ON THE NUMERICAL SOLUTION OF INVOLUTIVE ORDINARY
DIFFERENTIAL SYSTEMS

JUKKA TUOMELA AND TEIJO ARPONEN

ABSTRACT. We propose a method for solving numerically ordinary differential sys-
tems. The system is considered geometrically as a submanifold in a jet space. The
solutions are then certain integral manifolds which can be computed numerically,
when the system has been transformed into involutive form.

1. INTRODUCTION

1.1. Historical background. We shall present a new approach to the computation
of solutions of ordinary differential systems which is based on jet space techniques. The
jets were introduced in the beginning of 50’s by Ehresmann [15]. In spite of the fact
that jets are already quite old, they have apparently remained outside the mainstream
in differential geometry. Indeed, Spivak only mentions jets briefly in the final remarks
of his five volume treatise under the heading ‘miscellaneous’, [51, vol. 5, p. 602].
However, he says (this was written in 1979) that jets

...are natural structures to consider in differential geometry, but they are only just
beginning to be used in any serious way.

In recent years there has appeared (at least) two monographs on jet geometry [25], [48]
and in the introduction to the former it is also argued that the jet theory is quite natural
as well as fundamental in differential geometry. Be that as it may, the jet geometry
found almost immediately two important applications outside the differential geometry
properly speaking, namely the singularity theory and the theory of systems of partial
differential equations. Thom used jets in the analysis and classification of singularities
of differentiable maps [53], and this remains an active area of research even now [5].
We are interested in the other application. Now the study of rather general systems of
PDEs is more than 100 years old. Riquier and Janet studied them from algebraic point
of view [46], [22] and although their works were forgotten for some time, they influenced
Ritt when he created the differential algebra [47]. There has been a renewed interest
in these older works in recent years because of their connections to the Grobner basis
techniques. The geometric point of view was provided by Elie Cartan who formulated
the problems in terms of differential forms [10], and his work was extended by Kéhler

23).
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Then in the 50’s and 60’s Spencer, Kuranishi, Sternberg, Goldschmidt, Quillen and
others studied arbitrary systems of PDEs using jet spaces, extending the above men-
tioned classical results [50], [29], [16]. We shall try to explain some of these develop-
ments below, in particular the notion of the involutivity (or formal integrability) which
is important from the point of view of applications.

Apparently these results did not become well-known to a larger audience because
Vinogradov remarks [59] (this is from his review of [38], written in 1981):

Unfortunately, all these achievements have until now remained on the pages of
difficult-to-read periodical literature (including the book of Spencer and Kumpera
[28], which is also difficult to read) and in fact remained inaccessible to those for
whom they were written, namely, for specialists in differential equations.

Nowadays on jets and PDEs there are already quite a few monographs [27], [38], [39],
[40], [41], [52], see also surveys [14], [1], [50] and the collection of articles [31]. Also
jets are used (among other techniques) in the analysis of the symmetries of differential
equations [36] and in the problems of nonholonomic dynamical systems [57]. However,
none of these works make an easy reading and require at least some background in
differential geometry.

Now happily, though not unexpectedly, a lot of the complications disappear in the
ODE case, so we do not have to introduce the whole framework in full generality below.
In spite of that we need quite many notions from the differential geometry so this article
cannot possibly be self-contained in this sense and we must refer to [51], [13] and [48§]
for more details and explanations on these basic matters. However, in section 2 we
have tried to explain some basic ideas with minimum of technical details in order to
motivate the introduction of the heavier machinery which is needed later on.

1.2. Comparison to related work. The main motivation of this article came from
the theory of differential algebraic equations, but as the reader has remarked, this term
does not appear in the title, and in fact we shall not need this concept at all. The reason
is simple: from our point of view there is no difference between ODEs and DAEs. Hence
we shall usually use the term differential system to remind the reader that this covers
all the cases. Perhaps this sounds a bit surprising since in the traditional approach to
DAEs it is always stressed that the ODEs and DAEs are basically different, see the
well-known books [9], [18], [17] and the survey article [32], where extensive references to
litterature are given. Intuitively, this (apparent) paradox can be explained as follows.
From the jet point of view the differential systems are certain submanifolds of the jet
space, and consequently one can speak of differential systems without actually writing
down any particular equation. One might then say that the classical distinction of
ODEs and DAEs is related to the representation of objects rather than to the objects
themselves.

Since ODEs and DAEs are not distinguished, it is only natural that the notion of
index is not needed either, see the above references for a discussion of this concept.
In particular, the index is not related to any numerical difficulty of the problem when
using our approach in the numerical solution. In a way, the index cannot even be
defined in our context; we shall discuss briefly these matters at an appropriate place.

Let us further mention two interesting consequences of our point of view. The first
one is that explicit methods can be used to solve general differential systems. In other
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words there is no intrinsic connection between DAEs and stiff systems. The second is
that since the definition of the solution is not the usual one, some problems that are
singular from traditional point of view become regular, hence easily computable, in our
framework. This aspect is discussed in detail in [55], [56], so below we shall merely see
some examples of this phenomenon.

In traditional methods one sometimes also talks about manifolds and projections to
manifolds. Since both words are often used in the sequel, let us note that the manifolds
in question are not the same as discussed below, nor are the projections the same.

Rabier, Rheinboldt and Reich have also studied DAEs from the differential geometric
point of view, using the tangent bundle instead of jet spaces, [45], [42], [43], [44]. Some
theorems and computations are seen to be (equivalent to) special cases of the more
general results of Goldschmidt [16], see [26] for details.

Recently there has been quite much interest in applying geometric ideas to the nu-
merical solution of differential systems. Iserles [19], [20] discusses in general how quali-
tative features of the solutions should be taken into account when designing numerical
methods. For example nowadays Hamiltonian problems are usually treated with sym-
plectic methods which preserve the underlying symplectic structure of the problem, see
[49]. Also there are many papers dealing with flows on Lie groups and in general using
Lie groups and Lie algebras in numerical methods. Since these works are not directly
related to the present one (except for the fact that differential geometric ideas play an
essential role in both cases), we will simply refer to following articles for further details,

[11], [21], [33], [34], [35], [61], [62].

1.3. Outline of the article. In section 2 some motivating examples are given. By
restricting the attention to simple equations, it is possible to explain some basic ideas
relying on the geometrical intuition of the three dimensional space. In section 3 the
jets are introduced and the important concept of involutivity is discussed. In section 4
there are some computations illustrating the notions introduced in previous sections.
We also show that for quite a large class of systems, mechanical systems with holonomic
constraints, it is possible to simplify the computations considerably by treating the
Lagrange multiplier differently than other variables. Of course probably in all codes
the multipliers receive special treatment, but because our formulation is not equivalent
to traditional formulations, the role of multipliers is also different here.

In section 5 we first recall some notions of Riemannian geometry which are needed
in the analysis of the local error. Then we formulate 3 different one step methods:
explicit Euler, implicit Euler and midpoint rule. The analysis shows that the orders
of these methods in our context are the same as their classical orders. In section 6
the actual numerical implementation is presented. It is seen that the subproblems
arising in our algorithm can be treated with fairly standard techniques. In section
7 the numerical examples are given. We have chosen some representative problems
which have appeared frequently in the litterature. Our methods work reliably, and the
results show in particular that one can use explicit methods for these kind of problems,
although in the litterature only implicit methods are considered. We conclude with
section 8 where some directions of future work is indicated.

Essential parts of this article are based on reports [54], [7]. That jet spaces are
useful for analysing differential-algebraic equations was first suggested in [58] and [37]
(independently).
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2. DIFFERENTIAL EQUATION AS A SURFACE

Let us start by explaining the basic ideas in a simple setting where we can visualize
the situation in three dimensional space before formulating the general framework.
Similar situation is considered in [4] and [12] where the emphasis is on the analysis
of singularities. We will also say a few words about singularities in the examples, but
do not insist on this aspect of the problem. While discussing the examples we also
introduce some standard concepts of differential geometry. All maps and manifolds are
assumed to be smooth, i.e. infinitely differentiable.

2.1. Basic machinery. Let us consider a single first order differential equation

(2.1) flx,y,1) =0

where f is a smooth function and y; is the derivative of y.! Now forgetting for the
moment about derivatives we can interprete (z,vy,y1) as coordinates of R3. Hence
the zero set of (2.1) is a subset of R denoted by Ry = f~1(0) C R3. If zero is a
regular value of f, i.e. if the gradient of f never vanishes on Ry, then Ry is a smooth
two-dimensional manifold.

