some D € TIC is, roughly speaking, equivalent
to (weak) regularity of D. Hence we recall some basic facts about weak and strong
regularity in this section.

The transfer functions in the infinite-dimensional setting are similar to those in the
finite-dimensional case:

PropOSItlon 4.1 [Weiss: Transferl:Th3.1] For each D € TIC(U,Y) there is a unique
function De H>*(Cy,L(U,Y)), called the transfer function of D, s.t. Du = Dir on Cy

for all w € L*(R,4,U). The mapping D — D is an isometric tsomorphism of TIC onto
Hee .14

Weiss [Weiss: Transfer]: Thb.8] gives eight equivalent characterizations of regularity
and does the same for weak regularity in Weiss: TransferII. We recall some of his results
in Definition 4.2 and Proposition 4.3:

Definition 4.2 D € TIC(U,Y) ts called weakly regular iff

dDug := 1/5(—|—oo)uo = ZV_—)I_ESYS(S)UO Yug € U,
i.e., iff the transfer function D has a weak limit in infinity along the positive real axis.
D is called the feed-through operator of D. Clearly in this case (and only this case) we
have AD*yy = w-lim,_, | ﬁ(s)*yo Yyg € Y, hence then we also say that D* s weakly
reqular.

D € TIC(U,Y) is called (strongly) regular ¢ff Flim, a0 ﬁ(s)uo Yug € U (the
strong limit of D along the positive real azis). D* is called (strongly) regular uff
Flim, sy oo ﬁ*(s)uo Yug € U.

We call O = [45] € CWPLS regular (resp. weakly regular) iff its input/output
map D is regular (resp. weakly regular); similarly for U* and D*. When ¥ is weakly
regular, we mean by the generators of U the operators [A B] (cf. Definition 2.2).

We shall denote feed-through operators by the same letter as corresponding weakly
regular operators, as above.

Note that each D € W, is regular, by the Riemann-Lebesgue lemma. Note
also, that oD + D, LD and DE are regular (resp. weakly regular) for any o, 5 € C,
LeL(Y,H),if DeTIC and D € TIC are regular (resp. weakly regular) and & € TIC

is regular.

Proposition 4.3 Let ¥ € CWPLS(U, H,Y) have generating operators [A B [Def2.2].

(a) Wg C Dom(Cy) :={x € H ‘ AChx :=lim,y 1, Cs(s— A)'a} iff U is regular. In
this case, Cy € L(WB,Y).
Vi C Dom(By):={r € H ‘ ABsx = lim, 4o B*s(s—A*)"'a} iff U is reqular.
In this case, By € L(VZ,U).

(b) Wg C Dom(Cy,) :={x € H ‘ AC,x 1= w-lim, 4o C's(s — A)7 2} iff U 4s weakly
reqular. In this case, C,, € L(WE,Y).
Vi C Dom(Bj) = {z € H‘EIBZ):I; = w-lim,_, 1 B*s(s — A*)7 2} off U s
weakly regular. In this case, By, € LIV, U).

14A similar (non-bijective, non-isometric) result is true for any Banach spaces U and Y and any L”
with 1 < p < o0, see Weiss:Repr:Th2.3.
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(c) If U is weakly regular and either y = Cxg +Du A zg € H A u € L} (Ry,U) or
y =Du A ue L*(R,U), then y(t) = Cupa(t) + Du(t) a.e. t and in all points

t, where u and y are right-continuous (similarly u* = B*xg + D*y* V u* =

Dy* = u*(t) = B*pa*(t) + D*y*(t) ae.).
(d) If D is weakly regular, then D= Cw(s—A)'B+D.

(e) Let X € TIC be regular and let X' € TIC. The feed-through operator X of X

is invertible iff X~ is reqular.
(f) If X € TIC and X* are reqular, then X',

If U s regular, then it is weakly reqular; if VU is weakly regular, then U* is weakly
regular. For any ¥ € CWPLS we have C C Cy C C,, AN B*C B} C B

For more information on the (strong) Weiss exztension C), see Weiss:AdmObs and
Weiss:Feedback:Sech; for more information on the weak Weiss extension C,,, see Weiss: TransferIl
or Weiss*2:Sec2&4.

Proof: For the definitions of Wp := (a — A)"'[H + BU] and V}; see Definition
2.2. Here, as elsewhere in the text, “s — 4+00” means that s — oo along Ry (along
Ry No(A)° to be more exact).

Except for the results C\,, € L(Wg,Y) A B € L(V3,U), which follow directly
from the Banach—Steinhaus theorem [RudinFA:Th2.8] (or from a direct calculation of
the norm of ||Cy || c(wy,v) and || B ||lzver)), part (a) is St:StQuadr:Prop36 and parts
(b) and (c) are contained in Weiss:Transferll, (see Weiss*2:Th4.4&Th4.5) because
the case y = Du follows easily from the case y = Cxg 4+ Du contained in Weiss*2.

Part (d) is Weiss#2:Th4.4, and (e) and (f) follow from Weiss:Feedback:
Th4.7&Th4.8 (with H := [ — X AK = I). The observations at the end of the

proposition are trivial. 0

5 From Spectral Factorization to Riccati Equation

Staffans [St:Quadré&St:Crit:Th17] has shown that if a regular CWPLS ¥ with a regular
adjoint U* has a spectral factorization, then the corresponding Riccati operator is a
solution of a Riccati equation [Th5.5b] (the converse result (and uniqueness) will be
proved in Section 6).

M. Weiss and G. Weiss [Weiss*2:Sec12] have proved independently the same result
allowing the input/output map D of the original system to be only weakly regular but
assuming still that the spectral factor X' is regular and that its feed-through operator
X is invertible (X is invertible in St:Quadr:Th6.1v too).

In this section we slightly generalize the results using weak regularity instead of
regularity!®. At first we need the definition of a spectral factor.

Definition 5.1 V*X is a spectral factorization of & € TIU), if Y, X, Y7
X~ € TIU). If, moreover, £ = E*, then Y = SX for some invertible S = S* € L(U)
[St:Crit:Lemmal lit]. In this case we call X' an S-spectral factor of £ and S the corre-
sponding sensitivity operator. An I-spectral factor is called merely a spectral factor.

15We do not know whether the closed loop system W 5 is always weakly regular in this case. In the
cases mentioned above U is weakly regular.
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Let us recall the following result from St:Crit:Lemmall.

Lemma 5.2 Let X*SX be a spectral factorization of €& = £* € TIHU). Then all

spectral factorizations of £ can be parametrized as X = EX.,S = (E*)_lgE_l, where
E wvaries over the set of all invertible operators in L(U).

The following lemma follows from a straight-forward calculation.

Lemma 5.3 If £ = £ € TI(U) has a spectral factorization X*SX, then the Toeplitz
operator m, Emy is invertible in L (R, U), and its inverse is 7, X 'S7 n (X)) 'my.
In particular, if D*JD has a spectral factorization, then D is J-coercive [Def2.3].

Next we recall some of the main results of St:Crit.!6

Theorem 5.4 [St:Crit:Lemmab&Th16] Let ¥ = [4 5] € OSCWPLSy(U, H,Y) and
let J =J° € L(Y). Assume that there is'" a spectral factorization X*SX of D*JD.
Define

X 7

[-S™'myN*JC (I - X)), N :=Dx !, M:=x"1

Then Uy 1= gf__ € OSCWPLSy(U, H,Y x U), D is J-coercive, and

Terit (T :1;0 A (t) A(t) + BMr(t)K
ycrlt l’o = CO o = C + NIC ity
ucrlt l’o ICO MIC

is equal to the state and output of the closed loop system W5 € OSCWPLSy(U, H,Y xU)
defined by

As  Bg A4+ BMrK  BM
U= |[Cs Dsl| = | [C+NK N
Kol |Fo MK M1

with initial value xq, initial time zero, and zero control us (see Figure 4).*® The closed
loop cost function Qi(xo, up) for y = Cyxg + Domyug is given by

QO(x()vuO) <y7Jy>L2(R+ Y) — <$0,H$0> + <u075uO>L2(R+7U)7

in particular, ueqe 18 mintmizing iff S >> 0 off 1. D*J Dy >> 0.

If X is reqular and X7 then uei(t, v0) = (Koxo)(t) = MK yz(t) ae.

