1. INTRODUCTION

We continue the investigation of (apparent) singularities of ordinary differential sys-
tems which was started in [12]. By a differential system we mean any system of ODEs
or DAEs, of any order. This large class of systems can be handled in a uniform way
using jet spaces.! Differential systems are then submanifolds of certain jet spaces, and
their solutions are integral manifolds of certain distributions.

We will see that this geometric point of view allows us to regularise some singular
systems, i.e. we can replace the original singular system by a regular one. In some
cases simply formulating the problem with jets makes the singularity disappear. All
the tools we use are constructive, hence useful also to more realistic problems appearing
in applications.

The regularised systems thus obtained can also be used for numerical computations.
The discussion of actual numerical methods, however, is outside the scope of the present
article, see [13] and [2].

2. BASIC DEFINITIONS

We recall here briefly some notions that are needed below. For more information we
refer to [11] (standard differential geometry) and [9] (jet spaces).

We will use the convention that the components of the vector are indicated by super-
scripts and the derivatives (or jet coordinates) by subscripts. All maps and manifolds
are assumed to be smooth, i.e. infinitely differentiable. The differential (or Jacobian) of
a map f is denoted by df. Let M be a manifold. The tangent (resp. cotangent) space
of M at p € M is denoted by TM, (resp. T*M,) and the tangent (resp. cotangent)
bundle of M by TM (resp. T*M). Let M and N be manifolds and let « be a section
of T*N (i.e. one-form). Given a map f : M — N we can define a section of T*M by

fra(Vy) = a(df(V}))
where V, € T'M, and f*« is called the pull-back of @. Let £ = R x and let us

R
denote the ¢’th order jet bundle of £ by J,(£). The coordinates of .J,(€) are denoted
by (,y,%1,...,Y,). Let us define the one forms

n

(1) a(i7j):dy;—y;+1da: 1=1,...,n j=0,...,q—1
Each «y j) is then a section of TJ,(€). Let us further define
Cp= {Up € (TJq(g))p | Q(4,5) (Up) = 0}

Hence C'is a n+1 dimensional distribution on J,(£). Now let us consider the differential
system

(2) f(x7y7y17"'7yq):0

where f : J,(£) ~ RetUn+l 1y RE Let M = f71(0) and let us define a distribution
D on M by

D,=TM,NC,
Now supposing that the system is involutive and that D is one-dimensional we can

define the solutions as follows:

In particular there is no difference between ODEs and DAESs, so the term DAE is superfluous in
jet space context.
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Definition 1. Solutions of the involutive system (2) are integral manifolds of D.

Since one-dimensional distributions always have integral manifolds, we conclude that
there always exist solutions to our problem.

Note that it is absolutely essential that the system is involutive: otherwise it is pos-
sible that the distribution D is one-dimensional, although (some of) the corresponding
integral manifolds are not really solutions in any reasonable sense. Since the involutiv-
ity is not explicitly needed in the sequel we refer to [10], [8], [5] and [13] for a further
discussion of this important concept. Some elementary examples of applications of jets
to differential equations can be found in [1].

3. RESOLUTION OF SINGULARITIES

Basically we consider a differential system (or equation) as a submanifold of a jet
space, but in general any manifold M with one-dimensional distribution D on it, may
be interpreted as a (system of) differential equation(s). The word singular(ity) can be
used at least in the following senses.

1. M is not everywhere smooth manifold.

2. dim(D,) > 1 at some points of M.

3. Solution curves (or their projections) are not everywhere smooth.
4. Classical distinction of general versus singular solution.

We will not consider the last one of these; for an extensive discussion of this problem
we refer to a recent thesis [7]. Usually in any problem there are some sets where
dim(D,) > 1 and the problem is then to analyse the qualitative behavior of solutions
near these sets. This is related to (but more general than) analysing the solutions near
zeros of vector fields. This problem is outside the scope of the present article and we
refer to [1] for some examples.

Below we will consider cases 1 and 3, and also 2 when dim(D,) > 1 ‘unnecessarily’.
We will show that sometimes it is possible to resolve the singularity in the sense that
the original problem can be replaced by a regular one whose solutions correspond to
the solutions of the original problem.

3.1. Regularisation by introducing jets. Let us consider the following problem

f(xay:yl) = x(y1)2 —2yy1 —x =0
From the traditional point of view there is a singularity at x = 0. However, putting

E=RxRand M = f~10) C J1(€) we see that M is everywhere smooth. The
distribution D whose integral manifolds are solutions is given by the nullspace of

A= (1) =1 =2y 2zy —2y
— 1 0

Obviously the rank of A is two on M; hence D is everywhere one-dimensional and
the problem is regular. So in this case simply introducing the jet spaces made the
(apparent) singularity disappear. The projections of the solutions to £ (a family of
parabolas) give the lines of curvature around an umbilic, see [11, vol. 3] or any book
on classical differential geometry. Note also that M \ {y;—axis} covers doubly & \ {0}.
Projecting the distribution from one of the sheets to £\{0} gives an elementary example
of the fact that singularities of distributions are more general than singularities of vector



fields. Indeed, there is no vector field around origin which would span the projected
distribution.

