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1. Introduction

The solution of a second kind Fredholm integral equation with weakly singular kernel
is typically nonsmooth near the boundary of the domain of integration (its derivatives are
unbounded). We refer to Richter (1976), Pedas (1977, 1979), Schneider (1979), Pitkaranta
(1979, 1980), Vainikko and Pedas (1981),Graham (1982a), Vainikko, Pedas and Uba (1984),
Vainikko (1991, 1993),Uba (1988), Kaneko, Noren and Xu (1990), Kangro R (1990), Kangro
U (1990, 1993), Pedas and Vainikko (1994).

If one wants to obtain a high order convergence of a numerical method for these equa-
tions one has to take into account, in some way, the singular behaviour of the exact solution.
It can be done using polynomial splines on special graded grids. The theory of graded grids
in the approximation by polynomial splines goes back to Rice (1969) (for a complete theory
see, for example, de Boor (1978) or Schumaker (1981)). In the numerical solution of second
kind Fredholm integral equations with weakly singular kernels, graded grids were used by
Chandler (1979), Schneider (1981), Vainikko and Uba (1981), Graham (1982b), Vainikko,
Pedas and Uba (1984), Vainikko (1988, 1990, 1993), Hackbusch (1989), Uba (1989, 1994),
Kaneko, Noren and Xu (1992), Tamme (1995), Pedas and Vainikko [23].

A similar situation arises in the case of Volterra integral equations. For second kind
Volterra equations with weakly singular kernels the nonsmooth behaviour of solutions occurs
near the initial point of integration. We refer to Miller and Feldstein (1971), de Hoog
and Weiss (1974), Logan (1976), Lubich (1983), Brunner (1983, 1985b), Brunner and van
der Houwen (1986). Again, if one is interested in finding an approximate solution which
exhibits high order accuracy, then one may resort to approximation with polynomial splines
on graded grids which reflect the singular behaviour of the exact solution near the initial
point. In the numerical solution of second kind Volterra integral equations with weakly
singular kernels graded grids were used by Brunner (1984, 1985a), Brunner and van der
Houwen (1986), and Brunner (1987).

In the previous works the case of Fredholm equations was considered independently
of Volterra equations and vice versa, the results about Volterra equations were obtained
independently of existing results about Fredholm equations.

The purpose of the present paper is to show how in the numerical solution of weakly
singular Volterra integral equations by polynomial splines on graded grids it is possible
to use corresponding existing results about Fredholm equations. More precisely, on the
basis of results from [39, 22-23] we shall study the smoothness of the solution and the
piecewise polynomial collocation method for a sufficiently wide class of nonlinear weakly
singular Volterra integral equations. Using special collocation points with graded grids we
derive global convergence estimates and analyze a superconvergence effect at collocation
points. The main results of the paper considerably extend known ones and are formulated
in Theorems 2.1-2.4 (see Section 2). The proofs of these assertions are given in Section 4
and are based on the following simple idea: for a given Volterra equation

t
(1.1) u(t) :/ K(t,s,u(s))ds + f(£), 0<t<T,
0
we find the appropriate extensions K (t,s,u) and f~ (t) for K(t,s,u) and f(t) so that from
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the corresponding results of Section 3 about the Fredholm equation

2T
u(t)= [ K(t s,u(s))ds+ f(t), 0<t<2T,
0

we can derive all results formulated in Theorems 2.1-2.4 about Volterra equation (1.1).
Finally, in Section 5 we present some numerical illustrations.

2. Volterra equations with weakly singular kernels

2.1. Smoothness of the solution. Consider the nonlinear Volterra equation

(2.1) mwsz@&mm@+ﬂm 0<t<T.

The following assumptions (V1) — (V3) are made.

