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Abstract

The bounded version of the ice-model of Statistical Mechanics is studied. We consider
it in a diamond domain on the Z>-lattice. The configurations sharing a boundary con-
figuration are shown to be connected under simple loop perturbations. This enables an
efficient generation of the configurations with a probabilistic cellular automaton. The
fill-in from the boundary is critically dependent on the values of the height function
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Introduction

The subject of this paper is the ice or six-vertex model. It is a classical model in
Statistical Mechanics and has been studied extensively. Essentially all the studies
have concentrated on the infinite model on some lattice or the finite one with toral
boundary condition. A summary of this work upto -82 can be found in [B].

Our study concentrates on the planar version of the model defined on a finite
domain with boundary. Square lattice is used partly because we wish to make
comparisons to other models with similar underlying discrete structure. For the
same reason we treat only diamond-shaped domains here. Our methods are strictly
two-dimensional and do not generalize to other dimensions but are likely to do so
to other planar lattices.

Although the results may have some relevance in understanding the geometry
of long range order in this model, our principal motivation is not physical. Rather
it comes from the context of tilings and symbolic dynamics. In a couple of seminal
papers Conway, Lagarias and Thurston ([CL], [T]) investigated the problem of tiling
a given planar domain with polyominoes. This was further extended by others,
notably for dominoes in [JPS]. On the basis of this work it seems feasible that
there could be a unifying theory for planar tilings and two-dimensional symbolic
dynamical systems. The latter naturally include many Statistical Mechanics models,
e.g. the dimers (dominoes), ice model, eight-vertex model, color models and yet
others. This program is now on its way and our paper is a small contribution.

The first problem to be resolved is the tileability - when is a given domain with
a boundary condition possible to tile with the primitives (dominoes, polyominoes,
lattice arrows etc.)? Immediately following this is the question of how many such
tilings are there? This leads naturally to entropy considerations. An other line of
investigation is how the legal tilings/configurations relate to each other - what are
the allowed perturbations/transformations? Can the entire set of configurations
with a given boundary be generated? What is the generic element like? We provide
answers to these and other questions.

Our work reveals a close connection between the ice and domino models. In
dominoes there are no boundary arrows to be specified, just the domain shape.
Turns out that a diamond domain is highly interesting in that context and that is
the case for ice as well. Both dominoes and ice have a non-trivial height function
which is of critical importance in the study. Moreover both models exhibit in the
case of non-trivial boundary height a rather striking boundary dependency: the
Arctic Circle Theorem of [JPS] has a more complex counterpart in ice-context. A
few comparisons are also made to the eight-vertex model, a seemingly close relative
of the ice model. But it has trivial height and it’s properties are quite different as
reported in [E2].



1. Basics

The six-vertex /ice model can be defined in any dimension and for all regular lattices.
Because of the tiling connection indicated in the introduction we consider only the
planar case here. Our methods rely critically on the two-dimensionality but they

may be applicable to other types of lattices than the one treated here.

Consider the square lattice in two dimensions, Z2. Every lattice site has four nearest
neighbors. Unlike in most statistical mechanics lattice models the vertex models do
not have any spin variables associated to the lattice points. Instead the variables

are the orientations of the arrows between nearest neighbor sites.

Definition 1.1.: An arrow configuration at a lattice site in Z? is legal for the
six-vertex rule if there are exactly two incoming arrows and two outgoing ones.
A configuration in legal if it has an allowed vertex configuration at every lattice

site.

The allowed vertex configurations are illustrated in the Figure. The numbers below
indicate the multiplicity of the arrangement. There are six possibilities, hence the

name of the model.

Figure 1a, b. Vertex configurations. Square lattice and its dual.

One can view the rule as incompressibility of a fluid or expressing a conservation
law for some other system. It’s main physical importance stems however from
the modelling of water molecule interaction at low temperature. The key physical
quantity, residual disorder at zero temperature, was solved by Lieb for the infinite

two-dimensional model in [L].

We concentrate in this paper on the finite case. The model is defined on a bounded
domain for which we have to specify the boundary arrows. This is still a rather
general problem. For a complicated domain shape it may be impossible to find
even one boundary condition that allows a fill-in and to construct it, much less to
construct all the configurations for the given boundary configuration.

