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Abstract

In this work, we study a mesh termination scheme in acoustic scattering,
known as the PML method for Perfectly Matched Layer. The main result
of the paper is the following: Assume that the scatterer is contained in a
bounded and strictly convex artificial domain. We surround this domain by
a perfectly matched layer of constant thickness. On the peripheral boundary
of this layer, a homogenous Dirichlet condition is imposed. We show in this
paper that the resulting boundary value problem for the scattered field is
uniquely solvable for all wave numbers and the solution witihin the artificial
domain converges exponentially fast toward the full space scattering solution
when the layer thickness is increased. The proof is based on the idea of
interpreting the PML medium as a complex stretching of the coordinates in
R™ and on the use of complexified layer potential techniques.

AMS Classification: 35J05, 35Q60, 35J25, 65N30, 78A40



1 Introduction

In computational electromagnetism and acoustics, the finite element or fi-
nite difference mesh termination in scattering problems without generating
exessive reflection error is a widely studied problem. One possible approach
is to surround the scatterer by a non-reflecting fictitious material layer that
absorbs quickly the scattered waves. This approach, known as PML for
Perfectly Matched Layer, was suggested in the works of Bérenger (see [2]).
While the PML approach has been the subject of numerous engineering pa-
pers, only little theoretical analysis has been done on it. One central question
is the solvability of the PML equations in a truncated region as well as the
convergence of the PML solutions towards the true scattering solution as
the computational region increases. These questions have been studied in
[5] and [13]. Another important problem is the optimization of the fictitious
material parameters in order to get highest possible numerical fidelity of the
solution. This latter question is the subject of the article [6].

The present work is a contribution to the theoretical analysis of the existence
and convergence of the PML solutions. We extend and continue here the
work started in [13]. In the cited work, it was shown that with a very special
choice of the fictitious absorbing coefficient, the PML equation is solvable in
a circular domain of the plane and that the solution converge exponentially
towards the scattering solution near the scatterer as the mesh termination
surface is pushed towards infinity. In the present work, we first of all relax the
geometry so that the computational region is a convex domain surrounding
the scatterer. What is more, we are able to get rid of the very restrictive
choice of the absorbing coefficient used in [13]. In the light of the optimization
results of [6], this relaxation seems to be quite important.

Methodologically, the starting point in this work is the complex stretching
of the spatial coordinates (see [3], [4], [5] and [13]). A large part of this work
is dedicated to the derivation of what could be called complexified scattering
theory which may have interest in its own right. We refer here to article [15]
where similar ideas surface in a different context.



2 Main results and an outline

We consider the scattering problem of the Helmholtz equation in R". For the
sake of definiteness, the discussion is restricted to the scattering by a sound-
hard obstacle, although the results apply to general scattering problems by
a bounded scatterer.

Let Q2 C R" be a bounded domain representing the scatterer, and assume
that €2 has a connected complement. The scattering problem is to find a
solution u of the system

(A+k)u = 0inR"\Q, (1)
ou
—| = H™'?(00 2
Oul = geHon) (2
. (n—1)/2 Ju . . . A
lim — —idku | = 0 uniformly in z, (3)
r—00 or
where r = |z|, and & = z/r, » # 0. For the radiation condition (3) to

make sense, it is undersood that the function u is continuously differentiable
outside some ball. Tt is well-known (see e.g. [7], [8], [14], [16]), that the
problem (1)-(3) has a unique (weak) solution u € H. ;(R" \ ), where

rad

HL (R"\ Q) ={u|ue H (B \Q) for all R > 0, u satisfies (3)},
where By denotes a ball in R” of radius R and center at the origin. We refer

to this unique solution as the scattering solution and denote it by ugc.

Assume that one seeks to solve the problem (1)-(3) numerically e.g. by
FEM in the vicinity of the scatterer. Denote by D € R" a strictly convex
domain with a C?~boundary such that Q C D. Here, D \  is the domain
where the approximate solution is requested. The mesh termination problem
is to impose a proper boundary condition on the artificial boundary 0D such
that possible reflections by this boundary do not contaminate too hevily
the approximate scattering solution in D\ €. The literature concerning this
problem is vast and therefore we do not try to cover it here, but mention only
the relatively recent articles [9] and [11] as examples of possible approaches
different from considered here.

The idea of the Perfectly Matched Layer approach is to surround the com-
putational domain D by a fictitious layer that has minimal reflection and
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strong absorption properties, and extend the FEM computation from D to
this buffering layer. The obvious advantage of this approach, compared to
e.g. the use of absorbing boundary conditions on 0D directly, is that one can
use simple boundary conditions (e.g. Dirichlet or Neumann) at the periph-
eral boundary of the perfectly matched layer and so the implementation does
not differ essentially from the implementation of a standard interior problem.

In this work, we follow the ideas of [3], [4] and [5] and define the PML layer
through a complex stretching of the exterior domain R™ \ D.

Let z € R" \ D. We define h(z) > 0 and p(z) € 9D by
h(z) = dist(x, 0D) = |z — p(x)|.

If n(z) denotes the exterior unit normal vector of 9D at p(z), we may rep-
resent x in a unique way as

x = p(z) + h(x)n(z). (4)

Further, let 7 : [0,00) — [0,00) be a twice continuously differentiable func-
tion with strictly increasing derivate 7’ satisfying

lim 7'(s) = oo, 7(0) =7'(04) =7 (0+) = 0. (5)

§— 00

Moreover, we assume that growth of 7/ and 7" is moderate in the sense that

lim =577/ (s) = lim e~*7)7"(s) = 0. (6)
§—00 55— 00

for all € > 0.

We start with the following definition, where the notation C = = {z € C|
Rez >0, Imz > 0} is used.

Definition 2.1 Let s € C . We define a function

) i {0, r€eD
a: R —)R, a(x)_{r/—(h(aj))n(x), .ZUGRn\Ea

and a mapping Fy : R* — C" by setting

Fi(z) =2+ sa(x), v € R"
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Particularly, when s > 0 is real, F is C*-diffeomorphism in R".

The stretched R™ with parameter s is the submanifold of C* given as
Is={2€C"|z=2+sa(x), z € R"}.

If s =i, we denote simply I'; =T.

We refer to the function Fy above as the stretching function.

The first step is to extend the scattering solution analytically to the stretched
exterior domain.

Let @ denote the fundamental solution of the Helmholtz equation in R"
satisfying the Sommerfeld radiation condition at infinity,

i N
®(z.y) = <m) H i,y o (klz = y).

Using this fundamental solution, we define the radiative single and double
layer potential operators as

Soxple) = / 0@ )e()dS(), e X

and

Konxt() = [ O w)dS@). e X,

a0 On(y)
where X C R*, X N9Q = 0.