Now what are the solutions of (2.1)7 Classically the solutions are defined as (smooth)
curves ¢ : R — R such that (2.1) is identically satisfied. Here we shall take another,
more geometrical as well as more general, point of view. Having defined R; one could
perhaps consider defining solutions as certain curves ¢ : R — Ry. However, it is
only the image of the curve which is important, the parametrization of it is irrelevant.
Hence the solutions should be defined directly as certain one-dimensional submanifolds
of Ry without any reference to parametrizations. So let S be a smooth one-dimensional
submanifold of Ry. When would it be meaningful to say that S is a solution of (2.1)7

To proceed let us introduce some terminology. If p € Ry, the tangent plane of R,
at p is denoted by (TRy),. Similarly T'S, is the line tangent to S at p, and it is
evident that TS, C (TRy),. Our next task is to add to this framework some extra
structure in such a way that we can say that R, is a differential equation. Consider
R3 with coordinates (z,y,y1); if y1 is really the derivative of y with respect to z, then
in infinitesimal notation we should have dy — ydx = 0. To make sense of this we must
define what is meant by dy and dz. In Spivak’s words [51, vol. 1, p. 153] symbols like
dx

...metamorphosed into functions, and it became clear that they must be distin-
guished from tangent vectors. Once this realization came, it was only a matter of
making new definitions, which preserved the old notation, and waiting for every-
body to catch up.
So dx, dy and dy; are linear functions on the tangent space (TR?),, hence elements of
the dual space of (TR3),. This dual space is called the cotangent space and denoted
by (T*R3),. Let us then define a = dy — y;dx; at each point of R3, « is then a linear
function on (TR3),. Now we can define a subspace of (TR?), as follows

Cp={ve(TRY,|a(v)=0}

All these C,’s together is called a contact distribution, denoted by C. In general let us
define:

ater y; is called a jet coordinate.
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Definition 2.1. A distribution on a manifold M is a map which to each point of
p € M associates a certain subspace of the tangent space T M,,.

In the present case C is then a two-dimensional distribution on R3. One may think of
distributions as generalisations of vector fields. Now a vector field may be interpreted
as a differential equation, and hence the integral curves of the vector field are said to
be solutions of the corresponding differential equation. A generalisation of this idea
leads to the notion of an integral manifold.

Definition 2.2. Let S be a submanifold of M and D a distribution on M. S is an
integral manifold of D if TS, = D, at each p € 5.2

Let us go back to our differential equation (2.1). Since (TRy), can also be interpreted
as a subspace of (TR3),, we can define an intersection D, = (TRy), N Cp. Hence D
is in general one-dimensional. Of course at some points tangent and contact planes
may coincide; we will discuss this event and its consequences in the examples below.
Ignoring these exceptional points for the moment leads to

Definition 2.3. Solutions of (2.1) are integral manifolds of D.3

Since one-dimensional distributions always have integral manifolds, see [51, vol. 1,
p. 245], we get

Theorem 2.1. Given p € Ry such that D is one-dimensional in a neighborhood of p,
there exists a solution S of (2.1) such that p € S.

Note that this kind of existence theorem is not valid for many dimensional distribu-
tions. For example it is readily checked that the contact distribution does not admit
any integral manifolds, even locally. Incidentally, this implies that tangent and con-
tact planes cannot coincide in an open set of Ry. Since we are interested only in
one-dimensional distributions, i.e. ordinary differential equations, we will not consider
these matters further and refer to [51, vol. 1, chapter 6] for more information.

2.2. Comparison to classical solutions. Consider again the problem (2.1) and let
p € Ry be a regular point, i.e. df/0y; # 0 at p. Then by the implicit function theorem
there is a map ¢ : R? — R such that in a neighborhood of p, R can be represented
by the equation y; + ¢(x,y) = 0. The solutions of this equation can be defined in
the usual way and one thinks of them either as curves R — R or as (one-dimensional)
submanifolds of R% Let us take the latter point of view. Let us define a projection
T : R3 = R?by (z,y,11) — (z,y) and let S be a solution of (2.1) in the sense of
Definition 2.3. Now if p € S is regular, then one can show that 7(5) is the classical
solution in some neighborhood of 7(p).

Hence around regular points there is bijective correspondence between solutions in
the sense of Definition 2.3 and classical solutions. However, because the implicit func-
tion theorem is not constructive, the reduction to the standard form is not in general
possible in practice. Note also that Definition 2.3 provides more smooth solutions than
the classical setting since tangent and contact planes need not (and in general do not)
coincide even if df/0y; = 0. We shall see shortly examples of this phenomenon.

2Sometimes another terminology is used, for example in [12]. If D has constant dimension on M,
then it determines a foliation of M and each integral manifold is called a leaf of this foliation.
3In [12] this way of defining solutions is called ‘méthode de Lie’.
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FIGURE 2.1. Some solution curves of the equation (2.2) and their projections.

Remark 2.1. This property of having more smooth solutions than in the classical
case is quite interesting from the numerical point of view. Indeed, it is possible to use
general methods for a larger class of problems than the classical framework allows.

2.3. Examples.

2.3.1. Sphere. Consider the problem
(2.2) flz,y, ) = (y1)2—|-y2—|—:1:2—1 =0
Hence Ry = f~'(0) is the unit sphere and at each point p € Ry, D, is given by the

nullspace of
A= —U1 1 0
r Yy hn

One observes that dim(N(A)) = 1, except at (0,£1,0). So only at these two points
tangent and contact planes coincide; in the classical sense all the points of the equator
are singular. In figure 2.1 there are some solutions as well as their projections. When
the solution crosses the equator, there is a cusp in the projected solution, which in
convenient coordinates can be represented by the equation u? = v3®. The singularities
at exceptional points (0, +1,0) are called folded focuses [6, p. 34].

2.3.2. Asymptotic curves. Let us consider the following problem of classical differential
geometry. Let N C R? be a surface defined by the equation

(2.3) i (:1;4 + y4) —3xy—2=0

We want to compute some asymptotic curves on this surface. There are several charac-
terizations of these curves, see [51, vol. 3] or any book on classical differential geometry.
The one which is convenient for our purposes is the following: the tangent of an as-
ymptotic curve makes the second fundamental form vanish. Asymptotic curves exist
only in those parts of the surface where Gaussian curvature is negative or zero, in the
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FIGURE 2.2. A solution of equation (2.4) (left) and some asymptotic
curves on surface (2.3) (right). Thin lines are the sets of parabolic points.
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FIGURE 2.3. Some solution curves of the equation (2.4) and their projections

present case in the region where 2%y% < 1. The curves can be computed by solving the

differential equation
f(xvyvyl) = y2(y1)2 — 2y1 + 1}2 =0

(2.4)

The distribution is everywhere one-dimensional on Ry = f~'(0), except at (1,—1,1)
and (—1,1,1). Now the problem can be solved by computing the solution in Ry,
projecting it to R? and finally lifting it to N. Note that the solutions (2.4) are smooth
in the sense of Definition 2.3, although the corresponding asymptotic curves on surface
N have familiar cusps at z?y? = 1, see figure 2.2. The singularities at exceptional
points (1,—1,1) and (—1,1,1) are called folded saddles, see [6, p. 34] and figure 2.3

where there are some solutions and their projections around (1, —1,1).
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2.3.3. Distributions and their singularities. Distributions are perhaps less intuitive and
less familiar objects than vector fields, so let us see an example where distributions come
directly from the problem. In fact the previous example is such a case. The condition
defining the asymptotic directions clearly defines a subspace of the tangent space,
hence a distribution. In this way we arrived directly at distributions without passing by
differential equations. In the previous example we have not used this distribution. Also
the condition defining the lines of curvature of a surface leads directly to distributions.
In this case the distribution is determined by the eigenspaces of the differential of the
Gauss map.

Let us then show that singularities of distributions are more general than singulari-
ties, i.e. zeros, of vector fields. Consider any smooth surface N C R? and let us suppose
that distribution D is one-dimensional except at some isolated points which are called
singular points of D. Recall that around a regular point p there is a vector field V' such
that 0 # V, € D, for all a in some neighborhood of p and conversely every such V
spans a certain distribution. However, around a singular point such a vector field may
not exist. Let us see an example of this phenomenon. Consider the problem

(2.5) Flay,m) = 2(yn)? = 2yy — 2 =0

It is easily checked that this is a regular problem, and in fact the classical solutions are
seen to be a family of parabolas, see figure 2.4 Now clearly there is no vector field in
the neighborhood of the origin whose integral curves were the parabolas. Incidentally,
the pattern of parabolas is the same as the pattern of the lines of curvature around
an umbilic on an ellipsoid, see [51, vol. 3, p. 288]. In other words the index of the
singularity is the same, namely 1/2 in both cases, see [51, vol. 3, p. 324]. Note also
that if one transforms the above problem into a classical problem using square roots,
the correct solution is obtained only if one jumps from one branch of the square root
to the other when crossing x = 0.

3. DIFFERENTIAL SYSTEMS AND JET BUNDLES

Lychagin describes the importance of jets in the analysis of differential equations as
follows [31, p. ix].