For simplicity we consider a diamond domain and only occasionally point to

other cases. The reason for this is two-fold. Firstly a diamond has the cleanest
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boundary condition. Secondly we want to relate the ice model to certain other
models, in particular to the domino and eight-vertex models, for which diamond-
domain is important and has been analyzed. All results of this paper generalize
to rectangles standing at the corner but since this adds little insight we record the
results for diamonds only.

N-diamond is a subset of Z2 which has N arrows along each of its four diagonal
sides, N > 2, even. The total number of arrows is hence N2. One can think it to
be made of N2/2 — N + 1 unit squares each of which has four arrows as sides and
the neighboring squares sharing an arrow. Such domain contains N2 /2 + N lattice
sites. The boundary configuration of the N-diamond, which consists of 4N — 4

arrows, is fixed. We use the notation 0 to refer to the boundary.
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Figure 2a, b. Frozen and temperate diamond configurations.

In Figure 2. the fixed boundary arrows are rendered bold and the interior arrows
light. It exhibits two extreme configuration types. The names follow the convention
of earlier work; the highly ordered state on the left (the NE flow) is thought to
correspond to low-temperature regime in Statistical Mechanics models and the one
on the right high temperature/disordered regime.

To arrive at the first result characterizing the fill-in it is necessary to invoke
the concept of dual lattice. For Z2 this is particularly easy - it is said to be self
dual which means that it’s dual lattice is the same lattice, only shifted (formally we
write (Z + £)?). It is illustrated in Figure 1b.

Around each lattice point of Z? we can draw a unit square with edges along
the lattice lines of the dual. If this is viewed as a unit loop around the lattice point
the six-vertex rule simply says that the flux across the loop has to vanish. If we
consider a set of adjacent lattice points and the arrows at them we can form the

natural boundary loop for the set by adding up the unit loops. This is the minimal
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lattice path on the dual lattice that encircles the set. Since an arrow pointing out
from a unit loop points either out of the new boundary loop or into an other unit
loop we will see that the flux across the boundary loop has to vanish as well. Any

legal configuration must therefore have this property and we have arrived to

Lemma 1.2.: A necessary but not sufficient condition for a finite domain to fill-in

is that the flux across its boundary vanishes.

Remark: The concept of height in Section 2. will resolve the sufficiency.

2. Cycles

We now proceed to study how the configurations are related to each other. This
reveals the topological structure of the set of N-diamond configurations and also

leads to a method to generate all legal configurations.

The first observation is that at any vertex we can simultaneously flip the directions
of one incoming and one outgoing arrow. This is illustrated on the left in Figure
3. For any legal vertex configuration we fix one incoming and one outgoing arrow,
say a and b (not necessarily oriented as shown), and then flip each of the non-bold
arrows. This yields another legal vertex configuration at that lattice point. The
procedure holds for all six vertex configurations.

In the flipping of a single vertex configuration we violate the rule on two of
its neighbors. But if we reverse the arrows along a directed arrow loop (or in the
infinite model along a path from infinity to infinity) in the resulting configuration
all vertex configurations are again legal.

Let us call the simplest such action, the reversal of the arrows in a directed

1-cycle an elementary move.

d >

Figure 3. Vertex perturbation and elementary move on a directed 1-cycle.

Call the subsets of legal N-diamond configurations with the same boundary config-
uration cosets. Some sets of configurations are connected under reversal of directed
1-cycles (to simplify wording from this on 1-cycles will always be directed). The
natural question then is to characterize these sets i.e. the configurations that can
by constructed from a given configuration using a finite sequence of elementary

moves. Note that in the case of a bounded domain with a fixed boundary a cycle
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reversal can never reach the other cosets as the path to be reversed cannot contain

any boundary arrows.

1-cycles are actually not as rare as one might first believe. To this end we note a

simple result.

Lemma 2.1.: In a legal ice-configuration inside every directed cycle there is a

1-cycle.

Proof: Consider the subset consisting of the directed cycle, the arrows inside the
domain it defines and those with end/head at the lattice points on the cycle (the
“crossing” arrows). By Lemma 1.2. the flux across the minimal lattice path outside
this cycle is zero. Hence at some lattice point on the cycle there is an arrow pointing
into the domain. We follow the directed path that this arrow initiates choosing at
every vertex the next arrow at random among the two available ones. Since the
cycle is finite so is the domain and eventually we either arrive to the boundary
or self-intersect. Either way a new domain is formed which encloses fewer lattice
points than the original and which has a directed cycle boundary. By induction we

conclude the statement. |

Remark: To illustrate the Lemma we note that the boundary of the temperate
configuration in Figure 2b. is a cycle and the configuration indeed has a number of
1-cycles. The frozen configuration next to it on the other hand has no cycles of any

size.