(V1) The kernel K = K (¢, s,u) is m times (m > 1) continuously differentiable with
respect to ¢, s, u for t € [0,T], s € [0,¢), u € IR, and there exists a real number
v € (—00,1) such that for 0 < s <t < T, u € IR, and for nonnegative integers i, j, k
with 7 + j + k < m, the following inequalities hold:

(2.2)
i 7o\ 1 i v ti<0
<§) (ngg") (56*) K (t,8,u)| < bi(lul) {1+ [loglt — s|| if V.H‘:o}
t t ’ ’ [t —s|7¥ if v+1>0
and
(2.3)
1 if v4+1i<0
< ba(max{u, jug|Hu — u| { 1+ |loglt —s|| if v+i= 0}
it —s|7v " if v+i>0

where the functions b1:[0,00) — [0,00) and by:[0,00) — [0,00) are assumed to be
monotonically increasing.

(V2) f € C™¥(0,T), i.e. f(t)is m times continuously differentiable for 0 < ¢t < T
and the estimate

1 if k<1l-—v
(2.4) ]f““)(t)fgconstf {1+{10gt[ if kzl—u}, t e (0,77,
tl-v—Fk if k>1—v



holds for k = 0,1,...,m.

(V3) The integral equation (1.1) has a solution ug € L*(0,T).

Notice that conditions (V1) and (V2) guarantee the existence and uniqueness of the
solution to (2.1) on some interval [0, Tp], To < T'. On [0, T] the existence and uniqueness

of the solution will be guaranteed if we impose the following global Lipschitz condition on
K(t,s,u): for 0 <t <T,0<s <t uy,uy € IR, there holds

1 if v<0
IK(tas,m)—K(tas,uQ)}Sblul——wl{1+[10glt—8!1 if VZO}
[t — | if v>0

with a constant b independent of 4; and ug (cf. (2.3), 9 = j = k = 0). We do not restrict
the problem by this global Lipschitz condition but assume (V3). Moreover assuming (V3),
we actually could replace (V1) by the corresponding local condition for t € [0,T], s € [0, 1),
|u — up(s)| < & with a § > 0. Outside this set, the kernel K (¢, s, u) is involved neither in
(2.1) nor in the collocation method for it described in Section 2.2. Nevertheless, we remain
with the formulation of (V1) given above.

It follows from (V1) that the kernel K (t,s,u) may have a weak singularity as s —
t(t=7=k=0,0< v <1). Inthe case v < 0, the kernel K (¢, s,u) is bounded for
0 <s<t<T and fixed u € IR, but its derivatives may be singular as s — t. Often the
kernel K has the form

K(t, s,u) =a(t,s,u)(t—s)7?, B<1,

or

K(t,s,u) = a(t, s, u)log(t — s)

where a(t, s, ) is an m-smooth function of its arguments for 0 < s < t < T, u € IR.
Clearly, condition (V1) is satisfied in these examples with ¥ = 8 and v = 0, respectively.
Actually, (V1) remains fulfilled even if derivatives of a(t, s, u) have some (sufficiently weak)
singularities as s — t.

The following result states the regularity properties of solutions of equation (2.1).

Theorem 2.1. Let the conditions (V1) and (V2) be fulfilled. If equation (2.1) has a
solution u in L*°(0,T’), then u € C™¥ (0, T).

The proof of Theorem 2.1 is given in Section 4. We remark that smoothness properties
of solutions to (more special) weakly singular Volterra equations are analyzed in [19, 6].

Notice also that u € C™"(0,T], having an integrable derivative in (0,7] can be
extended up to a continuous function on [0,7"]. The extended function will be denoted
again by u.

2.2. Piecewise polynomial approximation of the solution. For given
NeNNIlet0=1ty <ty <...<ty =T be a partition of the interval [0, T] with grid
points

(2.5) t;=t™) = (j/N)T, j=0,1,...,N,
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where 7 € IR, 7 > 1. For r = 1, the grid points g, t1,...,tx are uniformly located; for
7 > 1, the grid points are more densely located towards the left endpoint of the interval

[0, T]. In every subinterval [t;_1,¢;] (j =1,...,N) we choose m collocation points
7+ 1 )

(2.6) §ji =t + 5 (tj-i-l —-tj), 1=1,...,m,

where 7)1, ..., 7m do not depend on N,

(2.7) —1<m<np<...<n, <1.