The Riccati operator I1 [Lemma2.4] of ¥ (with cost operator J) can be written in
the following alternative forms:

1T =C*JC — K*SK = C*JCs = C,JC = C3,JC,

and we have (A(t)xo, ILA(t)xy) %0 Vao, 21 € H.
Finally, the system U is stable (resp. strongly stable) iff U is stable (resp. strongly
stable).

168till replacing the word “stable” with “output stable”, see the first footnote to Definition 2.1.

YIf D*JD >> 0 and U is separable, then a spectral factor X' always exists [St:Crit:Lemmal8ii].

18Note that [K F] is an admissible stable state feedback pair for ¥ and V¥ is the corresponding
closed loop system, as in Definition 3.3.

The operators Ay, C, K5 and IT are, of course, the ones given in Lemma 2.4.
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Figure 4: Optimal state feedback connection

Proof: The result is contained in St:Crit:Lemmab&Th16 (because the proofs
do not require the stability of A and B, as noted earlier) except for the three claims
proved below.

If X is regular and 3X ', then Dom(K,) = Dom((K)s) A Ky = MK [Weiss:Feedback:Prop
On the other hand, always (Ks20)(t) = (Ki5)aAs(t)zo a.e. [Weiss:AdmObs:Th4.5],
whence follows ueic(t, 7o) = (Kyao)(t) = M KA Ax(t)zo a.e.

II=C*"JC—K*SK [St:Crit:Th16i] and II = A*(¢)ILA(t) + C*JmgC — K*Smp gk
[St:Quadr:Lemmab.5] [St:Crit:Th17], hence (A(t)xo, ITLA(t) 1)
= <C$0,JC$1> — <C$0,7T[07t]JC$1> — <IC$0,SIC$1> + <IC$0,7T[07,5]SIC$1> t_>—+>oo 0
for all xg, 2y € H.

The equivalence of the stabilities of ¥ and ¥ follow from Lemma3.5 & Prop3.2
of St:Coprime O

Now we can present St:Quadr:Th6.1 in a slightly more general form. Note that
here, as elsewhere, we denote the generators of a system (and feed-through operators
of weakly regular operators) with the same letters as the corresponding operators (cf.

Def2.2).

Theorem 5.5 Make the same assumptions and definitions as in Theorem 5.4. Sup-
pose, in addition, that V. is weakly reqular and that the feed-through operator X of
X is right-invertible, i.e., AM* := (I — F*); 4 := (X*)is, € L(U). Then we have the
following:

(a) SKe = —M*(B,I1 4+ D*JC)x Vo € W := Dom(A).

(b) 11 satisfies the Riccati equation

<A$0, H$1>H + <$0, HA$1>H + <C$0, JC$1>Y
= (S'M*(B:I + D*JC)ag, M* (BT + D*JC)ay), Yag,x1 € W,

which can be written in the form (see Definition 2.2 for AX )9

AXTI 4+ TA + C*JC = (B:I1 4+ D*JC)(X*SX)™(B:II + D*JC).

(c) If M := (I — F)7" is weakly regular and one of D* and M is reqular, then U is

weakly reqular.

19This form is the same as in Weiss#2:Th12.8, i.e., all the terms are in (W, W*). Note that
I[MAz, € H implies that <J:0,HAJ:1>(WW*) = (xo,IAz),. Note also, that X*SX is independent of
the particular spectral factorization chosen [5.2].
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Proof: According to St:Crit:Th33, all the results in St:Quadr:Th6.1 are valid
for any S = S* € L(U), hence, to prove (a) and (b), we only have to weaken
the regularity assumptions in St:Quadr:Th6.1(iv)&(v), which contain the strongly
regular versions of (a) and (b).

In the proof of St:Quadr:Th6.1iv we have, by the weak regularity of ¥* and the
continuity of u* and [¥, |, that for any s € [0,] u*(s) = Bia*(s)+[p* F*] [ %] (s) =
Bia*(s) + D*y*(s) + F*u*(s) [4.3c]. This implies that u*(s) = M*[Blaz*(s) +
D*y*(s)] = M*[B:z*(s) + D*y*(s)], where M* := (I — F*);;,. Hence —SKz(s) =
u*(s) = M*[B:Tlz(s)+D*JCx(s)]. The rest of the proof goes as in St:Quadr:Th6.1.2°

(c) Clearly (y(s), 2(s)) — (y, z) whenever y(s) — y strongly and z(s) — z weakly.
Hence DM is weakly regular whenever one of D* and M is regular and the other
one is weakly regular. O

We need also St:Quadr:Sec? in a slightly more general form:

Proposition 5.6 Make the same assumptions and definitions as in Theorem 5.4. Sup-
pose, in addition, that V.. s weakly reqular.

Then the conclusions in St:Quadr:Th7.18Cor7.2 hold, except that we have to replace
the strong limit in St:Quadr:Cor7.21 by a weak limit (part (b) below), and

(a) If X = I, then for all xg € H and ug € U, for which Axg+ Bug € H, we have

(B:Il + D*JCy 4 SKyu)xo = (S — D JD)ug = w-lim B:II(a — A)~! Bug.

a—r—+oo

(b) If X = I, then for all ug € U we have*

Sug := D*JDug + W—l_li_m BT (o — A)~! Bug.
aA— 400

(c) Let ey be reqular and let X =TI — F =0. ThenI1 >0 = S > D*JD and
I<0 = S<D*JD.

Proof: As noted in St:Crit:Th33, the strongly regular versions of these results
[St:Quadr:Th7.1&Cor7.2&Rem?7.3] hold for non-positive (invertible) S = S* too.

Part St:Quadr:Th7.1i is already stated with no regularity assumptions. One
clearly sees from the proof of St:Quadr:Th7.1 that in St:Quadr:Th7.1 the formula
(7.5) holds iff D is weakly regular; (7.6) holds iff F is weakly regular; (7.7), (7.8),
(7.9) and St:Quadr:Cor7.2 hold if D and F are weakly regular. The proof of
St:Quadr:Cor7.2 does not need any chances (except that the limit must be taken
in the weak sense) (note that, e.g., C\(a — A)"'Bug — 0 weakly as o — +oo
[Weiss+2:4.3&4.4]).

2ONote that in St:Quadr:Th6.1 the systems ¥ and U* are regular, which implies that I — F is
invertible and ¥ is regular [Prop4.3ef]. In our case we do not know, whether ¥ is weakly regular.

21The generality of regular WPLSs allows a wide range of discontinuities, in particular, all discrete
systems can be written in the form of a WPLS. Thus, in the formula for S, we must add this “ B*I1 B-
term” as in the (classical) discrete case (see, e.g., GreenLim:(B.2.27)); this can be seen as a result of
the fact that the assumptions on the transfer function D are mild [Defd.2]. For a further discussion
on this phenomenon and for an example where S # D*.J D, see St:DCRicc.

This phenomenon is visible also in several other results concerning the sensitivity operator S, confer,
e.g., Theorem 8.7 and GreenLim:ThB.2.2.
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Now it only remains to prove (c). By the assumptions and Prop4.3e, X'~! is now
regular, hence so is A" = DX =1, This implies that

(N (s)ug, JN (s)uo)y R (DX g, JDX  ug), Yug € U,

hence (c) can be proved in the same way as St:Crit:Th26. O

6 From Riccati Equation to Spectral factorization

There are certain assumptions [Def6.3] we have to make in order to formulate the
Riccati equation [5.5b]. We must be able to define the operator S, hence we assume
that D is weakly regular (“D exists”) and that the weak limit in Prop5.6b exists (in
particular, we assume that Yug € U Ir > wy s.t. [I(a — A)™' Bug € Dom(B;) Ya > r).
As Lemma 6.2 shows, these assumptions imply the weak regularity of the system Wy
in Definition 6.3.

Lemma 6.1 Let A be an infinitesimal generator of a Cy-semigroup on a complex

Hilbert space H. Then, for all x € H, we have
(a) Dom(A) 3 s(s — A)~'z "23% 2 in H,
(b)) H> A(s — A2 3% 0 in H,
(c) Dom(A4) 3 (s — A)~'z "3 0 in Dom(A).

