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Abstract

In this paper we introduce a Riccati equation theory for (a class of) well posed
(I/O-stable) discrete time linear systems & as presented in [9].

We tie together three different notions: The first notion is the general question
under which conditions it is possible to solve a minimax control problem associated
to ® by static state feedback. The second notion concerns the existence of a certain
spectral factorization of the I/O-map of ®. The third notion is about a particular
(stabilizing) solution of a Riccati equation system associated with ®.

‘We show that these three notions are in fact equivalent under fairly mild stability
assumptions of ¢, namely input-output stability. Furthermore, this equivalence does
not require any finite dimensional structure in any of the operators of the system.
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1 Introduction

This paper, together with [9], presents a Riccati equation theory for a class of discrete
time linear systems (DLS’s) ® with H* transfer functions. Complete and detailed proofs
of the important results are given.

We study certain feedback properties of such linear systems. We show that the following
three notions are equivalent:

(i) The (critical) control input giving the minimax output for ® can be realized by a
state feedback with a bounded feedback operator K°#,

(ii) The transfer function D(z) of ® has a (J, S)-inner-outer factorization as defined in
Definition 18,

(iii) There is a sesquilinear form P(, ) satisfying the Riccati equation of Definition 33
and certain additional conditions as listed in (iii) of Theorem 40.

For the precise statement of the results, see Theorem 40. For a brief presentation, see
[8] which is a shorter version of this paper.

The results of this paper do not require any finite dimensional structure in any of the
spaces. The cost functional in the output space ® can be non-standard—i.e. also negative
cost. is allowed (see Definition 1). We use fairly weak stability conditions: The transfer
function D(z) of the open loop system is in H*, and the critical (one step) feedback
operator K™ (see Definition 7) is assumed to be bounded. The latter condition is trivially
satisfied if the system is output stable, or if the input space U is finite dimensional. The
controllability and observability maps of ® may be unbounded. For this reason, the
Riccati equation in Definition 33 is not stated in terms of a bounded self-adjoint Riccati
operator but in terms of densely defined sesquilinear forms in the space H x H, where H
is the state space of the system.

Let us give a short review of related material with emphasis on discrete time systems.
Early papers about spectral factorization techniques, feedback control and stabilizing
solutions of Riccati equations are [5], [12] and [16] for discrete time, and [11] and [13] for
continuous time.

Equivalence results of type (ii) < (iii) are given in [6] for finite dimensional systems
both in continuous and discrete time. Also the notion of the extended Hamiltonian pencil
(EHP) is introduced, and the equivalence of the feedback problem to an invariant subspace
structure of EHP is studied (see also [15]). Discrete time EHP in the infinite dimensional
setting is studied in [14] and existence results for (power) a stabilizing solution of the
Riccati equation are given.

The monograph [4] contains a Riccati equation theory for exponentially (power) stable
time-varying discrete time systems. The power stabilizing solution to the Riccati equation,
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minimax cost problems and factorizations of the transfer function are studied in terms of
Kalman-Szegd-Popov-Yakubovich systems. The main emphasis is on the Riccati equation
arising from the disturbance attenuation problem. A comprehensive reference for the
classical finite dimensional case with positive cost functional [7] . Both continuous and
discrete time systems are extensively treated from the Riccati equation point of view.
The finite dimensional discrete time H-control problem is studied in [25] in terms of the
Riccati equation and the (power) stabilizing solution. Some infinite dimensional discrete
time Riccati equation theory is presented in [2].

The litterature for the continuous time case is considerably richer. Recent continuous
time papers, somewhat parallelling our work, are [1}, [6], [19], [20], [21], [22], [23], [29],
[10]. The papers [1], [6] contain also short reviews of the history and development of
the theories connecting the spectral factorization and feedback control; the latter for the
discrete time systems, too.

The general organization of this paper is as follows. A crash course in discrete time linear
systems (DLS’s) is given in section 2. In section 3 we define and prove basic facts about a
minimax control problem of I/O-stable DLS’s. Section 4 is devoted to the study of (J, S)-
inner-outer factorizations of the I/O-map D and S-spectral factorizations of the Popov
operator. In section 5 we show that the minimax problem can be solved in feedback
form if and only if D has a (J, S)-inner-outer factorization (see Theorem 27). Under the
same conditions it is true that the sesquilinear form describing the critical cost satisfies a
Riccati equation of Definition 33; this is shown in section 6. The converse result is given
in section 7: the existence of a particular solution of the same Riccati equation implies the
equivalent conditions of Theorem 27. Finally, in section 8, the three equivalent conditions
are collected in our main Theorem 40 and some existence results for the (J, S)-inner-outer
factorizations are discussed.

2 A short review of DLS’s

We review the structure and notations of [9] that will be used throughout this paper.

The following notations are used throughout the paper: Z is the set of integers. Z, :=
{jeZ | 720} Z_:={j€Z | j< 0} The unit circle of the complex plane is
T, and D is the open unit disk. If H is a Hilbert space, then £(H) denotes the bounded
linear operators in H. Elements of a Hilbert space are denoted by lower case letters; for
example u € U. Sequences in Hilbert spaces are denoted by @ = {u;};er C U, where I is
the index set. Usually I = Z or I = Z,. Given a Hilbert space Z, we define the sequence
spaces

Seq(Z) := {{ziticz:zu€Z and I €Z Vi<I:z =0},
Seq. (Z) = {{zi},-ez :2,€Z and Vi<0:z = 0},
Seq_(Z) := {{zi}icz € Seq(Z): zi€ Z and  Vi>0:2 =0},
E(Z;2) = {{zikier C Z: Z |zi||Z < 0o}, where I=12Z,Z,, or Z_,
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where the last are Hilbert spaces with obvious inner products. The following linear oper-
ators are defined in Seq(Z) and ¢*(Z; Z):

e the interval projections for j,k € Z

mmZ = {w;}; wi=z for j<i<k, 0 otherwise;

i = Mg
e the future and past projections
Ty == Mleo]y T = M o0,~1]s
e the composite projections
Ty =T+ Ty, T =T+ 7m_,

e the bilateral forward time shift 7 and its (formal) adjoint, then backward time shift

*®

T

78 := {w;} where wj;=u;_,
7% = {w;} where w;=u;4;.

The above projections are orthogonal in ¢2(Z;Z). The bilateral shift 7 is unitary in
3(Z;Z). The following identifications are used throughout this paper: ¢%*(Z,;Z) =
T4l(2; Z), (Z2-;2) = w_3Z;Z). Z = 7l (Z;Z) for j € Z. Other notations are
introduced when they are needed.

Our basic setting is a fixed realization of the transfer function that is neither assumed
to be input nor output stable. The realization we are working with is regarded as the
given data, no matter how (topologically) uncomfortable it is; i.e. we work with the given
operators in the original topologies. We call this realization a discrete time linear system
(DLS). It is given by a system of difference equations

(1) Tjy1 = Az; + Bu;, )

Y4 = C.’Ej + DU:,', ] Z 0,

where u; € U, z; € H,y; €Y, and A, B, C and D are bounded linear operators between
appropriate Hilbert spaces. We call the ordered quadruple ¢ = (4 B) a DLS in difference

equation form. The three Hilbert spaces are as follows: U is the input space, H is the
state space and Y is the output space of ¢.

There is also another equivalent form for DLS, called DLS in I/O-form (see [9, Theorem
11]). It consists of four linear operators in the ordered quadruple
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Note that ¢ stands for the DLS in difference equation form, and the capital & is the same
DLS written in I/O-form. The operator A € L(H) is called the semi-group generator, and
the family {A7};5¢ is called the semi-group of ®. It is the same operator A that appears
in the corresponding DLS ¢ in difference equation form. B : Seq_(U) — H is called
the controllability map that maps the past input into present state. C : H — Seq, (Y) is
called the observability map that maps the present state into future outputs. The operator
D : Seq(U) — Seq(Y) in (2) is called the I/O-map that maps the input into output in a
causal and shift invariant way. The operators in ® and ¢ are connected by straightforward
algebraic relations (see [9, Lemma 7 and Definition 9}):

e B:Seq (U)—H,C:H — Seq,(Y) and D : Seq(U) — Seq(Y).
e D, B and C are causal; i.e. they satisfy

W-D’IT.{. = 0, B’f—f.g. = O, n_.C=0.

e BB satisfies

Br* = AB+ Br*m,
j-1
Bri= A Bi+ )  A'Buj_i,
=0
B=Bn_, € £(U, H),
where U is identified with range(n_;) on Seq(U) in the natural way.
o C satisfies
#.7°C = CA,
C= 71'06 € E(H,Y),

where Y is identified with range(m,) on Seg(Y') in the natural way.
o D satisfies

74D =CB,
Dr=1D, Dr*=71*D
D= WoDﬂ'g € £(U, Y),

where U, Y are identified with range(m,) in the natural way.

For the input, output and state sequences the following notation is used:

e The state of ¢ at time j > 0 is denoted by z;(z¢, @), and it is defined by

j-1
(3) 333'(;1;0’ 71) = AJZ'Q -+ ZAiBin — Ajl'() + B¢,T*j’l},.

=0



e The output sequence §(zo, @) := {y;(Zo, %) };ez, of ¢ is defined by

i-1
(4) Yj (1:07 ﬁ') S CAjmo + Z CAiB‘U,j_,' + D’uj = Tj (C¢.’L‘o + D¢ﬁ),

i=0

where zo € H denotes the initial state at time j = 0, and & € Seq,(U) is an input
sequence.

In this paper our main emphasis is upon I/O-stable DLS’s; this means that the Toeplitz
operator D7, : £2(Z,;U) — 3(Z,;Y) is a bounded. Then the Toeplitz operator has a
bounded extension to the whole of ¢2(Z; U), also denoted by D. In the frequency domain,
the action of D is the multiplication by the H*-transfer function of the system.