Since ug. € HL (R \ Q) satisfies the Helmholtz equation in the exterior

““rad
domain R" \ €, ug can be represented in terms of the single- and double-

layer potentials,
Use = Sporm\a¥ T Koo rma¥
with some densities ¢ and .

Our aim is to analytically continue the potential operators to a neighborhood
of T';. Consider first the mapping

. 1/2
o) = Jo] = (a7)1 = (zx;) sem
j=1
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This function allows an analytic extension to G C C",
G={2=(21,....2) €C" | =) 27 €C\ (—00,0)}, (7)
j=1

i.e., 22 belonging to the complex plane with the branch cut along the negative
real axis. This extension is denoted by the same symbol, p: G — {z € C |
Re z > 0}. Since the Hankel function H((Tll)_Q)/2 is analytic in {z € C|Rez >
0}, we may define

. (n—2)/2
7 k
The analytic extension of the scattering solution is based on the following
result.

Lemma 2.1 The manifold Ty \ Q € C* has a neighborhood U, C C* such
that for all y € 02 and z € Uy z —y € G.

The proof of this lemma as well as other technical details of this section are
postponed to later sections. We define now the analytic extensions of the
layer potential operators Spo 7, and Kapq y, as

Soau.p(z) = /GQ(D(Z,y)go(y)dS(y), z e U, 9)
(10
Konp02) = [ ZEsGajv(ase). =€t (1

and further,
u(z,s) = Saa,u,¢(2) + Koo, ¥ (2).

The properties of u(z, s) are listed in the next lemma.

Lemma 2.2 For the function u(z, s), the following hold:
(i) The function z — u(z, s) is C" —analytic in Us.

(i) u( - 7S)|D\§ = Usc|D\ﬁ-



(i1i) The function z — u(z,s) satisfies the complexified Helmholtz equation
i Us,
(A, + EHu(z,s5) =0,

where
A, =0 +...40.

Now we are ready to give the following definition where we set s = ¢ and
denote simply u(z,1) = u(z).

Definition 2.2 Let u be an analytic function in a C*—neighborgood of T'.
We say that u satisfies the Bérenger equation corresponding to the exterior
Helmholtz equation if

[(Az + £)u(2)]lpg = 0. (12)

The function u|p g with the Neumann boundary condition (2) on 08 is called
the Bérenger solution corresponding to the scattering problem with the Neu-
mann boundary condition.

The next step is to write the Bérenger equation explicitly in terms of the
coordinates in R” parametrizing the manifold I'.

Theorem 2.1 Lets € C ' and u be an analytic function defined in a neigh-
borhood of I'y C C*. Then for z € I'y

Au(z) = (divH]} Hygrad — m] Hygrad)[u o F,](F, ' (2)),
where

H, = (I+s(Da)")™t,  (my); = Z i(Hs)j,k-

Especially, the Bérenger equation [(A, + k*)u)|p = 0 assumes in R™ the form
(divH" Hgrad — m" Hgrad + k*)[u o F] = 0, (13)

where F' = F;, H = H; and m = m,.



In the sequel, we use the abbreviated notation

A, = divH! H,grad — m H,grad, s ¢ c (14)
When s = i we denote A = As
We point out that when s > 0 is real we have for ¢ € C§°(R")

(As + k)b(@) = (A + k)¢ 0 F(Fi(@))- (15)

1
n

tion u|p decays exponentially as || — oo. More precisely, we consider solu-

tions that satisfy

Due to the asymptotic properties of the Hankel function H(( )_2)/2, the func-

lim @) |y (z)] = lim €@ |grad u(z)| = 0 uniformly in z  (16)
h(z)—o0 h(z)—o0

for some 5_> 0. It is natural to define a complexified analog of the space
Hig(R*\ Q)

rad
HpR*"\Q) = {ue H(R"\ Q)| condition (16) holds},

where it is understood that near the infinity, u is continuously differentiable
in order that the limits make sense. It is natural to consider the following
full space Bérenger problem of finding an u € H(l(s) (R™ \ ) such that

(A+k)u = 0inR"\Q, (17)
g—z o = Y€ H12(00). (18)

We have the following counterpart of the uniqueness of the scattering solu-
tion:

Theorem 2.2 The problem (17)-(18) has a unique solution in H(lk_g) (R \

Q), where e > 0 is arbitrary. If ug is this solution, we have uB|p\g = Usc|p\a-

Observe that the analyticity assumption is no longer needed here. We call
the unique solution of (17)—(18) in H(lkfg) (R™\ Q) the full space Bérenger so-
lution. Thus, instead of solving numerically the original scattering problem,
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near the scatterer one can equivalently try to approximate Bérenger solution
ug. The main goal of this paper is to show that the truncation of the com-
plexified problem to a bounded domain has an exponentially small effect on
the solution near the scatterer. More precisely, let us denote

D(p)=DU{z € R"\D|h(z) <p}, p>0,

i.e., D(p) is obtained by adding a layer of thickness p around D. We define
the truncated Bérenger problem as follows: Find a solution u € H'(D(p)\ Q)
satisfying

(A+E)u = 0in D(p)\Q, (19)
ou B “1/2
O o ge o) (20)

In practice, the system (19)—(21) is the one that is used for numerical ap-
proximation of the full space Bérenger solution ug and thus the scattering
solution ug in D \ €. The main result of this paper is the following.

Theorem A: For any wavenumber k > 0 there exists a positive constant
po(k) such that for all p > po(k), the truncated Bérenger problem (19)-(21)
has a unique solution iz = tg(p) € H'(D(p) \ Q). Moreover, this solution
has the exponential approximation property

pliglo BT gy, — un(p)|l g (p\ay) = 0

for all e > 0.
This result is an extension of the one obtained in [13], where D was a disc in
R? and the form of the stretching function was strongly limited.

We give here an outline of the proof of the Theorem A. Detailed discussion
is postponed to the following sections.

The starting point is a near field radiation condition for the original scattering
problem. Let 0 < p; < po and denote D; = D(p;), j = 1,2. Consider the
problem of finding u satisfying
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(A+E)u = 0in Dy\ Q, (22)

ou

—| = H™Y2(50 2
S = genom) (23)
U|8D2 = P(U|3D1): (24)

where the double surface operator P : H'Y/?(OD,) — H'Y?(0D,) is defined
with the layer potential operators as

1 _
P — K8D1,8D2(§ + K8D1) 1‘ (25)
Here as throughout the rest of the paper we use the convention that layer
potentials with only one subindex denote the weakly singular operators, i.e.,

here,
0P

Kyp,¢(x) = p.v. /313 m(m,y)gp(y)dS(y), x € 0D;.