A 1-cycle is off-boundary if it contains no boundary arrows.

Proposition 2.2.: A configuration in a N-diamond is the unique fill-in of the

boundary configuration iff it does not have off-boundary 1-cycles.

Proof: If a fill-in is unique then clearly there cannot be any off-boundary1-cycles
since reversal of such immediately leads to another configuration with the same
boundary.

So suppose that there are two distinct configurations, A and B, which are fill-
ins of the same boundary. Pick a pair of neighboring lattice points (¢, z1) between
which the arrows differ. Say in A this arrow is heading z¢ — x1. At vertex z;
there are two other, outgoing arrows in A and in B two ingoing arrows. We can
therefore pick a pair (x1,x9) so that again the two arrows are opposite and now
form a directed path of length two on each of the two configurations. Continue in
this manner and note that the directed path cannot include boundary arrows as

they equal in the two configurations. Since there is a finite number of lattice points,
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the path will eventually self-intersect. Then we will have two identical loops with
opposite orientations in A and B. By Lemma 2.1. they have 1-cycles, which by

construction are off-boundary. i

The Proposition hints towards the possibility that elementary moves might exhaust
the set of perturbations by generating all the possible configurations. This is indeed

the case.

Theorem 2.3.: The set of configurations on a diamond with the same legal bound-

ary condition is connected under elementary moves.

Proof: Given two distinct diamond configurations we will transform one of them
to the other through a finite sequence of 1-cycle reversals. We will check the config-
urations lexicographically as shown in Figure 4. West of the bold broken line B all
arrows agree on the two configurations. But they disagree at the arrow ay marked
by a dot. From a, we generate the directed disagreement loop, C, exactly as in the
Proof on Proposition 2.2. This path can contain arrows from neither the boundaries
nor the agreement area. By Lemma 2.1. it will enclose at least one 1-cycle.

Next find all the 1-cycle(s) inside C' and connect them to C from their NE and
SW corners with directed paths travelling in first and third quadrant respectively
(directed from NE to SW). Using these paths and the loop C form the minimal
directed loop C’ that contains the disagreement arrow at a4 and some of the 1-
cycles on its boundary. No 1-cycles will remain strictly in its interior. To accomplish
this we may have to reverse loops like the one consisting of 1-cycle number 1, its
connecting paths to the boundary and the piece of C' on its left. Note that there
must remain at least one 1-cycle on the inside of the loop C” again by Lemma 2.1.
Call this/them ¢; (in the Figure they are the ones numbered 1 and 3).

By reversing the 1-cycles on the inside of the boundary of C” we obtain a new,
smaller directed loop C” inside C’ that still contains a4 but none of the ¢;’s. Since it
must by Lemma 2.1. contain 1-cycles the only possible locations for them are next
to ¢;’s. Hence they are on the inside of the boundary C”. Continuing this strictly
monotone shrinking of the directed loop containing the disagreement site we arrive
after a finite number of steps to the situations where there is a 1-cycle containing
the arrow ag4. After reversing it the curve B moves to its next lexicographic location.
The process can be continued until the entire configuration has been checked and

corrected of disagreements. i



Figure 4. Proof constructions.

The Theorem indicates that indeed the best possible result is true. The simplest
of actions, the elementary move, generates all the configurations it possibly can.
The diamond configuration space partitions into cosets inside which the elementary
moves are an irreducible action. However unlike in the context of the closely related
eight-vertex model, where similar irreducibility holds and the cosets are all of exactly
the same size ([E2]), here they are of very different size. Furthermore unlike in the
eight-vertex model the internal structure of ice configurations is generically highly
non-trivial in some of the cosets.

