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Abstract

The bounded version of the eight vertex model of Statistical Mechanics is investigated.
We concentrate on square and diamond domains on the square lattice and give an exact
characterization to legal boundary conditions and the number of their fill-ins. Further-
more we resolve the connectivity properties of the subsets of legal configurations and
find out that the best possible result holds: all configurations sharing a boundary can be
transformed to each other with elementary moves. This enables an efficient configuration

generation using a probabilistic cellular automaton.
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Introduction

The attempts in recent years to extend the one-dimensional theory of symbolic
dynamics to higher dimensions has uncovered both challenging problems and yielded
surprising successes. On one hand there are no-go results rooted to undecidability
and on the other hand completely new phenomena that manifest themselves only
trivially in one dimension. The former stem from the theory of tilings and in
particular the fundamental work of Berger (see [GS]) whereas the latter are closely
related to classical Statistical Mechanics formulations.

In this paper we consider a well known Statistical Mechanics model, the eight
vertex model, but our point of view is not particularly physical. The infinite model
of most physical interest has been studied earlier to a great detail ([B]). Also the
toral case has received attention but because it has no boundary, none of the sub-
tleties that are associated with the boundary dependency will show up there. We
consider the bounded case here and its relative, the ice-model in the companion
paper ([E2]). Perhaps the results on boundary dependency can help to clarify the
long distance order in these models which in turn is the key to criticality etc. But
primarily our results should be viewed as a part of a bigger program that attempts
to bring unity to the theories of symbolic dynamics, tilings and classical Statistical
Mechanics. The original impetus to this came mainly from a group theoretic study
of polyominoes ([CL], [T]) which was later extended by others, notably in [JPS].
These studies concentrated on the tileability of a finite planar region with the given
primitives, in these cases dominoes or polyominoes.

It turns out that several classical Statistical Mechanics models can be treated
in this framework. Instead of polyominoes we can for example distribute arrows
between neighboring lattice sites according to a fixed set of local matching rules.
Models of this type include the ice-model, several color-models and the eight-vertex
model ([B]). In this paper we solve the tileability and counting problems for the
eight-vertex model and indicate a simple but rather general way of generating the
allowed configurations. This is a consequence of a connectivity result that seems to
underlie several different Statistical Mechanics models.

We do not treat the case of arbitrary domains which seems rather unwieldy.
Our results deal with diamond and square domains. The reason for this is that ever
since the work [JPS] and the references therein it has been known that behavior
in these shapes can already reveal a great deal about a model. In particular for
dominoes and the ice-model these domain shapes are of prime importance. Our
results here provide a reference to the these models which are more subtle in their

behavior but also less accessible to complete combinatorial analysis as well.



1. Set-up and size

In this section we first define the model and then analyze it on two different type
of finite domains. This involves characterizing legal boundaries, solving the fill-in

problem and computing the size of the set of legal configurations.

Consider the square lattice in two dimensions, Z2. Every lattice site has four nearest
neighbors. Unlike in most statistical mechanics lattice models the vertex models
do not have any spin etc. variables associated to the lattice points. Instead the
variables are the arrows between nearest neighbor sites.

Definition 1.1.: An arrow configuration at a lattice site in Z? is legal for the
eight-vertex rule if there are either 0, 2 or 4 incoming arrows and the rest are
outgoing. A configuration in legal if it has an allowed vertex configuration at every
lattice site.

The allowed vertex configurations are illustrated in the Figure. The numbers below
indicate the multiplicity of the arrangement. There are eight possibilities, hence
the name of the model.

R

Figure 1. Vertex configurations.

The model on the infinite Z2-lattice as well as on a finite torus has been studied
before (e.g. [B]). Both of these cases are boundaryless. In order to study the
boundary dependency we need to define a suitable finite domain and the arrow
configuration on the boundary.

The domains that we will consider are the diamond and square which differ in
the orientation with respect to the lattice axes. The boundary arrows to be specified
are obviously somewhat different. We will first derive the counting result for the
diamond since it has the cleanest boundary condition of all domains.

N-diamond is a subset of Z2 which has N arrows along each of its four diagonal
sides, N > 2, even. The total number of arrows is hence N2. One can think it to
be made of N2/2 — N + 1 unit squares each of which has four arrows as sides and
the neighboring squares sharing an arrow. Such domain contains N2 /2 + N lattice
sites.

The boundary configuration of the N-diamond, which consists of 4N — 4
arrows, is fixed. It can in principle be chosen arbitrarily but our first problem
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is to solve when a given boundary configuration can be extended to a complete
configuration of in the interior. To this end it is useful to partition the configuration
into shells as indicated in Figure 2 (the boundary is distinguished by bold arrows
and the next smaller shell by light arrows).
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Figure 2. Diamond and square domains.