The problem (22)—(24), where the usual Sommerfeld radiation condition is
replaced by a near field condition, was introduced in the work [12], where
the following result was proved:

Proposition 2.1 Assume that pi and py are so chosen that k? is not the
Dirichlet eigenvalue of —A in Dy \ Dy. Then the problem (22)-(24) has a
unique solution, and this solution coincides with the scatterind solution ug.
mn DQ.

The proof is a relatively simple application of layer potential techniques and
will not be repeated here.

The first step towards the proof of Theorem A is to find a double surface
operator analogous to P above for the full space Bérenger problem. From
the definition (25), it is natural to seek a complexified analogue for the layer
potential operators of the Helmholtz equation. Such an extension is discussed
in detail in Section 5. An outline of the results is given below.

The following theorem defines the fundamental solution of the Bérenger op-
erator and its formal transpose.
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Theorem 2.3 For s € C ', z,y € R \ Q, we have Fy(x) — Fy(y) € G, the
set defined in (7). Define the functions

Oy (z,y) = J(y)@(F(x), Fy(y)),

(i)g(x: y) - (I)s(y: ZII),

where J; the Jacobian of the stretching function, Jy(v) = det(DFi(z)). The
functions © — ®,(x,y) and v+ O} (z,y) satisfy the equations

(A + k) @s(z,y) = —d(z —y), (26)
(AT + 50 (z,y) = —d(z —y), (27)
where AST is the formal transpose of the operator A,,
AT = divH! H,grad + divHm.

Furthermore, if Ims = 3 > 0, they satisfy the asymptotic decay conditions

lim SupyeKe(ﬁk*E)T(h(m))|Dg<i>s(x,y)| = 0, o] <2 (28)
h(x)—o0

lim supyeKe(ﬁk*E)T(h(m))|D§‘§35T(x,y)| = 0, o] <1 (29)
h(z)—o0

where € > 0 is arbitrary, and K C (R* \ Q) is any compact set.

Again, if s = 7, we suppress the s—dependence.

In order to find a counterpart for the double surface operator P consider the

exterior Dirichlet problem of finding an u € H (lk_ o (R"\ Dy) satisfying
(A+k)u = 0inR"\ Dy, (30)

= f (31)

u|8D1

A natural candidate, analogously to the usual scattering theory, would be a
solution given as

U = KBDl,R”\ﬁl <107
where IN{apl,Rn\El denotes the double layer potential defined by using the
fundamental solution ® as a kernel,

Kyp, go\p, o(2) = ; Oe(yy®(2,y)e(y)dS(y), = €R"\ D. (32)
Dy
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Here, d,(,) denotes the conormal derivative associated to the operator A,

Beye(y) = n(y)" H(y)" H(y)grade(y)|yp, - (33)

As will be shown in Section 5, the double layer operator thus defined satisfies
similar jump relations as the standard double layer operator. The function u
thus defined satisfies the Dirichlet problem if ¢ satisfies ¢ = (1/2+Kap,) "' f,
and the analogue of the operator P in (25) would be obtained by simply
replacing K by K. However, the invertibility of the operator 1 /2 + f(apl
is not evident in this case. Indeed, by following the standard reasoning of
scattering theory (see e.g. [7]), we are lead to consider the adjoint interior
problem

(AT 4+ k)u = 0in Dy,
Oculyp, = h.

The unique solvability of this problem is in general a non—trivial question.
However, by using spectral theory, one can prove the following perturbation
result.

Lemma 2.3 For any ¢ > 0, there is an operator A : L*(D;) — L*(D;) of
the form Au = Z;.V:l(u, a;) B, o, B; € C3°(Dy) such that ||A|| < e and that
the problem

(AT + AT + E?)u 0 in D,
Oculyp, = 0

has only trivial solution u = 0.

Notice that since the functions «; and 3; are supported in Dy, the operators
A + A and A coincide in R* \ D; Therefore, in (30), we may replace A by
A+ A and consider the double layer operator corresponding to the perturbed
operator. In Section 5, we construct the fundamental solution (i( 4) satisfying

(A+ A+ k) Dy (2,y) = —0(z —y),

lim supyeKe(k*E)T(h(m))|D§(i>(,4) (z,y)| =0, o <2.
h(z)—o00
with any ¢ > 0, K € R” being any compact set. By obvious notations, we
define now the perturbed layer operator IN((A) by a formula similar to (32).
By using this operator, we are able to prove the following result.
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Lemma 2.4 The problem (30)-(31) has a unique solution in H(ll_g) (R*\ D)
and it can be represented as u = K4 ap, r\p, @, where ¢ is the solution of

A 4 Kean)e = 1. (34)

2
From this result and the unique solvability of the full-space Bérenger prob-
lem, we can now deduce the following near—field formulation of the full-space
problem, an analogue of Proposition 2.1

Theorem 2.4 The restriction of the Bérenger solution ug to the set Dy \ Q
is the unique solution in H*(Dy \ Q) that satisfies the system

(A+E)u = 0in D\ Q, (35)
ou
- — H=2(50
S = genom) (36)
U|8D2 = Pp (U|BD1)’ (37)

where the double surface operator Py s given by the formula

Py = K(A),aDl,aDz(§ + K(ay0p,) " (38)

The proof of the Theorem A is now obtained by combining the previous
results with the following two theorems. The first one claims that the trun-
cation of the stretched exterior domain has little effect on Pg:

Theorem 2.5 Let Dy and Dy be as before, and let p > ps. There exists
an operator P, : HY/2(0D,) — HY*(0D,) such that the truncated Bérenger
problem (19)-(21) is equivalent to the near field problem

(A+kHu = 01in D(p)\Q, (39)
g_z P (40)
U|BD2 = Pp(“|aD1)- (41)

Moreover, we have
lim e*~=70)|| P, — Pg|| = 0

pP—00

for any € > 0.
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The operator P, is constructed in Section 6. Due to the technical nature, the
construction is not summarized here. The final step is the following stability
result.

Lemma 2.5 Assume that P : H'/?(0Dy) — H'Y?(0D,) is an operator with
the property )

|1P — Paf| <e,
the norm being the uniform operator norm of the space of bounded linear
operators H'/*(0D;) — H'Y?(0D,). Consider the system (35)—(37) with P

replaced by P. For ¢ > 0 small enough, the system has a unique solution
o€ H'(Dy\ Q), and we have

|us — @[/ g1 (p,\g) < Ce

for some positive constant C.

The proof of this stability result is the same as in [13] (Lemma 2.2). There-
fore, the proof is omitted in this paper.

As a concluding remark, we mention that we have included an appendix
where the explicit form of the Bérenger equation using the tangent—normal
coordinate system has been derived. This calculation shows the connection
to the previous works done in circular coordinate systems, and may be helpful
in the implementation of the PML equation by the finite element method.

3 Geometric considerations

The remaining part of the paper is devoted to detailed discussion of the
results in the previous section. We begin with some simple geometric results.