Thus, whereas connection between linear differential equations and differential
geometry were few and far between, as were the connections between analytic
geometry (in the elementary sense of the term) and geometry in the sense of
Felix Klein, in contrast the theory of nonlinear differential equations is clearly a
geometric theory, based on the special geometry of jet spaces.
Hence to proceed we must introduce more ideas from differential geometry and in
particular jets. For more details on jet geometry we refer to [48]. In all that follows
various maps are required to be defined only in some convenient open set of the relevant
manifold. For notational simplicity this set is not indicated.

3.1. Jet bundles. Let us consider two maps y, z : R* — R"”, let v € N°* be a multi-
index and |v| = vq + -+ + vs.

Definition 3.1. The maps y and z are g—equivalent at x, if
ally 1P

X

ox? ox? v
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FIGURE 2.4. Some solution curves of the equation (2.5) and their projections.

for all 0 < |v] < gq.

The equivalence thus defined is clearly an equivalence relation so we can further

define

Definition 3.2. The g—jet of y at x, denoted by jI(y), is the equivalence class of the
above equivalence relation. The q—jet of y, denoted by j9(y), is the map x — jI(y).

Intuitively the g—jet of y at z is its Taylor expansion up to order ¢. Since all these
considerations are local, the previous definitions make also sense when R® and R" are
replaced by manifolds. However, in the jet theory one usually prefers to talk about
sections rather than maps. So let us introduce

Definition 3.3. A fibered manifold is a triple (€,7,B) where & and B are manifolds
and m : € — B is a surjective submersion. & is called the total space, B the base space
and 7 the projection. For each p € B, the set n='(p) is called the fiber over p.

We adopt the terminology used in [48]. Note that for example in [41] a fibered
manifold is defined to be what we shall call a bundle.

Definition 3.4. A fibered manifold is a bundle, if every fiber is diffeomorphic to each
other.

We shall usually refer to a bundle by the total space, although this might be confusing
in some situations; indeed in jet theory there are frequently situations where the same
total space is considered with different base spaces and projections. However, in our
context this kind of confusion is not likely to occur.



10 JUKKA TUOMELA AND TEIJO ARPONEN

Definition 3.5. A section of a fibered manifold (£,7,B) is a map y : B — & such
that m oy = identity. The set of all sections of € is denoted by T'(E).

Note that if £ = B x F, then a section of &£ is simply the graph of a map B — F.
A bundle need not be a cartesian product globally; however, for any p € B, there is
a neighborhood U C B such that #='(U) ~ U x F. Hence working with bundles and
sections is a little more general than working with cartesian products and maps. In
local coordinates one may then define jets for sections in the same way as above for
maps. Putting all the local information together gives

Definition 3.6. Let (£,7m,8) be a bundle. The set of all q-jets of its sections is a
bundle (J,(E),m9,B), the ¢ th jet bundle of (€,7,B).

For example if £ = R x R, then R? in the previous section is denoted by Ji(€). If y
is a section of &, then j!'(y) is a section of J;(€) defined by z — (z,y(x),y'(z)). Note
that not every section of Ji(£) is a 1-jet of a section of £. We are now ready to define
a differential equation.

Definition 3.7. Let £ be a bundle. A (partial) differential system (or equation) of
order q on & is a subbundle R, of J,(E).

Requiring that R, is a bundle is rather excessive in practice; in the problems we
have in mind it is enough that R, is a submanifold. The present definition, however,
is convenient for the general discussion in the next subsection. This formulation also
allows the definition of the solutions in a natural way.

Definition 3.8. Let R, C J,(€) be a differential system and y a section of £. Then y
is a solution of Ry, if 79(y) is a section of R,.

This is not how we defined the solutions in the previous section. In fact the idea
presented there generalises in a straightforward way only in the ODE case. Before
restricting our attention to the ODE case, let us make some general remarks.

3.2. On the formal theory of PDEs. We will only very briefly describe some ideas
and refer for more information to [50], [16], [27], [29], [38], [39], [40], [41], [52], [14], [1].
Spencer defines the formal theory as follows [50]:

The first step in the study of overdetermined systems is obviously the investigation
of the formal properties of the given complex and the finding of criteria in order
that the complex be formally exact. This we call the formal theory.

The word formal is used for the following reason. When Riquier and others started
studying fairly arbitrary systems of PDEs at the end of 19th century, they had in mind
a generalization of Cauchy—Kovalevaskaia theorem and this involved two steps: first
to construct the solution as a formal power series, and then to show that it converges.
Now Riquier realized that given an arbitrary system, it was not possible to obtain
the formal power series without first transforming the initial system to a ‘canonical’
form, or in modern terms formally integrable or involutive form. This is in essence
what Spencer says: one should be able to recognize when the system is indeed formally
integrable, and if it is not, one should find ways to transform a given system into a
formally integrable system which has the same solutions as the initial system.

The second step is then to prove the convergence of the power series in the analytical
case, or in modern terms to show that the complex is also differentiably exact. This is
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rather easy in the ODE case: it is simply Theorem 2.1. However, in the PDE case it is
an open problem in this generality.

Now is it always possible to find the involutive form? Perhaps already Riquier and
Cartan thought that this must be the case for a ‘generic’ system, and the result was
proved in full generality by Goldschmidt [16], based on the work of Spencer. It is
beyond the scope of the present article to state precisely this theorem, but we shall try
to explain the main ideas. We will not define one crucial concept, namely the symbol
of the differential system, because it is not needed in the ODE case. However, in the
PDE case the analysis of the symbol is absolutely essential.

To formulate the criteria Spencer talks about, we must introduce two basic op-
erations: prolongation and projection. The latter is rather straightforward. Given a
bundle £, we can define for all ¢ and r the projections 73" : Jo4,(£) — Jo(&) which in
coordinates are simply the maps which ‘forget’ highest order derivatives. Then given a
differential system, we can naturally restrict these maps to the relevant submanifolds,
and hence we can speak about projections of differential systems. The definition of
prolongation is more involved.

Definition 3.9. Let R, C J, (&) be a differential system. The r-prolongation of R,,
denoted by p,(R,), is

pr(Rq) = Jo(Rq) N g4 (€) C Jo(Jo(E))

Perhaps it seems a bit strange to ‘operate’ on R, with J,., since R, is already a
subset of a jet bundle. However, R, can be considered as a bundle in its own right,
so J.(R,) is certainly well-defined. On the other hand we do not want to ‘forget’ that
R, 1s indeed already a submanifold of a jet bundle which explains why we have to take
the intersection with J,1,(€). This intersection is in turn well-defined since both sets
are in a natural way subsets of J,.(J,(£)).

When there is no risk of confusion we shall denote the prolongations simply by
Rytr = pr(R,) and it is also convenient to use the notation R((Is_gr = ng:+s(,0r+s(73q)).
Note that we always have R((Is_gr C Rg4r, so the restricted maps %" = Ry, — R,
are well-defined. In the above Definition, p,(R,) is just a well-defined subset, which
in general need not be a bundle. For further discussion it is convenient to restrict our
attention to systems which remain bundles in prolongations and projections.

Definition 3.10. 4 system R, C J,(&) is regular, ifR((Is_gr is a bundle for all r, s > 0.
Then we are in a position to define the formal integrability.

Definition 3.11. 4 system R, C J,(€) is formally integrable, if it is regular and
R((Is_gr = Rytr forall v, s > 0.

In other words, it is required that the maps ng:-l's : Rytr+s = Ry4r are surjective.

Of course this is not very useful in practice, since there is an infinite number of condi-
tions. However, Goldschmidt was able to prove that one can constructively test formal
integrability, hence he provided the criteria Spencer desired.

Theorem 3.1. Let R, C J,(E) be a differential system and suppose that Ro41 C
Jor1(E) is a bundle. If 70t : Rep1 — Ry is surjective and the symbol of Ry is
2-acyclic, then R, is formally integrable.
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We shall not define the symbol or 2-acyclicity for two reasons: in the first place this
would require a lenghty discussion and secondly these notions are not really needed in
the ODE case which mainly interests us. The important point is that now we really
have criteria which can be constructively applied in a given situation. We have also
used the word involutive, so let us give

Definition 3.12. A4 system R, C J,(E) is involutive, if it is formally integrable and
its symbol is m-acyclic, where m = dim(B). Also the symbol is said to be involutive, if
it is m-acyclic.

Now it happens that any symbol is 1-acyclic and on the other hand the condition
of 2-acyclicity is equivalent to 1-acyclicity in the ODE case. Hence formally integrable
and involutive is equivalent in this case. The importance of involutivity comes from
the fact that m-acyclicity implies 2-acyclicity, if m > 2, and that there are algorithms
to test m-acyclicity while it is apparently not known how to test directly 2-acyclicity.
Anyway in the ODE case we can write the Goldschmidt’s theorem as follows.