For the study of the operators B and C, a suitable definition is needed for their domains
([9, Definition 24]). We define dom(B) := Seq_(U), equipped with the £2(Z;U)-inner
product. The domain of C is given by

(5) dom(C) := {xo € H|Cxy € £(Z,;Y)},

equipped with the inner product topology of H. Neither of the operators B, C are assumed
to be bounded in their domains, but C is closed (see [9, Lemma 27]). If they are bounded,
we say that ® is input stable or oulput stable, respectively.

The stability notions associated to the semi-group generator A of the DLS & are the
following (see [9, Definition 21])

e A is power (or exponentially) stable, if p(A) < 1,
e A is strongly stable, if A7zy — 0 as j — oo,

e A is power bounded, if sup;q ||4’||g < oc.

We say that ® is stable if it is I/O-stable, input stable, output stable and its A semi-
group generator is power bounded. If ® is stable and A is strongly stable, then & is
strongly stable. The relations between various stability condition are discussed in [9, Section
6]. We note that the I/O-stability implies that range(B) C dom(C); this is known as
the compatibility condition in [9, Lemma 39]). We assume throughout this paper that
dom(C) = H. In Lemma 39 and Theorem 40 we assume further that range(B) = H.

The notion of state feedback is central in this work. In difference equation form, we realize
the state feedback by first adding still another equation u; = Kz; + Fu; to equations (1),
where K € L(U). This gives us an extended DLS ¢***. We get the closed loop DLS ¢
in difference equation form by simple manipulation. However, in this paper we need the
same structure written in I/O-form.

In I/O-form, the new output signal given by K provides a new output 9 € £2(Z,;U) to @,
thus giving an (open loop) estended DLS ®¢*t .= [®, [K, F]]. This is a cartesian product



of two DLS’s with the same input and semi-group structure, as presented in the following
picture:

—"
Iy 3‘.0)?2 A‘? BT*j
y(zo,8) | (Cc\ (D
20 @)
L3

The ordered pair of operators [K, F] is called a feedback pair of ®. Here K is a valid
observability map and F is a valid I/O-map for the system with semi-group generator A
and controllability map B; the operator (Z — F)™! : Seq(U) — Seq(U) is required to be
causal and shift invariant. From an I/O-stable feedback pair we require that dom(C) C
dom(K), and both F and (Z — F)~! are bounded in the #*-topology. If, in addition,
K : H — ¢3(Z,;U) is bounded, then we say that [K,F] is stable. The closed loop
extended DLS ®¢* is the DLS that we obtain when we close the following state feedback
connection:

The formulae for the closed loop system in terms of the open loop operators can be easily
calculated (see [9, Definition 18]). Thus we have two different notions of state feedback;
one for DLS’s in difference equation form, the other for DLS’s in I/O-form. It follows that
these feedback notions are equivalent in the same way than the two notions of the DLS
are equivalent (see [9, Section 5]). The stability properties of the open and closed loop
feedback systems are discussed in [9, Section 9].

We remark that the structure described above is closely related to the concept of a (con-
tinuous time) stable well-posed linear system in [19], [27] and [28]. The notation of this
paper and [9] is a discrete time variant of that used in the continuous time papers [19],
[20] and [23].

The introduction of two different but equivalent forms of DLS’s may first seem superfluous—
even more so because of the fact that the I/O -stable (H*) systems we can use the transfer
function representation (see [17, Theorem 1.15B]). However, operator theoretic study of
these systems become notationally very clumsy, if the basic operators are always stated
as multiplications by transfer functions. We remark that in [17] the basic objects are
unilateral shift operators together with Toeplitz operators, and the complex analysis re-
sults are presented more or less as an important application. From the control theoretic
point of view, the interaction between controllability, observability and I/O -maps can be
conveniently described in our formalism because these operators are the basic building
blocks of the DLS in I/O -form. Also the generalizations to non-linear theories can be
done easily with this notation.



3 Nonstandard cost and minimax control of DLS’s

We consider a minimax control problem associated to a DLS & = [%’ B ] and a possibly
non-definite cost functional measuring the outputs of ®. Basic definitions are given and
facts proved in this section.

We start with picking a self-adjoint operator J € L£(Y) which induces a nonstandard
(i.e. not necessarily positive definite) inner product on the output space of ®. The cost
functional is defined as follows:

Definition 1. Let ® = [4 577 ] be a DLS, and let J € L(Y), R € L(U) be self-adjoint.
Then the nonstandard cost for the output § of ® is

(6) J(zo, @) := Z [(35(z0, @), Jy;(xo, ﬂ))y + (uj, Ruj)(]]s
j20

where @ € (*(Z4;U) is an input and z, € dom(C) is the initial state of the system at time
j=0.

It is a known fact that the control i can always be thought to be “free of charge” (no cost
on the input), because the input can be made visible in the output. Then the cost for the
control can always be included in the cost for the output. Technically this is accomplished
by replacing the DLS (4 3) by an extended system ¢' = (4 5.), where C' € L(U,Y x U),
D'e L(H,Y xU),and J by J' € L(Y x U,Y x U) defined by

=) 7=(3). +-( )

Then, if 2¢(z0, %) := C'zr + D'uy is the output of ¥, we get

(7) (yj(-’la'o, ﬁ‘)’ Jyj(xf” a’))y + (uj’ Ruj)U = (Zk(xg, 'ﬁ), JIzk(zO’ ﬁ))YxX'

Thus there is no loss of generality in setting R = 0 in formula (6), and this is what we
always do. In this case equation (6) takes the form

(8) I (20, %) = (Czo + Dil, J(Czo + D)) g7, .y -

Note that we use the same letter J for both the self-adjoint operator and for the associated
cost functional. To avoid trivialities, we see that the inner product in equation (8) is finite
for those zy and % that we use.

Proposition 2. Let J € L(Y) and ® be an I/O-stable DLS. Then |J(zy,%)| < 0o for all
zo € dom(C) and @ € (Z;U).

Proof. If zo € dom(C) and & € £2(Z,;U), then by the definition of dom(C) and 1/O-
stability, Czo + Da € £*(Z,;Y). The claim immediately follows. O



If J is positive, then one would immediately be tempted to find the optimal control that
minimizes the cost. With the nonstandard case, the cost could be made as large or small
as we please, just by choosing a suitable input %. So there is not much sense in speaking
about minimal or maximal cost. We look for certain control sequences, called critical
controls 4*(z,), that are saddle points of the cost functional J(zg,#) as a mapping from
£2(Z,;U) onto R.

Definition 3. Let ® = [4' Br7 | be a DLS, and let 2o € dom(C) be an initial state.

(i) The control u*(zp) € Seqy(U) is critical if the Frechet derivative of the cost
J(zo, @) with respect to 4 vanishes.

(i) The corresponding critical state sequence {z5(zq)};50 is defined by

Il?;rit(l‘o) = SL‘j(IBQ, 12““(:1:0)).

(iti) The corresponding critical output §°*(z,) is defined by

f{mt (3’50) = Cil?o -+ D’l]crit(l’o).

Let us first calculate a necessary and sufficient condition for a control to be critical,'
without worrying about existence and uniqueness questions of the critical control.

Lemma 4. Let ® = [4' 877 be an I/O-stable DLS, and let zy € dom(C) be an initial
state. Then the control i (xy) € £2(Z,,U) is critical if and only if

(9) 74 D*JC 1o = —T, D* DU (o).
Furthermore, the corresponding critical output 7 (o) satisfies

(10) 7 D*JGTzp) = 0.

Proof. We have for 4 € {2(Z,;U)

(11) I (20, ) = (Czo + D, J (Czo + Dit)) oz, vy -

The critical control is found by requiring the real derivative d%J (zo,t+ew) =0ate=0
for all w € £2(Z,;U). This gives

-iJ (2o, @ + ew)]

df 05 =0

= 2Re (W, 7, D"JCao + 7?+D*Jﬁf&c’“(a;0)>ez(z =0
+3

which gives equations (9) and (10). O

The Toeplitz operator 7,D*JD7, is called the Popov operator (see [6]) or the power
spectrum operator (see [5]) of the DLS. The following definition gives us the basic notion
of this paper, namely J-coercivity. It serves as a sufficient condition for the existence of
the unique control.
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Definition 5. The DLS ® = [4 83,7] is J-coercive, if the Toeplitz operator
7. D*JD7, has a bounded inverse in £2(Z;U).

Proposition 6. Let ® be an I/O-stable and J-coercive DLS. Then D7, is coercive. In
particular, range(D7.) is closed.

Proof. To show coercivity, assume for contradiction that there is a sequence {i;} C
(Z4;U), ||@;lle(z,vy = 1 such that Dr,d; — 0 as j — 0. Because D is bounded by
I/O-stability, so is 7, D*J. But then 7#,D*JD7,i; — 0 as j — 0. This is a contradiction
against the J-coercivity of ®. [J

Now equation (9) immediately calls for the following definition and lemma:

Definition 7. Let ® = [4' By | be an I/O-stable and J-coercive DLS. Then

(i) the the densely defined linear operator K : H D dom(K™*) — ¢2(Z,;U), defined
by

(12) Ker# o= — (7, D*JD7,) 7, D*JC

is called the critical (closed loop) feedback operator, where dom(K) := {z, €
H|K%zg € ¢3(24;Y)},

(it) the the densely defined linear operator K : H D dom(Kt) — £2(Z,;U), defined
by

(13) K = pokcorit

(the spaces range(mo) and U have been identified) is called the critical (closed loop)
one step feedback operator, where dom(K™t) := dom(Krt),

(i13) the densely defined linear operator C°™* : H D dom(C™®) — (3(Z,;Y), defined by
Cerit := € + D,

is called the critical (closed loop) observability map, where dom(C™") := {zy €
H|CTzy € 2(Z4;Y)}.