3.2. Regularisation by prolongation. Consider again the general system (2) and
let M = f=1(0) C J,(E).

Definition 2. The prolongation of f, denoted by pi(f), is a system obtained by putting
together f and its total derivatives. The zero set of pi(f) is the prolongation of M,
denoted by p1(M) C J,41(E).

Let us start with a simple problem

f(r7y7y1) :xyl_y:()

whose solutions are y = cz. Againlet £ = R xR and M = f~1(0) C J1(£). Obviously
M is smooth, but the distribution is not one-dimensional at x = (. Note that the
codimension of the set where the distribution is not one-dimensional should be two,
see [12] for a discussion why this is so. Here the codimension is only one. Now taking
the total derivative of f we obtain zy, and retaining only the relevant factor we get
the system

ry1 —y =70
3) { Yy2=0
This defines a regular problem in J5(€). The distribution can in this case readily be
projected back to J,(€) and to M, so we get a regular problem on M.

Taking another point of view, one can say that the ‘wrong’ codimension indicates
that the problem is not generic. Indeed, considering the equation xy 4+ ay; = 0, it is
easily checked that the codimension is two (for a # 0), except for the value a = —1.
Hence it depends on the intended application whether it is more appropriate to produce
a regular system (3) or to perturb the coefficients to get a generic problem.

Let us then consider another example where prolongation resolves the singularity.

(4) fla,y,y) =) —2n -y —y*+1=0

This defines a curve in the (y,y;)—
plane with a double point at (0,1).
We denote this curve by K and hence
M = f710) = RxK. The set of sin-
gular points, i.e. the points at which
df vanishes, is S = R x {(0,1)}.
Now the geometry of M suggests
that through each point of S there
could pass two smooth solutions, see
the picture on the right.

In € this would mean that at each point of R x {0}, there are two solutions which
meet tangentially. Now if two curves intersect tangentially, one expects that in general
their second derivatives would not coincide (note that M intersects itself transversally)
and hence we would obtain a regular situation if the information on second derivatives
were also available.



To this end we prolong f and get the system

pi(f) : () —2hn -y —y*+1=0
"\ 2v1ye — 292 — 3y — 2yy1 =0

Let us denote the zero set of
these equations in (y, 1, y2)—space
by pi(K) so pi(M) = R x pi(K) C
Jo(E). Let m : p1(K) — K be the
projection induced by the projection
(v, 91.92) = (y,41). Now we would
like m to be bijective in a neighbor-
hood of (0,1) € K, except that the
fiber of (0,1) should consist of two
points. However, the fiber of (0,1)
is the entire dotted line (0,1,ys) in
the picture. We would like to elimi-
nate this line somehow.

To proceed we need some elementary algebraic tools, see for example [4]. Note that
the components of p;(f) can be interpreted as elements of the ring Q[y, y1,y2]. Let T
be the ideal generated by pi(f). We are interested in the solution sets and therefore
we computed the prime components of the radical of Z, denoted by v/Z.2 This gave
VI =T, N T, where T, = (y,41 — 1) and

I, = ( (11)? = 2y1 — v — > + 1, 2190 — 2yo — 397y — 29y ,
2y(y+ D)yo — By +2)(y1 — D
(4 +4) (1) — (997 + 12y + ) ()? )

Because 7; is known a priori, the same result can be obtained by computing the radical
of the saturation of 7 with respect to Z, , i.e. Zy = /I : I°. Note that one does
not automatically get the ‘right’ number of equations, i.e. the variety corresponding to
7T is not a complete intersection. However, we need only the ‘piece’ of the variety in
the neighborhood of the singular set and by inspection it is seen that the second and
fourth generators give the desired representation. It would be nice if this could be done
algorithmically, i.e. given a (radical) ideal and a regular point p of the corresponding
variety M, compute a representation of M as a complete intersection in a neighborhood
of p. Perhaps the solution to this problem is well-known; however, we did not find it
in the literature.