Let D C R™ denote the bounded domain, Q@ C D, where the numerical
approximation of the scattering solution is required. We assume that D

is stricly convex and 9D is a C?-surface. The functions h(z) and p(z),
x € R"\ D are defined by the equation (4).

Let xy € 0D and denote by B.(zq) a ball with radius ¢ > 0 centered at .
If € is chosen small enough, we can parameterize the surface patch V.(zy) =
B.(xy) NAD by projecting it to the tangent of D through zy. Let us denote
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by Din(ze) € R®=1*(=1) the differential of the normal vector with respect
to the tangential components of x at x. If the surface patch V.(z) is given
in the form x, = ¢(z1,...,7,_1), p € C?, we have

0%
D - |
= (o)

The eigenvalues of the matrix —D n(zg) are the principal curvatures of the
surface 0D at xo, denoted here as ¢;(z¢), 1 < j < n— 1. In the sequel, we
make the extra assumption that the principal curvatures are strictly positive.

Let a denote the function defined in Definition 2.1. By a straightforward
differentiation, we have

Da(z) = 7' (h(z))n(z)n(z)* + 7(h(z))Dn(z), (42)
where we used the identity Dh(x) = n(z)T. From this representation, we
obtain the following result.

Lemma 3.1 The matriz Da(z) is symmetric and the eigenvalues are

cj()

)‘j(ﬁ) = T(h(m))w

y1<j<n—1 A(x) =7(h(x)),
where the numbers c;(x) are the principal curvatures of 0D at p(x) € 0D.

Proof: The eigenvalue 7/(h(z)) that corresponds to the eigenvector n(x) can
be read off immediately from the representation (42). To find the other
eigenvalues, denote by 9D}, the inflated surface

0D, ={z=p+hn(p) |pedD}, h>0.

For x € 0Dy, fix the local coordinates such that x,—axis is parallel to n. In
this coordinate system, we have

Dmm:<D%@)g)

From this representation, it is evident that the eigenvalues of Dn(z) equal
to the negative of the principal curvatures of the inflated surface at z. In
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order to find these numbers, consider the one-to—one mapping 0D — 0D,
p+— p+ hn(p). Clearly, n(xz(p)) = n(p). Therefore,

Dpn(p) = Dy(n(z(p))) = Den(z(p))(I + hDyn(p)).

Applying both sides of this identity to the eigenvectors of D,n(p) the claim
follows. O

Corollary 3.1 The Jacobian Js of the stretching function Fy is given as
Js(z) = det(Fs(x)) = by(z,s) ... by(x, s),
where

bi(z,s) =1+s\i(z), 1<j<n. (43)

In the following lemma, we use the notation & = F,(x) € 'y, where Fj is the
stretching function of Definition 2.1.

Lemma 3.2 Let s = o+ 13 be the stretching parameter, a > 0, 3 > 0. Let
z; = &(x;), j = 1,2, where x; € R* \ D, and denote the representations (4)
of xj as

fl?j :pj+hjnj, ]: 1,2 (44)
We have the estimate
Im (&1 — #2)* > 26(C(1 + 7)) |p1 — p2f* + |1 — hal| — 7o

+ alnn — nnel?), T =71(h)),

where C > 0 is a constant depending only on the geometry of the surface D.

Proof: The assumption that principal curvatures are strictly positive implies
in particular that for all z,y € R* \ D,

(p(x) = p(y) " n(x) > Clp(x) = ply)? (45)
for some constant C' > 0 depending only on the geometry of the surface.

By definition, we have
Im(:ﬁl — 572)2 = 2/8((5171 — xQ)T('rlnl — Tgng) + Oz|71n1 — 72n2|2).
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By substituting the representations (44) and rearranging the terms, we obtain

(.ZUl — JTQ)T(Tlnl — 7_2n2) = T (81 — SQ)Tnl —+ 7'2(52 — 81)T7’L2

+ 7+ hoTo — (hyTo + homi NS Ny
Here,
thl + h27'2 — (thQ + hQTl)nrlI‘nz 2 (h1 — hg)(Tl — 7'2) Z 0,

since the function 7 is strictly increasing. Further, since D is strictly convex,
we have (51 — s3)Tn; > 0 and (s — s1)Tny > 0. The claim follows now from
the estimate (45). O

The estimate of the previous lemma allows us to prove Lemma 2.1.

Proof of Lemma 2.1: If ¥ = Z(z) € T\ Q and y € 952, we see as in Lemma
3.2 that

Im (#(z) — y)* > 207(h(2))|p(x) = y[* + 2h(z)7(h(x)) > 0,

i.e., T—y € G. Since G is open, we may choose neighborhoods U(z,y) C C"
of z and V(Z,y) C 99 of y such that U(Z,y) x V(z,y) C G. Since {Z} x 9
is compact, we can pick an open finite sub-cover such that

{i} x 0 c | JU(@,;) x V(&,y,).

J=1

Let us denote U(z) = N7_,U(%,y;). The claim follows by choosing now

v= | U@&).

ZeT\Q

4 Bérenger operator

Here we give the details of the derivation of the operator A,. Also, we prove
the ellipticity properties of this operator.
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Before deriving the formula of A in real coordinates, we give the proof of
Lemma 2.2.

Proof of Lemma 2.2: The claims (i) and (ii) are obvious by the construction,
so we need only to show (iii).

It is a straightforward matter to check that
(A, + kQ)@(z, y)|z:meRn = (A; + kQ)Q)(g;, y) =0, x #y,
and the same holds for z — 0®(z,y)/0n(y). Thus, we have
(A, +k*)u(z, 5)|z€D\ﬁ =0.

Let B C U be a small polydisc with the center x € D\ Q. Since (A, +
k*)u(z, s)|gegn = 0, it follows by analyticity that (A, + £?)u(z, s)|5; = 0.
Since U is connected, this implies that (A, + k*)u(z,s) =0 in B. O

Now we derive the representation in real coordinates. Let v : C* — C and
V : C" — C" be analytic functions. We define the extensions of the gradient
and divergence in C" as

grady = (0,v,...,0,,0)7,
div,V = ) 0,V
j=1

Note that div,grad, = A, as usual. Similarly, the differential of V' is defined
as a matrix in C"*" with elements

We prove the following simple result.

Lemma 4.1 Let F : R" — C" be a differentiable immersion. Then we have
grad,vo F' = Hgrad,(voF),
div,V o FF = div,(H'"VoF)—-m"VoF,

where H = (DF(z)T)~"t € C**™ and m € C",

"0
my=) B, i
k=1
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Proof: For analytic functions, the normal chain rules apply, so
grad,(vo F) = (DF)Tgrad,vo F,
and the first claim follows.
For the second identity, we write first by the chain rule
D(VoF)=(D,VoF)DF,

and thus
div,V o F =Tr(D,V o F)=Tr(D(V o F)H"),

and further, since

"0
(D(VoF)H")y; = > —(Vio F)H;,
Oxy,
k=1
ik ((V;o FYH Z Vi F
== —_ O O
sz Lk’
k=1
so applying the trace the claim follows. O

As a corollary, we obtain immediately the claim of Theorem 2.1.