It is easy to see that the above operators are well defined in their domains. This re-
quires checking that all the presented operator products make sense. For I/O-stable and
J-coercive DLS’s, clearly dom(C) C dom(K®*) and dom(C) C dom(C*). If K s
bounded, we can identify it with its continuous extension to the whole of H. By a simple
manipulation, we see that

Ccrit = (7‘%.}. - 7?+D(7_T+D*JD7—T+)*1'TT+D*J)C = HC,

where II is a bounded projection (by I/O-stability and J-coercivity) in £2(Z,;U) com-
muting with J.
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Lemma 8. Assume that the DLS ® = [4 By’ | is I/O-stable and J-coercive. Then

(i) for each zo € dom(C) there is a unique critical control @ (z,) satisfying formula
(9),
(1) the critical control satisfies
T (25) = KCTitzy,
the critical output satisfies
gcrit(mo) —_ Ccrit:co’
and the critical trajectory satisfies

25 (z0) = AT (j) 0.
Proof. Use Definitions 5, 7, Lemma 4 and basic properties of DLS’s. [

The family of operators {A“*(j)},>0) is in fact a semi-group of linear operators defined
in dom(C). This is the subject of the following lemma.

Lemma 9. Assume that the DLS ® = [ 4 87| is I/O-stable and J-coercive. Then

(i) the linear operators A(j) :== A7 + CT K% : dom(C) — H for j > 1 satisfy
A%(j)dom(C) C dom(C),

(i) the family {A°*(j)};>0 of linear operators defined in dom(C) is a semi-group
(14) ATH(G) = (A7)
for all j € Z,, where A" := A°%(1) is a linear operator on dom(C), called the

critical semi-group generator,

(ii) the critical trajectory {x5*(z0)}j»0 associated to the initial value o € dom(C) is
given by

(15) z5*(zo) = (AT*) z,.

Proof. The proof of claim (i) is a consequence of the fact that @, as an I/O-stable system,
satisfies range(B) C dom(C) (see [9, Lemma 40] ). Because always n_7*/K"*z; € dom(B)
by the definition of dom(B), claim (i) immediately follows.

To prove (ii) we use a same kind of approach as in the proof of Lemma 4. Fix zy €
dom(K"*) = dom(C), j > 1. Let € > 0 and & € £*(Z,; U) be arbitrary. Then we have
(16) J(zo, 8" (z0) + eT71D)

= (mo,-11[Cxe + Da* (o)), J (-, “))gz(z+;y)

+ {700} [CT0 + D(AT*(z0) + er?®))], J(—,, _)>l2(z+;Y) ,
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because g ;_yD(er?w) = 7 j—17 (D(ew)) = 0 as a consequence of the causality of D.
A simple calculation, together with Definition 7, allows us to continue
(A7) J(zo, @ (o) + €77 W)
= (w0, j—1C7 "z, J(—,, _)>e2(z+;y) + {7500 [CTH 0 + €T D], J(
= (CTitz,, Jccrzt>£2(z+;y) + 2€ Re ({00 C 20, JTleb>£2(Z+;Y)
+ € (D*JDD, D) g, .y

o —_)>32(Z+;Y)

Now because %°"(zo) is critical, we must have £J(zo, @ (z,) + er/i)) = 0 at € = 0 for
all @ € 3(Z;U), j 2 0. It follows that Re (n(;,:)C "z, JT' D) 24y = 0 for all @, and
then immediately for all j > 0

7D IR TICT Ly = 7, D* 7, 79 (C + DKTH) 1y = 0
and
T D" I 70y = 7, D*JCA xg = 7, D*J7 DT KT,
= —(F D IDR)TIKT gy — 7. D*J (7 Dy )T Ko,

Using #,Dr_ = CB, gives T,D*JC(A? + Br*iK*)zy = —(7,D*JD7,)T* Kitz, for
z¢ € dom(C) j > 1. This implies by Definition 7

(18) For I KTy = K% A (5) .
The rest of the proof is now a calculation. For k¥ > 0, j > 1 we have by Lemma 8
(19) Acrit(k)Acrit(j)xO = Akﬂ}?it(.’to) + BT*k’CcritAcrit(j)xo

= A*gT(zg) + Brka, r KT g,

where the last equality is by equation (18). The former part in the right of (19) can be
decomposed as

(20) Akx;rit(xo) = Az + AFBrHIerity,
:Ak+j$0 + BT*(k+j)7r[0,j—1]]Ccrit$0.
The latter part in the right of (19) can be decomposed as
(21) Br&s, r [T, = Breti jcerity, _ BT*(k+j)W[OJ_I] Kot

Formulae (19), (20) and (21) together show that A% (k) A" (j)ze = A“*(k + j)z, for all
Ty € dom(C), thus completing the proof of claim (ii). Also claim (iii) is now quite clear.
0

Definition 10. The densely defined linear operator A" : H D dom(C) — H, defined
by A = A"(1) is called the critical (closed loop) semi-group generator. The family of
operators {(A“*) } ;>0 is called the critical (closed loop) semi-group.

The following lemma describes the common algebraic structure of operators A, Ccrit
and K,

13



Lemma 11. Let & = [4 87| be an I/O-stable J-coercive DLS. Then the following
equations are valid in dom(C):

(22) CcritAcrit = ﬁ_+7_*ccrit
(23) ]CcritAcrit — 7-F+T*}Ccrit.
Proof. See the proof of Lemma 9. 0

Until now we have only given algebraic properties of operators A, Cit and Kcrit a5
possibly unbounded linear mappings on dom(C). We remark that C* and X% are
valid observability maps for a DLS whose semi-group generator is A°* and state space
dom(C) = H, provided that certain continuity requirements of these operator are satisfied.
In particular, A°* should be continuous in the norm of H. Generally this is not the case.

Basic stability conditions for closed loop semi-group generator A°™* are given in the fol-
lowing lemma. The proof is quite similar to [9, Theorem 50].

Lemma 12. Assume that the DLS ® = [4/ By7| is I/O-stable and J-coercive. Then the
following is true:

(i) @ is output stable = K" € L(H;(Z4;U)) = K .= K € L(H;U) =
BEt € L(U) & At € L(H).
(i) If @ is stable, then {A"(j)};>0 C L(H) and there is a constant C < oo such that
ATV ey S C Vi1,
i.e. A% {s power bounded.
(iii) If ® is strongly stable, then
(A"igy =0 Vzo € H,

i.e. A% 45 strongly stable.

Proof. The only not completely trivial part of (i) is the equivalence. This is proved by
AT = A+ Br* K = A+ Br_7*7, K% = A + BrgK®,
where range(mo) and U have been identified.

In order to prove claim (ii), we write

AT | ey = 1A+ BT K| oy
<A ey + IBllez,vy- 1 1K | gosez,m < C < oo,
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because 7 is unitary and A is power bounded by assumption. This proves (ii).

The proof of claim (iii) is somewhat similar. Now we estimate for all z, € H
H(AT*Y zollar < || A zollar + ||BrI K 5| | .

Here A7z — 0 by the assumed strong stability of . The claim follows once we prove
Br* Kz — 0 for all 75 € H. Fix zo € H. We have for all §,J > 0

(24) [|Br*i Kzl
< ||Brim, nK x|l + || BTy 1,00 0] | -

The second term on the right of equation (24) gets small by increasing J, because Kz, €
*(Z4;U) and B is bounded. Also the first term gets small, as shown by the following
inequality, implied by the basic properties of the observability map. For j > J

-1
”_B.T*jWIO,J}ﬁ”H < ”Aj.BJf[O,J]ﬁHH + 1] ZAiB(”[o,J]ﬁ)j—i—lllH
=0
. J -
= “AJ-J"I (Z AlBuJ._,‘) “H —0, forall d¢ EQ(Z.\L; U),
=0

where the limit follows because Z{:o A'Buj_; € H and A is strongly stable. The proof
of the lemma is completed. [J

The requirement that K“* € L(H;U) is central in this work. It is sufficient but not
necessary to make A“* bounded. On the other hand, it is necessary for the DLS &%t of
equation (35) to be a DLS, because the input operator of DLS is assumed to be bounded.
Two simple sufficient conditions for this conditions are given below:

Proposition 13. Sufficient conditions for K°* € L(H;U) are

(i) JC € L(H,2(Z,;Y)),

(i) the input space U is finite dimensional.

Proof. The first claim is trivial. The second follows because then K% = 74/ would
be a finite dimensional operator. O

We end this section by introducing a conjugate symmetric sesquilinear form in dom(C) x
dom(C) C H x H, whose diagonal values give the critical cost. The sesquilinear forms of
this kind are basic objects in the Riccati equation system theory of Sections 6 and 7.

Definition 14. Let J € L(Y) be self-adjoint and & = [4' B ] be an I/O-stable J-
coercive DLS. The conjugate symmetric sesquilinear form P*(, ) in dom(C) x dom(C)
given by

Pcrit(xo, xl) = <Ccrit$l70, Jcmt$1>£2(z+;y)

18 called the critical sesquilinear form associated to & and J.
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The I/O-stability of ® has an effect to the limit behaviour of P#( | ):

Proposition 15. Let J € L(Y) be self-adjoint and ® be an I/0O-stable and J-coercive
DLS. Then for all zo € dom(C), @ € ¢*(Z.;U)

P (z(zo, 0), z; (20, @) = 0 as j— oo.

Proof. Fix 4 € ¢*(Z4;U) and zy € dom(C). We first remark that
|P(z;(20, &), 2(0, )| < [|J]] - [IC*2;(zo, )|I* < ||IW} - 1L - |ICs (o, @)1,

where II is the bounded projection introduced just after Definition 7. So it suffices to
show that Cz;(zy,7) — 0. We have

(25) Cz;(ro, @) = 7 79Cxy + CBTI T, it = 7,7 Cx0 + 7, Dr_m 7, .