Note that, in our case, H = Dom(A) 3 s(s — A)~'x *TE® 2 Va € V too.
Proof: (a) Choose some r > wy. By the Hille-Yosida Theorem [Pazy:Th1.5.3],
|(s—A)7Y 2 < M/(Res—wa) < Res > wy (where £ may be L(A) or L(Dom(A))
(in the latter case (s — A)~! must be interpreted with A = A|D0m(A2)), because wy is

the same in both of them). Thus
ls(s — AT S M1+ waf(s —wa)] < M1 4+wa/(r —wa)] =M Vs>r.

Define 7, , := ||z — s(s — A)7'2||g = ||A(s — A)"'2||g. For x € Dom(A) we have

res = |[(s—A)"'Az|| < M| Az|//s — 0, hence r, , — 0 for all z € H, by the uniform

boundedness of s(s — A)~" and the density of Dom(A) in H. Thus (a) and (b) are
true.

(€) By (b, [I(s — A) " ellpumay == 165 — A)~"elli + JA(s — A) "y — 040 = 0.

O

Lemma 6.2 Let U be a weakly regular CWPLS. Let the limit Sug := D*JDug +

w-limg 4 oo BiTI(a — A)"' Bug ezist Yug € U (as in 5.6b) and let S be an invertible

element of L(U). Let K := =S~ (B:11+ D*JC) € LIW,U) (i.e., Bl € L(W,U)).
Then Wi C Dom(K,) N Dom(B.II) and (BLIl + D*JC, + SK,)to = (S —

D*JD)ug = w-lim, oo BiIl(or — A)7' Bug whenever Axg+ Bug € H (as in 5.6a).
In particular, if [?{1? generates a CWPLS Uy, then Uy s weakly reqular.

Ut 18 regular off U is reqular and the limit in S s a strong limit.
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Proof: Let xg € Wg and let ug € U be s.t. zg := Axg + Bug € H [2.2].
1° “Ilxg € Dom(B:)" Take a s.t. (e — A)"'Bug € Dom(B;).2% ) := (o —
A)~'Bug. Now
Azl — Azg = A(a — A)"'Bug + Bug — 20 = a(a — A)"'Bug — 20 € H,
e, zj, —x9 € Dom(A) =: W. On the other hand, W C Dom(B;II), because
Bx1l € L(W,U). Thus ¢ = a2 — (2 — x¢) € Dom(B;II) + W = Dom(B,II).
2°“zo € Dom(K,,)" Define z, := s(s—A)"'zg € W so that K, zo := w-lim, 1., Kz,

[4.3b] (which exists, as we shall prove below). Using K := —S~!(B:II + D*JC), we

have

SKz, = —-D*JCz,— BIlxz,
— —=D"JCyxq— B;Ilxg + W—Em BT (s — A)~' Buy,
5—r+00

because

B:llz, = Bills(s— A)'ag=BII(I+ A(s — A)™Y)ag
= Billzg+ B (s — A)™'(20 — Bug)
— BIlzg+0— W—Em B:TI(s — A)™' Buy,
S§—r+400

because (s — A)7'zg > 0 [6.1c] and B:II € L(W,U).

3° Wy is weakly regular iff Wpg C Dom([g]w) = Dom(C,,) N Dom(K, ) [4.3b]. If
ro € Wg, then 19 € Dom(C,,) by the weak regularity of ¥ and 2y € Dom(K,,) by
1°. 23

4° W C Dom(Cy) iff U is regular, and in that case, Wg C Dom(K,) iff the
limit in S exists strongly, as we see from 1° and 2°. O

Now we are able to state a mild set of conditions (the weak regularity of the system
and the condition (1.) below) that makes it possible to define the Riccati equation
(4). As is often done in the classical case too, we require the solutions to be stabilizing
(condition (2.)). Condition (3.) is often replaced with the stronger assumption that A
is strongly stable (cf. Remark 6.5).

Definition 6.3 Let ¥ = [4 5] € OSCWPLS, be weakly regular and let J = J* €
L(Y). Wecallll =1I* € L(H) a self-adjoint stabilizing solution of the Riccati equation
induced by W and J iff (1.)N (2. )N (3.)N (4.), where

1.) The weak limit Sug := D*JDug + w-limg_ 1o B* (a0 — A)"' Bug exists Yug € U
+ w
and S is an invertible element of L(U).*

22Quch an « exists by the S-assumption. On the other hand, (o« — A)"'BU C Wg [2.2], hence the
part 1° of this proof shows that II(a — A)~! Bug € Dom(B},) YVa € o(A)°.

23In the proof of 2° we saw that when B} Il € £L(W,U) and ¥ is weakly regular, we have 3(B} T +
D*JC)yao Vro € W <= Fw-limyyeo BiTI(a — A)"1Bug Yug € U. Thus the weak regularity
assumption on K was hidden in the assumption on the existence of S (which was necessary for the
formulation of the Riccati equation).

Note also, that even though for any Il satisfying the requirements of Def6.3 we have B, Il €
L(Wpg,U), because TI € E(WB,V(*C;K)) (by [St:Quadr:7.1] and [6.9]), and B, € E(V(*C;K),U) (by
the regularity of Wey [Prop4.3b]), BTl is not continuous in the weaker topology of Wp inher-
ited from Dom([IC(’i]) [Weiss: TransferII] (because W is dense in Wp in that topology and hence
we would have (5 — D*JD)u = (B T+ D*JCy 4+ SKy )z, =0 Yu € U), except for systems for which
w-limy 00 BT (0 — A)" ' Bug = 0 Yug € U.

24In particular, we suppose that TI(a — A)~! Buy € Dom(B;,) Ya > r for some r > 0. Cf. the part
1° of the proof of Lemma 6.2.
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(2.) The operators [I

, where K := —S™Y(B:Il 4+ D*JC), are the generators

Jﬁ] € OSCWPLS, for which the feedback L = [0 I] is
te the corresponding closed loop system (€ OSCWPLS, ) by

e

ST _ oUW

of some Vo =

admzissible. We de
U .

S AL

(3.) (A(t)zo, TLA(t)xg) 5% 0 Vap € H.2
(4.) The operator I1 satisfies the Riccati equation (cf. Theorem 5.5)

AT+ TA+ C*JC = (B + D*JC)*S™Y(B:II + D*JC). (4)
We denote X := 1 — F, M := X127

Lemma 6.4 Make the same assumptions and definitions as in Theorem 5.4. Suppose,
in addition, that Uy s weakly reqular and X := I — F is invertible. Then the Riccats
operator 11 of U satisfies the requirements of Definition 6.3; in particular, this is true

when the assumptions of St:Quadr:Thé6.1v or those of Weissx2:Th12.8 hold.?®

Proof: If the assumptions are satisfied, one can choose X to be I [5.2] and thus
see that the requirements of Definition 6.3 hold [5.4&5.5&5.6].

The assumptions of St:Quadr:Th6.1v as well as those of Weiss*2:Th12.8 imply
the assumptions of this lemma. O

Remark 6.5 If one of ¥ and VU5 is strongly stable and the other one is stable, then both

of them are strongly stable [St:Coprime:3.5%i] and hence the assumption (A(t)xq, ILA(t)xo) —
0 is redundant in that case. Note that instead of checking that the equation (4) holds, it

1s enough to check its alternate form, the first equation in Thb.5b, for all xg = x1 € W
(use the continuity of the operators and RudinFA:Th12.7).

Now we shall have a closer look at the assumptions of Definition 6.3.

Lemma 6.6 Let the assumptions of Definition 6.3 hold.

The system Wy ts weakly reqular. If M 1is weakly regular and at least one of D*
and M s regular (e.g., if X is regular), then U is weakly regular.

Uexe 28 regular iff D is regular and the limit in the definition of S exists strongly,
in which case U s regular too.

We have K € L(W,U), Wg C Dom(K,), and (B:Il + D*JC\, + SK,)xo = (S —
D*JD)ug = w-lim, o, Bil(a — A)~' Bug whenever Azg+ Bug € H.

25Because W is weakly regular and (1) holds, any extension W.,; of ¥ with generators {?{ ?} 18
weakly regular, by Lemma 6.2. '

However, we do not know, whether it is possible that X := I — F is non-invertible (at least this
cannot be the case if 7 and F* are regular [Prop4.3f]). Hence our assumption “F = 0” (i.e., X = TI)
in (2) may be restricting, but it still covers the Riccati equations presented in St:Quadr:Th6.1v and
Weiss#2:Th12.8, because an invertible X can always be normalized to I [Lemmab.2].