Finally it may be of interest to note the similarity to a certain two-dimensional
dynamical system treated in [E1]. In this model the number of copies of each
symbol in a square neightborhood is fixed — an exact conservation law like our
arrow condition. The perturbations work out somewhat similarly. Infinite periodic
sequences and their “slide-deformations” play the same roles as directed cycles
and their reversals in ice. If the model is defined on a torus this means then
rotating periodic sequences of symbols in finite loops. They generate most of the
configurations space but surprisingly not all i.e. analog to Theorem 2.3. does not
quite hold there.



3. Height

The notion of height is closely related to the concept of flux introduced in the
first section. For ice height was first introduced using a graphical representation
and without connection to flux in a paper by van Beijeren ([vB]). What makes it
important notion is its utility in distinguishing different boundary conditions and
the fact that it can be defined and is non-trivial for various lattice models. Among
them are dominoes (dimer model), certain color models etc. This connection will
be discussed in later sections.

Definition 3.1.: Height, h, is an integer-valued function defined on the vertices
of the dual lattice. Moving from one such lattice point to its nearest neighbor it
increases by one if the configuration arrow to be crossed points to the left and
decreases by one if the arrow points to the right. This determines the value of the
function everywhere on the configuration upto an additive constant. Giving the
height value at any one dual lattice point determines height uniquely. Height at the
end of a path subtracted by the height at the beginning divided by the number of
arrows crossed is the tilt of the path.

Remarks: 1. From this on we fix the height to be zero at the leftmost dual lattice
point inside the diamond.

2. Note that flux across a section in the dual lattice is just height computed along
with an agreement on what is the positive direction. By the ice rule the flux across
any loop vanishes. Hence the definition of height is consistent i.e. when we loop
back to the original dual lattice point from which we started the height computation
we recover the initial value.

3. Height is a complete description of the configuration i.e. determines it uniquely.
It’s restriction to the boundary of the configuration, the boundary height is fre-
quently useful. In Figure 5. the underlined entries are the boundary height for the
given 4-diamond.

4. Tilt is a number between and including 1. In the example in the Figure
we have recorded its value over each of the four edges as they are traced to the
counterclockwise direction (in bold).

EE

Figure 5. Height. Configuration arrows are bold, height path light.
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Definition 3.2.: Height of a configuration is called extremal if the boundary
height uniquely defines the entire height.

Remarks: 1. The example on the right of Figure 5. illustrates extremal height.

2. Height can be viewed as a (discrete) surface above the configuration. The
discrete partial derivative assuming it’s extremal value to some direction over the
entire configuration corresponds to the extremal height. If we consider a N-diamond
but scale it and h by 1/N and take the scaling limit N — oo, we obtain a Lipschitz
surface. The height is extremal iff its partial derivative (infinitesimal tilt) is extremal

to some direction over the entire unit diamond.

To analyze the boundary dependency it is useful to distinguish switch and neutral
boundary blocks. These consist of two adjacent boundary arrows, in the former
case pointing to the same lattice point and in the latter pointing to different lattice
points. Figure 6a. illustrates the former type: arrow pairs at boundary height
values 1,3,5 and 7 above the switch point s; are switch blocks contributing 42 to

the height each and the two below s; contribute —2 each.

For n even, n/2 adjacent switch blocks of the same sign along a diamond edge
correspond to boundary height change by n. Little algebra shows that these arrows
uniquely determine n?/4 4+ n/2 arrows in the interior (the triangular arrangements

in Figure 6b.).

If the boundary height determines the height uniquely then the boundary con-
figuration determines the interior uniquely. This is exactly the case of the frozen
configurations of Section 1. One can quickly discover that in any N-diamond there
are exactly six frozen configurations. They are the four rotations of the example
in Figure 5 (the NE flow, Figure 2a.) and the two configurations in which the tilts
are constant 1 alternating from edge to edge. The latter two arise because a di-
amond with constant edge tilt £1 has N/2 — 1 switch blocks on each edge. Each
side determines N2?/4 — N/2 interior arrows. But there is total of N? — 4N + 4
arrows in the interior so the four edges cannot be determined independently. The
arrows forced on the diagonals must agree and as a consequence of this only two

such configurations exist.
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Figure 6a, b. Extremal blocks, switch point. Frozen periphery.

It is useful to quantify this a bit further. The total frozen area next to the bound-
ary is just the sum of the triangular areas next to the extremal boundary pieces.