The first part of equation (25) approaches zero, because Czy € £2(Z,;Y). For the second
part, write

(7 Dr_1¥) 7pih = (R Dr_r¥)mg i + (74 Dot )T +1,00) 8-

Let € > 0 be arbitrary. Choose J so large that ||7(;41,0q8l|2(z4;0) < €/21|Dl2@,0)»e@40y)
which gives immediately ||(T4+ Dr_7")mj41,00)8|| < €/2. For j > J write

7 Dn_r™mg i = (Fe7™) Do, ).

By I/O-stability, D7 s; € €2(Z4;Y) and the above expression can be made less that ¢/2
by increasing j. So the second term in (25) approaches zero as j increases. This completes
the proof. [J

In the following proposition, the last one of this section, we separate the cost of input into
two parts, the first of which does not depend on the control @& we are applying, but only
on the initial value zy. The second part of the cost depends only on the deviation from
the criticality of the applied input 4.

Proposition 16. Let J € L(Y) be self-adjoint and @ = [4' By’ | be an I/O-stable J-
coerctve DLS. Then the cost functional can be separated in the following way:

(26) J(zo,B) = J (2o, B7"(z0)) + J(0, & — GT*(z0))
for all input functions v € ¢2(Z;U). Moreover, we have
(27) P (39, 20) = J (o, 4 (z0)),

where P(, ) is defined in Definition 14.

Proof. Define 0 := i — @%(z,) € £2(Z4;Y). Then quite easily
(28) J(CEQ, ﬂ) = J(:Co, ﬁ“it(ﬂla) + ?I))
= J((Eo, u”it(xg)) + 2R6<7?+D* JC:CQ + 77+D*Jpﬂcrit($o), 17})82(2.;_;}’) + J(O, 'lU)

But now the middle term in the left of (28) vanishes, because the critical cost satisfies
formula (9). This immediately proves (26). Equation (27) is immediate from the definition
of Ct, [
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4 Factorization of the I/O-map
and the Popov operator

In this section we consider certain factorizations of I/O-map of an I/O-stable DLS. The
approach is similar to that given in [23], [21]. The following definitions give us the basic
tools needed in the factorization of the Popov operator #,D*JD#%, . We note that the
operator J of this section will ultimately appear be the same J as in formula (8) defining
the cost functional. We shall frequently use the notion of “bounded causal shift invariant

operator”. This can always be regarded as an 1/O-map of an I/O-stable DLS (see [9
Lemma 8]).

H

Definition 17. Let J € L(Y) be self-adjoint, and let S € L(U) self-adjoint and invertible.
Let D be the I/0O-map of an I/0-stable DLS.

(i) The operator E € L(U) is S-unitary, if it is boundedly invertible and E*SE = S.

(ii) The causal shift invariant operator N' € L(E*(Z;U),2(Z;Y)) is (J, S)-inner, if
N*IN = 8.

(isi) The causal shift invariant operator X € L(¢*(Z;U)) is outer, if range(X7;) =

(iv) The causal shift invariant operator X € L(6*(Z;U)) is S-spectral factor of D*JD, if
X has a bounded causal shift invariant inverse X! in 2(Z; U) and D*JD = X*SX.

The following special factorization of an I/O-stable I/O-map is necessary:
Definition 18. Let J € L(Y) be self-adjoint, and let S € L(U) be self-adjoint and in-
vertible. Let D be the I/O-map of an I/O-stable DLS. Then the pair of operators (N, X)
is an (J, S)-inner-outer factorization of D, if the following conditions hold:

(i) N € L(E(Z;U),2(Z;Y)) and X € L(€*(Z;U)) are causal shift invariant operators,

(ii) N is (J,S)-inner,

(iii) X is outer,

(iv) D=NX.

If, in addition X is injective and range(X7,) = 2(Z,;U), we say that the outer part X
of the factorization (N, X) has a bounded inverse.

The latter is equivalent with saying that the outer Toeplitz operator X7, is coercive and
has a bounded inverse.

We start with proving a simple and frequently used proposition:
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Proposition 19. Let D be the I/O-map of an I/O-stable DLS. Let (N, X) is an (J,S)-
inner-outer factorization of D, such that the outer part X of the factorization has a
bounded inverse. Define the static part of the outer factor by X = myXmy € L(U), with
the identification of spaces range(my) and U. Then X' € L(U) and X~ = 7o X~ mp.

Proof. We can write by the causality mg = mo(X74) N X7y )Mo = mo(X74) Lmg - mo X
and similarly mp = moX'7mg - mo(X'74) 'mp. Identifying my with the identity operator in
L(U), we see that X is a bounded bijection on U. It thus has a bounded inverse as
claimed. (]

S is called the sensitivity operator of the factorization in [22]. There is a strong link
between S-spectral factorizations of D*JD and (J, S) -inner-outer factorizations of D:

Proposition 20. Let D be the I/O-map of an I/0O-stable DLS. Then the following are
equivalent:

(i) (N, X) is an (J, S)-inner-outer factorization of D, with the outer part X having a
bounded inverse,

(i) X is a spectral factor of D*JD, and N = DXL

Proof. Let us first show that (i) implies (ii). Assume that (A, X) is a (J, S)-inner-outer
factorization of D = N X~ Then

DJD = X*(N*JN)(X) = X*SX.

Because X! is causal and shift invariant, X is a S-spectral factor if X~! is bounded. We
conclude this the fact that the Toeplitz operator X7, has a bounded inverse.

By the causality of both X and X!, (X¥#%,)~! = X~'%,, which is now bounded. We can
extend X'~'7, uniquely to £2(Z; U)N Seq(U) by the shift invariance, and then uniquely to
¢3(Z;U) = €2(Z;U) N Seq(U) by the continuity. This bounded extension coincides with
A1 in the range of X, proving that X! is bounded. The first part of the proposition
now follows.

To show that (ii) implies (i), assume that we have the spectral factorization D*JD =
X*SX. Define N := DX~'. Then N is a bounded causal and shift invariant operator,
satisfying D = N X . The factor N satisfies

NN = (X7 (D ID) (X~ = (X ) (A" Sx)(x~Y) = S,

which proves that A is (J, S)-inner. It follows that (N, X) is a (J, S)-inner-outer factor-
ization of D, with A" having a bounded inverse. The remaining part of the proposition is
thus proved. [
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Not all operators of form D*JD have S-spectral factorization for any S. Those that have
the factorization are more interesting to us. If we know one (J, S)-inner-outer factorization
of D for some S, then we know them all. This is because all the (J,S)-inner-outer
factorization can be parameterized by the set of all S-unitary operators.

Proposition 21. Let J € L(Y) be self-adjoint and D be the 1/0-map of an I/O-stable
DLS. Let (N, X) be a (J,S) -inner-outer factorization of D for some S € L(U) with X
having a bounded inverse. Then the set of all possible (J, Sg)-inner-outer factorizations
(NEg, Xg) of D can be parameterized by

NEg -'—‘—NE, Xg = E‘”‘X, Sg = E*SE,

where E ranges over the set all boundedly invertible operators in L(U). In particular, if
we in addition require that Sp = S, the E is allowed to range over the set of all S-unitary
operators E € L(U).

Proof. We first show that for each invertible E we have the factorization as claimed. So
let E € L(U) be boundedly invertible and (N, X) be a (J, S)-inner-outer factorization of
D for some S € L(U). Trivially D = NX = NgXg. Also Ng, X5 and X35! are bounded
causal shift invariant operators. Because

(29) NgJNg = (NE)*JNE) = E*N*JNE = E*SE =: Sg,
NEg is (J, Sg)-inner.
In order to prove the remaining part, we must show that if there is another (J, S')-inner-

outer factorization (N’, X’), then it is of form (Ng, Xz) for some boundedly invertible
E € L(U). Both (M, &), (N, X) satisfy

D=NX=NX

Because both X and &’ together with their inverses are bounded, causal and shift in-
variant, both the operators U := X'X~! and U~! := X(X')~! are bounded causal shift
invariant operators. We have then

(30) N =NU.
Now, because N is (J, S)-inner and N is (J, S’)-inner
S=N*JN = NUJNU) =UN*INU =U*S'U,
which implies immediately
(31) SuUt=us".

Both S and S’ are static operators. U* is anti-causal and 2/~! causal. The the right side
of equation (31) is causal and the left side is anti-causal. So the both sides of equation
(31) are static, and thus /™! must be equal to a multiplication by some E € L(U) with
bounded inverse. This together with equation (30) implies A’ = N'E = Ny and also by
the definition of U we obtain X' = E~1X = Xp. Finally (31) gives ' = E*SE = Sg.
The statement about the S-unitary parameterizations is trivial, and the proof of the
proposition is now completed. [J
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The existence of (J, S)-inner-outer factorization of D will provide us with useful informa-
tion about the properties of the the Toeplitz operator 7, D*JD#,. The following lemma
is the main result of this section:

Lemma 22. Let @ = [4' B3] be an I/O-stable DLS. Let J € L(Y) be self-adjoint and
S € L(U) self adjoint with bounded inverse. If D has a (J, S)-inner-outer factorization
(N, X) with X having a bounded inverse, then the following holds:
(i) ® is J-coercive.
(i) The inverse of the Popov operator operator 7, D*JD7 ., satisfies
(7 D* D7) = (e X 7Hy) S™HEL (X)),
(iti) The critical operators A, Co* and K can be written in forms

AT = 4 - BX~ 1S 17, N JC,
Cerit = C — NS~17,N*JC,
Kot = _x~1S-1n, N*JC.

Proof. We prove parts (i) and (ii) at the same time. Given 7, f € £2(Z,;U), we try to
solve the equation
(32) 7, D* DR =T, f
for #,4. Replace D by N X and use the fact that A is (J, S)-inner to get
Fof = R XSXRLA

Applying S~1#,(X*)~! to this equation, and using the anti-causality of X* and causality
of M~! gives

(ST (X)) NEL f = (ST (X)) (R XS X7, )
(33) = S7MAL(AX) 'y AL ATL)SAXT L = STHFERL (X)X L) SX TG = ATy,

which is equivalent to
(34) Fod= XS r, (X)L S

This 7.4 is the only possible solution to equation (32), and accordingly #,.D*JD7, is
injective in £2(Z;U).