From the representation in terms of real variables, we obtain the following
ellipticity result.

Lemma 4.2 There exists a function a : R" \ Q — C such that the operator
aA is elliptic. Moreover, for A restricted to any bounded open set A, we can
choose a=constant in A.

Proof: By definition, it is enough to show that there exists such an « that

—Re (a(x)ETH(x)TH(x)z> >0

for z € C*, 2 # 0. Observe that here H" is the real transpose of the complex
matrix H without complex conjugation. The matrix H = (I +iDa")™" is
invertible. Hence we see by substituting 2 = (H*H) !¢ that is is enough to
find such an o that

“Re <aZT(1 —iDa)"(I — iDa)() >0, 0.
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By writing ¢ = (g + (7, (g, (7 € R", we have
C'(I—iDa)™ (I —iDa)¢ = |C|2—|Dacl? = 2i(CEDacr + (FDacy)
= (ICaf* = IDacaf* — 2i¢E Dacr)
+ (I = 1Pai|* - 2icf Dacy).

Next we the diagonalization Da = Vdiag(\,...,\,)VT and denote VI =
|Crlw, VI = |Cr|n, where w,n € S™ 1, to obtain

C'(I = iDa)"(I —iDa)¢ = Cr[? S (1 —id)2w? + [P Y (1 — i),
j=1 j=1

From this representation we see that the complex numbers Y (1 — i);)°w?
and Y (1 —14A;)n; lie within the convex hull (e.g. line segment for n = 2 and
triangle for n = 3) of the points (1—i);)?. By choosing @ = a(z) in a proper
way such that this set is rotated to the half plane Re z < 0 by multiplication
of o we get the claim. For a bounded set A we note that the union of the
convex hulls over z € A form a compact set in {z € C' | —7/2 < argz < 0}.
O

In the following lemma, we use again the convention J(x) = Js(x) for s = i,
where J, is the Jacobian given in Corollary 3.1. We use also the notation

Js(x) = by (2, 8) ... by 1(z, s),

and j(z) = j;(x). By Lemma 3.1 and the assumed growth properties of the
functions 7 and 7', we have

i (2 = 5

We say that p > 0 is in the exponential range if the following condition
holds: For z € R”, h(z) > p, the inequality |arg (—ib;(x))| < ¢ hold for all
J, 1 <j<mn,and some §, 0 < < 7/2n.

Lemma 4.3 Let A = {zx € R" | py < h(z) < pa}, where p; is in the
exponential range. Then for all ¢ € H'(A), we have the coercivity estimate

Re(—)"( /A A+ k)pBide — /8 A(nTngadgp)doS)

> min(cAa k2) COS(né)”(p”%p(A),
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where Cy = inf{|b;(z)|™' |z € A, 1 < j < n}.

Proof: Let s > 0, whence F, : R* — R" is C?-diffeomorphism. An applica-
tion of Green’s formula together with equation (15) we have

[ @ iepide = [ (@apo B pe B
A s(A)
= [ (el o Fgradige 7+ Rpo B Pds
s(A)

+ / nTgradp o F, )] o F, dS.
OF(A)

Next, we transform the integrals back to the original coordinates and note
that the Jacobian of the change of the variables at the boundary 0A is j;
and that the normal vector at the boundary is unaltered. Therefore,

/ (A, + K)o Bluds = / (= (H.gradg)" (H,grad?) + k2||2) Judz
A A

+ / n' H,grady@j,dS.
dA

Since above both sides depend analytically on s, we can continue this equa-
tion to s = i. (Here as in the sequel we use without further mentioning
the fact that the s—dependent functions allow an analytic extension to a
neighborhood of the real axis.)

To obtain the desired formula, denote by «;, 1 < j < n, the orthonormal
eigenvectors of the symmetric matrix Da. We have Ha; = bj_lozj. Further,
by writing gradyp in this basis as grady = ) &;a;, we have

(—i)"(—(Hgrady)" (Hgrad®) + k*|¢|*)J

= Z 1&? (_ibl()_'i'b'jgjbn) + K| 2 (=iby) . . . (—iby).

By the assumptions, we have

arg <(_ibl()_'i'b;§2_ib"))‘ = Igarg (—ibe) — 2arg (—ib;)| < né,
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and similarly
larg (—iby) ... (—iby))| = | > arg (—ib)| < nd.
=1

Furthermore, since |b;| > 1, we have

—iby)...(—1b, 1
Eib). - Ciba) | g = Oy
(—ib;)? zeA1<i<n |bi(x)|
From these estimates, the claim follows. O

We conclude this section by proving the perturbation result, Lemma 2.3.

Proof of Lemma 2.3: In this proof the operator L = (AT+I~:2) is interpreted as
a closed unbounded operator in L?(D;) with domain D(L) = {u € H?*(D,) |
O.ulap, = 0}. Since L is elliptic, its spectrum consists of discrete eigenvalues
with finite algebraic multiplicities. If zero is not an eigenvalue, the claim is
true with A = 0. Otherwise, let ¥ be a smooth contour in the resolvent set
of L enclosing only zero from the spectrum. We define the Riesz projection

1

P=—-——
2wt Js

(L —2)""dz.

By [10], P is a finite dimensional projection that defines an L-invariant
decomposition L?*(D;) = Ran (P) & Ran (I — P). Moreover, the restriction
of L in Ran (I — P) is invertible and the spectrum of the restriction of L in
Ran (P) is the set {0}. Thus we see that with arbitrarily small ¢ > 0 the
operator L+tP is invertible. Since P can be represented as Pu = ) (u, ¢;)1;
with some ¢;,1; € L*(D;), we get the claim by approximating the functions
¢, and 1p; with C§°(D;)—functions «; and f3; in L?(D;)-norm. O

5 Green’s functions and layer potentials

In this section, we discuss the construction of the various fundamental so-
lutions associated to the Bérenger equation. We start with the proof of
Theorem 2.3.
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Proof of Theorem 2.3: The claim Fy(x) — Fy(y) € G follows from the Lemma
3.2. We start by proving the equation (27). Again, let s > 0 and ¢ €
C¢°(R™). By the formula (15), we have

/n BT (2, y)(A, + k) (x)dx
= /n (Fy(y), Fs(z)) (A + k) [p o F ' (Fy(2)) Jy(z)da

= [ (R a)a+ Ko Y a)ds

= —o(y)

by a change of variables. Since the right side is independent of s while the

left side is analytic in s, the equation holds in the whole @++, and the claim
(27) follows.