Theorem 3.2. Let R, C J,(E) be an ordinary differential system and suppose that
Ryt1 C Jyr1(E) is a bundle. If 7Tg+1 : Ry41 — Ry is surjective, then R, is formally
integrable (involutive).

Now if our initial system R, is not formally integrable, what should be done? Recall
that we have only two operations available, namely projections and prolongations.
()

Hence one could hope that R/, were formally integrable for some r and s. To justify
these manipulations we need

Theorem 3.3. The solution sets of R, and R((Is_gr are same for all r, s > 0.

Here solutions are understood as in Definition 3.8. The existence of involutive or
formally integrable system follows, if we assume some more regularity of the initial
system.

Definition 3.13. 4 system R, C J,(E) is strongly regular, if it is reqular and the
symbol of R((Is_gr is induced from a vector bundle over B for all r, s > 0.

Again this simplifies considerably in the ODE case, since the relevant symbols are
same (or can be identified) for all r, s > 0.

Theorem 3.4. If R, C J,(E) is a strongly reqular differential system, there are inte-

gers r, s > 0 such that R((Is_gr is formally integrable (involutive).

This is again constructive: at each stage one can test if various criteria are fulfilled or
not. Some upper bounds are known for a sufficient number of prolongations required to
produce an involutive symbol. However, these bounds are so absurdly high that they
are not useful in practice.

3.3. Ordinary differential systems. We have defined a differential equation as a
submanifold, without mentioning any equations. To be able to write down the equations
in this framework we still need some general concepts.

Definition 3.14. Let (¢, 7,B) and (g',fr,[;’) be bundles. A pair of maps f : € — £,
f : B — B is called a bundle morphism, if to f = for. If B= B and f = identity,

we shall in this case say that f is a morphism.
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In fact 7]? is uniquely determined by f. Note also that f maps fibers of & to fibers
of £. If f is a diffeomorphism, a bundle morphism induces a map I'(§) — I'(£). In
particular this is the case when f is a morphism. Now j? can be considered as a

morphism & — J,(€) and hence as a map ['(£) — T'(J,(€)). This leads to
Definition 3.15. Let f : J,(E) — € be a morphism. The q'th order differential

operator determined by f is Dy = foj9: I'(€) — F(SN)

Let us then relate these definitions to the elementary examples in the beginning.
Consider the problem (2.1). When we want to define Ry as a zero set, we think of f
on the left-hand side as a morphism J;(€) — &, where £ = R x R. One the other
hand, when we think about the solutions as in Definition 3.8, we really interprete the
left-hand side as a map I'(£) — I'(£). It may appear strange that f is a morphism
whose target £ is two-dimensional while we have only one scalar equation. However,
even classically on the right-hand side there is really a zero function, i.e. the zero
section of £. So when writing an equation we suppress the base manifold and describe
only the action of the morphism on the fibers. Of course this is convenient and we shall
always do so in the sequel.

Let us then finally take up the ODE case and describe the morphism f : J, () — £
with coordinates. Let & = R x R™, £ = R x R* and let us denote the coordinates of
Jo(E) by (z,y', ...,y " yi,...,yp); they are called jet coordinates. Hence superscripts
denote the components of the vector and subscripts correspond to jets (or derivatives)
of different order. Let us write the equation

(31) f(xvyvylv"'7y‘I):0

where strictly speaking on the right-hand side there is a zero section, but from the
point of view of inverse images we can consider this as a map J,(£) ~ Rla+Dntl 5 RE,
Hence let R, = f~1(0) C J, ().

Before we can formulate the concept of solution which is convenient for the numerical
computation, we must still introduce some terminology. We denote the tangent (resp.
cotangent) bundle of a manifold M by TM (resp. T*M), and the tangent (resp.
cotangent) space at p € M by TM, (resp. T*M,). The sections of TM are vector
fields and the sections of T*M are one-forms.? In the introductory examples a was a
section of T*J;(R x R) and now we must formulate this idea in the general case.

Let us then consider the system (3.1) and let us define the one-forms on J,(€) by

(3.2) oz;:dy;_l—y;dx i=1,....n i=1,....q

With these forms one can formulate the appropriate generalisation of the contact plane
and contact distribution. Let p € J,(€) and define

Cp = {Up € (T (E))p ‘ O‘;‘(Up) = 0}
This defines a distribution C on J,(€), which is called a Cartan distribution, and it

is easily checked that dim(C) = n + 1.5 Let us see that this distribution captures the
‘infinitesimal’ idea expressed in the notation of the one-forms. Let y (resp. z) be a

“Tncidentally, distributions can also be considered as sections: one-dimensional distributions are
then sections of the projective bundle and many dimensional distributions are sections of an appro-
priate Grassmann bundle.

®The Cartan distribution defines a contact structure on J,(€) only in the case n = ¢ = 1.
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section of £ (resp. J,(&)). Identifying sections and their images we may consider j(y)
and z as submanifolds of J,(&). Then for all p € j%(y), (T7%(y)), C C, and conversely
if for all p € z, (T'2), C Cp, then z = j(y) for some y.

Let R, = f~'(0) C J,(€) where f is given in (3.1) and supposing that zero is a
regular value of f, R, is a smooth manifold. Now as in the simple examples in the
beginning we can define a distribution D at each point of p € R, by

Dp = (TRq)p N Cp

Definition 3.16. Supposing that R, is involutive and D is one-dimensional, the solu-
tions of (3.1) are integral manifolds of D.

Note that here it is sufficient to assume that R, is a submanifold, it need not be a
bundle. Now Theorem 2.1 generalizes as such to the present situation, so we conclude
that there always exist a unique solution through p € R,, if D is one-dimensional in
some neighborhood of p.

Remark 3.1. Is D really one-dimensional? The dimensions of C,, (T'R,), and (T J,(E)),
ate n+ 1, gn +n —k + 1 and gn + n + 1 which implies that D, is at least n — k + 1
dimensional. Consequently for & < n (i.e. underdetermined systems) D cannot be
one-dimensional. Note that in this case the solutions can still be defined as in Defini-
tion 3.8, although evidently there is no unique solution through a given point. In some
problems it may be interesting to analyse the space of solutions of underdetermined
systems, but we will not consider these below. An interesting example of an underde-
termined system is yi — (y2)® = 0. Hilbert gave it as an example where the general
solution cannot be expressed in terms of an arbitrary function and a finite number of
its derivatives, see [3].

For k = n one would expect that D is ‘generically’ one-dimensional, and in fact this
is always the case if f is in the standard form

f(xvyvylv"'qu) :yq—l_f(xvyvylv"'qu—l)

More generally, the transversal intersection of (T'R,), and the Cartan distribution is
one-dimensional.

Finally if £ > n, then for f taken ‘at random’ one would expect that D is zero-
dimensional. However, systems arising in practice have additional structure which
‘allows’ D to be one-dimensional.

Remark 3.2. Why should the system be involutive? Consider the following systems
in J1(R x R?) ~ R5.

1
L y +1=0
+1=0
Ry {y2+1_0 rRY . Lyr—g
i B yr+1=0

R(ll) is involutive form of R4. Recall that the solution sets, in the sense of Definition

3.8, are same for Ry and R(ll) by Theorem 3.3. Now the distribution on R; is one-
(1)

dimensional, except when y{ = 0, and hence if the initial point is not on R’ we get
a well defined integral manifold. However, this is not really what we want since the
(1)

equation y{ = 0 should also be satisfied. For the involutive system R’ one verifies
that the corresponding distribution is everywhere one-dimensional. This is typical:
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noninvolutive systems can contain open sets where there are no solutions at all, and in
spite of that the distribution can be one-dimensional in such a set. On the other hand,
the dimension of the distribution of a noninvolutive system can be greater than one in
an open set where there are unique solutions.

Remark 3.3. Note that it is unnecessary to transform the system into a first or-
der system before the numerical solution. In fact it is better not to transform since
the dimension of the ambient space is bigger for the first order system. Let ¢ > 1,
R, C J,(&) and let the corresponding first order system be Ry C Ji(R x R?); then
dim(J1(RxR™)) = 2gn+1 > (¢+1)n+1 = dim(J,(£)). Of course dim(R,) = dim(R).
For the same reason it does not pay to transform a nonautonomous system into au-
tonomous form.

Remark 3.4. It is interesting that when one computes the solution, one obtains au-
tomatically approximations to derivatives up to order g.

Remark 3.5. Note that there is no natural way to extend the distribution D outside
R4, even in the neighborhood of R,. Such an extension would mean relaxing some of the
‘tangent conditions’ (the curve would not be tangent to R,) and/or ‘Cartan conditions’
(the jet coordinates would not correspond to derivatives). Evidently choosing this
relaxation is quite arbitrary. Of course in some special situations there can be an easily
constructed extension, which might prove useful in the computations.