To check that this really is a solution, it suffices to compute
(7 D*JD7L) X718 7 (X)) . f = 7, DI (DAH)S 2, (X)L f
=T X NINS N (X)) f = (R X S(X) '3y ) 7 f = 74 f.

So there is a solution for each 7, f € £2(Z;U), and it follows that 7, D* JD7,. is surjective.
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Thus #,D*JD7, is a bounded bijection between two Hilbert spaces. It follows that
74 D*JD7, must have a bounded inverse; i.e. ® is J-coercive. The inverse is given
by formula (34). This proves the first two claims of the lemma. In order to prove the
remaining claim (iii), is is sufficient to apply the formula of claim (ii) to the formulae of
Definition 7. This completes the proof of the lemma. [

Corollary 23. Assume that D is an I/O-map of an I/O-stable DLS & having a (J, S)-
inner-outer factorization (N, X). Then X7, has a bounded inverse if and only if ® is
J-coercive. When the equivalence holds, then S~! € L(U).

Proof. The “if” part is proved as follows. For a (J, S)-inner-outer factorization (A, X)
we have 7,D*JD7, = 7, X*SX7,. The bounded, causal and shift invariant oper-
ator X is an I/O-map of an I/O-stable DLS. From J-coercivity of & it follows fur-
ther that this DLS is S-coercive, too. Now range(X7,) is closed, by Proposition 6.
The “only if” part is claim (i) of Lemma 22. The remaining claim follows by writing
S = ((X74)*) (7 D*JD74)(X75) L. So the (static) operator S has a bounded inverse
in L(#*(Z,;U)) and immediately also in £(U) (see [21, Lemma 14]). O

5 The critical control in feedback form

In this section we give necessary and sufficient conditions for a class of critical control
problems to be of the feedback form as defined below. This class is associated to I/O-
stable and J-coercive DLS’s, with the additional requirement that the critical one step
feedback operator K = moK™ is bounded. We remark that this latter requirement is
imposed on the common structure of ® and J, and not on these objects separately. The
exact formulations and proofs of the results are divided into two Lemmas 25 and 26, and
then stated in Theorems 27 and 28.

Let & = [4' Bz’ be an I/O-stable and J-coercive DLS, with K" bounded. We have
seen in Lemma 11 that the closed loop feedback map K¢ is a valid observability map for
a DLS having the critical semi-group generator A°* as its semi-group generator, provided
that no trouble emerges with the right hand column of the DLS in question. This gives
us a reason to ask the following question: Is there an I/O-stable feedback pair [KC, F] for
the original DLS ® such that the extended system

Kl |F

Al Br+
(35) ot = [@,[K, F]] = ([c] m)

has the following properties:
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(i) Both the extended DLS ®*** and the closed loop extended DLS

Al By
o -toren.- | ]

(36)

(Z-F)K

AT+ Bri(I - F)"'K Br¥i(I - F)!
—‘{ (I—f)-l—zﬂ

[ C+D(I-F)'K } { DI - F)!
are I/O-stable.
(i) With initial value zo € dom(C) and zero input, ¢ outputs the critical state se-

quence {z5(2o)};»0, critical output §*(zo) and critical control @ *(z,) of the
original system &.

For a fairly thorough exposition of the feedback DLS’s and their stability properties, see

[9]. The feedback connection and signals of the closed loop system ®¢* are illustrated in
the following figure:

Zg

27 (2 B
E26 3

We give a name for this situation:

Definition 24. Let J € L(Y) be self-adjoint and ® = [4' Br’] be an I/0-stable J-
coercive DLS. If its critical states, outputs and controls are of the form described above,

we say that the critical control of ® is the of feedback form. The feedback pair [K,F] is
called a critical feedback for .
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Now we have made enough preparations to attack the first part of our problem.

Lemma 25. Let ® = [4' 877 | be an I/O-stable DLS and J € L(Y) self-adjoint. Assume
that the following holds:

(i) K% = moK is bounded,

(i) D has a (J, S)-inner-outer factorization (N, X) such the outer part X has a bounded
inverse.

Then the following holds:

(i) ® is J-coercive.
(i) [K, F] is an I/O-stable feedback pair for ®, where the operators K, F are defined by
(37) K:=-S"'7, N*JC,
F=T-2X.
(i4) The critical control of ® is of the feedback form with the critical feedback pair [KC, F].

(iv) If, in addition, ® is output stable, then [K, F] is a stable feedback pair for ®; i.e. K
s bounded.

Proof. Claim (i) follows directly from Corollary 23. In order to prove claim (ii) we show
that [4 Br’] is an I/O-stable DLS. We have

KA=-8'% N*JCA= -8 "7 N*7,7°JC = =S~ 7, N*1* JC
= -S77 TN IC = 7 T (ST NP JC) = 7oK,

where we used the fact that A™* is anti-causal and shift invariant, and S is a static operator.
Furthermore, a similar calculation yields

KB = -8, N*JCB = —§~ 7, N* (7, JDr._)
= 57 N*IDr_ = —S~Y&, (N*JN) Xr_
= _7_T+S—ISX7T_ = “7?+X7T_. P -'R+(I—" .7:)7(_. = 7?4..7:71'._.

So the pair [K, F] interacts in the expected way with A and B.

By Proposition 19, mo(Z — F)lmg = mgX~1my = X1, where X, X! € L(U). Now we
obtain

Kcrit — ﬂ_OK:cr‘it — ’/T{)(I — ]T')"I]C o= 7;’0(1' — f)—lﬂ’olc = X"l 'ﬁ'oK:.

Because oK% is bounded by assumption, so is 7oK. Now we have proved that [A’ Br*i ]
is an I/O-stable DLS, if we just note that F = 7 — X is a bounded operator, because X
is.
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It follows directly from equation (37) that dom(C) C {zo € H|Kzo € #(Z;U)} =
dom(K) because all the other operators S~!, N'* and J are bounded operators between
appropriate spaces. Finally we see that Z — F = X has a bounded causal and shift
invariant inverse. So the pair [K, F] is an I/O-stable feedback pair for ®, by [9, Definition
18]. This proves claim (ii).

The proof of claim (iii) is rather straightforward. First we note that because D has a (J, S)-
inner-outer factorization with the outer part having a bounded inverse, it is by Lemma
22 J-coercive. From [9, Lemma 18] we get the formula for the closed loop extended DLS
Pzt = [<I>, K, 7:]]0

A+ Bri(I - F)7'K Brii(I — F)~!
@?:{[C+DU—$Y%} [va~frl}]
(T-F)'K T-F) -1

By using the definitions of K, F, and the fact that D = N X, we obtain from the previous
[ AT - BX ISR NIC BX T
C—~ NSz, N*JC N

|| XIS NG
B (Acrz't)j BX—-l,r:j
— Ccrit N ,

i K:crit X-—l -7
where the latter equality follows from Definition 7, claim (ii) of Lemma 8, claim (iii)
of Lemma 22 and I/O-stability of ®. It is now clear, that this DLS outputs the critical
signals with zero input, as desired. The I/O-stability of ®¢** follows from the boundedness

of N, X! by Definition (18). Claim (iii) is now proved. The proof of the last part (iv)
is trivial. This completes the proof of the lemma. O3

(38) o5

i

X1-1

We remark that Proposition 21 gives a parameterization for the critical feedback pairs.
In fact, all the critical feedback pairs are parameterized this way, because the previous
lemma has the following converse:

Lemma 26. Let & = [4' B’ | be an I/O-stable DLS, and J € L(Y') be self-adjoint. Let
[K, F] be an 1/0-stable feedback pair for ®. Assume the following:

(i) ® is J-coercive.
(ii) The critical control of ® is of the feedback form with the I/O-stable feedback pair
[, F].
Then the following holds:
(i) There ezists a boundedly invertible S € L(U) such that (N, X) is a (J, S)-inner-
outer factorization of D, where

(39) X:=I-F,
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(40) N =DX},
where X has bounded inverse.

(it) The critical one step feedback operator satisfies K L‘,(H, U).

Proof. The main part of this proof lies in showing that claim (i) holds. Define N, X as
in equations (39) and (40). By using the closed loop formula for $¢* := [@, [K, F]], and
the fact that D = N X! in ¢2(Z,;U), we obtain

XK X1-1

(Ac'rit)j Bleij

_ " cerit N ,
i lccn't X-—~1 -7

[ A/ — BX~r9K BX-lrv
(41) et = C+DX“1ICJ [ N }

where the latter equality follows from the assumption that the critical control of ® is
of the feedback form with the I/O-stable feedback pair [KC, F]. See Definition 7 for the
definitions of K and C*, and Lemma 8 for their basic properties.

We show now that (A, X) is a (J, S)-inner-outer factorization of D for some S € L(U).
By the definition of the operators A/, X we have D = N'.X. Because & is I/O-stable and
J-coercive, it is by Proposition 20 sufficient to show that X := T — F is a S-spectral
factor of D*JD for some S € L(U). For this aim we try to find an invertible S € £L(U)
satisfying

(42) D*JD = X*SX.
Let the operator Z be given by

D*JN =D*JDX ™! = X*S =: Z*,
We show that Z* := D*JN is anti-causal; i.e. 7, X*71_ = 0.

Let @ € dom(B) = £*(Z_;U) N Seq(U) be arbitrary. Then 7_X~'z_i € dom(B) by
causality, and we can set xo = Br_X~'n_ii = BX~'r_i. We have range(B) C dom(C),
by [9, Lemma 39] and I/O-stability of ®, and consequently zo € dom(C) C dom(Ct).
We can write for the critical control for DLS ¢

(43) gcrit(zo) — Ccritxo — Ccrit(Bxul) — 7?+N71‘..ﬂ;

this holds because ®¢** is the I/O-stable DLS of formula (41) outputting the critical
control for ® with zero control, and the fact that C* is the observability map and BX ™!
is the controllability map for ®*t.