In order to show (26), we observe first that for any test functions ¢, €
C°(R™) and s > 0, we have, by using formula (15) and Green’s formula, the
identity

/n[(As Rl d = / Sl(A, + k) J.da,

n

As + k£ = (JS(x)(As + k2)JS(x)71)T
= Jy(z) " (A, + E)T I (2), (46)

and again by analyticity, this formula is valid for s € C'". On the other
hand, we have

y(z,y) = Ji(y)(Fi(x), Fi(y))
= Jy(a) 07 () (y).
Hence, we get

(As + k) Dy (z,y) = Jo(2) T (Ay + k) D) (2, 9) J5(y) = —0(z — ).

To prove the decay estimates (28) and (29), let us write s = a + i, a > 0,
B > 0, and for brevity h = h(x) and 7 = 7(h(z)). By the definition of the
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stretching function Fy, we easily get the estimates
Re (Fy(z) — Fy(y))* = (o” = )7 (1 + e1),
Im (Fy(z) — Fy(y))* = 267%(a + £2),
where £, and e, depend analytically on « and [ and they have the property

han;J sup,cxe; =0, j=1,2.

From these representations, we obtain further that
I ((Fy(z) = Fy(y))*)'? = B7(1 + &),

where 3 shares the properties of €1 and 5. The claim (28) follows now from
the asymptotic estimate of Hankel functions,

1 .
_elemz’ ] S 2’
V12|

as |z| — oo, and the boundedness of Js(y) in a compact set.

IDTH{Y, L, (2)] < C

n—2)/2

Similarly, we see that the growth conditions (6) imposed on the derivatives
of the function 7 restrict the growth of |D*J ()|, |a| < 1, and the estimate
(29) follows. O

In the construction of Bérenger solutions, we need a counterpart of the clas-
sical Stratton—Chu representation formulas, given in the following lemma.

Lemma 5.1 Let G C R be bounded domain or a complement of a bounded
domain with a C%-boundary. Assume that u satisfies the equation (A+k2)u =
0 in G and, if G is unbounded, that u vanishes exponentially at infinity. Then
u admits a representation

u(r) = i/aG(@(fc,y)80<y)U(y)—U(y)(ac—b(y))@(x,y))dS(y), z€G, (47)

where the plus sign corresponds to the case of a bounded domain, the minus
sign to the exterior domain. Above, 0, denotes the conormal derivative (33)
at the boundary and

b(y) = n(y)" H(y) 'm(y).
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Proof: Assume first that G is bounded. By denoting briefly H = H(y) and
m = m(y), we have

u(z) = - / (A + KT8 (y, 2)uly) — " (4, 2)(A + K)u(y))dy

= — / (divHT Hgrad® (y, z)u(y) — T (y, 2)divHT Hgradu(y))dy
a

+ /G(mTngadi)T(y, z)u(y) + T (y, 2)div(H mu(y)))dy

= — /30 n' (HTngad&DT(y, z)u(y)
— &7 (y,x) H" Hgradu(y) — H'm®" (y, x)u(y) )dS(y).

Since ®T(y, z) = ®(x, y) this gives the integral representation.

For an unbounded domain, we apply in the usual manner the above formula
first in Bg \ G, Bg being a ball with radius R. Since u and Green’s function
vanish exponentially, the integral over dBp tends to zero when R — co. O

Remark: If G has the foorm G = D(p) = {z € R" | h(xz) < p}, then
O = (1447'(h(x)))~20/dn. Indeed, in this case the normal n is an eigenvector
of H(x) with eigenvalue b, (z)™".

As in the standard scattering theory, we define now the Bérenger single and
double layer potentials as follows: If X C R*, X # () and 0G N X = (), we
use the notation

Sooxelz) = /aG(f(x,y)gp(y)dS(y), re X,

Rooxvle) = [ oq®le.ni)ase). o ex.

We use also the transposed operators
Siaxplz) = /8 T (2, y)p(y)dS(y), w € X,
G
Ripxtla) = [ 08 @0)0()asw), ze X,
oG
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Observe that 9,57 = K. The extensions (9)-(11) are special cases of these
extensions, since at 992, ¥(y) =1 and 9, = J/0n.

These layer potentials share many of the properties of the standard layer
potentials of scattering theory. To show that they obey jump relations of the
usual form, we need an auxiliary elementary result.

Lemma 5.2 Assume that A C C is a connected domain which subset S C A
has a limit point in A. Let f, : A — C be analytic functions which are
uniformly bounded in A and for whichlim,_,. fn(s) exists for all s € S. Then
there is a unique analytic function f : A — C such that lim,_, fn(a) = f(a)
forall a € A.

Proof. Since { f,} is uniformly bounded, it is a normal family ([1]), and hence
there is a subsequence {f,, } converging uniformly in compact subsets of A
towars an analytic function f : A — C. In particular, f satisfies f,,(s) — f(s)
for all s € S.

Assume now that there is a € A for which lim f,,(a) = f(a) is not true.
Then we can choose a subsequence { f,,, } of {f,} for which f,, (a) — h #
f(a). Since also {f.,, } is a normal family there is a subsequence converging
uniformly in compact subsets of A to an analytic function g : A — C. Since
fa(s) — f(s) for all s € S, we must have f(s) = g(s) for s € S. Since S
has a limit point, this yields f = ¢ in A which is a contradiction with the
assumption g(a) = h # f(a). O

Lemma 5.3 Assume that X is a measurable set and A C C. Ifu € L'(X x
A) has the property that z — u(x, z) is analytic for a.e. © € X and that
there is h € L'(X) such that |u(z,z)] < h(x) for a.e. x and z. Then
v(2) = [ u(w, 2)dz is analytic.

Proof. By using Cauchy’s and Fubini’s theorems we see for a closed contour

vyCA
[yv(z) dz = L/}(u(x,z) dads = /X Lu(x,z) dzdz = 0.

By Lebesgue Theorem of Dominated Convergence, v(z) is continuous. Hence
the above with Morera’s theorem yield that v is analytic. O
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Now we are ready to prove the jump relations. Note, however, that the
following result is deals only with domains obtained by inflating the original
convex body D.

Theorem 5.1 Let G = D(p) = {z € R" | h(x) < p} for some p > 0. The
Bérenger layer potentials satisfy the jump relations

gaG,GSO(x”gG = SaG,Rn\ESD(m)SG = gaG‘P(m)

and the same is true for ST. For the double layer operators we have

1

~o(2) = Kocp(),

s 1 5
Koc,ce(2)]oe + so(z) = KaG,R"\GSO(x)SG 3

2

and

- B 1 - 1 -
KgG,GSO(x”aG - 5@(55) = KaTG’Rn@(p(x)SG + §‘P(5E) = KaTGW(x)-

Here the notation - |§G means the trace from inside or outside of 0G.