Formally then

Lemma 3.3.: In a N-diamond let Ay be the number of interior arrows determined

by the boundary pieces of extremal height. Let

Ay =

e

max 3 [(h (dpn) = h () + (£ DI () = ()] (1)

where {d;} is the set of dual lattice sites inside the diamond where the boundary

height is computed. Then

A <A;<A, and Ay —A_ <2N.

Proof: As observed above n/2 adjacent switch blocks of the same sign determine
n?/4 + n/2 interior arrows in a triangle formation. However the maximum of n of
these (the ones on the boundary) may be shared with two adjacent triangle edges.
Hence only half of these shared arrows will be accounted in the lower bound. This
gives the expression n? /4. The rest is summing up the contributions over maximally

long boundary pieces each of extremal height. i

The diametrically opposite case to the extreme height is the case of a directed
cycle boundary. For such boundary the boundary height is identically zero in the
diamond since the boundary is made of neutral blocks of the same heading (outside
the diamond the boundary height is either 1. This is the temperate case illustrated
in Figure 2b. By Lemma 2.1. there is non-uniqueness in the fill-in and indeed this
non-uniqueness is maximal. This is due to the fact that boundary forces no interior

arrows i.e. Ay = 0.
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It is also useful to define average height, H(d) = E(h)(d), where the average
is taken over all the possible fill-ins from the boundary with uniform weight. In the
frozen case obviously H(d) = h(d).

In the temperate case the average height vanishes inside the diamond. This
is argued as follows. Consider a dual lattice site d in the inside of the diamond.
Take a legal fill-in arrow configuration, call it ay. Compute the height h,, (d) by
starting at an inside boundary point (there the height is zero since the boundary
is a cycle). The configuration where all the arrows have been reversed is another
legal diamond configuration with a cycle boundary. Reversing this boundary cycle
gives us a configuration a_ with the same boundary as a4 but all interior arrows
reversed. Following the same dual lattice path that we used for computing h, (d)
gives now h,_(d) = —h,, (d) since all the off-boundary arrows are reversed and
height on the boundary is zero. Hence to each fill-in there is exactly one “reverse”
fill-in and the equally weighted average of the height over any dual-lattice site must
therefore equal to zero.

We say that a boundary is non-trivial if it contains segments of extremal height
which are of non-trivial length (different from 1 and N). In this case the boundary
forces some but not all of the interior. Since the configuration is not frozen in the
remaining part of the domain there must be 1-cycles.

To summarize these basic findings on height we formulate

Proposition 3.4.: In a diamond configuration

(1) hg is extremal iff a is frozen.

(i) halo = {(0,1)}* or {(0,—1)}* iff a is temperate i.e. aly is a cycle.
(ili) Temperate and frozen phases coexist in a iff a|s is nontrivial.

In the paper [L] Lieb computed the residual entropy of the infinite ice-model on
the Z2 lattice. This quantity, the average uncertainty per arrow, is the same as

topological entropy which can be computed as

hiop = Nh_r)noo iz In { number of N—diamond configurations }.
They key here is that there is no boundary condition on the diamond. From [L] we
get that hyop = %ln %.

Using this we immediately get an asymptotic upper bound for the number of
legal configurations in the case of a boundary condition. By (1) the fraction of
the arrows in a N-diamond that is fixed by the boundary is A;(N)/N2. Inside the
diamond but off the frozen area the entropy per site obviously cannot exceed that of
the free model. Hence in the scaling limit (lattice spacing equals to 1/N, N — oo,
hence the limiting domain will be the unit diamond |z| + |y| < 1/2) we obtain
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Proposition 3.5.: For the diamond ice the average topological entropy over the

unit diamond for a given boundary condition is bounded from above by

1— lim Ay(N) S
N—oo N2 4 3

whenever the limit exists.

Remarks 1.: The frozen cases where (1) gives Af(N) = N? + O(N) are clearly
zero entropy. On the other hand the cycle boundary implies A¢(N) = 0. Hence the
temperate case seems to be the maximum entropy case. The intermediate range
where the bound is non-trivial is most interesting and the subject of the rest of the
paper.

2. Although we do not have a lower bound for the entropy already from the Propo-
sitions and the analysis above it is plain that the boundaries fill-in in very different
ways. This is in notable contrast with the eight-vertex model, where all legal bound-

aries fill-in in exactly the same number of ways ([E2]).