Because z € dom(C), we have by formula (10) of Lemma 4

(44) 7o D*J§ (zp) = 0.
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Now the equations (43) and (44) together give 7, D*JN7_4 = 7, Z*n_ii = 0 for all
% € dom(B). Because dom(B) is dense in £2(Z_;U), and X* is bounded, it follows that
Z* is anti-causal.

Because D*JD is self-adjoint, we have
D'ID=ZX=X"Z2,
or equivalently,
(45) A (XY IDIDX T = (ZXY) = ZXx7L

Because (ZX7!)* is anti-causal and (ZX~!) is causal, it follows that (X*)"'D*JDX !
is a static operator. Thus it is a multiplication by a self-adjoint operator S € L(U).
Clearly S has a bounded inverse, because both X~! and Z have; the latter requires the
J-coercivity of D*JD. So the existence of the required S in equation (42) is established,
and (N, X) is a (J, S)-inner-outer factorization of D. This completes the proof of claim

(i).

The remaining claim (ii) follows directly from the definition of the I/O-stable feedback
pair, because K% = (I — F)~1K, by the closed loop formula (41). This completes the
proof. [J

Now we are ready to present one of the main results of this paper. The next theorem
tells us that under certain conditions, the spectral factorization problem of an I/O-map
is equivalent with the problem of writing the critical minimax control of a DLS in the
feedback form.

Theorem 27. Let & = [4 857 ] be an I/O-stable DLS, and J € L(Y) be self-adjoint.
Then the following conditions (i) and (ii) are equivalent:

(i) a) ® is J-coercive,

b) There is an I/O-stable feedback pair [KC, F] for ® such that the critical control
of ® is of the feedback form with the critical feedback pair equaling [IC, F].

(i) a) There is a boundedly invertible operator S € L(U) such that D has a (J,S)-
inner-outer factorization (N, X), with the outer factor X having a bounded
inverse,

b) mN*JC € L(H;U).

Furthermore, if the above conditions hold, then both ®°* := [@, K, f]} and ¥ are
I/O-stable.

Proof. (i) = (ii) is a direct consequence of Lemma 26. In order to prove (ii) = (i) we first
note that if (M, X') is a (J, S')-inner-outer factorization of D then by Proposition 21 there
is a (J, S)-inner-outer factorization of D such that the static part satisfies moX " 1mg = I.
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Next we prove that K = noK* € L(H,U). By claim (iii) of Lemma 22 and causality
of X! we have

Kcrit = ’n‘oK:crit = “-’R'QX-IH'Q . WQNtJC

Now mo X ~'mg is bounded with bounded inverse, by Proposition 19. It follows that K<t
is boundedly invertible if and only if mA/*JC is, giving part b) of (ii). Now an application
of Lemma 25 completes the proof of the implication (ii) = (i). O

The following theorem states how the stabilities of the open and closed loop critical
systems relate to each other. We remark that the output stability of an I/O-stable J-
coercive & is a sufficient condition for the stability of the critical feedback pair [K, F].

Theorem 28. Let ® = [4' B’ | be an I/O-stable DLS, and let the feedback pair [K, F]
be stable. Then:

i) @ is input stable if and only if ® is.
<&
(i) @t is output stable if and only if ® is.
i) D is stable if and only if ® is.
©
i) P is strongly stable if ® is.
<

Proof. See [9, Theorem 51]. [

6 The Riccati equation system

In the rest of this paper, a Riccati equation theory is developed for the minimax control
problem introduced in Section 3. In the final Section 8, an equivalence result is given;
we shall link together the Riccati equation theory of this section and Section 7, and the
critical feedback theory of the previous sections.

Let J € L(Y) be self-adjoint and ® = [4 B82’] be an I/O-stable J-coercive DLS. We
show that the critical cost sesquilinear form P, ), introduced in Definition 14, satisfies
a Riccati equation system, provided that D has a (J, S)-inner-outer factorization. A
converse result to this is given in section 7.

Definition 29. Let J € L(Y) be self-adjoint and ¢ = (A B) be an I/O-stable DLS.
Let P(, ) denote a conjugate symmetric sesquilinear form, P(,): Hx H D dom(C) x
dom(C) — C. Then the conjugate symmetric sesquilinear form Ap(,) on U x U defined
by

AP(’U.(), Ul) = (DUQ, JD'&1>Y + P(BUQ, B’U.l)

is called an indicator of the sesquilinear form P(,) (associated to ® and J ).
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The indicator Ap(, ) is well defined on the whole of U x U. The possible problem would
arise if we had to go outside the domain dom(C) x dom(C) of P(, ) for some ug € U.
However, by I/O-stability of ®, BU C dom(C) (see [9, Definition 37 and Lemma 40]). For
the particular sesquilinear form P°*(, ) more can be said:

Proposition 30. Let J € L(Y) be self-adjoint and ® = (4 B) be an I/O-stable J-coercive
DLS. By P%(, ) denote the critical cost quadratic form as defined in Definition 14. Then
there ezists a unique self adjoint operator AZ® € L(U) such that the indicator Aperie(, )
satisfies

Apcrit(uo, 'Ual) = <Agitu01 u1>U 3
where

AZ® := D*JD + (C"*B)*J(C™*B)

Proof. The claim immediately follows, once we remember that by I/O-stability CB €
L(U, H). Then KB is bounded by the definition of K“*, and so is
CT%B = (C* + DK *)B. This makes it possible to speak about (C**B)* as an ad-
joint of a bounded operator. The self-adjointness and uniqueness of AZ™ is clear. [

In the following lemma we couple P #(, ), the indicator Ag® and the critical one step
feedback operator K := my* together .

Lemma 31. Let J € L(Y) be self-adjoint, and ® = (4 B) be an I/O-stable J-coercive
DLS, such that K% is bounded. Then P%(, ) satisfies the equations

(46) P A4, Bwg) + (C™zq, JDwg),, =0
(47) Peri( Azg, Bug) + ((AZ*K + D*JC)zg,we), = 0
(48) AZHK gy = — ((CT*B)* JCT#A ~ D*JC) 2

for all 4 € dom(C) and we € U, and

(49) P Azo, Az1) — P (20, 71) = ((KTH)*AF K" — C*JC)zo, 71)

for all zy, 2, € dom(C), where K* := oK% as in Definition 7, A% := A+ BK“® qas
in Definition 10 and C°#* := C + DK°,

Proof. In order to establish equation (46), we start with Frechet differentiating the identity

J(zo, K%z + €(moh + 7K Buy)) s
= J(zo, (mo(@(zq) + ew) + AT Az + B(ug™(z0) + ewp))))
= <Ccnt1'0 + eDwy, J >Y + Perit (Azy + B(y, Cnt(:l?g) + ewp), (—,, -))
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with respect to € at € = 0, where @ := {w;};>¢. This derivative must equal zero, by the
definition of K. We obtain the equality

Re (P*(A"z0, Bwo) + (C %9, JDuwy), ) = 0.

This is as well true for the imaginary part, too. Equation (46) now follows.

The proof of equation (47) is based upon equation (46). We have by a straightforward
calculation starting from the definition of Aperit

Aperst (K20, wo) 1= P*(BK ™z, Bwo) + (DK™ "z, JDwy),,
= P Az, Bwg) + (C7*zo, JDwp),,
— P Az, Bwg) — (D*JCzo, wo)y -

This proves that equation (47) is equivalent to equation (46).

Equation (48) follows immediately from equation (47) and the definition of P°™(, ). The
proof of equation (49) is based on Lemma 11 and the first part of this lemma. Lemma 11
implies
1361'1113(chr‘it‘,‘co7 Acritxl) — <Cc7‘itAcritx0’ JccritAcrit
= (F47"C o, Ty 7" JCT 2y ), (Zas)
= (Cz,, Jccrit$1>e2(z+;y) — (Cg,, JCTz, ).,
= P%(zy,31) — (C*x, JCT¥zy),, .
A straightforward calculation, using A" := A + BK° and C°* := C' + DK, gives
P Azo, Azq) — P (29, 71) + (C*JCmo,21)
= —P"*(BK“ "z, Az1) — (DK "z, JCzy),
— P"*(Azo, BK"x,) — (JCzo, DK™1,),,
— P BK“zy, BK“"z,) — (DK%, JDK C’itx1>y
= — [PTHBK 35, A1) + (DK ¥z, JCT¥3,) ]
+ [PTYBK*z9, BK"11) + (DKo, DKz, ), |
— [PTH(A gy, BKHzy) + (JC 5y, DK )y )
+ [P(BK z,, BK‘”‘:z:l) — (DK *zo, JDK"*z,) ]
~ Aperit (K% z9, KT 1,)
= — [PTYBK 5y, A1) + (DK 30, JCT¥1,), ]
[P#(AT o, BKT3,) + (JCzq, DK Ty )
+ Aperit (KT zg, KT4x1) + Aperit (K49, KT%21) — Aper (K2, K2,)

11 >52 (Z+;Y)

Now an application of equation (46) with K°zy, Kz, in place for wy, completes the
proof. [J

Under certain conditions, the indicator operator AZ* has a bounded inverse. At the
same time we get a connection between the (J, S)-inner-outer factorization of D and the
indicator. This is the contents of the following lemma.
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Lemma 32. Let J € L(Y) be self-adjoint and & = [4 B57 | be an I/O-stable J-coercive
DLS such that K% is bounded. By P(,) denote the critical cost sesquilinear form.
Assume that the conditions of Theorem 27 are satisfied. Then AE* € L(U) has a bounded
inverse.

Proof. Proving the case up = u; in sufficient. Choose any @ = moti. Let ®¢* be the critical
closed loop DLS given by equation (41) of Theorem 27. Then

. N - Cerit _
(50) (X_Jl\/; I) = (X“l 3 I) Mol + T (ICC"“) BX 1y,

by the basic properties of the ®¢*¢, where ug = moi with the identification of spaces
range(mo) and U. Here N := moN'my and X! := moX~'m, where X, X~! € L(U), by
Proposition 19.