To a continuous function u: [O, T} — IR we assign a piecewise polynomial interpolant
Pnu:[0,T] — IR as follows: 1) on every subinterval [ti—1,t;], G=1,...,N) Pyuis a
polynomial of degree m — 1; 2) Pyu interpolates u at points &1, ..., &jm:

(Prvu)(§i) = w(j), i=1,...,m; j=1,...,N.

Thus, the interpolation function (Pyu)(t) is independently defined in every subinterval

[tjml, tj] G=1,..., N) and may be discontinuous at the interior grid points t = ¢; (j=
1,...,N —1). We may treat Pyu as a two-valued function in these points. Note that in
the case 71 = —1 and 9, = 1, Pyu is a continuous function on [0, T].

We denote by En the range of the interpolatory projection Py, i.e.the set of all
piecewise polynomial functions on [0, 7] which are polynomials of degree not exceeding
m — 1 on every subinterval [t;_1,¢;] (j = 1,..., N). We introduce also the notation

h=T/N.

We look for an approximate solution uxy € En to the integral equation (2.1) which satisfies
this equation at the collocation points (2.6):

(2.8) [uN(t)~/K(t,s,uN(s))ds——f(t)]t:é:ji 0, i=1,....m:j=1,.. N
0

Conditions (2.8) form a system of equations whose exact form is determined by a basis

of Ey. For instance, in the interval [tj_l, tj] (j =1,...,N) we may use the representation
m

(2.9) un(s) =Y cigsi(s), s € [tj-1,t5],
=1

where gpji(s) (s € [tj_l, tj]) is the polynomial of degree m — 1 such that

1 ifk=1
ﬂﬂji(ﬁjk)Z{O ;fk:;éz" E=1,...,m.

6



The collocation conditions (2.8) take the form of the (nonlinear) system of algebraic equa-
tions to determine the coefficients {c;; }:

(2.10) F&i) +Z / K (i, s, quk )ds+

6]7‘
/Kfﬂ,s Zc]kcp]k (s))ds, i=1,....m;5=1,...,N.

The coeflicients ¢y1, ..., C1; can be found from the system
€1 m

(2.11) c1i = f(&u) + /K(gliasa chks@m(s))d& 1=1,...,m
0 k=1

Using ¢11,. .., C1y, one can find ¢y, ..., Coy, from the system

c2i = f(&2) + K(fzu Z Ciep1k(s))ds+

&2
K (&2, s, ZCZk(sz (s))ds, i =1,.

ty

Generally, using c11,...,Cim,-- -, Cj—1,1,---,Cj—1,m the coefficients ¢;1,..., Cjm can be
found from the m equations (2.10) with corresponding j. Thus at every step (on every
subinterval [tj_l, tj]) one has to solve a system of m nonlinear equations ; the initial guess
can be chosen using the solution on the previous subinterval. For the first block system
(2.11) a suitable initial guess is ¢1; = f(£1:), © = 1,...,m. The following theorem states
the global convergence rate for the collocation method (2.8).

Theorem 2.2 Let assumptions (V1)-(V3) be fulfilled and let the collocation points
(2.6) with gridpoints (2.5) be used.

Then there exist an Ny € IN and a real number §g > 0 such that, for N > N, the
collocation method (2.8) defines a unique approximation uy € Epn to the solution ug of
equation (2.1) satisfying ||uy — uo| Le=(0,7) < dg. The following error estimates hold:

1) if m <1 — v then

. —_ < m > 1-
(2.12) Or<nta<xT lun (t) — uo(t)] < ch™ for r>1;

2) if m=1— v then

B3 e ) < {20 osk) =1y
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and
(2.14) llun — uollpr(o,ry < ch™ for > 1, 1 <p < oo;

3)if m > 1 — v then

(2.15) Jax lun(t) —uo(t)| < c {Z;ﬁlhu) igi 1< ;‘ ; %}
and for 1 < p < o0,
(2.16)
pr-v+3) if1§r<f:~%%,m>1—u+;}
lun = wollrry < ¢ { h™(1+|loghl)? if 7= o m 2 Lo
h™ if r > ;—Z—‘;—%—, r>1

4) if r = r(m,v) > 1 is restricted by conditions

T>'2‘(1TnTVS fOI‘OSI/<1

(2.17) > 5 for v <0
r>1 for v<0, v<—(m-2)
then
(2.18) ey <ch™,
where
(2.19) en = max = Juy(§i) = uo(&)l

is the maximal error of the approximate solution uy € En at the collocation points (2.6).
The constants ¢ in (2.12)-(2.18) are independent of h = T'/N.
The proof of Theorem 2.2 is given in Section 4.