On a shell we distinguish two types of arrow pairs. If two neighboring arrows on
the shell point to or away from the common lattice point we say that they form
a switch block and call the lattice point a switch point. It one of the two
neighboring arrows on a shell point in and one out of the common lattice lattice
point we say that they form to a neutral block. Furthermore if the the switch
point is on the inside of the shell we call the block an inside switch block and
outside otherwise. These are marked with “I’and “O”n the Figure.

With these definitions we are ready to formulate a few basic observations:

1. By the eight vertex rule the existence of an inner switch block on a shell implies
the existence of an outer switch block at the next smaller shell. The switch
blocks share a common switch point. However the inner switch block does not
force the type of the outer switch block: it can be both arrows in or both out.

2. The total number of switch points on a shell must be even. Here we add switch
points both in inner and outer switch blocks. This is just a parity count - when
we traverse the shell the direction of the arrows changes at every time we cross
a switch point. Hence when we arrive back to the initial arrow we must have
seen an even number of switch points.

3. 1. and 2. immediately imply that if the boundary has an even (odd) number
of inner switch points, then all the inner shells must have an even (odd resp.)
number of switch points, inner and outer.

4. The smallest shell (little square in the Figure) can filled in iff the next larger
shell has an even number of inner switch blocks.



Define the boundary flux, F', as the quantity obtained when we subtract from
the number of inward pointing arrows the number of outward pointing ones and
ignore the four corner arrows (ambiguous ones). The facts 1.-4. imply that the
fill-in shell by shell from the boundary is successful iff on the boundary there is
an even number of inner switch points. Every switch point contributes +2 to the
boundary flux. Neutral blocks contribute 0. Hence the fill-in is possible iff F' is
divisible by four. Call a boundary arrow arrangement that has such property a
legal boundary.

The boundary minus the four corner arrows is determined by its partition into
inner switch or neutral blocks. There are 2N — 4 of them in an N-diamond. Using
an elementary binomial identity we find that the total number of ways that the
boundary blocks can be chosen legally is

2N—4 2N—4
2N — 4 2N — 4
Z ok92N—4—k _ 92N—5 Z — 94N—0

k=0 k=0

k even

Together with the corner arrows this gives total of 2*V—=5 choices.

Let us now examine the fill-in choices. For that purpose we number the shells
from outside in such a way that the boundary is the first shell the next largest is the
second and so on. By the preceding argument the i*? shell partitions into 2N — 44
inner blocks, switch or neutral.

The key fact that enables the counting is

5. The locations of the inner switch blocks on a shell can be chosen independently
of the the locations of inner switch blocks on other shells. Or equivalently the
location of inner switch blocks on a shell is independent of the location of outer
switch blocks on the shell.

The equivalence follows immediately from Fact 1. above. Note that the statement
does only refer to location and not to type.

Given the shell ¢+ — 1, the counting argument above slightly refined gives that
the i*" shell can be chosen in

2 3 (2N 4 _ v
k=0 k -

k even

different ways. The factor 2 in front is due to the fact that aside from the switch
point locations we can choose the direction of exactly one arrow on the shell.
By 5. the total number is then obtained by multiplying the shell contributions

N
N1

9 H 92N—4i _ 2N2/2—3N+5
1=2
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where the 2 in front comes from choosing one arrow direction in the smallest shell
(the only choice there).

We can summarize the above as the first existence and counting result.

Theorem 1.2.: An arrow configuration on a diamond boundary can be extended

to an arrow configuration on the entire set iff F = 0 (mod 4). There are 24V=°

such legal boundaries for an N-diamond. Each of these extends in 2NTQ_3N+5

ways

to a complete arrow configuration of the interior. The total number of N-diamond
N (N

configurations is 2 e

We’'ll postpone interpreting this until we have analyzed the square domain case as
well.

The N-square is the domain that consists of N2 lattice points and 2N?2 + 2N
arrows as indicated on the right of Figure 2. The 4N arrows that have been rendered
bold have to be specified as a boundary condition. For simplicity let N be even.

It is again useful to distinguish a shell. In Figure 2. the first shell is is the
one marked with light arrows. The smallest shell (the (N/2)t®, here unoriented)
is shown as well. The reason for this shell choice is evident; given the boundary
arrows, once we choose the arrows on the neighboring shell a new inner boundary
is uniquely determined (the unoriented arrows on the inside of the first shell in the
Figure) and we can proceed inductively.