Equation (50) implies
(51) (X' = D)= (X" = Dmeit + 7(KT*B) X 'up
& X neti = X Mmd + TKTEBX ",

for all @ = 7p#i. By taking into consideration the assumed spectral factorization D*JD =
X*SX (see Proposition 20), equation (51) implies

(52) J(0, X moti + @ BX "u))

= (D*JD(X 'mois + TaTHBX o)), (=05 =) iz, )

= (SX (X moli + 78 (BX o)), X (=, =) pz, )

= (SX(X-IWO'&), X(X—.l’lfgﬂ)>£2(z+;u) = <SUO, u())U
On the other hand, for all i = myi we have
(53)  J(0, X modi + 1T BX ug))

= <DX—1‘U,0, JDX~1UQ>Y -+ Pcrit(BX—.l’UQ, BX”I’LLO) = Apcrit(X—l’U.o, X—I’U.g).
Now the combination of equations (52) and (53) gives
(Sug, uo)y = Aperit(X 1uo, X 1ug) = ((X*) T AF* X ug, uo)

for all ug € U, where S € L(U) is self-adjoint with bounded inverse. The last equality is by
Proposition 30. Polarization ([18, Theorem 12.7]) implies now that S = (X*)~'Ag*X "
The claim of the lemma now follows, with AZ* := X*SX. O

Now we have made sufficient preparations to approach the main result of this section,
Lemma 35. We show that the Pi(, ) satisfies a Riccati equation system of the following

type:
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Definition 33. Let J € L(Y) be self-adjoint, and ® = [4 By’ | be an I/O-stable DLS.
We say that the sesquilinear form P(, ) satisfies the Riccati equation system (associated
to J and ®), if

(54) P(AICQ, Ail?l) -— P(Ig,xl) + (C*cho,ml)g
= <Q*PA;1QPx07x1>H

(55) (APUQ, u1> = <D*JD'U»0, U1>U + P(B'U,g, B’U,l)

(56) (prl, ’UQ) = - <D*JC.’E1, 'LLQ)U - P(Axl, B’U,g)

for all ug, uy,uz € U and 29, 71, 72 € dom(C), where the linear operators satisfy Ap, Ap' €
L(U) and Qp € L(H;U).

Given a self-adjoint J € L(Y') and an I/O-stable & = [4/ B7], the Riccati equation
system (54)—(56) in general has a plenty of solutions, of which only few are control
theoretically interesting. In the following definition we give a tool that can be used to
separate the interesting solutions from the non-interesting ones.

Definition 34. Let J € L(Y) be self-adjoint, and ® = [4 By’ ] be an I/O-stable DLS.

Let P(, ) be any conjugate symmetric solution of the Riccati equation system (54)—(56).
Then the DLS

v=(4 8)

is called the indicator DLS (associated to J and ®) of the sesquilinear form P(, ), where
the bounded linear operators Qp, Ap are as in Definition 33.

Now the main result of this section:

Lemma 35. Let J € L(Y) be self-adjoint, and & = [4 5] be an 1/O-stable DLS.

Moreover, assume that the equivalent conditions of Theorem 27 are satisfied. Then the
following holds:

(i) P(, ) satisfies the Riccati equation system (54)—(56) of Definition 33.
(i) For all o € dom(C), 4 € £3(Z4;U): P (z((zo, @), zk(xo, ©),) — 0 as k — co.

(#ii) The indicator DLS ¢perit is both I/O-stable and outer with bounded inverse.

To say that ¢p is outer means that the [/O-map of ¢perit is outer in the sense of Definition
18.

31



Proof. Let us first look at the solutions of equations (55) and (56) if we have P( ) =
P(,). By Definition 29, Proposition 30 and Lemma 32 there is an unique self-adjoint
boundedly invertible operator, the critical indicator AZ*, solving equation (55) with
P(, ) in the place of P(, ). Equation (47) of Lemma 31 implies that Qper := AFKerit
satisfies equation (56). By the conditions of Theorem 27, K" is bounded and 50 is @Q peric.

Now that we know what the operators Apeie and Qper:: are, we still have to check that
equation (54) holds with P*(, ) in the place of P(, ). This follows from equation 49 of
Lemma 31. This completes the proof of claim (i).

Claim (ii) is a direct consequence of Prop031t10n 15. It remains to show claim (iii) stating
that the indicator DLS ¢perie = ( - Qpcm A Pcm ) is both I/O-stable and outer with bounded
inverse. Equivalently, we must show that (& 5 ) is both I/O-stable and outer with
bounded inverse, because (Aperit)™! = (AZ*)~! is bounded by Lemma 32, and K<t =

(Agit) -1 Qpcn't .

Because the conditions of Theorem 27 hold, we have a (J, S)-inner-outer factorization
(N, X) of D for some S. By Proposition 21, we can find another (J,S)-inner-outer
factorization, say (N', X'), such that moX'ny = I. Use this factorization to construct a
critical I/O-stable feedback pair [K, F] in I/O-form by formulae (37).

Now we have mpFmy = 0 because X' = I — F. When writing [, F] in the difference
equation form, we obtain (K“*,0). But then the I/O-map of @pert = (gt 5,) equals
F —Z. It follows that ¢perie is I/O-stable and outer with a bounded inverse because
both the operators Z — F and (Z — F)~! are bounded, causal and shift invariant, by the
definition of the I/O-stable feedback pair [K, F]. This completes the proof. [

7  Solution of the Riccati equation system

In this section we give a converse for Lemma 31. We show that if the Riccati equation
system (54)—(56) of Definition 33 has a solution of a special kind, then the conditions
of Theorem 27 are satisfied. The speciality of the solution is in the requirement that the
indicator DLS ¢p, must be both I/O-stable and outer with a bounded inverse. We start
with a fairly technical preliminary proposition.

Proposition 36. Let ® be an I/0-stable DLS. Let P(, ) be a solution of Riccati equation
system (54)— (56). Let i@ € £3(Z4;U), zo € dom(C) be arbitrary. Then

(i) for ux = ux(zo, %) and z = zx(z0, %) we have

(58)  P(zk,zx) - P($k+1,$k+1)
= (J(Czy + Dui), (=, =)y = (A (=Qpzi + Apui), (—,, -))
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and for alln>1

(59) P(:Z,‘o, iEo) - P(l'n+1)$n+l)
= Z (J(Czi + Duy), (-, , Ny
k=0
— Z <A1';1(-—~Qp$k + Apug), (—,, _)>U'
k=0

(#) If, in addition, P(zi(xo, 1), zk(zo,@)) — 0 as k — oo for all & € 3(Z,;U) and
xo € dom(C), then

(60) (@0, @) = P(z0,20) + ) _ (A5 (-Qpze + Apwr), (—,, =)y,
k=0

where the sum converges.

(i) If, in addition, ¢p is I/O-stable, and P(zk(xo, @), 2x(zo, @) — 0 as k — oo for all
% € £3(Z+;U) and zp € dom(C), then

(61) J (2o, %) = P(z0, T0) + (A5 (CypTo + Dy, ), (
for all g € dom(C) Ndom(Cy,).

T ")>e2(Z+;U>

Proof. Claim (i) is proved calculating

P(zx,z) — P(Ty1, Th4r) = P(zk, 75) — P(Azy + Buy, Azy + Buy)
= P(zk, :Ek) - P(A:L‘k, A:Ck) - P(A.’Ek, Buk) - P(Buk, A:Ck) - P(Buk, Buk)

Because P(, ) satisfies the Riccati equation system (54)—(56), the previous equals:

= ((C*IC - QpAF' Qp)zs, 34,

+ ((@p + D*JC)xk, ur)y + (ur, (Qp + D*JC)zy)y

+ ((D*JD — Ap)ug, ug)y

= [(C"ICzx, k) g + (D" ICzx, ur)y + (ur, D*JCzx), + (D*J Dy, Uk )y
+ [(~QpAF' Qpzk, Tk} ; + (QpTh, uk)y + (uk, QpTa)y — (Apue, uk)y]

= (J(Czx + Duy), (—,, "))y - <A;1(“QP$1; + Apug), (—,, “)}U

where the last equality is obtained simply by grouping terms. This proves equation (58).
Equation (59) is now an immediate consequence.

Claim (ii) is proved by inspection of equation (59). We have for each n > 1

Z (A};l(‘“QF’xk + APU};)v ("’: ’ —-))U

k=0

= —P(20, To) + P(Tn+1, Tns1) + Z (J(Czx + Duy), (—,, Ny
k=0
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Now the sum in the right hand side converges absolutely as n — oo, because ® is I/O-
stable, o € dom(C) and @& € ¢*(Z,;U). By assumption, also P(zn41,Zn41) — 0 as
n — oo. It follows that lim, 00 D pes (A}’,l(—stck + Apug), (—,, --)) p €xists and satisfies
(60).

In order to prove the final claim (iii), note that the I/O-stability of ¢p implies that
the sequence {—Qpzi + Apuxtrso = CppZo + Dy, € £2(Z,;U), if 7o € dom(Cy,) and
% € £2(Z4;U). Then the sum in (60) represents an inner product of two ¢%(Z,;U)-
sequences, and thus converges absolutely. (1

Note that the intersection dom(C) N dom(Cy,) in claim (iii) of Proposition 36 is far from
empty for [/O-stable ®, ¢p. In particular, because B = By, and for I/O-stable systems
always range(B) C dom(C), it follows that range(B) C dom(C) N dom(Cy4,). A crucial
connection between a solution of Riccati equation system and a certain factorization of
the Popov operator is given below.

Lemma 37. Let J € L(Y) be self-adjoint, and ® = ['}; BrJ ] be an I/0-stable DLS. Let
P(,) be the solution of the Riccati equation system (54)—(56) of Definition 33 such that
the indicator DLS ¢p is I/O-stable and P(zi(zo, %), x(zo, %)) — 0 as k — oo for all
i € £2(Z,;U) and zo € dom(C). Then there is a factorization

(62) D*JD = D}, Ap'Dy,.