2.3. Superconvergence at collocation points. Now we assume that the points

M,y - .-, m in (2.6) (the points (2.7)) are the knots of a quadrature formula
1 m
(2.20) [ e©dex Y witm), -1 << <am s,
1 =1

which is exact for polynomials of degree m + p, p € Z, 0 < pp < m — 1. Actually, the
weights wi, ..., w,, of the quadrature formula (2.20) will not be used in our algorithms.
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The case pt = m — 1 corresponds to the Gauss quadrature formula and is of the greatest
interest in the following theorem.

Theorem 2.3. Let the following conditions be fulfilled:
(V1’) The kernel K(t,s,u) and 0K (t,s,u)/0u are m + p + 1 times (m,p € Z, m >
1, 0 < p < m — 1) continuously differentiable with respect to t,s,u for t € [0,T], s €
10,t), u € IR, and satisfy (2.2) and (2.3) withi+j+k <m+p+1, v € (—oo,1).

(V2)) f € C™tr+lr (o T].
(V3) The integral equation (2.1) has a solution ug € L*(0,T).

(V4) The collocation points (2.6) are generated by the knots (2.7) of a quadrature formula
(2.20) which is exact for all polynomials of degree m + 1, 0 < p < m — 1.

(V5) The scaling parameter 7 = r(m, v, ;1) > 1 is subject to the restrictions

r>£—;,r2%1;” if 1l-v<pu+1
(2.21) 7'>1L_"—V—,7”>m2i_’i:—"—]L if p+1<1—v<m
' rz%ﬂ,r>1 if l—-v=m
r> mietl if 1—v>m
Then
h if v<0
(2.22) en <ch™ § h(1+|loghl) if v=0
hi—v if v>0

where € is defined in (2.19) and c is a positive constant which is independent of h = T'/N.
The proof of Theorem 2.3 is given in Section 4.

Theorem 2.4. Let the conditions of Theorem 2.3 be fulfilled. Assume additionally
that:

(V6) v < 0, p > 1,and for 0 < j < min{p — 1,-v}, 0 < k < min{y — 1, —v}, the
derivatives

(2.23) (-a%)j (b%)k“ K(t,s,u)

are bounded and continuous for 0 < ¢t < T, 0 < s < ¢, |u] < 7 with any 7 > 0, and

(%)J (}9%)“1 K(t,s,u) >0ass—t—0.

Then
hut1 if 1—v>p+1
(2.24) en <ch™ ¢ Wt 1+ |logh|) if 1—v=p+1
ht—v if 1l-v<p+1

where £y is defined in (2.19) and the constant ¢ is independent of h = T'/N.
The proof of Theorem 2.4 is given in Section 4.
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Remark 2.1 (comment on the additional condition (V6) of Theorem 2.4). Assumption
(V1) of Theorem 2.3 quarantees the boundedness and continuity of the derivatives (2.23) for
Jg<min{p—1,-v}, j+k<m+p+l,onanyset 0< s <t<T, —T<u<7, 7>0;
for ) = —v with v € Z, —v < u — 1, a logarithmical singularity may occur. Condition
(V6)bans this possible singularity.

Remark 2.2. An estimation maxo<i<7 |Un(t) —uo(t)| < ch™ is of optimal order even
for a function u € C'*° [O, T]. Theorem 2.2 shows that, using sufficiently great values of the
scaling parameters 7, the optimal accuracy O(h™) can be achieved for collocation method
(2.8). Theorems 2.3 and 2.4 show that the superconvergence phenomenon at collocation
points takes place.