3.4. Preliminary conclusions. Having defined our basic framework we pause to
make a few comments before moving on to the numerical part of the article. Since
the basic objects of study, i.e. differential equations and solutions of differential equa-
tions, have been redefined, it is perhaps not so surprising that this approach opens up
new points of view for many aspects of analysis of differential systems. First of all, on
the purely conceptual level, it is quite nice to be able to discuss such a large class of
systems in a unified way; recall that no special property is required of the map f in
(3.1).

The important concept which emerges from this framework is involutivity, and be-
cause of Theorem 3.1 one might from the theoretical point of view restrict one’s atten-
tion to involutive systems. However, in practice the systems are usually not involutive
initially and hence they must first be transformed to an involutive form before ac-
tual numerical computations. Now this transformation involves usually some symbolic
manipulation of the given system, and consequently can be rather time consuming.
Of course the algorithms for symbolic manipulation are progressing all the time, so
perhaps this is not such a severe problem. Moreover, it is not quite clear how much
symbolic computation is really required: in some situations a mixture of numerical and
symbolic techniques could be sufficient.

However, the transformation to involutive form should also be seen as an analysis (of
singularities) of the system. Recall that in Theorems 3.1, 3.2 and 3.4 there are some
regularity assumptions. One may think that in general these conditions are satisfied in
some open set of the relevant manifold. Now the set where these conditions fail indicate
some sort of singularity of the system: the manifold is perhaps not smooth everywhere,
or perhaps it can be factored to several subsystems. Obviously it is impossible to
analyse the situation using only the original, i.e. non-involutive, system. Also it is
quite interesting to locate the sets where the distribution fails to be one-dimensional,
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because this gives essential information about the solutions. Again these sets cannot
be known in general, if the system is not involutive.

This leads yet to another aspect, namely genericity. When analysing singularities of
the solutions for example, it is well-known that certain singularities are typical while
others disappear when the system is perturbed a little [5]. Of course this kind of
analysis is important in applications, where usually models and the coefficients are
only known approximatively. Without pursuing this matter further let us just mention
one interesting fact. Now the points where the distribution fails to be one-dimensional
are evidently the generalizations of the singularities (i.e. zeros) of vector fields. It
is known that generically singularities of vector fields appear only at isolated points.
This is not true for distributions. In fact one expects that generically the singularities
of distributions appear in the sets of codimension two, see [5], [55] and [56] for more
information.

Finally there is the numerical aspect which is the main topic of the present article.
Below we will show how to use jet spaces in numerical computations. Here also the
new point of view leads to different conclusions than the classical approach. This will
be discussed in more detail below.

4. EXAMPLES AND SIMPLIFICATIONS

Since a lot of problems arising in practice are of the type mechanical systems with
constraints it seems worthwhile to discuss explictly some problems in this class. More-
over, the computations that follow are also useful as illustrations of the concepts and
definitions introduced above.

4.1. Pendulum. Consider the simple pendulum which in the classical notation is given

by

2"+ dr =0
(4.1) Y +Ay+1=0
:1;2—|—y2—1:0

Here x and y are the cartesian coordinates and A is the tension in the string (or Lagrange
multiplier). Let us introduce the jet coordinates:
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The system is not involutive, but prolonging and projecting (i.e. differentiating and
eliminating) 4 times produces the following involutive form:5

ys +y'y? =0

v +y*y +1=0

v +3y; =0

(4.2) y'yl +yPyi =0

(1) + () —y* =y’ =0

Byt +yi =0

(y')?2 + (y2)2 —1=0

Let & = RxR3and denote the above equations by f(z,y,y1,42) = 0and Ry = f~1(0) C
J>2(E). Evidently dim(Rs) = 3. Note that by Theorem 3.3 the original system and the
involutive system have the same set of solutions in the sense of Definition 3.8, but

Definition 3.16 makes sense only for the involutive form. Now the relevant distribution
can be computed from the nullspace on the following matrix.

—y} 1 0 0 0 0 0000
—y> 0 1 0 0 0 0000
—y3 0 0 1 0 0 0000
—yl 0 0 0 1 0 0000
—42 0 0 0 0 1 0000
—y3 0 0 0 0 0 1000
A=]0 ¥ 0 4y 0 0 0100
0 0 v y> 0 0 0010
O 0 0 0 0 0 0031
0 yi w 0 y' % 0000
0 0 -1 —1 2y 242 00 0 0
O 0 0 0 0 3 1000
0 y' v 0 0 0 000 0

It is easily checked that dim(N(A)) = 1 everywhere on Ry, though A is usually of full
rank outside Ry. Hence the problem is regular and through every initial point there
exist a unique solution. Of course in this simple problem one sees immediately that one
could drop the last 4 rows of the matrix in actual computations. However, in general
one must use the full matrix and hence to treat an overdetermined system of linear
equations.

The problem is quite simple and one could use the above formulation in the nu-
merical computations. However, the number of equations can be reduced, or more
geometrically, the manifold and the distribution can be projected to a lower dimen-
sional ambient space. Since this projection can also be done for quite a large class of
problems (see below), let us see how this can be achieved.

Recall that if one has a system of the form y; + ¢(x,y) = 0, this always induces
a distribution or vector field on &, because in this case Ry is simply the graph of .

fWe have to differentiate 4 times, although the system is said to be of (differential) index 3...
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Hence the projection (x,y,y1) — (z,y) induces a diffeomorphism between Ry and &,
and the differential of the projection transports the distribution from Ry to £. Note
that the graph cannot be vertical, so that the distribution remains one-dimensional.
Now looking at the system (4.2) we see that it is ‘graph like’ with respect to y, so
in this case we could project the system from J5(&) to Ji(€) with the natural map

W% s (2,91, y2) = (2,y,y1). This gives

'yl vty =0

(i) + (i) —y* =y’ =0
3yt + 7 =0

(') + ()P —1=0

(4.3)

and the distribution is given by the nullspace of

—yl 1 0 0 0 0 0

—y? 0 1 0 0 0 0

—y 0 0 1 0 0 0

ylys 0 0 0 1 0 0

< v y’*4+1 0 0 0 0 1 0
A= _9,2,3

39>~3 0 0 0 0 0 1

0 v 0y 20

0 0 -1 =1 2yl 242 0

0 o 0 0 0 3 1

0 Ly 0 0 0 0

Denote the system (4.3) by Ry = f_l(()) C Ji(€). Again it is immediate that
dim(Ry) = 3, dim(N(A)) = 1 on Ry, and that 77 : Ry — Ry is a diffeomorphism.
Hence there is a bijective correspondence between the solutions of (4.2) and (4.3).

However, one can do another reduction. Recall that A in the original equations (4.1)
was ‘only’ a Lagrange multiplier, so one suspects that perhaps it is not necessary to
treat it and other variables in the same way. Let us try to get a formulation where we
can use the special features of A in the problem. So let us introduce

x>y y >y’

Hence here y = (y',y?) and € = R x R% Now differentiating twice the constraint in
(4.1), we get

Yy +y'A =0
v tyA+1=0
(4.4) (y,51) =0

lyi” + (y,y2) = 0
>’ —1=0
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Consequently y; and A can be solved from the equations

10 y'\ (v 0
(4.5) 0 1 ¢ ys | + 12 =0
vyt 0 \A 1

Note that the matrix cannot be singular since y' and y? cannot be both zero. Now we
can regard ys and A simply as parameters which have to be (numerically!) computed,
and this leads to a simple problem in Jy(&). First let us consider the system (4.4) in
J>(€) and denote the manifold by Re. Now of course Ry depends on A, but obviously
Ry = m}(Ry) does not; in fact Ry is given by the system

{WV—1=0
(y,1) =0
Hence we can solve the problem in Ry C Jyi(&), provided we can compute the distri-

bution on Ry. This is done with (4.5). The projected distribution is the nullspace
of

—yl 1 0 0 0

—% 0 1 0 0

I T I I
A=_2 0 0 0 1
0y v v ¥

0 o' v 0 0

where y; and y3 are computed from (4.5). Again it is seen that the last two rows can
be dropped, and we can immediately write down a vector which spans the nullspace:
(1,91, 9%, ys,y2), or more briefly and conveniently (1,y;,y2). Hence the final form of
the problem is:

I —1=0
(¥,y1) =0
D = span(V)
(46) V= (L)
10 y'\ (v 0
0 1 | |vs|l+| 1 |=0
y' oyt 0 A v

In the next section we generalize the above reduction argument.