26Note that (A~ (t)zo, [TAG5()20) | VYzy € H is a natural condition stating that the remainder
cost of an optimal (or critical) control goes to zero. If ¥ is stable, then [Ay(¢) — A(¢)]zo — 0 by
St:StQuadr:Lemma2l.

213x -1 € TIC(U) by the assumption on the admissibility [Def3.1] of L.

28However, it is not clear, whether the same is true for the systems studied in FlandLasTrig.
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Moreover, SK,, = S*K,, on Dom(K,,) and SK = S*K on H. The Riccati equation
(4) can be written in the Liapunov form (as in St:Quadr:Th6.137)
AT 4 TIA = —CXJC 4+ K*SK € L(W,W*), i.c.,

(Axg, a1y + (w0, HAzy) )y = —(Co, JCx1)y + (Ko, SK21), Vg, 21 € W.

We will see below [6.7], that Definition 6.3 implies that S = S* on all of U. As noted
in the proof of Lemma 6.2, the weak regularity of W. was hidden in the (hardly
unavoidable) assumption on the existence of S. Note that in general we do not know
— nor need to know [7.1] — whether Uy is weakly regular.

Proof: U., € CWPLS implies that L(W,U) > K := —S~Y(B;1l + D*JC)
(i.e., BXII € L(W,U)). By lemma 6.2, .y is weakly regular, W C Dom(K,,)
and (B:II + D*JC, + SK,)rg = (S — D*JD)ug = w-lim,_ B:1(a — A)~'Bug
whenever Azg + Bug € H.

If M is weakly regular and one of D* and M is regular, then U is weakly
regular as in 5.5c. If F is regular, U is weakly regular by Weiss*2:Prop12.3. If Uy
is regular (i.e., if D and F are, which is true iff D is regular and the limit defining S
exists strongly [Lemma6.2]) then U is regular by Prop4.3e.

By the Liapunov equation (which follows straight from the Riccati equation (4)
and the definition of K) and the fact that J = J*, we have that (K¢, SKzg) =
(SKxg, Kag) Yoo € W, hence (ug, Sug) = (Suo, uo> Yug € Ux = K[W] C U,
hence S|UK = S*|UK [RudinFA:Th12.7]. On the other hand, clearly K,zo :=
w-lim, oo Ks(s — A)7'zg € Ux Vg € Dom(K,,) [RudinFA:Th3.12a], hence SK,, =
S*K,. Now (Kuxg)(t) = KA(t)xg Vg € W [St:StQuadr:Prop29ii], hence SK = S*K,
by the density of W and the continuity of S and K. O

We are now ready to state the main result of the text, i.e., the fact that a self-
adjoint stabilizing solution of the Riccati equation gives rise to a spectral factorization

of D*JD.

Theorem 6.7 Let I1 € L(H) be a self-adjoint stabilizing solution of the Riccati equa-
tion induced by U and J [Def6.3]. Then S = S* NIl =1I* and X := [ — F is a
weakly regular S-spectral factor of D*JD. Moreover, ?/(\(3) =I—-K,s—A4)'B e
H>(Cy,L(U)).

Proof: 1°“D*JD = X*SX”™: Let u € C(R,U) ¢ W'*(R,U). Then y :=
Du € WHR,Y) A x = Bru € CY(R,H) A Ax + Bu = ' = Bru' € C(R, H)
[St:StQuadr:Prop29iii]. Moreover, y(t) = (Du)(t) = Cpa(t) + Du(t), where x(t) :=
Br(t)u € Dom(C,) C H Vt € R [Prop4.3c|, and similarly (Xu)(t) = u(t)—K,x(t) Vt.
Thus

(Du, JDu>L2(Y) = (Du+ Cyz,JDu + ‘]wa>L2(Y)

Because XYu = (I —F)u € L*(R,U) (by the output stability of U.y;), we get (because
SK, = S*K, [Lemma6.6])

(Xu, SXu>L2(U) = (u, Su>L2(U) —(u, SI&”wx>L2(U) —(SK,z, u>L2(U) + (K, SI&”wx>L2(U)

= [o f(t)dt, where f(t) := (u(t), Su(t))y; — (u(t), SKux(t))y; — (SKuz(t), u(t))y +
(Kypa(t ) SI& wr(t)); and f € L'. Let t € R be arbitrary. Setting z, := s(s —
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A)'z(t) € W for s > wy we have (by the definition of K,, [Prop4.3b])
f(t) = lim lim [(u(t), Su(t))y — (u(t), SKzg),; — (SKx,,u(t)), + (K, SKzs),]

r——4oo s—+oo

P m o lim [(u(t), Su(t))y + (u(t), (BLI + D*JC)a.),

r——4oo s—+oo

(B + D*JC)ay, u(t))y; + (K, SKa)y]

ME lim  lim [(u(t), DT Du(®)); + (u(t), (S — DT D)u(t);
+(u(t), (BRIl + D*JC)xg),; +{(BpII + D*JC)z,, u(t)),

H{Ar, Ty + (T, Anyy + (Cop JC2),] = glt) + h(t),

where  ¢(t) limy oo limy oy oo [(u(t), D*JDu(t)),, + (u(t),D*JCx,),

+ (D" JCxpyu(t))y + (Car, JC)y] = (Du)(t), (JDu)(t)), and
ht):= lim lim[u(t). (S = D"TDJu(t))y + (u(t), Blle.)y, + (Ar, )y,
(B Wy, u(t))y; + (L, A,y
On the other hand, A(t) = hq(t) + ha(t), where?®

{
{

ho(t) == lim lim [<B*er,u(t)> + (T2, Az,) /]
= lim lim [(B ) M, u(t)y, + (M, Azy) ]
= lim lim [er, s(s — A)1Bu(t), +<er,smAx(t)>H]
= lim lim [Tz, s(s — A)7" [+/(1)])]
= (Ma(t), 2/ (1) = (@ (t), T'(t)

and

hi(t) := lim lim [(u(t), (S — D*JD)u(t)), + (u(t), Byllzg), + (Az,, )] .

r—r0o0 §—00

Now

lim (u(t), BTz, + (u(t), (S — D*JD)u(t)),

amroo
= lim (u(t), =(D*JC + SK)a)y + (u(t), (S — D"I D)u(t)),
= {(u(t),—(D*JCy+ SK,)x(t) + (S — D*JD)u(t)),
= (ut), By (1),
because Az (t)+ Bu(t) = 2'(t) € H as required in Lemma 6.2. Thus

(@'(t), M (t))y = lim (r(r —A)7 [2(1)], )y

r—00

= lim (r(r — A)~'[Az(t) + Bu(t)],IIz),
r—00

— lim [(r(r T A) T Aw(t), )y, + (r(r — A) 1 Bu(t), H@H]
r—00

= lim [(Ax,, II2), + (u(t), ByIlz), ] = hi(2).
r—00

2By (s — A)~ € L(V, H) we denote the continuous extension of (s — 4)~! ( ,W). One can

easily verify that (s — A)~! is the inverse of s— A and (z, (s — A)~ '), = ((s — ) x, v> Ve Vo €
HYveV.
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(N.B. lim, o0 (A, IIz),; exists.)®® Thus, still for an arbitrary ¢ € R,

h(t) = ha(t) + ha(t) = (2'(t), () + (2 (t), ' () = (2, Tay (1),

We have f,g € L', hence h = f — g € L' too. As noted above, x € C'(R, H), hence
h(t) € C(R). On the other hand, for some T' > 0 we have suppu C [-T,T]. Thus

(1) = 0 V6 < T and #(1) = A(t ~ T)a(T) V¢ > T, hence (). (1) 5™ 0, by
the assumptions [Def6.3]. Now

/Rf(r)dr = /Rg(r)dr—l—/Rh(r)dr

= [ (ue). (D) et [ o Ty )

= (Du,JDu) ;s + lim :1;,1_[:1;/ r)dr
L2(Y) H

t—=oo [ o1

= (Du, JDu>L2(Y) + tli>r<£lo (x(t),IIx(t)); = (Du, JDu>L2(Y).
From

<u,X*SXu>L2(U) = (Xu, SXuL2 /f )dr

= (Du,JDu);» {u D*JDu>L2 )Vu € C*(R,U),

)~

we get, by density and continuity, that (u, X*SXU>L2(U) = (u, D*JDu>L2(Y)
Vu € L?, hence X*SX = D*JD [RudinFA:Th12.7]. On the other hand, X = I —F is
invertible in TIC(U) by the well-posedness and output stability of ¥ [Def6.3]. Thus
X is an S-spectral factor of D*.JD [Def5.1]. .7?(3) = K,(s—A)"'B e H*(C,, L(U))
[Prop4.3d], hence ?/(\(3) = I— K,(s— A)"'B. The weak regularity of X follows from
that of F [Lemma6.6].