4. Dynamics

We now indicate a way of computing the configurations satisfying a given boundary
condition. The reason is two-fold. Firstly the underlying principle is simple yet
interesting and utilizes the results derived upto now. Secondly to analyze the case
of nontrivial boundary we need an efficient way of computing the configurations.

The method is based on the elementary moves and Theorem 2.3. Consider
the set of all N-diamond configurations for a given boundary condition. Suppose
that we are given one of them. From that we form the first even configuration
in the following way. Since every (not necessarily directed) 1-cycle consists of four
arrows there are 16 different ones. Form the symbol set S = {0,...,15} from them.
The arrow configuration is completely determined if we specify the symbols at
every other 1-cycle site i.e. on a checkerboard pattern which includes the boundary
arrows. Take the boundary cycles to be dark/even and denote the configuration of
all the dark/even symbols by C (o),

Consider now four adjoining dark 1-cycles in a cross formation. The local rule
is simply to read off from them the fifth (light) 1-cycle at the center. This is then
reversed with probability p if it s a directed 1-cycle. If the reversal takes place the
adjoining 1-cycles are updated as well, since one arrow in each of them was reversed.
This local operation performed at every neighborhood centered at a light 1-cycle
gives the new odd configuration C(°), the symbols on light /odd squares. The local

rule immediately gives the global map, the probabilistic cellular automaton
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F, : C(¢) — C(°) The map C(©) — C(®) that updates the even symbol array works
essentially the same way. There we have to augment the image with the symbols on
the dark boundary squares. They can never be reversed since the boundary arrows

are fixed.

Alternating the two maps generates the infinite forward orbit of even and odd
configurations all of which correspond to legal configurations for the given boundary.
If the initial configuration is frozen, there are no directed 1-cycles to reverse and
the orbit is trivial. But other cases are less so. Note that by Theorem 2.3. the
action of the cellular automaton is irreducible; every legal configuration associated
to the given boundary condition can be reached. In fact the local updates are done
independently and non-trivially i.e. 0 < p < 1 this orbit reaches every allowed
configuration almost surely in finite time. The automaton relaxes from a legal
initial configuration to the equilibrium distribution on all legal configurations. This
distribution is uniform (the measure of maximal entropy). At p = 1/2 the relaxation

rate is maximal.

As the rule only uses integer operations it can be implemented as a fast look-
up table with a random mutation on two symbols (the directed 1-cycles). This is
indeed a very efficient way of generating all the configurations associated with a

given boundary conditions.

5. Flower and comparison

For a legal boundary with non-trivial height the geometry and statistics in the
interior of the configuration are highly non-trivial. We now investigate this regime

and compare it to an other statistical mechanics model, the dominoes (the dimer

model).
Recall that the non-triviality of the boundary meant that the boundary con-

figuration has segments of extremal height whose length is neither minimal (1) nor
maximal (N, the entire side of the N-diamond). The simplest case for this is the
one where each side is split into two equally long extremal pieces. If the switch
points s; are the midpoints of the edges the unforced part of the interior is a square
as indicated in Figure 7a. Next to the sides we have noted the tilts. A simple
variational calculation also shows that with this choice of s;’s the “free” area in the

center is maximal.
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Figure 7a, b, c. Boundary tilts, configuration and the 1-cycle density.

It is fairly easy to construct some fill-ins for this boundary condition. There is
obviously some freedom in doing this since this boundary belongs to type (iii) of
Proposition 3.4. i.e. there will be 1-cycles in the interior. If one then lets the
cellular automaton Fj/; of the previous Section to relax from any of these the
result is generically as in the middle illustration.

The middle and right plots are from a 150-diamond. After some 10* iterates
the configuration has reached an equilibrium. The middle plot is at the iterate
1.5 x 10*. The 16 different symbols are rendered in different grades of grey. The
frozen area forced by the boundary is clearly visible. But more interesting is the
interior of the “free” square. There is a clear demarcation between the frozen
and temperate domains which results in the flower-like boundary curve. One can
also discern ribbon-like structures on the boundary region. These are randomly
fluctuating 1-dimensional defects in the ordered domain.

The rightmost plot from the same run represent the density of 1-cycle reversals
in the configuration at the equilibrium. Here we have recorded the number of 1-
cycle reversals at every site during the iterates 1.1 — 1.5 x 10* and converted this
to grey level. Dark cells are the sites of most activity. In the frozen triangles there
is obviously no such activity hence they are rendered white.