4.2. Mechanical systems with holonomic constraints. Let f : R™ — R* be a
smooth map. The first (resp. second) differential of f, denoted by df (resp. d?f),
is a map R™ — L(R™ R*) (resp. R™ — L(R™ x R™ R¥)) where L(R™,R¥) (resp.
L(R™ x R™ R*)) denotes the space of linear (resp. bilinear) maps. The value of df
(resp. d*f) at p is denoted by df, (resp. d*f,).
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Following class of systems occurs often in applications

{B(l’ayayl)yz) + flz,y,p1) + (dg)'A =0
g9(y) =0

where B is invertible, dg has a full rank and X is Lagrange multiplier. Note that the
pendulum system (4.1) is of this form and that the rank conditions need to be satisfied
only on the zero set of g. Now proceeding as in the pendulum case we differentiate
twice the constraint and get the system

(oo ) () + Coainn) -

This linear system has a solution under the present hypothesis. Hence projecting the
system from J5(&) to Ji(€) leads to

9(y) =0
dgy =0
D = span(V)
V= (17y17y2)

B (dg)t Y2 f N
(dg 0 ) <A> * <d29(y1,y1)> =0

Note that the overdetermined character of the system has disappeared and that the
solution of the linear system can be computed numerically. If the system is big, the
symbolic computation of d*¢ may be rather time consuming. Fortunately this is not
necessary: automatic differentiation permits a very accurate and efficient numerical
evaluation of the required quantities. However, discussion of these techniques is outside
the scope of the present article and we refer to [8] for more information on this subject.

(4.7)

(4.8)

4.3. On the index. Before discussing the actual numerical methods, let us say a few
words about index. There are many definitions of the index, see [9], [18], [17], [32], and
this notion (or these notions) has been used to characterize the numerical difficulty of
the problem. One of the definitions, the differential index, is rather close in spirit to the
following definition: index is the number of prolongation and projection steps needed
to transform the given system into an involutive system. Hence one may interprete
the index as measuring the lack of information in the original system, and so it is
quite natural that higher index problems are numerically more difficult, if one uses
the original system in the numerical computations. We use the involutive form, and
therefore the index plays no role in our framework.

Indeed, from the point of view of the involutive system one cannot even define the
index. This is because one cannot do the projection/prolongation steps ‘backwards’,
i.e. there is no unique initial system where the involutive system ‘comes from’. Let us
elaborate on this point using some concepts of differential algebra, [24], [47]. Let the
original system be given by a system of differential polynomials. The set of solutions is
characterized by the radical differential ideal generated by the system. Now prolong-
ing, projecting and factoring we may look for the prime decomposition of the system:
according to a theorem of Ritt, any radical differential ideal is a finite intersection of
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prime ideals. This process creates a tree structure: if the systems factors, i.e. it is not
prime as an algebraic ideal, the system splits into subsystems, and we look for the invo-
lutive form of each of them. Hence we get a tree where the root is the original system
and the leaves are the involutive systems corresponding to the prime decomposition.

Now the differential index is intuitively the length of the path from the root to the
given leaf. Of course these numbers can be different for different leaves, so that in a way
even for the root the index cannot be defined, at least as an integer. This phenomenon
is well-known: it has been expressed by saying that the index depends on the solution.
Of course one need not know the solution, it is sufficient to know the corresponding
prime ideal. Again, imagining the tree structure one sees that it is impossible to define
the index of a leaf: clearly any leaf could be a part of a rather arbitrary tree, and hence
the length of the path from the leaf to the root can be arbitrary.

The traditional methods can handle only problems with as many equations as un-
knowns; the numerical analysis is done on the root. Since jet bunbles allow us to treat
overdetermined systems in a numerically stable way, we can do our numerics on the
leaves.

5. COMPUTATION OF ONE-DIMENSIONAL INTEGRAL MANIFOLDS

5.1. Preliminary remarks. We have seen above that the computation of the solu-
tions of a differential system reduces to the following:

Given a manifold M, a point p € M and one-dimensional distribution D on M,
compute the integral manifold of D through p.

By Theorem 2.1 there exists a unique solution to this problem. Now in practice M
is given as a zero set of some map as in (3.1), but usually D is not explicitly known.
However, given a point p € M we can numerically evaluate D,, and this is sufficient in
applications. The standard ODE codes work in the same way: it is not necessary to
know a formula for the vector field, it is enough to be able to evaluate it at a given
point.

Recall that around a regular point p one can find a vector field V such that 0 £V, €
D, for all a in some neighborhood of p and we can also normalize by requiring |V, | = 1.
Such a V is called a vector field associated to D. Note that V' may not exist globally, as
our example in section 2 showed. Finally let us remark that V is not needed in actual
computations, but it is useful in the analysis of numerical methods.

Let us also remark that there is no reason why the problem should be always stiff,
so there is no need to restrict one’s attention to implicit methods. Of course our
formulation includes all the classical stiff systems: simply take M to be some Euclidean
space and V to be a vector field which defines a stiff system. However, the point is
that overdetermined systems (or DAEs) are not intrinsically stiff.

To proceed in our construction and analysis of numerical methods to the above
problem we must pause to introduce some terminology.

5.2. Some notions of Riemannian geometry. For more details on Riemannian
geometry we refer to [51, vol. 2 and vol. 4] or [13]. Let M be a smooth submanifold
of R™. Then its normal space at p is denoted by NM,. In these circumstances N M,
is the orthogonal complement of TM, in (TR™),. Let us give M the Riemannian
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metric induced by the standard metric in R™ and denote by V the (unique) symmetric
connection which is compatible with this metric.

Let X and Y be vector fields on M; denoting their extensions to R™ by the same
letter we have

(5.1) IY(X,) = Vi, ¥ + 5(X,.Y;)

where dY (X)) is the standard directional derivative, Vx, Y is the covariant derivative
and S is the second fundamental tensor. Note that (VXPY)p € T M, and that at each
point p, S is a symmetric bilinear map T M, x TM,, — NM,.

Note that the covariant derivative is intrinsic to M while the second fundamental
tensor depends on how M is embedded in R™. Let V' be a vector field on M and ¢ be
an integral curve of V. If |V,| = 1 for all p, i.e. if ¢ is parametrized by arclength, then
‘VVPV‘ is called the geodesic curvature and |S(V,,V,)| is called the normal curvature
c at p.

5.3. Analysis of local error for some methods. Let k¥ < m and f : R™ — R*
be a smooth map and let zero be a regular value of f. We think of f as in (3.1), but
for the present discussion it is convenient to regard J,(€) simply as a big Euclidean
space R™ where m = (¢ + 1)n + 1. Hence M := f~'(0) C R™ is a smooth manifold
of dimension m — k. Let us give M the Riemannian metric induced by the standard
metric in R™. When it is convenient the objects defined on M will also be considered
as defined on R™ without writing explicitly the inclusion map. Let D be a smooth
one-dimensional distribution on M and let V' be the vector field associated to it. We
would like to compute some integral manifolds of D.”

Let p € M be the current point and ¢ : R — M be the integral curve of the
associated vector field with ¢(0) = p and ¢/(0) = V,. The arclength parameter is
denoted by s. Let us compute an approximation of ¢(h) for small h. The simplest
possibility is to use Euler’s method in the following form.

1. Choose the step-size h and take an ‘Euler step’ along the tangent space; this gives
a point p + V,h.

2. Since p+V,h € M in general we project it orthogonally back to M. This projection
is well defined for h sufficiently small by the tubular neighborhood theorem [51,
vol. 1, p. 466].

Hence an approximation ¢ of ¢(h) is obtained by solving

q+ (dfy)'n=p+V,h
flg)=0

where 1 € R*. It can easily be verified that this system has a solution for small h. To
get error estimates we compute first few terms in the expansions

4=¢"+¢'h+q'h" +--
p=p pth A pth? 4

(5.2)

This leads to

“In the limiting case where m = k+ 1 and hence the integral manifold is M itself, this problem has
been studied quite extensively, see [2].
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Proposition 5.1.
q = p+ Vph — (df,)' 11 + O(h?)

p =1 (dh(dhy)t) RV VR + O
Proof. Obviously ¢° = p and ;¥ = 0. For linear terms we get the equations
q' + (dfp)tﬂl =W
dfpq' =0
This implies that ¢! =V, and p' = 0. Then the quadratic terms give
q2 + (dfp)tMZ =0

2dfyq* + & fo(V, V) = 0

from which the result follows. 0

Proposition 5.2.
2

¢ =35V V)

Proof. Let ¢ : R — M be any curve (parametrized by arclength) such that ¢(0) = p

and ¢/(0) = V,. Recall that (TR™), = TM, & NM, and denote by 7 the orthogonal

projection 7 : R™ — NM,. Now it is known that 7 (¢"(0)) = S(V,, V}), see [51, vol. 3,

p. 5]. On the other hand differentiating twice the identity f o ¢ = 0 we obtain
dfpc"(0) + & fp(V;, V) = 0

Now ¢’(0) = v + 7("(0)) = v + (df,)'a for some v € TM, and some a € R*. Since
dfp,v = 0 we can use the above equation to compute ¢ which then gives the required
result. O

Let us then compare the approximation to exact value. Using (5.1) we obtain
() = p+ b+ (V0¥ + (V3,14 ) + O

Subtracting the expansions we get immediately

Corollary 5.1.
c(h)—q= % (VVPV)phZ + O(h3)

Hence our simple method (5.2) is of first order (i.e. local error is O(h?)). Note that
the main error term is rather natural: it reduces to standard directional derivative of
the classical case when M is an Euclidean space.