2° In 1° we used the fact that S*K,, = SK, [6.6]. Knowing now that D*JD =
X*SX, we can deduce that § = (X*)~'D*JDX~! = §*. ]

Lemma 6.8 Let [O D] be the generators a CWPLS Wy on (U, H,Y X U) and let

SeLU)NJeLY) Letll € L(H) satisfy the Lyapunov equation AXII 4+ IIA =
—C*JC 4+ K*SK € L(W,W*), i.e.,

(Axg, ay) + (w9, TAxy) = —(Cxg, JCxy) + (Kag, SKa1) Vg, 1 € W
as in Lemma 6.6. Then
IT=A"(t)ITA(t) + C*JmpnC — K" Sk € L(H)Vt>0

as in St:Quadr:Lemmab.5. In particular, II = C*JC — K*SK € L(H), if Pext €

OSCWPLS and (A(t)xo, ILA(t)x0) Iy Voo € H as in Definition 6.3 (e.g., if Yoy
is strongly stable).

30Note that the commutator (lim, lim, —lim, lim,) ((u(t), Bz + (Az,, Tz,) ) of the expres-
sion in hq(f) was equal to the term (u(t), (S — D*JD)u(t));; (which is frequently zero, e.g., when
D, X € Wix). When this commutator is zero, we can calculate hy(#) in the same way as ha(t).

If D and F are regular, the limits in f and ¢ exist also as r, s & +o0 independently, as one can see
by slightly altering the above proof.
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Proof: Let a,b € W and t € Ry. Set zg := A(t)a € W, 21 := A(t)b € W
[Pazy:Th2.4c]. Then, because Ca = CA()x A Kz = KA()x A FL[A(t)z] =
AA(t)x  Va € |44 = Dom(A) [Weiss:Transferl:(2.10)] [Pazy:
Th2.5¢], by substituting these to the Liapunov equation we get

0=(A'(t)a, ITA(t)b) + (A(t)a, ITA'(t)b) + (C A(t)a, JCA(t)b) — (K A(t)a, SKA(t)b)
:di (A(t)a, ITA(t)by + /t<CA(t)a,JCA(t)b>Y — /tux’A(t)a,SI(A(t)@U

[(a, (1) TLA(#)b) g + (a,C* I 4Ch) ,y — {a, IC*SW[07t]ICb>H] .

(a, A(t)" TLA(t)b) + (a,C* T 1Cb) — (a, K" S »9kb)
= (a, A(0)"IIA(0)b) + (a,C" Jm0,Cb) — {a, K*Sm,qKb) = (a, I1b).

The same holds for a,b € H x H too, because W x W is dense in H X H [Pazy:Cor2.5].
We have 71Ca — Ca and 7 gKa — Ka in L? as t — 400, if C,K € L(H, L?)
(i.e., they are stable). If, in addition, (A(¢)a,IIA(t)a) — 0 Va € H (or Ya €
Dom(A)), then we get from the above formula with b = a that (a, Ila) = (a, (C*JC — K*SK)a) Va,
which implies that II = C*JC — K*SK € L(H) [RudinFA:Th12.7]. |

Now we are able to proof the uniqueness of II:

Proposition 6.9 There is at most one self-adjoint stabilizing solution I1 of the Riccati
equation induced by U and J [Def6.3].

If such a solution exists, then the assumptions and conclusions of 2.4€5.4€95.5 hold
and II and Uy are the ones given in 2.465.4 (in particular, S, K, X and K are
unique, because we must have X =1 ).

Proof: Let II and I’ be as in Definition 6.3. Let X = [ — F and X’ =
I — F’ be the corresponding spectral factors and K and K’ the corresponding state
feedback observability maps. Then, by Theorem 6.7, X*SX and X" S’ X"’ are spectral
factorizations of D*JD. Thus X' = E~'X for some invertible £ € £(U) [5.2]. On
the other hand, I = 5(\’(00) = E_l?/(\(oo) =FE ' hence Y = X' NS =85 ANF=
I-X=1—-X"=F. NowK'B =n,F'n_ =mn Fr_ = KB, hence we have that
Yu,v € C*(R,U)

(I'Bu, Bvy, % (CBu, JCBv),, — (K'Bu, S'K'Bv),,
= (CBu, JCBv);, — (KBu, SKBv);» = (IIBu, Bv),;.

We thus have II' = II on the reachable subspace Hg := {Bu ‘ ueC*R,U)} C H.
By Weiss:AdmContr:Rem3.12 we have

Hp > Bu(s) = (s — A)"'Bii(s) Yu € C°(Ry,U) Vs > wa,

hence (s — A)™'BU C Hp Vs > wa. Thus, for zg € W, we get

(ByIl'zg, ug)y; = lil_rl_n (B*s(s — A") ™', Uo)ys
5—r 1400
= lil_rl_n (2o, II's(s — A)_lBuo>H = (B 1Lz, uo); Yug € U.
5—r+00
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Thus K'vg = —S™YBLII' + D*JC)xg = Kxg Vag € W.3! This gives

53:Prop28ii

(Ko)(?)

from which we get, by density, K = K’ and, finally, II' = II [6.8].32

By the existence of the spectral factorizations, the Il defined in Lemma 2.4 exists
and satisfies Theorem 5.4; we shall denote that TI by II. By Lemma 5.2, we must
have X' = EX for some invertible F; choose £ = I to see that II satisfies the same
Riccati equation [5.5b] as II. Thus, by Lemma 6.4, II also satisfies the requirements
of Definition 6.3 and is therefore equal to the unique II. O

KA(t)zg = (K'z)(t) Yo € W,

7 The Riccati Equation: Summary and Applications
to Quadratic Control

Here we summarize the results of Sections 5 and 6:

Theorem 7.1 Let ¥ € OSCWPLS(U, H,Y') be weakly regular and let J = J* € L(Y').

D*JD has a weakly regular S-spectral factor X with an invertible feed-through oper-
ator X := X(400) for some invertible S € L(U) tff there exists a self-adjoint stabilizing
solution II of the Riccatt equation induced by ¥ and J.

Moreover, if 11 is such a solution and we normalize X to I [Lemmab.2], we also
have the following: The assumptions and conclusions in 5.465.5615.6€/6.9 hold. The
invertible S corresponding to the factor X with X (oc) = I is the one appearing in
Definition 6.3, S = S*, ?/(\(3) =I—-K,(s—A)'Be H®(C,,L(U)), D is J-coercive,
and Il = C*(J — JDry (7 . D*JDry ) 'n.D*J)C; in particular, 11 is unique. If X is
reqular, then the critical control e is given by uent(t) = Kax(t) a.e., as in Theorem

5.4,

Proof: The iff-claim is true by Lemma 6.4 and Theorem 6.7. The rest of the
claims follow easily from Proposition 6.9 and Theorem 6.7. Note that, with X = I,
we now have (K5)y = K [Thb5.4]. |

To get Theorem 7.1 into a simpler form we restrict to systems whose input/output
map belongs to the Wiener class W, [p.7] with a finite-dimensional input space U.

Theorem 7.2 Let U € OSCWPLSy(U, H,Y) be such that D € W, * (U,Y), let J =
J* € L(Y) and let dimU < oco. Then the following conditions are equivalent:

(i) 7. D*JDr, is invertible in L(L*(R,U)).
(i’) D*JD has a spectral factorization.

(11) There exists a self-adjoint stabilizing solution I of the Riccati equation induced

by U and J.

31The signals in the system W.,; give as information on IC|H only, thus we needed the definition
B

of K to get further.
32The standard uniqueness proof (e.g., M.Weiss: Thesis:Lemma2.13) is now hard to apply, because
Dom(Ag) and Dom(Ag-) need not have to have much in common a priori.
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(11°) D*J D is invertible in L(U) and there exists an operator Il € L(H) that satisfies
the Riccati equation®® (here Bl = B;II)

AXTL + TIA + C*JC = (B:I1 + D*JC)(D*JD)"(B:Il + D*JC).