Remark 2.3. Under the conditions of Theorem 2.3

{h if v<0

max |ty (t) — up(t)] < ch™

0<t<T h(l + '10g h}) if v=20

hi—v if v>0

where
ﬂN(t):/O K(t, s, un(s))ds + £(£).

Under the conditions of Theorem 2.4,

hH#t1 if 1—v>p+1
max |un(t) —uo(t)] < ch™ < W1+ |logh|) if 1—v=p+1.
0<t<T 1-v '

h if l-v<pu+1

3. Fredholm equations with weakly singular kernels

In this Section we formulate some results from [39,22-23] about Fredholm integral
equations which give a basis for the proofs of the results formulated in Section 2.
Consider a nonlinear Fredholm integral equation

2T
(3.1) u(t) = /K(t,s,u(s))ds+f(t), 0<t<2l

The following assumptions (F1) and (F2) are made.

(F1) The kernel K = K (t, 5, u) is m times (m > 1) continuously differentiable with respect
tot,s,ufort,s €[0,2T], t # s, u € IR, whereby there exists a real number v € (—o0, 1)
such that for nonnegative integers %, 7, k with 1+ j + k& < m inequalites (2.2) and (2.3) hold.

(F2) f € C™¥(0,2T), i.e. f(t)is m times continuously differentiable for 0 < ¢t < 27, and

the estimate

1 if k<1l-—v
(3.2) ff<’f><t)[ < const; { 1+ |logo(t)| if k=1—-v %, te(0,27),
o(t)l—v—F if k>1-v
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holds for k = 0,1,..., m, where go(t) = min{¢, 2T — t}.

Theorem 3.1 [22, 39, p.137]. Let conditions (F1) and (F2) be fulfilled. If the integral
equation (3.1) has a solution v € L*°(0,2T), then u € C™¥(0,2T).

In the sequel we shall assume that:

(F3) The integral equation (3.1) has a solution ug € L°(0,27") and the linearized equation
2T

(3.3) v(t) = /Kg(t, s)v(s)ds, Ko(t,s) = 0K (t,s,u)/0u
0

u:uo(s),

has in L>°(0,2T") only the trivial solution v = 0.
For given N C IN, let 0 = tg < t; < ... < tan = 2T be a partition of the inter-

val [0, 2T] with gridpoints (2.5) and gridpoints ¢ N+1,---,tany which are got by reflecting
tN—15.-.,t0 with respect to ty = T:

(34) tj = (]/N)TT, ] - O,l,...,N; tj—{-N = QT—*tN_.j, ] = 1,...,N.

In every subinterval [tj_l, tj] (7 = 1,...,2N) we choose m collocation points (2.6) de-

termined by points (2.7). We denote by EN the set of all piecewise polynomial func-
tions on [0, 2T] which are polynomials of degree not exceeding m — 1 on every interval
[ti—1,t;] (7 =1,...,2N). We look for an approximation solution uy € FEy to the inte-
gral equation (3.1) which satisfies this equation at the collocation points (2.6) corresponding
to the gridpoints (3.4):

2T

(3.5) () = [ Ktsun()as - 1)) =0

=&
0

i=1,...,m; j=1,...,2N.

Theorem 3.2 (see [39, p.143], cf. also [42, 41]). Let the conditions (F1)~(F3) be
fulfilled and let the collocation points (2.6) with gridpoints (3.4) be used.

Then there exist an Ny € IN and a real number dg > 0 such that for N > Ny, the
collocation method (3.5) defines a unique approximation uy € EN to the solution ug of
equation (3.1) satisfying ||un — ug] Le<(0,2T) < 0p. The following error estimates hold:

1) if m <1 — v then

. — < m > 1-
(3.6) oA lun (t) — uo(t)] < ch™ for r > 1;

2)ifm=1—v then

h™(1+loghl) for r=1

. - < ¢

(3.7) o 2025 [un (t) = uo(t)] < {hm for 7> 1}
and

(3.8) llun — uollzr(o,2ry < ch™ forr>1, 1 <p < oo;