Let us then consider some simple implicit methods. One can formulate the implicit
Euler method in two ways.

(5.3) p+(dfy)' = q—Vyh q+ (dfy)'n=p+Vih
' flg)=0 flg)=0

In either case we obtain
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Proposition 5.3. Let g solve either of the systems (5.3); then
c(h) —q=—5 (Vv V) 1* + O(h%)
Proof. Expanding as before ¢ = p + ¢'h + ¢*h? + ..., we immediately get ¢' =V}, and
p! = 0. Expanding the second system in (5.3) we get
¢+ (df,)' 1’ = dV'V,
dfpq” + 5 & fp(Vp, Vp) = 0

Hence <alfp(dfp)t>/,c2 = 1df, S(V,,V,) and ¢* = Vy,V + 1 5(V},V,). Expanding the

)
first system produces same ¢%, but p? changes sign. O

The implicit mid-point rule can be formulated as follows.
q+ (dfy)'n=p+V.h
flg)=0
r+(df)'v=3(p+4q)
flr)=0

Proposition 5.4. Let g solve the above system; then

oh) — g = O(K?)

(5.4)

Proof. Evidently ¢° =% =p, ¢! =V, r' =V, /2, u® = p! =1 = ! = 0. For second
order terms we get

¢+ (dfy)'n* = 5dVV
df ¢ + 3 f(V,V) =0
Hence p? = 0 and ¢ = %dV V from which the result follows. O

We have seen that it is rather straightforward to formulate low order schemes in the
present context. Moreover their error terms are what one expects by the classical
theory. The analysis of higher order schemes is more involved and will be treated
elsewhere. Note that the methods (5.2), (5.3) and (5.4) are one-step methods whose
local errors are of order 2, 2 and 3. By standard theorems we can then conclude that
the global errors for sufficiently small & are 1, 1 and 2.

6. NUMERICAL IMPLEMENTATION

We have actually implemented the explicit Euler method (5.2) and the midpoint rule
(5.4). Implicit Euler (5.3) is only used for step size control as explained below. There
are three basic tasks in our methods.

1. Given a point p € M, compute the distribution D,.
2. Step size control.
3. Solving the nonlinear system (5.2), (5.3) or (5.4).

All these subproblems reduce to fairly standard numerical problems so we will say just
a few words of them. All computations were done with Mathematica, [60]. Of course
this is not as efficient as using standard languages like Fortran or C. However, at this
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stage we found Mathematica to be more convenient than the traditional languages, so
the implementation in Fortran or C has to wait future versions of our code.

6.1. Computing the distribution. As we have seen in the examples, the D, can
easily be represented as a nullspace of some matrix A. Now this problem is (mildly) ill-
posed numerically since we have in general an overdetermined system of linear equations
and hence because of the round-off errors the nullspace would be trivial. To circumvent
this difficulty, we use the standard singular value decomposition

A=UxV"

where U and V are orthogonal and ¥ contains the singular values in descending order
in its diagonal. The last singular value should be very close to zero, and hence the last
column of V' should give a good approximation of the required direction. Of course we
must check that there is only one singular value which is much smaller than the others;
if this is not the case, this would indicate some singularity of the solution. We did not
encounter any problems of this sort in the examples below.

Of course using the full singular value decomposition is rather excessive, and con-
sequently this step could be done more efficiently. One possibility is to use QR de-
composition. Also A has a special structure: recall that the representation of the
Cartan distribution in A is the same for all points of M. Hence it could be advanta-
geous to preprocess A in some way which take into account this fact and yield a more
rapid computation of the nullspace. These possibilities will be discussed in the future
versions.

Note also that for mechanical systems with holonomic constraints, i.e. problems of
the form (4.7), the distribution can be computed from the regular linear system.

6.2. Step size.

6.2.1. Explicit Euler. For step size control we used the standard technique: take one
big step of size 2h achieving point b and two smaller ones of size h, thus achieving
points a; and ag. Then we computed |ay — b| in the ambient space and accepted the
step if the difference was smaller than given tolerance. If the step was rejected we
halved the step-size because then ‘old’ a; could be used as a ‘new’ b.

6.2.2. Midpoint rule. Here it was convenient to use the auxiliary point r in (5.4) which
has to be computed anyway. One can easily check that the local error of r is of order
2. Hence we can take an implicit Euler step from r with the step /2 and compare this
value to the value ¢ obtained by the midpoint rule.

6.3. Projection. We used Newton’s method to solve the systems (5.2), (5.3) and
(5.4). The values ¢ := p and p := 0 were used as initial guesses. The Jacobian was
computed symbolically, and it was evaluated at every third step during the iteration of
one point. However, usually two iterations were enough. In test problems we typically
used 1072...107® as an error tolerance for the Newton iteration. For example, in
Hénon-Heiles case the error tolerance of the iteration was 0.01 and the distance of the
point from M was of the order 107°.

Again here we could improve the efficiency. Instead of doing the full Newton iteration,
one could try pseudoinverses which would result in a smaller system to be solved. Since
we are close to the manifold, one would expect that this kind of iteration would also
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converge quite rapidly. However, the projection would not be orthogonal anymore, and
it is not clear how this would affect the accuracy.

7. NUMERICAL EXAMPLES

7.1. Pendulum. The pendulum system is of the form (4.7) with y € R% X\ € R,
g(y) = (|y|2 —1)/2, f =(0,1) and B = I. The resulting simplified system was given
in (4.6). In figure 7.1 there is a solution of (4.6) with quite a large tolerance and with
initial value (x,y,y1) = (0,1,0,0,0). The solution is not very satisfactory since the
energy deviates quite rapidly from the correct value and in particular the computed
solution goes above the y'-axis although the correct solution would stay all the time
below it. This is not surprising because our method is of the first order, so one expects
that the energy is also only ‘first order correct’. However, one can easily impose the

conservation of the energy. It is sufficient to add the energy equation to system (4.6)
which yields

yl>—1=0
(y,y1) =10
Ly P+ 92 —a=
(7.1) D = span(V)
V= (17 Y1, y2)
10 o'\ (v 0
0 1 | |wvs|l+]| 1 |=0
y' oyt 0 A &

where a is the constant energy. Note that the distribution restricts to the appropriate
submanifold. In figure 7.1 there is also a solution of (7.1) with same initial values and
same tolerance that were used without the conservation of energy.

In figure 7.2 we show the evolution of the energy in various cases. It is seen that
with midpoint method the energy deviates quite slowly from the correct value. Recall
that the classical midpoint method is symplectic, so it is perhaps not so surprising that
our version of it behaves well with respect conservation of energy. Note that in case of
variable step size, the step sizes were between 0.05 and 1, so the case h = 0.5 represents
a kind of average step size. Anyway let us repeat that adding the energy constraint
does not make the system more difficult to solve.
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F1GURE 7.2. Evolution of the energy: first with Euler method, then

midpoint method using variable stepsize, and midpoint method using
step sizes h = 0.5 and h = 0.1.
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FIGURE 7.3. A solution of system (7.2), 0 < 2 < 1.7, ¢ = 0.1. Euler
method on the left and midpoint method on the right.

7.2. Stiff pendulum. Let us then consider the stiff pendulum [17, p. 119] whose
involutive form is

v, +y'y’ =0

v +y'y  +1=0

() + (D) (= 1) -
2y} + (ylyl +y%y )( v
(e —1)e%y (1)? + ((v1)? — ) (AP - 1) =y 1) =0

1)3 0

Now y? cannot be solved without introducing square roots, and we want to avoid this.
However, we can still do the projection J, — .Ji. In addition, y; is ‘graph-like’, so one
can get rid of it as well. The simplified system can be written as

(5" + @) (= 1) = 1=0
(7.2) D = span(V)

V= (Ll y2 — (vl + y22) (2% — 1)° /22, —y'y®, —y23 — 1)

Here V is given in symbolic form just for the purposes of illustration. This form is
not needed, but if a symbolic form is available, it could be given to the program. This
would somewhat speed up the computation.