The operators [?‘ lﬁ)], where K := —(D*JD)~Y(B:I1+ D*JC), are the genera-
tors of an OSCWPLSy Uy for which the feedback L = [0 I] is admissible creat-

ing a closed loop system ¥ € OSCWPLS,. Moreover, {A(t)xq, ILA(#)xq) R
0 Vl’o € H.

If the the equivalent conditions stated above hold, then D*JD has a D*.JD-spectral
factor X € Wy + (U), X := X(4+o0) = I, X7' € W, x (U), Il = TI*, and all the

assumptions and conclusions in Theorem 7.1 hold; in particular, II is unique.

Proof: This proof is written in a short form; we shall study the Wiener class
in greater detail in M:GRPRicc.

1° (") = (i’) = (i) [Lemmab.3], where (i") is defined by
(i”) D*JD has a weakly regular spectral factorization X*SX with X = [ (as in
Theorem 7.1).

2° (i) = (i"): Because the Toeplitz operator 7, D*J D is invertible, D* JD has
a spectral factorization X*SX with X', XY~' € W, *(U), by ClancGohb:ThII.6.3& CorIII.1.1&Pro

The fact, that X and X'~! are regular, implies that X~ [Prop4.3e], hence X
can be normalized to I [Lemmab.2].

3° (i) <= (ii): This follows from Theorem 7.1.

4° (ii’) = (ii): We have Il = C*JC — K*(D*JD)K [Lemma6.8], hence II = TI*.
The rest of the requirements of Definition 6.3 are clearly satisfied. On the other
hand, this and the regularity of F [Lemma6.6] imply that II € L‘(WB,V@;K]) C
L(W,Dom(By)) [St:Quadr:Th7.1], hence (ii’) is true also for B} [Prop4.3a].

5° (ii) = (ii’): We suppose that (ii) and hence (i), (i’) and (i”) are true. Then
(Dug)(1w) “2%% Dug, by the Riemann-Lebesgue lemma, and hence D*JD = X*SX,
in particular, D*JD is the invertible S corresponding to X = I. The rest of (ii’) is
contained in (ii) [Def6.3].

6° The rest of the claims follow from Theorem 7.1 and 1° — —5°. i

The applications of Theorem 7.1 to the nonstandard [Cor7.3] and standard [Cor7.4]
quadratic minimization problems are straight-forward:

Corollary 7.3 Let U € OSCWPLS,(U, H,Y) be weakly regular and let J = J* €
L(Y).

D*JD has a weakly regular spectral factor X with an invertible feed-through operator
X 1= X(400) iff there exists a self-adjoint stabilizing solution II of the Riccati equation
induced by ¥ and J such that the corresponding S [6.3] is positive.3*

33Note that, with the standard assumptions D = [9] A C' = [Col] A J =T (as in GreenLim:p.182
and in Keulen:Rem3.13; cf. Rem2.5), we get the Riccati equation to the form

AT+ TIA + O Cy = (B, I * B, 11

as in Keulen:Rem3.13&Th3.10 and in GreenLim:(5.2.29).
34If D*JD >> 0 and U is separable, then a spectral factor X' always exists [St:Crit:Lemmal8ii],
though it does not have to be weakly regular.
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If TI 1s such a solution and we normalize X to I, then the assumptions and con-
clusions in Theorem 7.1 hold, II is unique, and the minimizing control is equal to the
critical state feedback Kxog = Kpax(t) a.e., as in Theorem 5.4.

See Remark 2.5 for a different form of the Riccati equation.
Proof: This follows from Theorem 7.1, because one may always scale a posi-
tive S to I by choosing E := S~'/? [Lemma5.2]; The critical state feedback is now
minimizing [Thb5.4]&[St:Quadr:Lemma2.5]. |

Corollary 7.4 Let U € OSCWPLSy(U, H,Y) be weakly reqular and let 0 << J €
L(Y).

D*JD has a weakly regular spectral factor X with an invertible feed-through operator
X 1= X(400) iff there exists a self-adjoint stabilizing solution II of the Riccati equation
induced by ¥ and J.

In that case, 11 ts unique, I1 > 0, and the assumptions and conclusions in Corollary

7.8 hold.

Note that here we could normalize ¥ so that J = I.
Proof: This follows from Theorem 7.3, because now

S=(X*)"'"DJDX™' >0 A =C5JCs >0 [Th5.4].

8 The Riccati Equation and the H* Full Information
Control Problem

We adapt some definitions and results from St:StHinf into this section to prepare for the
application of our results to the H* full information control problem [Th8.7&Cor8.9&Th8.10].
The motivation behind Hypothesis 8.1 and Definition 8.2 will be explained below.

Hypothesis 8.1 Throughout this section we shall assume the following (cf. Figure 5):
Let U, W, H and Y be Hilbert spaces. Let ¥ € OSCWPLSy(U x W, H,Y x W),
. D5 Dy >> 0 on LRy, U) and (B = [By By and)

I 0 Dy D C
J:{O _VZ]E,C(YXW), D:=[D; D] ::[Oﬂ ;2} 6:[01}.

Definition 8.2 Let y := [4%] := Cxo + Diu + Dyw be the output of system ¥ with
initial state xg € H, control u € L*(R,,U) and disturbance w € L*(Ry,W). The cost
function @) [Def2.3] becomes now

If there is a causal control lawU € TIC(W,U) s.t. for some € > 0 we have Q(0,Uw, w) <
—e||wl]]3 Yw € L* Ry, W) (i.e., ||Dild + Dia|| < 7), we call U a uniformly suboptimal
controller.

We call D minimax .J-coercive iff

T D[l = Dumy (m4. Dy Dy )~y Dy [ Doy << 47
on L* (R, W) (cf. Lemma 8.4).
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Figure 5: Input-state-output diagram for ¥

Thus we will use the notation of St:StHinf for the minimax setting, i.e., the input space
is now U x W instead of U, and now also W may be a separate Hilbert space (not
necessarily Dom(A) as in previous sections). We call W the disturbance space and U
is the control space of the system ¥ as in St:StHinf.

Note that we have here y; = Cyxg+ Dy1u + Digw (the actual output), and the lower
part of the output y is a copy of the disturbance signal w, as in St:StHinf:Secl. This
allows us to write the formulas in a more compact form (and with a wider generality,
which will not be used here). Note also, that the J-minimax coercivity condition is
equal to I[(m4D*JDry)'],, << 0 [Lemma2.6b2].

In the control problems motivating this formulation the aim of the control engineer
is to find a controller U s.t. the norm |[w — yi||(72,72) is minimized. Because it is
very difficult to do this directly, the engineer usually searches an approximation of the
minimal norm by using a binary search. This requires a method for finding, for each
v > 0, whether there is any U that makes |[[w — y1|| < v, i.e., whether there exists a
uniformly suboptimal controller ¢/ for that value of 7. Such a method is studied here
and in St:StHinf, the main reference of the section.

Below we shall show that under certain conditions finding a uniformly suboptimal
U is equal to finding the stabilizing solution of the Riccati equation studied in the
previous sections.

Remark 8.3 The assumption 7D Dyymy >> 0 [Hyp8.1] is equivalent to the (a.e.)
left-invertibility of D1 as a member of P*(iR; L(U,Y)), i.e., it is a natural infinite-
dimensional extension of the standard “full row rank on the imaginary azis” assumption.

Lemma 8.4 Let Hypothesis 8.1 hold. For eachw € L*(R,, W) and o € H the control
u € L*(Ry, U) minimizing ||C1xo + Di1u + Diaw]| is equal to

—W+(W+DT1D11W+)_1W+DT1 (Crg + Diaw) =: Umin(0, W).

Let Uy := —my (7, D; Diymy) tmy Dy Do

The Riccati operator I1 of U [2.4] can now be simplified to 11 = C;(I — Py)Cy, where
Py = Dymy(myD; Dury) 'n Dy = Py = P?, hence 1 > 0.