11



3)if m > 1 — v then

RA=v) for 1< 7 < =
— i e
(3.9) Ogg}éTluN( ) —u(t) < c { h™ for r> g |’
and
(3.10)
hr(lv—-'/*{’%’.) if 1<r<~——:—1—,m>1—-u+%
i
lun —wollzro,ery < ¢ § A™(1+ |logh|)r if r= rzb—;%‘; m>1-v+ % ;
h™ it 7> —‘7‘%‘, r>1
for 1 < p < o
4) if r = r(m, v) > 1 satisfies (2.4) then
(3.11) En < ch™
where
(3.12) N, gy (i) = (&)l

Theorem 3.3. [23] Let the following conditions be fulfilled:
(F1’) The kernel K(t,s,u) and 0K (t,s,u)/0u are m + p + 1 times (m,p € Z, m >
1, 0 < p < m — 1) continuously differentiable with respect to ¢, s, u for t, s € [0, ZT} t #
s, u € IR, and satisfy (2.2) and (2.3) withi+j+k<m-+pu+1,—-co <v < 1.

(F2') f e C™tutly( 27,

(F'3) The integral equation (3.1) has a solution ug € L°(0, 2T'), and the linearized equation
(3.3) has in L>°(0, 2T") only the trivial solution v = 0.

(F4) The collocation points (2.6) are generated by the knots (2.7) of a quadrature formula
(2.20) which is exact for all polynomials of degree m + u, 0 < u < m — 1.

(F5) The scaling parameter 7 = 7(m, v, u) > 1 satisfies the conditions (2.18).

Then
h if v<0
EnN <ch™< h(1+ |logh|) if v=0,
hi—v if v>0

where £ is defined in (3.12).

In addition we assume now that:
(F6) v <0, p > 1, and for 0 < j < min{p —1,-v}, 0 < k < min{p — 1, —v}, the
derivatives (2.23) are bounded and continuous on [O, 2T x [0, 2T] x [*’r, 7] with any 7 > 0.

Then
hptl if 1—v>p+1
En <ch™Q A1+ |loghl) if 1—v=p+1.
hl=v if l—v<p+1
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4. Proof of Theorems 2.1-2.4

Assume that the kernel K (t,s,u) of equation (2.1) satisfies (V1) for 0 < s < t <
T, —o0 < u < o0. Assume also that the forcing function f(t) of equation (2.1) satisfies
(V2) for 0 <t < T, and let ug € L°(0,T) be a solution of equation (2.1). First of all we
extend K (t,s,u) up to a K(t, s, u) which will satisfy condition (F1) for 0 < ¢ < 27, 0 <
s < 2T, t# s,u € IR.

We shall use an extension method by reflecting (see, for example [17]): for a given
function v € C™[a — 7,a], m € IN, a,7 € IR, 7 > 0, put

v(s) for s €la— 7,0
(4.1) u(s) = i cjv(a—j(s—a)) for s€ (a,a+ L]
j=0
where
(4.2) i(—j)kcj =1, k=0,1....,m.

.
Il
o

iFrom (4.1) and (4.2) one obtains that
~ m T
vel [a~'r,a+——}.
m

Now we construct an extension for the kernel K (t, s, u) of equation (1.1). First, for
any u € IR, %T <t < T, we extend K (t,s,u) with respect to s for s < 0 (denoting this
extension again by K (¢, s, u)):

7 2T
K(t,s,u) = e(— K(t,—js,u), —— < s <0.
(t,s,u) = e( S)J_EZOCJ (t,—js,u) o =8

Here (cg,C1,.--,Cm) is the (unique) solution of the system (4.2) and e € C'™® (Ry) is a
smooth function such that

1 for 0<s< 28
m-
0 for 2L <s<T

(43) o(s) = {

After that, for any u € IR, we extend K (t, s, u) with respect to t (T < t < 2T') along the
lines s =t —v (0 <y < 27T):

K(t, s, u) for0<s<t<T
Ki(t,s,u)=S et —=T) 3 ¢;K(T—jt-T1),T—j(s+v—T) - u)
j=0
for T <s<t<2T, t—s=n.