Proof: For the single layer operators, the claim follows from the fact that the
kernels ®,(z,y) and ®T(x,y) are weakly singular and therefore they define
continuous functions throughout R" (see [7]).

Next consider K. For the operator KT, the proof is similar. As in the
standard scattering theory (see [7]), it suffices to show the claim for ¢ =1
and for the wave number £ = 0. Consider first the double layer potential
with a general stretching parameter s. By denoting <i>2 Green’s function with
the wave number k& = 0, we have for ¢ =1

me@@: / Dy (2. 1)dS )
0D(p)

- /aD » mn(y)Tgrady (Gs(1)bn (1, 8) O (Fy(z), Fi(y)))dS(y),

where we wrote J(y) = j5(y)bn(y, s). Since ®° is weakly singular, it suffices
to consider the most singular part when the gradient acts on ®°. Let us
denote

_ Js(y) () erad @° T
rs) = [ (o) arad 4R (). F(0)aS(0).
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Assume first that s > 0. Then Fj is a diffeomorphism
F, : 0D(p) — 0D(p + s7(p))

and we have

Js(y, s)dS(y) = dS(Fi(y)),

Tgrad, = n(F,(y)) grad
bn(y,s)n(y) gra y TL( (y)) gra Fs(y)»

so we get by a change of variables
u(, 5) = / n(y) grad @%(Fy(z), )dS(y), Fu(z) € D(p+ s7(p)).
dD(p+s7(p))

As x approaches the boundary 0D(p), Fs(x) approaches 0D (p + s7(p)), and
so for real stretching parameter, the claimed jump relation follows from stan-
dard scattering theory.

To extend the result to complex stretching parameters, let € dD(p) and
{z,} C D(p) be any sequence converging toward z. By denoting

fuls) = / D)3 (. )dS (y).
0D(p)

we observe that Lemma 5.2 implies the claim if we can prove that {f,} is
a normal family in a domain A C C containing a segment S of the positive
real axis. We choose here

A={zeC|0<|2z| <2, —6<argz<g+5},

where 6 > 0 is small. To show the analyticity, note first that for z,, € D(p)
fixed, we have |9.(®(z,,y)| < Cdist (z,,,0D(p)) ™"+ < M, so by Lemma
5.3, fn is analytic. To see the uniform boundedness, we apply Lemma 5.1
with £k =0, u =1 to get

fuls) = / . W )5 () 1

Here, the integral on the right is uniformly bounded with respect to z,,, s € A.
Since {f,(s)} converges on the real line, we obtain the desired extension to
A. O

To finish this section, we construct the fundamental solution of the perturbed
Bérenger operator A + A — k? constructed in the proof of Lemma 2.3.
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Lemma 5.4 Let A be the operator defined in Lemma 2.3. When ||Al| is
small enough, there is a unique solution ®(4y of the Lippmann-Schwinger
equation

i)(A) (x,y) — /D &)(SC, z)Ai)(A)(z, y)dz = @(aj, Y) (48)
1
where A operates on z — é(A)(z, y). This solution satisfies
(A+ A+ kg)i(A) (x,y) = —0(x —y) in R", (49)

as well as the same decay estimates (28) as ®.

Proof. Denote by S : L?(D;) — L?*(D,) the operator

Su(zx) = —/D O (z,2)Au(z)dz.

When the norm of A is small enough, the norm of S is less than one and
thus the equation .
(I+S)uy,=(-.y)

in L?(By) has a unique solution. This solution can be extended to the whole
space by substituting u, in the Lippmann-Schwinger equation (48), i.e., we
define

D4y (7,y) = ®(z,y) —I—/ O (x, z) Auy(2)dz, (50)

Dy
which is the unique solution of (48). The uniqueness is seen by observing
that the operator S is compact and using a Fredholm alternative argument.
Obviously it satisfies the equation (49).

The asymptotic behaviour of this solution follows from the asymptotics of P,
since the set D; is bounded. O

6 Construction of the solutions

The more or less technical details are applied in this section to prove the
existence, uniqueness of the Bérenger solutions in different domains. These
in turn are used to construct the double surface operators that play a crucial
role in our argument.
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We start with the most fundamental result, the proof of Theorem 2.2.

Proof of Theorem 2.2: The existence of a Bérenger solutions of the system
(17)—(18) follows from the very construction of the Bérenger equation. It
remains therefore to prove the uniqueness. Let v satisfy the equations (17)—
(18) with g = 0. By Lemma 5.1, we then have

b _
v(x) = r,y)v(y)dS(y), =€ R"\Q.
(z) . an(y)( y)v(y)dS(y) \
Denote by w the function
(x) O (ryu)dS@), TR\
w(zx) = T,Y)v , T .
o On(y) I

This function satisfies the Helmholtz equation and the Sommerfeld radiation
condition at infinity. Moreover, w|p g = v|p\g: s0 Ow/On[s, = 0. By the
uniqueness of the scattering solution, we therefore have w = 0 and especially,
v|D\§ = 0. But by Lemma 4.2, A is elliptic, so the Unique Continuation
Principle of elliptic equations ensures that v = 0 everywhere. O

Next we prove Lemma 2.4 with the assumption that p; is in the exponential
range.

Proof of Lemma 2.4: We start by proving the uniqueness of the exterior
Dirichlet solution. Therefore, assume that u € H(lk_g) (R™\ D) satisfies (30)
—(31) with f = 0. By Lemma 4.3, we have the estimate

1 1 .
||u||§Il(D(p)\51) S mmax <?,SUP |bj|> /aD(p) |nTH(gradu)uy|dS,

the supremum being taken over values in D(p) \ D;. The claim follows from
the growth condition (6) and the definition of Hj, _ (R" \ D).