Proof. The both sides of (62) are bounded, causal and shift invariant operators. We prove
that their Toeplitz operators are equal. For all @ € ¢2(Z,;U) we have

(63) J(0,2) = (D*IDE, Wz, 17y -

By linearity of P(zy,z;) in zo we get P(0,0) = 0. Then by claim (iii) of Proposition 36
we have for all @ € 2(Z.;U)

(64) J(0,%) = (D}, A5 Dy, i, i) PELD) -

By combining equations (63) and (64), and noting that 7, (D*JD — D;PA;1D¢P)¢Fr+ is
self-adjoint, we conclude equation (62) from

<(rD*']’D - D;PAI_’ID(ﬁP)ﬂ? ﬁ>€2(z+;U) =0,

because @ € £?(Z,;U) was arbitrary. This completes the proof. O

If P(, ) has the special property such that the indicator DLS ¢p is, in addition, outer
with bounded inverse, the the factorization of Lemma 37 can be put in a more familiar
form:

Corollary 38. Let J € L(Y) be self-adjoint, and ® = [4 By’ | be an I/O-stable DLS.
Let P(,) be the solution of the Riccati equation system (54)—(56) of Definition 33
such that the indicator DLS ¢p is I/O-stable and outer with a bounded inverse, and
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P (x4 (20, @), 2k (20, 4),) — 0 as k — oo for all 7y € dom(C), @ € ¢2(Z4;U). Then D
has a (J, Ap)-inner-outer factorization (Np, Xp)

Np = DD;;AP
XP = A;1D¢P,

where the outer part Xp has a bounded inverse.
Proof. The claim trivially follows from equation (62). O

Note that the I/O-map of the indicator DLS ¢p is a spectral factor of D, when the
conditions of Corollary 38 are met. The previous results are collected in the following
lemma, the main result of this section. It is the converse for Lemma 31.

Lemma 39. Let J € L(Y) be self-adjoint, and ® = [4' Br’] be an I/O-stable DLS
satisfying range(B) = H. Assume the following:

(i) The sesquilinear form P(, ) satisfies the Riccati equation system (54)—(56) of Def-
wnition 33.

(i) For all o € dom(C), @ € €3(Z4;U) P (zt(z0, @), T (20, %)) — 0 as k — oo.

(ii1) The indicator DLS ¢p is both I/O-stable and outer with a bounded inverse.
Then the conditions of Theorem 27 are satisfied.

Proof. We construct a critical I/O-stable feedback pair from the factorization (Np, Xp)
of Corollary 38. We start with writing the indicator DLS ¢p in I/O-form

A B Al BrY
(65) op = (—QP AP) a [’CP I- }.P}'
This defines the operators Kp and Fp. Because ¢p is I/O-stable and outer with a bounded

inverse, it follows that [Kp, Fp] is an I/O-stable feedback pair for ®. We need one more
operator

Ky = —7, N3 JC.

K' is a linear operator from dom(C) — £3(Zy;U). A similar calculation as in the proof
of Lemma 25 implies that KA = #,7*Kp in dom(C), and KpB = #(Z — Fp)7_ in
dom(B). If we can show that K := mKp : dom(C) — U is bounded, we can extend it
continuously to the whole of H, because dom(C) = H. This would make the system

[Aj Br ]

(66) Ko T-Fp
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an I/O-stable DLS whose I/O-map is outer with a bounded inverse. Furthermore,
(67) KT = (T — Fp) Kb,

which is proved by applying the (J, Ap)-inner-outer factorization (Np, Xp) on the formula
for K in claim (iii) of Lemma 22, and noting that 7 — Fp = ApXp.

The systems in equations (65) and (66) are remarkably similar. We know that [Kp, Fp]
is an I/O-stable feedback pair for & but we do not know whether it is critical. We do not
know that [K, Fp] is a feedback pair but if it is, then it is critical, by equation (67). We
complete the proof by showing that the operators meKp, moKp coincide.

Because the I/O-maps of the systems (65) and (66) are equal, we can write for each
% € dom(B)

ﬂg’CP(Bﬂ) = 71’0(1. - Fp)’lf_’& = 770](:’}:(8’&)

Because the operator mgCp = —Qp is bounded in the topology of H by Definition 33,
and range(B) = H, it follows that also Kp = K’ : range(B) — U is densely defined
and bounded in H. K} can now be identified with its bounded extension to the whole of
H. This proves that the system (66) is a DLS and furthermore Kp = K. This completes
the proof. [J

8 Equivalence results for I/0O-stable DLS’s

The main theorem of this paper is a conclusion of Theorem 27 and Lemmas 31, 39.

Theorem 40. Let & = [4 857 ] be an I/O-stable DLS, and J € L(Y) be self-adjoint.
Assume that range(B) = H. Then the following conditions (i), (ii) and (iii) are equivalent:

(i) a) ® is J-coercive.
b) There is an I/O-stable feedback pair [KC, F] for ® such that the critical control
of ® is of feedback form with the critical feedback pair [KC, F).

(i) a) There is a boundedly invertible operator S € L(U) such that D has a (J,S)-
inner-outer factorization (N, X) with the outer part X having a bounded in-
verse.

b) mN*JC € L(H;U).

(i) There is a solution P(,) = P“%(,) of the Riccati equation system (54)—(56)
satisfying

a) The indicator DLS ¢p is both I/O-stable and outer with a bounded inverse.

b) P(zk(zo, @), Zk(zo, @) — 0 as k — oo for all trajectories of & with zo € dom(C)
and @ € ¢*(Z,;U).
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When the equivalent conditions (i), (i) and (ii1) hold, then

e the corresponding (K, F] and (N, X) are related by formulae (37), (39) and (40),
e the corresponding (N, X) and P(, ) are related by Definition 84 and Corollary 38,

e the corresponding P(, ) and [K, F] are related as in the proof of Lemma 39.

In the light of claim (iii) of Theorem 40, conditions for the 1/O-stability of ¢p in terms of
P(,) would be useful. We remind that for I/O-stable and J-coercive &,
P (g (2o, B), zk(20, @) — O for zo € dom(C), @& € £(Z,;U), by Proposition 15. An
additional speed estimate for this convergence speed is the key observation.

Proposition 41. Let ® be an I/O-stable DLS. Let P(, ) be a solution of Riccati equation
system (54)—(56) such that P(zi(xo, %), zx(To, @) — 0 for all & € 2(Z4;U) and z4 €
dom(C). Then ¢p is I/O-stable if and only if

0

(68) Z |P(zk, k) = P(Trs1, Thy1)| < 00
k==0

for all i € £2(Z,;U) and zy € dom(C), where 2y = z4(20, ©).

Proof. For any self-adjoint, boundedly invertible operator T in a Hilbert space, the fol-
lowing estimate holds:

IT7HI™ (2, 2) < [{Tz,2)| < |ITl (2, 2)

Applying this with T = A} gives the equivalence:

(69) Zo.é l <A};l("QP$k + APuk): (“7 3 —)>U l <oo

k=0

if and only if

Z' <(_QP$k + APuk)a (-5 s “))U l = “{’prk + APuk}fI§2(2+;U) < oo.
==()

We first show that first (69) is equivalent with the boundedness of Dy, 7,; i.e. I/O-
stability of ¢p. Now let & € £2(Z,;U) be arbitrary and 2y = 24(0, %) = By, 7% = Br*/a.
Then {~Qpzr + Apur}r>o = Dy, 74t It follows that (69) holds for all @ € £2(Z,; U) if
and only if Dy, 7 £%(Z4;U) C £2(Z4;U) if and only if dom(Dy,74) = £2(Z4;U), where

dom(Dy,74) := {@ € £2(Z4;U) | Dy, i € £(Z4;U)}.

Dy, T4 is closed (see [9, Lemma 27]). It follows from the Closed Graph Theorem [3,
Theorem I1.1.9] that Dy, 7, is bounded because its domain is complete. Conversely, a

domain of a closed operator is complete only if the operator is bounded, by [3, Remark
I1.1.3].
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So it remains to prove that the conditions of (68) and (69) are equivalent. By I/O-
stability of ®, the sequence {(J(Czr + Dug), (—,, —))y }>0 in equation (58) is absolutely
summable. But then {({Ap'(-Qpzi + Apug), ('n"‘))U}kZO is absolutely summable if
and only if {|P(zx, k) — P(Zk+1, Zk+1)| k>0 is absolutely summable, just by looking at
equation (58). This completes the proof. O

So by Proposition 41, only the condition in claim (iii) of Theorem 40 that ¢p should
be outer with bounded inverse remains less concrete. It is easy to see that for power
stable systems this follows from the familiar requirement that P(, ) should be a (power)
stabilizing solution of the Riccati equation: if both p(A) < 1 and p(A + BKp) < 1 then
¢p is both I/O-stable and outer (see {12], [13]). For infinite dimensional power stable
result we refer to e.g. [4], [14].

Let us briefly reiterate from [17] the classical results for the existence of outer factorizations
in the case when the Popov operator #,D*JD7#, is positive (and the input space U is
separable). It is well known that such Popov operators arise e.g. in the study of linear
quadratic optimal control problems and in the factorization versions of Bounded and
Positive Real Lemmas (see [24, Section 8]).

By [17, Theorem 3.4], a positive self-adjoint Toeplitz operator 7,17, has a factorization
7 TRy = T X* X7, with outer X if and only if it has a factorization 7, T7, = T, A* A%,
where A is some bounded, causal and shift invariant operator. Such an operator always
exists if the Toeplitz operator is coercive: #,T7, > €Z for ¢ > 0 by [17, Theorem 3.7].
See also [21, Lemma 11] and [26, Proposition 4.2., p.201 and Remark, p.204 |.

If we have #,.T#, = #,D*JD®, >> 0 (i.e. positive and coercive), then the existence of
a bounded outer factor X follows. A trivial sufficient condition is for the positive cost
functional J >> 0 with ® J-coercive.
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