13



Finally, in the third step we put

> Kyt s,u)er(u) for0<s<t<2T
(44) Kt s,u) = {0 for 0 <t<s<2T

with a e; € C§°(IR), e1(u) = 1 for |u| < 2M, ei(u) = 0 for [u| > 3M, where M =
maxo<s<T |Uo(t)|. It is easy to check that the function K (%, s, u) satisfies (F1).

Indeed, using (V1) we obtain that K (t,s,u) is m times continously differentiable with
respect to t,s,u for t € [0,2T], s € [0,2T],t # s, u € IR. Further, it follows from the
above construction that:

Nif0<s<t<T, u€lR, then

(3) (88 (2) momr= (&) (- 2) (&) o

N ifT < s<t<2T, u€ IR, then

(15) (-(%) (2+ 5‘9—) (-a%)kk(t,s,u) _

-3 (2) (24 2Y (2)

X [K(T —p(t—T),T~p(s+v-T) —v,u)er(w)];

3)if 0 <t <5< 2T then

(8) (58 () s

In case 1) we obtain estimates (2.2) and (2.3) for K (t, s, u) using Assumption (V1). In case
3) statements (2.2) and (2.3) with respect to K (¢, s,u) are trivially fulfilled. Consider the
case 2). Using (4.3), (4.5) and (V1) we obtain

() (G5) () Fwe

14
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1 ifvr<o0 1 if v+11<0
< ¢cb1(3M) {1+|logtt——s|[ ifv=0}+{1+{log{t—s[l ify+z’:OH§
[t — s|™v ifvr>0 [t —s|7v ifr+i7>0
1 ifr+1<0
§c’b1(3M){1+{log[t—-sH ifv-&—i:()}.
|t —s|7¥ " ifv+1>0

In a similar way we obbtain that condition (2.3) is also satisfied.

So, we have shown that the function K (t,s,u) is m times continously differentiable
with respect to ¢, s,u for t,s,u € [0,2T], t # s, u € IR, and satisfies conditions (2.2) and
(2.3) with some b1 and b2 independent of |u/, respectively, max{|u1|, |uz|}. Thus, K (¢, s, u)
satisfies also the global Lipschitz condition: for t € [0,2T], s € [0,t), u1,us € IR,

3 3 (1 if v <0
(4.6) ]K(t,s,ul)—K(t,s,uz))gb{1+Hog[t—5{| if I/ZO}
It —s|7" if v>0

with a constant b independent of ©; and wus.
Further we put

f(t) for 0<t<T
¢ r e
(4.7) FO =N et -T) S ¢;f(T—j(t—T)) for T <t<2T
=0
where (Co,C1, .. .,Cpm) is the solution of the system (4.2) and e € C*° (IR, ) is defined in

(4.3). It is clear that f € C™"(0,2T) C C|0,2T].

Consider the equation

(4.8) u(t) = K(t,s,u(s))ds+ f(t), 0<t<2T,

where K and f are defined by (4.4) and (4.7). Equation (4.8) is actually a Volterra integral
equation, since K(t,s,u) = 0 for 0 < t < s < 2T. Due to the weak singularity of
the kernel K (t,s,u) and the global Lipschitz condition (4.6), (4.8) is uniquely solvable in
C[0,2T); let Ug € C[0,2T] denote the solution. It follows from the above construction that
Uo(t) = up(t) for 0 <t < T. According to Theorem 3.1, Gy € C™¥(0,2T), therefore
ug € C™"(0,T]. Theorem 2.1 is proved.

Further, for 0 < ¢t < 27, the linear homogenous Fredholm equation

2T 3 .
v(t) = Ko(t,s)v(s)ds, Ko(t,s) = a_K(;_rusl_)
0

'IL:’IIQ (8)
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actually takes the form of a linear homogenuous Volterra equation,

v(t)z/o Ko(t, s)v(s)ds,

and therefore has in L°°(0,27") only the trivial solution v = 0. Thus condition (F3) is
fulfilled with respect to the equation (4.8). Finally, let gridpoints (3.4) are used. Then the
assertions of Theorem 2.2 follow immediately from the corresponding statements of Theorem
3.2 about equation (4.8).