There exists an U € L(L*(Ry, W); LA(R,U)) s.t. [|Dild + Dia|| < v iff |Dinldy +
Dia|| < v iff D is minimaz J-coercive iff Q(x0, Umin(To, W), w) s uniformly concave in
w € L*(Ry, W) for each zg € H.

Suppose that the equivalent conditions stated above hold. Then there is a unique
function went(x0) that mazimizes Q(x0, Umin(2o, w),w) with respect to w for a fized
xo € H. Let terit(20) := Umin(To, Werit(20)) be the corresponding control and Yert(xo) 1=
Cxo + Ditieris + Doweriy be the corresponding output. Then the minimax cost satisfies

i s Uy = s Ueri s Weri = 7H A cH
weL%ﬂ%}iW)ueLg(lﬁgi,U)Q(wo u,w) = Q(20, Uerit(T0), Werit(20)) = (wo, [Lzg) Vg
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and the critical control and disturbance are given by

Ucrit\ T * — *
[wcriz((x(;))] = — 714 (7 D IDr ) m D ICx.

Proof: The formula for t,;, is derived by Fréchet differentiation in the proof
of St:StHinf:Lemmal9i. It shows that if || D18 4+ Dis|| < v has any solutions, U is
among those. On the other hand, v > ||Dy1Uy + Dio| iff

0 >> 7T_|_[D112/{0 + Dlz]*ﬁ+[D11uO + D12]7T_|_ — ’)/27T_|_
= 1 DLl = Dumy(my Dy Dy ) my D | Diamy — vy,

i.e., iff D is minimax J-coercive.
Also the condition for ) and the formulas for (and existence of) wepit, Werit and
IT follow from a straight-forward calculation [St:StHinf:Lemmal9ii]. O

Proposition 8.5 Let Hypothesis 8.1 hold and let D be minimaz J-coercive. The fol-
lowing conditions are equivalent:

(1) D*JD € TI(U x W) has a spectral factorization X*SX .

crit(xO)
(11) There is an admissible stable state feedback pair (K F) s.t. [Zcm(xo)] is equal to
wcrit(xO)

the output of Vs with us =0 A ws =0 for any xg € H (¢f. Thb.4).

If (i1) holds, then X in (i) can be chosen to be I — F and the factorization D =
NX, where N := DX~ € TIC(U x W,Y), is a (J, S)-lossless-outer [St:Crit:Defl9iv]

factorization of D.

Proof: The equivalence of (i) and (ii) is contained in St:StHinf:Th5. Note that
the set of all possible operators X in (i) is {E(I — F) ‘ E.E~' € £L(U)} [5.2]. In
particular, they are all strongly (resp. weakly) regular iff one of them is strongly
(resp. weakly) regular.

The fact that IT > 0 implies that N is (.J, S)-lossless [St:Crit:Th22(v)=-(iv)]. This
and St:Crit:Lemmal4i imply that the factorization D = N X is (J, S)-lossless-outer
((J, S)-losslessness [St:Crit:Defl9] is not needed in this paper, it is just mentioned
for the interested reader). n

The existence of a spectral factorization [Prop8.5ii] is not enough; we must require
more about X and S (cf. St:StHinf). However, if the disturbance space W is finite-
dimensional, these extra requirements can always be fulfilled:

Proposition 8.6 Let the assumptions and the equivalent conditions in 8.5 hold, let
dimW < oo and set X :=1— F.

The operator F can be chosen so that S = [S(l)l 322], Si1>>0, Sy << 0, X €
TIC(U), and U = —X[;' Xy, € TIC(W,U) is a uniformly suboptimal controller. We
call U the (uniformly suboptimal) central controller induced by X .35

The set of all uniformly suboptimal controllers is

{0 = V) (X0 + V) | V € TICW,U) A [[SHPV(=82) 72 < 1}

35Gee St:StHinf:Th50&Figl4 for an explanation of in which sense the controller I is central.
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Figure 6: Parameterization of all suboptimal controllers

(t.e., the map w — u in Figure 6). The operator [§ ! 3] is an admissible stable output
feedback operator [Def3.3] for the extended open loop system

A [B B
Cl Dll DIZ
ot = 0 0 I
ICI Fll FIZ
ICZ FZI F22

The resulting closed loop system U™ with the initial state xo = 0 and input [0 ] produces
the uniformly suboptimal output z1 = Uw as the third component of its output (see
Figure 6 with ¥V = 0), i.e., the corresponding component of the input/output map of
T is Fo =U = — X' Xya.

If O\ is weakly reqular and the feed-through operator X = I — F' 1is right invertible
in L(U x W), then the Riccati operator I of U satisfies the corresponding Riccati
equation as in Theorem 5.5.

The above proposition is a summary of St:StHinf:Lemma7&Cor59&Th50&Th31 and
Theorem 5.5 (in that order). The system ¥ can also be created by applying the feed-
back operator [0 %] to the system W, i.e., by opening the loop for the disturbance
w [St:StHinf:Th31]. See St:StHinf for more information on the these systems.
Theorem 8.7 states the connection between the Riccati equation and the minimax
H®> problem. Because of the generality of WPLSs (e.g., we need not have S = D*J D),
the theorem is more complicated than the classical ones, but for Wiener class systems

[Th8.10] the result again reduces to one similar to that in the finite-dimensional case.

Theorem 8.7 Let Hypothesis 8.1 hold and let im W < oo. Then the following con-
ditions are equivalent:

(1) D is minimaz J-coercive, the two equivalent conditions in Proposition 8.5 hold,

the feed-through operator X of X is invertible®® and the sensitivity operator S
corresponding to X = I satisfies S11 >> 0.

(11) There exists a self-adjoint stabilizing solution I of the Riccati equation induced
by ¥ and J satisfying S11 >> 0 A Syy — 52151_11512 << 0.

36This (3X 1) is always true, when X and X'* are regular [Prop4.3f]. We do not know, whether
this 1s always true for weakly regular .
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Suppose that the equivalent conditions stated above hold. Then we have the following:

The assumptions and conclusions in 7.1, 8.4 and 8.5 hold, in particular, the II in
(11) is unique and it is the Riccati operator of ¥ [Lemma8.4]. A uniformly suboptimal
central controller feedback formula for u is (here S corresponds to X = I)

u(t) = (K1)w(t) + Fraw(t) = =S5t [((BD)wI)w + D5y (Ch)ul(t) — S5 Sizw(?).

Moreover, if U and F are regular (i.e., D is reqular and the limit defining S exists
strongly [Lemma6.6]), then Wexe, U5 and U are reqular, in particular, then the central
controller is reqular.

The assumptions are discussed in Lemma 8.8.

Proof: If (i) holds, then Prop8.6 and St:StHinf:Th65ii imply that the S corre-
sponding to X = I satisfies the conditions given in (ii). The rest of (ii) follows from
Lemma 6.4. We shall now assume that (ii) holds and prove (i) and the rest of the
claims.

1° Now the assumptions and conclusions in Theorem 7.1 hold, hence II is the
same operator as in Lemma 8.4. In particular, IT > 0. B

2° We shall go on by proving that D is minimax J-coercive. Let S be the

sensitivity operator with X := ??(oo) = . Take &' := E""SE' = [Sél S(’) ], where

E = [é —51_1[1512] A Sty =511 >> 0 A Shy = Sog — 52151_11512 << 0. Take now
S := E*S'E, where F = [(Shg_m (_Séf)—1/2i|7 to get S = [6 _OI].

Let N := DX~ so that Ny = My,, where M := X~ € TIC(U x W). The fact
that II > 0 implies that A is (J, S)-lossless [St:Crit:Th22(v)=-(iv)], which in turn
implies the invertibility of N3y in TIC as in St:StHinf:Lemmab7.

G:=n,DJDr, = 7, X*SX71 € L(L*(R,,U x W)). By Lemma 5.3, 3G~ =
T Mnr ST M*r,. The operator G, = 7, D}, D7, was assumed to be invertible
[Hyp8.1], hence from Lemma 2.6bl we get that 7 := Gy — G1Gy;' Gio must be
invertible too and 7' = (G710 = (7 Ma ST M 11 )90 = Moy M3 — Mo M.
The invertibility of My, implies that 3X ;' € TIC(U) [2.6b1].