The flux across a loop around any lattice point is either 0 or 4. A loop
around a set of lattice points is a sum of such loops hence the flux across it has
to be divisible by four. Therefore the boundary flux in the square case, the total
flux along the arrows on the boundary, has to be divisible by four. Note that
the diamond tileability condition follows from this simple argument as well. The
boundary flux definitions for the two domains agree. This flux condition equals to
the requirement that there is an even number of arrows pointing in. Hence there
are total of Ziio, & even (4,?] ) = 24N=1 Jegal boundary conditions.

Compatible with Fact 2. in the diamond context we must record an even
number of arrow direction reversals on the shell as we traverse it once. Call the
lattice points where this happens again switch points. The location and number of
corner switch points we cannot choose as they are determined by the next larger
shell. But others on the shell we can among the 4(N — 2¢) possible locations on the
it? shell. Depending on whether there is an even or odd number of corner switch
points we have to pick even or odd number of off-corner switch points on each shell.
But in either case there are the total of 24(N_2i), 1 <i < N/2—1 choices. Here
we have also accounted the choice of one arrow orientation after which the shell is
completely determined. For ¢ = N/2 (the center shell) there are two choices as in

the diamond case.



The shells were chosen the given way to have the independence of the choices
as in the diamond case. Now the locations (hence also the count) of the off-corner
switch points on neighboring shells are independent. Therefore we can compute the

totality of choices as

N

2 H 24(N—2i) _ 2(N—1)2.
=1

Theorem 1.3.: An arrow configuration on a square boundary can be extended
to an arrow configuration on the entire set iff F = 0 (mod 4). There are 24V—1

—2N+1

such legal boundaries for an N-square. Each of these extends in 2V ’ ways

to a complete arrow configuration of the interior. The total number of N-square

configurations is 2N (N+2),

Remarks: 1. Although the geometry of the domain forces a somewhat different
argument in the two cases it does not alter the number of choices in a significant
way. One has to remember that the square domain has approximately twice as many
lattice points and arrows but essentially the same amount of boundary arrows. In
particular the asymptotics like topological entropy agree. This quantity for a vertex
model is the maximal “uncertainty per arrow”. More formally it is

1
hiop = lim i log ({total number of M—arrow configurations}).

yacs

Theorems imply immediately the lower bound %log 2 for the topological entropy of
the infinite model. In fact the bound is exact since we are imposing no boundary
condition in the last statements of the Theorems. The number is approximately
0.346574. For comparisons sake we mention that for the infinite free model hy,, =
log2 =~ 0.69315 and for the (more restrictive) six-vertex model hy,p = %log% R~
0.215761.

2. These results indicates a striking homogeneity in the model: all legal boundary
conditions in the given geometry have equal number of fill-ins. It reminds of the
situation to the one encountered in finite groups, the fill-ins corresponding to the
cosets of a group. At the end we will see what the action generating each coset is.
3. The results extend immediately to a rectangle standing on its corner and a lattice

rectangle.



2. Irreducibility

In this section we investigate the “perturbations” of the allowed configurations.
This yields a simple characterization of the topological structure of the set of con-
figurations. Moreover from it we obtain a constructive method to generate the

configurations and approximate the measure of maximal entropy.

The first observation is that at any vertex we can simultaneously flip the directions
of two arrows. This is illustrated on the left in Figure 3. For any legal vertex
configuration we fix two arrows, say a and b, and then flipping the non-bold arrows
yields another legal vertex configuration. This obviously holds for all of the eight
possible vertex configurations.

In the flipping of a single vertex configuration we violate the rule on two of its
neighbors. But if we reverse the arrows along a closed arrow loop (or in the infinite
model along a path from infinity to infinity) in the resulting configuration all vertex
configurations are again legal. Note that while this loop/path consists of arrows it
is not usually directed as a whole.

Let us call the simplest such action, the reversal of the arrows in a 1-loop an
elementary move. The Figure illustrates it with the notation where the symbol

refers to the arrow heading and its negative to its reverse (a,...,d are arbitrary).
b d -d
a
a c —>» -a -C
b -b

Figure 3. Vertex perturbation and elementary move.

Reversal of 1-loops is an equivalence relation on some set of configurations. The
natural question then is to characterize this set i.e. the configurations that can by
constructed from a given configuration using a finite sequence of elementary moves.
Note that in the case of a bounded domain with a fixed boundary a loop reversal
can never reach the other cosets as the path to be reversed cannot contain any
boundary arrows.