Thus, Theorem 2.2 is proved.

In a similar way we obtain that the function K (t,s,u) in (4.4) satisfies the conditions
(F1’) and (F6) whenever the kernel K (¢, s, u) of the equation (2.1) satisfies the conditions
(V1) and (V6), respectively. Finally we obtain that the function f(t) in (4.6) satisfies (F2’)
as long as the forcing function f(¢) satisfies (V2), and condition (F3) will be fulfilled with
respect to (4.8) as long as equation (2.1) is in L°°(0,T') solvable. Therefore, assuming that
the conditions of Theorem 2.3, respectively, Theorem 2.4, are fulfilled, the statements of
Theorems 2.3 and 2.4 follow immediately from Theorem 3.3..

Hence, Theorems 2.3 and 2.4 are proved.

5. Numerical example

Let m = 2 and let n7; = —~% and 179 = —\}—g be the knots of the Gauss quadrature

1
formula f ©(&)d€ =~ p(n1) + ¢(n2). In this case the approximate solution uy € En to
21

equation (2.1) in the interval [tj_l, tj] (j =1,...,N) can be represented in the form

-t .t
(5.1) un (t) = cj1 =F—— + cjo——2—,

§j2 — & &2 — &1
where £;1, ;2 are the knots (2.6) and the coefficients cji, = un(&) (K = 1,2; j =
1,...,N) are determined from the system (2.10) (m = 2). From Theorem 2.2 we obtain
for the approximate solution (5.1) the estimate

tjio1 <t <t

1 .
(5.2) en < ch® for {T> i frz0
L

where h = T/N and

(5.3) en = max |un (&) — uo(&ji)l

i=1,2;5=1,....N

;From Theorems 2.3 and 2.4, we obtain the following estimates for the error (5.3) (see (2.22),
(2.24), m = 2 with p = 1):

h if v<0
(5.4) en < ch? { h(1+ |logh|) if v=0
hi=v if v>0
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or (in conditions of Theorem 2.4)

h? if v<-—1
(5.5) e <ch® < h2(1+|loghl) if v=—1
hi—v if v>—1
provided that
r>1 if v<—-2
>z if —2<v< -1
(5.6) r>3=L f —l<r<1-+V2
r>2 if 1-vV2<v<1

Now we present the following example. Consider the integral eqation
/ 4
(5.7) u(t) = /(t — ) VR (s)ds + 20— Sh), 0<E<T
0

It is easy check that ug(t) = t1/2 is the exact solution to equation (5.7) and Assumptions
(V1’) and (V2’) of Theorem 2.3 are fulfilled with v = 1/2, m =2, p = 1.

The equation (5.7) was solved numerically by the collocation method (2.10) (m = 2)
where the points 773 = —11 = 1/ V'3 were used for determining the collocation points (2.6)
by r = 41/10 (see (5.6)). At every step (on every subinterval [tj_l,tj]) the coefficients
cji = un(&ji) (1 = 1,2) were calculated from (2.10) (m = 2) by the Newton method.
All the integrals which are needed for the construction of the system (2.10) were found
analytically. Some of the numerical results by 7' = 3/4 are presented in the following Table
1 where €y is defined in (5.3). The experiments were carried out on a computer IBM 4381
(in double precision)

Table 1

N en(r = 41/10) eny2/2%?

4 055 E-01
8 0.80 E - 02 097 E - 02
16 0.12 E -02 0.14 E - 02
32 0.19 E - 03 0.21 E - 03
64 032E-04 033 E-04
128 020K -05 0.57 E - 05

(From Table 1 we can see that the numerical results are consistent with the
theoretical estimate which is ey = O(h%/2), h = 0.75/N. Notice that the number of
collocation points (the number of unknowns) is 2/V.

In the same example on longer intervals (e.g. T' = 4), same instability of the approxi-
mate solution was observed. The numerical stability of the scheme is worth to be examined
independently.
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