Now we know that 7 := Gyo—G21G'Gia = — 7 Y2 4+ Dy Diam . — 1y Dy Dy (my Dy Dy ) ™!
is invertible, so to prove the minimax .J-coercivity of D, we only need to show that
7! < 0. From XYM =1 = MX we get that XpoMy = =Xy My A XMy =
I— XHMH, hence

Mo Mo = (KXo — Xy X' Xig) Moy
= -y My — X21X1_11(f — X My) = —le?(ﬁl.

Thus 77! = Moy M3 — Moy My = — Mos[I — Mgy Moy M3 (M) M,
<< 0, because 1 > |[|[M3, (M) Y| = Mz Mai|| = || X21 X", which can be seen
as in St:StHinf:Lemma36:

0 << D’IKIDH = (D*JD)H = (X*SX)H
= XI*IXH - X2*1X21 = Xl*l[] - (Xfl)_le*lXZIXﬁl]Xlla

ie, 1> || X X7 |-

Now we have shown that D is minimax .J-coercive and that D*JD has a spectral
factorization. This implies (i) and the other claims in the theorem (the feedback
formula for u is written out in St:StHinf:Sec2, where it is shown that if there are any
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uniformly suboptimal central controllers, then the one given by the feedback formula
is among them) excluding the regularity results, which we prove below.

3° Assume, that U and F are regular (i.e., Uoy is regular). By Lemma 6.6, also
U is regular. Because )N(H = Jand X = EE’)N(, we have that X;; = (511)_1/2,
in particular, 3X;;' € £(U). Thus we can see that also the semi-closed system ¥
[Prop8.6] is regular, by Weiss:Feedback:Th4.7, because the operator “(I — K'D)” in
Weiss:Feedback:Th4.7 is now the invertible operator [XO“ X2 ] (and hence“(I—DK)”
is invertible too). Hence the central controller U = F{7 is regular too. O

Lemma 8.8 The assumption S;; >> 0 A Sy — 52151_11512 << 0 s equivalent to the
standard assumption

D;Dyy >>0 A y* — Di,(I — D1y(D;;Dy1)"'D},) D1y >> 0,

when the system is so smooth that necessarily S = D*JD, e.g., when B € L(U, H)
(in particular, in the finite-dimensional case), and for Pritchard-Salamon systems and
Wiener class systems.

In Th8.7, instead of AST' A Sya — S2157' S12 << 0, we could have, equivalently,
assumed that (5_1)22 << 0 or that E'Sl_ll A Sy — 52151_11512 < 0.

Proof: If Be€ L(U, H), then B, = B* € L(H,U) and hence w-lim_, ;. B II(s—
A) 'Bug = 0 Yug € U [Lemma6.1c], i.e., S = D*JD [Prop5.6]. If dim H < oo, then
necessarily A € L(H) and hence B € L(U, H).

Because the S in (ii) of the theorem is assumed to be invertible [Def6.3], the as-
sumption (S71)gy << 0 implies the invertibility of Sj; [Lemma2.6b1]. which in turn
implies that (S7!)o = S9 — S157;' S12 [Lemma2.6b2]. Assuming that, we can define
S’ and X’ as in the proof of Theorem 8.7, and we get 0 << ﬁﬁﬁu = X 5nAn +
X5, ShoXo1, which implies that Si; > 0 (because Shy = Sop — 59157 S12 << 0), hence
S>> 0.

If, instead, the assumption on S is written in the form EISl_l1 A 522—52151_11 S12 <0,
then S5y — 52151_11512 can be seen to be invertible (hence << 0) by Lemma2.6b2 and
S11 can be seen positive as above.

O

With the standard assumption Dj;D;; >> 0 we get the regular case of Theorem
8.7 into a slightly nicer form.

Corollary 8.9 Let Hypothesis 8.1 hold, let U be regular, let Di,; D11 >> 0 and let
dimW < co. Then the following conditions are equivalent:

(1) D is minimaz J-coercive, the two equivalent conditions in Proposition 8.5 hold, X
s reqular and the feed-through operator X of X s invertible.

(11) There exists a self-adjoint stabilizing solution II of the Riccati equation induced
by U and J satisfying S11 >> 0 A Sop — 52151_11512 << 0 such that the limit
defining S exists strongly.

Suppose that the equivalent conditions stated above hold. Then we have the following:
The assumptions and conclusions in 7.1, 8.4 and 8.5 hold, in particular, the II in
(11) is unique and it is the Riccati operator of U [8.4].
Moreover, Ve, U5 and U™ are regular, in particular, the central controller s
reqular.

32



Proof: 1° Assume that (i) holds and normalize X by X := X~ 1X. The fact that
D3, Dyy >> 0 implies S1; >> 0, because S > D*JD [5.6¢]*"; thus Syy > D}, Dy >>
0 and, by Theorem 8.7 and St:Quadr:Cor7.2i (& St:Crit:Thl7), (ii) is true.

2° Assume that (ii) holds. X is regular [Lemma6.6], hence (i) and the rest of the
claims are true [Th8.7]. |

To be able to see through the technical complexities of Theorem 8.7, we shall
finish this study by showing how also that theorem can be considerably simplified by
restricting it to Wiener class systems with a finite-dimensional input space U x W

Theorem 8.10 Let Hypothesis 8.1 hold, D € W, x (U x W)Y), dimU < oo and

dimW < co. Then the following conditions are equivalent:
(1) D is minimaz J-coercive.

(1) ¥ — D3jy(I—Dy11(D5, D11) "' D5, ) D1y >> 0 and there ezists a self-adjoint stabilizing
solution II of the Riccatt equation induced by ¥ and J.

(11’) v* — D3y (I — D11(D3jy D11)7' D3, )D1g >> 0 and there exists an operator 1l € L(H)
that satisfies the Riccati equation (here B:Tl = B3Il )8

AT +TA+C*C = (B:1+ D*JC)(D*JD) Y (B:Il + D*JC).

The operators [?‘ 1?], where K := —S~! (B 11+ D*JC), are the generators of an
OSCWPLSy Vo for which the feedback L = [0 I] is admissible creating a closed
loop system U5 € OSCWPLSy. Finally, (A(t)xq, ILA(#)xq) %0 Vao € H.

(113) There is a U € TIC(W,U) s.t. ||Diild + Dia| < 7.

Suppose that the equivalent conditions stated above hold. Then we have the following:

All the assumptions and conclusions in Th7.1, Th8.7, Cor8.9, Lemma8.4 and Prop8.5
hold, in particular, the operator II in (ii) is unique and it is the Riccati operator of U
[Lemma8.4]. The feedback formula for u can be written in the form

u(t) = = (D7, Din) " ((B)al)a + Dy (Cr)a]a(t) — (D5 Din )~ Dfy Diaw(t).

Moreover, the input/output maps of Vexi, Uiy and U all belong to Wyi*, in par-
ticular, X, U € Wy, where U := F{3 s the central controller.

Proof: Note first that now with D € W, %, by the Riemann-Lebesgue lemma,
X*SX = D*JD implies S = D*JD, and the standing assumption 7, D7, D17y >> 0
implies D}, Dy; >> 0.

1° We have (i) <= (iii), by Lemma 8.4, hence each of (i), (ii), (ii’) and (iii) im-
plies that the assumptions and conclusions of Theorem 7.2 are true (because (i) and
standing hypothesis 7. D5, JD5 w1 >> 0 [Hyp8.1] together imply that 7, D*JDr,

37"We have IT > 0, because, by Theorem 7.1, II is the one in Lemma 8.4.
38Note that, with the standard additional assumption D}; D11 =1 A D15 =0 A D}, C; =0, we get
the Riccati equation to the standard form (cf. Th7.2)
AT+ TIA + CXC = 47 [(B3)w 1 (B3)w T = [(B7 ) I (B])u 11

as in GreenLim:p.251 and in Keulen:Rem4.6 (see also Keulen:p.103).
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is invertible [Lemma2.6]). In particular, there is a D*.JD-spectral factorization
X*(D*JD)X of D*JD with X = I, and (ii) < (ii").

2° (i)= (ii): As noted above, S;; = Dj; D11 >> 0. By S1; >> 0 and 1°, in this
case we can deduce Th8.10(i) = Cor8.9(i) = Cor8.9(ii) = Th8.10(ii).

3° (ii)=(i): The first assumption in (ii) is equal to S — S ST S << 0,
hence (ii) = (i), via Corollary 8.9 as in 2°. ]
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