Call the action of 1-loop reversals irreducible if the connected set is the set
of all the configurations with the given boundary.

Theorem 2.1.: The action of the elementary moves is irreducible on the set of
diamond configurations with identical boundary arrows. Maximum number of ele-
mentary moves needed for a N-diamond is N?/2 —3N +5, N > 4.
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Proof: Consider two legal arrow covers of a N-diamond with same arrow config-
uration on the boundary. Call these configurations A and B. Call the diagonal
subsets of the configuration columns if they are oriented NW-SE and rows if ori-
ented SW-NE. Number the rows and columns as shown in Figure 4 with indices
running from 0 to N — 1.

We compare the two configurations lexicographically, change B locally if needed,
and at the end of the comparison A and B will be identical.

If arrows at (1, 1) in both configurations agree they agree at (1,2) as well since
they have two common boundary arrows at that lattice point (as usual row index
is first and column second). We do nothing but move on to (1,3) to compare the
arrows at that location.

If arrows at (1,1) disagree, reverse the 1-cycle centered at (3/2,3/2) (marked
by ¢ in the Figure). After this the configurations agree at (1,1) and (1, 2).

Continue by comparing the arrows at (1,2n+1), Vn=1,..., N/2—2. As above
flip the 1-cycles at the sites where there is disagreement. So all the reversed cycles
are on the first white row in the Figure. After this the boundary and all the arrows
on on the first row and the arrows at (2,1) and (2, N — 2) agree in A and B.

Next row is treated similarly except that only the sites (2,2n), Vn=1,... ,N/2—
2 need to be checked. Now the reversed 1-cycles are on the second grey row.

This procedure clearly can be continued down to the last row. At the end of it
the configurations agree at every arrowsite.

Once we subtract the 1-cycles which have boundary arrows in them there are
(N/2—1)2+(N/2—-2)% = N?/2—3N +5 1-cycles left in the configuration. By the
construction above reversing all of these once suffices to convert any legal configu-

ration to another. |

-

Figure 4. N-diamond, notation for the proof.
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The proof above is immediately transferable to the square case. One again sweeps
the domain diagonally correcting the errors encountered by reversing any of the
(N —1)? 1-cycles.

Corollary 2.2.: The action of the elementary moves is irreducible on the set of
square configurations with identical boundary arrows. Maximum number of ele-

mentary moves needed for a N-square is (N —1)2, N > 2.

Remarks: 1. One can view the statements above as a graph result. By identifying
the configurations with a common boundary as vertices in a graph the result simply
says that the graph is connected and that the longest path (diameter of the graph)
is at most N2/2 — 3N + 5 or N2 — 2N + 1 edges respectively.

2. Note that since an elementary move transforms two configurations to each other
and that these moves can be made independently at distinct sites the diameter
results above have to agree with the coset size exponents formulated in Theorems
1.2. and 1.3.

3. The proofs works verbatim for a rectangle tilted 45 degrees and a lattice rectan-
gle.

4. This type of connectivity result seems to hold with some generality once the
correct elementary moves have been identified. It has been shown to the ice model
in [E2] and to dominoes in greater generality in [STCR]. Sometimes it almost holds,

failing in an interesting way for a small subset of “exotic” configurations ([E1]).

The Proof of Theorem 2.1. points immediately to a natural way of generating
the arrow configurations with a given boundary. Suppose that we are given one
configuration from that coset. From that we form the even configuration in the
following way. Since every 1-cycle consists of four arrows there are 16 different ones.
Let the symbol set be S = {0,...,15}. Given a N-diamond record the symbols at
the grey squares in Figure 4. in an array C(¢),

The local rule is simply to read off from four adjoining 1-cycles (as in Figure 4.,
bottom right) the white symbol in the center and reverse it with probability p. This
local operation performed at every neighborhood centered at a white 1-cycle gives
the new odd configuration C(°. Hence we have defined a probabilistic cellular
automaton F}, : C(®) — C(9) Essentially the same map also maps C(°) — C(¢).
Note that we have to augment the image with the grey boundary cycles on the
boundary. They cannot ever be reversed since the boundary is fixed.

Alternating the two maps generates the infinite forward orbit of even and odd
configurations all of which correspond do configurations with the given boundary. If

the local updates are done independently and non-trivially i.e. 0 < p < 1 this orbit
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reaches every allowed configuration almost surely in finite time. The automaton

relaxes from a legal initial configuration to the equilibrium distribution on all legal

configurations sharing the boundary with the initial configuration. This distribution

is uniform (the measure of maximal entropy). At p = 1/2 the relaxation rate is

maximal.
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