The relaxation was performed to several different initial configurations with
the given boundary structure in diamonds of different size. The results were all
essentially as above except that in a larger diamond the boundary of the flower
appears smoother.

Four copies of the boundary above can be glued together to form a 2N-diamond
(remove the arrows from the interior). It has therefore three switch points along
each edge, evenly distributed. This relaxes in the expected fashion. Its configuration
as well as 1-cycle density plot are in Figure 8 (156-diamond, configuration at iterate
8 x 103, 1-cycles collected between iterates 4 x 103 and 8 x 103).
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Figure 8a, b. Less restricted ice domain and the equilibrium 1-cycle density

Suppose one wishes to tile a finite planar domain with dominoesi.e. 1 X2 and 2 x 1
pieces. The success depends on trivial things like evenness of the area, but also on
subtle things related to the shape of the domain. One can define height function
for dominoes analogously to Definition 3.1. (see [JPS]). Note however that since
there are no arrows, only the shape of the domain determines the boundary height.
Turns out that in some domains like the square the boundary does not influence
the interior of the tiling much. For example the orientation of the tile at any given
interior site is quite uniform over the different tilings of the domain. This is due
to the fact that the boundary height for this domain is essentially zero. In some
domains with non-trivial boundary height there is however quite striking boundary

dependency.

Figure 9a. shows one such domain, an Aztec diamond (of order 6 i.e. 2 X 6
rows), and one of its domino tilings. In a string of papers Propp et. al. inves-
tigated this set-up and found a particularly clean geometric result. In [JPS] the
authors proved that generically the temperate subtiling (disordered domino tiling)
is separated from the frozen one (brickwall tiling) by a curve which is a circle that
grazes the diamond. We illustrate this result in Figure 9b., where the density of
elementary moves in dominoes are plotted at every (dual lattice) site in an Aztec

diamond of order 122 (between iterates 8 — 12 x 103).
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Figure 9a, b. Aztec diamond and the equilibrium density of 2 X 2-moves

Some of the basic correspondences between ice and dominoes are as follows.

Ice Dominoes

frozen states NE, NW, SE, SW flows brickwall, its shift and
and two exotic (6 total)  rotations (4 total)
allowed perturbations directed loop reversals rotation or reflection of
symmetric subdomain

elementary move directed 1-cycle reversal =~ domino pair rotation

The fact that rotation of 2 x 2 domino pairs generates the set of allowed domino
tilings of a given domain is in exact correspondence to our Theorem 2.3. (for
dominoes this result seems a Folklore Theorem). Moreover the same procedure
that was outlined in Section 4. can be applied to dominoes as well. The resulting
simple probabilistic cellular automaton, that does the random flipping of 2 x 2
domino pairs, gives all possible domino covers to a given domain along its orbit
from any legal initial tiling. This was the method with which we made illustration
in Figure 9b.

The table also explains why the Aztec diamond result is of interest in ice
context. The domino height along the Aztec diamond is extremal on each side,
alternatively increasing and decreasing as we trace the boundary around. The tilt
is constant 1 on each side. This boundary height would yield a frozen configuration
in ice - one of the two “exotic” ones. However every tiling of the Aztec diamond

has exactly one 2 X 2 domino pair touching each of the sides. Generically it is

17



in the middle of the side - this is the reason the boundary of the temperate zone
just grazes the diamond (in the scaling limit). Our boundary condition for ice
allows exactly one 1-cycle at the center of each side, at the switch points {s;} (see
Figure 7a.). Elsewhere the height is extremal and alternating. So it is the simplest
ice-boundary that yields non-trivial interior behavior and in terms of height and
elementary moves it is as close to an Aztec diamond as possible.

The common phenomenon in both models seems to be related to the non-
differentiability of the average height (in the scaling limit). In [JPS] the physical
principles were noted that seem to imply this pushing away of the boundary curve
from the diamond edge. In domino case these tilt discontinuities are only at cor-
ners. In the ice-context the tilt is discontinuous at the centerpoints of the diamond
edges as well hence average height must be non-differentiable and indeed the same
phenomenon takes place at these locations as well (Figure 7b, c¢.). How to formulate
this rigorously remains an open problem as does the exact shape of the flower figure
in the scaling limit.
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