Let us take ¢ = 0.1 and compute the solution in the interval 0 < = < 1.7 using
the initial value (z,y', y% v3, yi, y?) = (0,.85,0,—17.65,0,0). In figure 7.3 we show the
results obtained with Euler method and the midpoint method. In the former case we
needed about 4700 points and in the latter about 500 points. Then in figure 7.4 we
computed the solution using the midpoint method with ¢ = 0.01 and the initial value
(2, v y% vyl yi) = (0,1,0,—17.65,0.016,0). Of course even in the implicit case the
step size has to be quite small, because of the rapid oscillations.
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FIGURE 7.4. A solution of system (7.2), e = 0.01, midpoint method. On
the right we have magnified a part of the picture on the left.

7.3. Discharge pressure control problem. Let us consider the discharge pressure
flow problem given in [17, p. 116], whose involutive form is

201 +y' —y* =0
5yt 4+ 597 +yP —e1 =0
20yi +y° = f=0

eyt (y®)? —esyy® + eyt =y =0
(73) (y")?(y")? —es(y')? + c6f* =0
(40c2yy® — 20c3y")yi — 20yF — e2(y°)> + 1 (y°)? — g2y” + caf =0
y 'y (yh)? = (') + f(y' )yt = esy'y® +eegs =0
20" ((y")? — )y — 20(y" )2y} + (v2)*(")* + (v")y'y"—
Wy’ + ()P0 — FD)Pt - 2f ()M + 4fy Yyt
20" (y")?y" + FA(y')? = es(y*)? + coga = 0
where
1 =99.1 ¢y = 0.001 3 = 0.075
ey =3.35 o5 = 2458.18 cg=1/1.44
and
f =5tanh(x — 10) + 15 g =cf +c3
g2 =c3f +eq g3 = f2+20ff

ga = f2460fF +400(f)* + 400f f"

The values of the parameters are as given in [17, p. 116]. We computed the solution
with initial value

(x,y,y1) = (0,0.25,0.25,99.1, 36.7,9.998,
0,—8.45-1077,1.27-107°,8.5-107°,1.1 - 107%).

The solution curves obtained with Euler scheme are in figure 7.5 and those obtained
with midpoint scheme are in figure 7.6. In [17] only y° (output) is given and the solution
obtained is qualitatively the same as here.

(7.4)
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FIGURE 7.5. A solution of system (7.3) with f = 5tanh(z — 10) 4+ 15

using explicit Euler.

7.4. Hamiltonian systems. Let H : R* — R and let M = H~'(0); then the
Hamiltonian system on R x M is given by the vector field

0OH OH 0H B aH)
POyt Gyt gyl Oy

V=1

which defines a distribution on R x M. If the given system has more invariants (or
integrals) then we restrict V' to appropriate submanifold of R x M. Now in many
cases (in particular in the examples that follow), the momenta and first order jets are
identified, so it is convenient to identify R x R?*" and J;(R x R"). Hence the system
is Ri = R x M. Note that V induces a symplectic flow on R?*". However, the flow
restricted to M or Ry is not symplectic.



Consider the following Kepler problem [49, p. 6]

(7.5)
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FIGURE 7.6. A solution of system (7.3) with f = 5tanh(z — 10) 4+ 15
using midpoint method.
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———a=0
||
Yy —b=0
span(V)

V= (Ll ub—y'/ >, =/ )

where a and b are constants (energy and angular momentum). The analytic solution is
periodic with period 27. In figure 7.7 we show two solutions with same initial values,

(z,y,11) = (0,0.5,0,0,1.73); on the left with the Euler method and on the right with
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the midpoint method. The tolerances were chosen such that qualitatively the solutions
were similar. The solutions were computed for 0 < x < 100 and with the Euler method
about 8000 points was needed while for the midpoint method about 900 points was
sufficient.
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FIGURE 7.7. A solution of the Kepler problem (7.5) with Euler and
midpoint methods.

Next we take Hénon-Heiles system [49, p. 13]
Yo+ Syl + )2 = 2P —a =0
(7.6) D = span(V)

V= (Lyb oyt v +2y'"v" + (v') = (v7)7)

where « is again the (constant) energy. For this system we took as an initial value
(z,y,11) = (0,0.12,0.12,0.12,0.12), which yields quasiperiodic solutions. We computed
the solution with both methods, 0 < = < 303. In figure 7.8 we have plotted the values
of the solution in the (y?, y?)-plane when the hyperplane y' = 0 was crossed. On the
left there is the solution with Euler method (101 points) and on the right the solution
with the midpoint method (141 points). With the Euler method, 5000 points had to be
computed and with the midpoint method 2500. The plots should yield closed curves
rather than the spirals that can be seen in the pictures. However, the results are quite
satisfactory, taking into account the fact that tolerances were not particularly strict
and methods are of low order.

7.5. Mechanical system. As a final example we consider the system given in [30].
It is of the form (4.7) with y € R, A € R B = I}y, f = VF, where F = 5/2(y, Ky)
and K and ¢ are given by

I, 0 —-I, O 0

0 1332 9 42

— )+ (g -yt -1

0 I, 0 —-I, O 0 Ezs B 5532 4 84 _ 5632 1

o - 0 2, 0 —Ib 0 W) == | =y 2+ (=2 -1

=l o -, 0 2, 0 ~—I g\) = A vy
P P P (47 — g2 + (45 — 402 — 1
0 0 —-I, O I, 0 (y° — y1)2 4+ (10 — 122 — 1
0 0 0 —-I, O I
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F1GURE 7.8. The Poincaré sections for Hénon-Heiles system 7.6 with
Euler method on the left and midpoint method on the right.

Variables y', ..., y!? are coordinates of six points in the plane. In this case the system
(4.8) can be written as

9(y) =0
dgy, =0
(7.7) Ry D = span(V)

V = (1,y1,—(dg)'\ — 5Ky)
dg(dg)'A +5dg Ky — d*q (y1,y1) = 0

So the final problem is in J; (R xR'?) ~ R? and dim(R;) = 15. It can readily be verified

that treating Lagrange multipliers like other variables and transforming the system into

involutive form produces a 15-dimensional system in 52-dimensional ambient space.
The energy of the system is

1, 4 5
E=— —(y, K
5 lnl”+ 5 {y, Ky)
In figure 7.9 we show the evolution of energy for the Euler and midpoint methods,
and like in the pendulum case, the midpoint method remains quite close to the correct

manifold. In figure 7.10 we show the time evolution of the configuration of the system
(7.7) with initial value

(x,y,y1) = (0,0,0,0.5,0.866,1,0,1.5,0.866,2,0, 2.5, 0.866,
1,—5.77,—1,-4.62,1, —3.464, —1,—-2.31,1, —1.155, —1,0).

For small values of x, the solutions with both methods are very similar so we have
plotted only one figure. For bigger values of z, the energy in the Euler case starts to
grow quite fast, so the results also soon become quite different in the two cases.
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Now adding the energy equation gives the system

9(y) =0
dgy, =0
(7.8) Ly + 3y, Ky) —a =0
D = span(V)
V= (1,51, —(dg)'A = 5Ky)
dg(dg)' ) + 5dgKy — dg (y1, 1) = 0

where « is the constant energy. Solution of the system (7.8) is given in figure 7.11 where
the configurations are given at same time instants as in figure 7.10. The same initial
values and same tolerance were used as for system (7.7). Again there was practically
no difference between the solutions obtained with Euler and midpoint methods, so only
one plot is given. However, comparing the results obtained with conservation of energy
to those obtained without conservation of energy, it is seen that the results become
quite different very rapidly. This is surprising because the midpoint method remains
rather close to the energy surface even without explicit conservation of energy. The
same phenomenon was also observed with other initial values.

8. CONCLUSION

We have introduced a new framework to treat arbitrary systems of ODEs and DAEs.
The main notion which emerges is the involutivity of the system, and we have seen
that using involutive form in the computations (and analysis) leads to rather different
conclusions than the traditional treatment of such systems. To sum up, let us list a
few of them.

e We have not defined DAEs. This is simply because geometrically there is no
difference between ODEs and DAEs.

e It is possible to obtain reliable results even with low order explicit methods. Hence
DAEs are not intrinsically stiff.

58
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FIGURE 7.9. Evolution of the energy.
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e The concept of index is not needed. Hence the index is not related to the numerical
difficulty of solving an involutive system.

e Because the notion of the solution is more general than the traditional one we
obtain more smooth solutions and hence encounter less singularities than in the
traditional setting.

This work can be extended in many directions. The most immediate tasks are analysis
of higher order methods, and optimizing various subproblems in the implementation.
An interesting aspect is also the question of genericity of the system and analysis of
the system with respect to perturbations. Also this geometric framework gives tools
to analyse various singularities of the system, and in particular discuss the generic
singularities of the solutions.
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FIGURE 7.10. Evolution of the configuration of the system (7.7) without

conservation of energy.
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FIGURE 7.11. Evolution of the configuration of the system (7.8) with

conservation of energy.
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