Finally let us note that no point of p;(K) projects to (—1,1) € K. This is related to
the fact that if the solution is projected from J;(€) to &, then the projected curve is
not smooth at (z,—1). However, this is not problematic in our intended application,
since we need to prolong only in a neighborhood S. Hence if we follow numerically a

2The computations were performed with SINGULAR, which has been developed in the university
of Kaiserslautern by G.-M. Greuel, G. Pfister, H. Schonemann and their coworkers, see the web site
http://www.mathematik.uni-kl.de/~wwwagag/E /Singular.html



particular solution, we can do the computations in J; (&) until we get too close to S;
then we pass S in J5(€) and then switch back to J;(£) again.

3.3. Regularisation by pull-back. We will finally treat two examples where a con-
venient pull-back produces a regular problem. First consider the problem

f($7y7yl) = y(y1)2 —1=0

whose solutions are given by y* = $(z + ¢)%. Let M = f1(0) as usual. In this case
introducing jet spaces does not directly allow one to pass the singularity. Indeed fol-
lowing the solutions in M one would never reach the singular point; one could compute
only one branch of the solution at a time.

Now it is well-known that this type of singular curves are usually obtained by pro-
jecting a smooth curve on a fold. So the idea is to introduce a new manifold with a
fold in such a way that the original solutions can be recovered from this new setting
by projection.

In this simple case the solution is
rather immediate. Consider the map
o : (z,y,2) = (x,y,1/2) and let
M* = ¢~!(M). Taking the closure
of M*, i.e. adding the x—axis, we
get a smooth manifold M which is
evidently the zero set of g(z,y,z) =
y — 22, see the figure on the right.

Then taking the pull-back of @ = dy — y1dz we get p*a = dy — %d:v. Now recall
that we are not interested in one forms as such, only in distributions defined by them.
Hence we can multiply forms by non-zero functions and in particular we can replace
¢*a by 3 = zdy — dz. This can be smoothly extended to M.

So the original manifold is replaced by M and the distribution D on M is the

nullspace of
0 1 =2z
A= ( -1 =z 0 )

Clearly D is one-dimensional on M, so the problem is regular, and the original solution
curves can be obtained with projection (z,y,z) + (z,y). In the previous figure there
are some solution curves as well as their projections.

As our final example consider the following problem which is taken from [3].

Yy A= (2 —1/2)" —1=0
v PA— (22— 1/4)e" — 22 =0
()2 + (17 — (2 = 1/2) — (2 = 1/4)* =0



Of course we could denote A by y® and treat it in the same way as other variables.
However, the form of the system resembles the form of mechanical systems with holo-
nomic constraints and Lagrange multipliers, and in those cases, like in the present one,
A is not really needed in computations. Let £ = R x R?; since the system is linear in
derivatives, we do not need to work with .J;(£), because the distribution in J;(€) can
be projected to £. Indeed, differentiating the last equation and combining it with the
other two we obtain

10 ¢ Y1 (x—1/2)e" +1
(5) 0 TS v | = (22—1/4)e* + 22
y'oyr 0 A 213 +2/2—1/2

Now the distribution is given by the nullspace of

The linear system (5) can be solved, except on the z—axis, and computing further the
nullspace of A gives a one-dimensional distribution D on £ \ {z—axis}. In this simple
case one could compute D symbolically; however, this is not necessary. Let us define

flo.y) =)+ ") = (z = 1/2)" = (2" = 1/4)°

and let M = f1(0) C £. Evidently M is smooth except at the vertex p = (1/2,0,0).
The distribution D obtained above restricts further to M \ {p}.



Now in [3] it was observed that there
is at least one smooth solution go-

ing through p. To compute this so- /y\

lution numerically it would be nice
to have a smooth problem whose so-
lutions would give the original solu-

tions. To this end we introduce the T 1
V-1 HENEEE

map ¢ : (z,y) — (=, |‘Z| y) and

define M* = ¢ }(M). In the pic- 0

ture M* is shown above and M be-

low. Evidently ¢ is bijective, except -1

at the vertex, where the fiber is the
unit circle. This procedure of replac-
ing M by M* is similar (at least in
spirit) to blowing up in algebraic ge-
ometry, see for example [6].

Now we can define a distribution D*
by transporting the distribution D
from M to M* by (dy)*. In this case
we can work directly with distribu-
tions and do not need forms. Hence
we have obtained a regular problem.
The original solutions can be recov-
ered by the map

0 0.250.50.75 1

r<1/2

sy = { F0 TS

The appearance of this ‘discontinuous projection’ can be understood by rotating M*
in different directions for 2 > 1/2 and « < 1/2, and at the same time shrinking the
exceptional fiber to a point. Solution curves of the two systems correspond to each
other after a half turn.

In both examples the map ¢ was needed analytically. However, the choice of the
form of the map is not very critical. Also ¢ is required only locally near the singular
set, which further facilitates the choice of the map.
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