To show the existence, we note that since  + ®(4(z, y) with its derivatives
has exponentially vanishing asymptotics, the function v = K(A),@Bl,Rn\ESO
satisfies the Bérenger equation in the exterior domain and it vanishes also
exponentially. If ¢ satisfies (34) it follows from Theorem 5.1 that u has the
right boundary condition. Hence it is enough to show that the equation (34)
is uniquely solvable. By Fredholm alternative, it is enough to show that the
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solution is unique. Hence, assume that Ker (3 + K(4)ap,) # {0} which is
equivalent to Ker (3 + IN((TA)’aDI) # {0}. Thus, assume that 1) satisfies

L st

(5 + K(ay,0p,)% = 0. (51)

Define now )
Sa),aDLquJ)(m)’ YIS Dla

vie) = { St opyanp, (@), © € R\ Dy.
Since GCS’(TA)’BDI’DIMQDI =(1/2+ R'(TA)’GDI)’gb, the equation (51) implies that
v satisfies
AT+ k2 + AT = 0in Dy,
Ovlyp, = 0

and by Lemma 2.3, we have v = 0 in D;. Since v is a continuous function
across 0D; and AT = 0 outside D;, v satisfies

(AT 4+ kv = 0inR*\ D,
vlgp, = 0

and by definition of v as a layer potential, it decays exponentially at infinity.
Let us define u(z) = J(z) 'v(x) in R* \ D;. Since by formula (46) we have
(AT + k?) = J(A + k?)J7, the function u solves the Bérenger equation in
the exterior domain with a homogenous Dirichlet condition on dD;. Thus,
we conclude that u = 0 and so v = 0 in R* \ D;. By using Lemma 5.1, we
obtain 1 = 8cv|§D1 — 0.v|yp, = 0 — 0= 0. This proves the assertion. O

As a consequence, we obtain the proof of Theorem 2.4.

Proof of Theorem 2.4: The Bérenger solution up restricted to R" \ D; is in
Hi, (R"\ D) and satisfies (30)—(31) with f = ug|,p,, so by Lemma 2.4,
we have

I = _
UB|3D2 = K(A),8D1,8D2(§+K(A),8D1) 1UB|3D1

= PB(UB|3D1)-
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To show the uniqueness, assume that u € H'(D, \ Q) is a solution of the
system. Define a function v in the exterior domain R? \ D; by the equation

. 1 - ~
v =Ky ap, 220, (5 + Kayom1) Hulyp,)-

Then vlop, = ulop,, j = 1,2. This implies by Lemma 4.3 that v|p, 5, =
U|D2\51'

Let w be given by

[ u(x), x€ Dy\Q,
w(z)—{ v(r), z € R\ Ds,.

Evidently, w vanishes exponentially at infinity and satisfies the Bérenger
equation with the boundary condition dw/dn|sq = ¢g. By the uniqueness
of the solution of the Bérenger system, we must have w = ug. Especially
u = uB|p,\qa- o

Finally, we need to show that there is an approximating double surface op-
erator that corresponds to the truncated Bérenger problem (19)—(21). As a
first step we prove the following auxiliary result.

Lemma 6.1 Let p; be in the exponential range and p > py. The problem

(A+E v = 0in D(p)\ Dy, (52)
vlop, = 0, (53)
vlopp = [fe€ H'(0D(p)) (54)

has a unique solution in H'(D(p) \ D;). Let 11, denote the mapping
I, : H'2(0D(p)) = H'(D(W)\Dy). frsu
The norm of this mapping satisfies the growth estimate
lim =@, | =0

for all e > 0.
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Proof: The uniqueness follows immediately from Lemma 4.3. For the exis-
tence and norm estimate, let V : H/2(0D(p)) — H'(D(p) \ D;) be a right
inverse of the trace mapping to the boundary dD(p) with the property that
for f € HY2(0D(p)), V(f)|ap, = 0. It is not hard to see, by a scaling
argument, that we may choose the operator V so that it satisfies a norm
estimate

||V(f)||H1(D(p)\El) < Cp1/2||f||H1/2(8D(p))'
We seek to solve the system (52)—(54) in the form

u=V(f)+ uo,
where uq satisfies
A+ Ky = ~(A+K)V(f) € H(D(p)\ Dy,
uolop, = uolap(,y = 0-

Let L denote the operator

L:Hy(D(p)\D1) = H(D(p)\D1), Lu=(A+k)u,
where H}(D(p) \ D;) is the Sobolev space of functions with vanishing traces
at the boundaries. By Lemma 4.3, we obtain the bound

1 -2
”‘p”H&(D(p)\E) < cos(nd) max(k ™, sup |bj(x)|)||L90||H*1(D(p)\51) (55)

implying that L is injective. To show that L has a dense range, assume that
for some ug € HY(D(p) \ D1),

(ug, Lv) = 0 for all v € H}(D(p) \ Dy).

Here, ( -, - ) denotes the duality between H!(D(p)\D;) and H~*(D(p)\ D).
It follows that )
(A + kQ)TUO = 0.

By denoting vy(z) = J(z) 'ug(x) and using the formula (46),
(A + KT = J(2)(A + k2)J(2)

we observe that Lvy = 0, implying that vy = ug = 0. Thus, L is invertible,
and we have the solution u of the problem (52)—(54) as

w=01-L YA+ )V
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The asymptotic norm estimate follows now from (55), definition of A and
the growth restrictions on 7/ and 7". O

As a corollary, we get Theorem 2.5.

Proof of Theorem 2.5: Consider the Dirichlet problem

(A+E)u = 0in D(p)\ Dy, (56)
u|3D1 = f¢€ Hl/Q(aDl)a (57)
u|3D(p) = 0. (58)

This problem has at most one solution by Lemma 4.3, and in fact the solution
can be constructed in terms of previously defined ones as

U =70+ w,

where v satisfies the exterior Dirichlet problem (30)—(31) and w is the solution
of (52)—(54) with f = —v[,p,). In operator notation, we have

u = Kion,ppnm (g + Kwop,) 'f

. 1 - _
= I, Ka).00:.000) (5 + Kayo0,) " /-

Comparing this representation to the definition of Pg we obtain
ulyp, = Pof — 0P, f = P, f,

where dP, is the perturbation from the full space Bérenger double surface
operator,

5 1 - _
08, = Trop, 11, K(a).0p,.00() (5 + K(a).00,) E

Here, Tryp, denotes the trace mapping H'(Dy\ D,) — H'?(0D,). To obtain
the norm estimate for Pg — P,, we show that

: (k*E)T(p) I frd
pll)rrolo e | K (a),001,0000) | = 0,

the norm being the operator norm H'2(dD;) — HY2(0D(p)). Clearly it is
sufficient to show the above limit claim when the operator is interpreted as

K(A),3D1,3D(p) : L2(8D1) — C’l(aD(p))
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But this norm estimate follows directly from the asymptotic behavior of the
Green’s function @4y and its derivatives.

To complete the proof, we need to discuss the equivalence of the truncated
Bérenger problem and the double surface operator system. If u satisfies the
truncated problem, it satisfies the Dirichlet problem (56)—(58) with f = u|sp,
and therefore the double surface condition. Conversely, if u satisfies the
double surface operator system, we easily see that u is

[ _
u = K(A),aDl,D(p)\51(§+K(A),8D1) Hulsp,)

=T, Ky p1.000) (5 + Kyop,) (ulyp,)

everywhere in D(p) \ D; and so uyp(,) = 0. O

7 Appendix: Representation of the Bérenger
equation in tangent—normal coordinates

We consider the Bérenger equation using the coordinate system generated
by the parameterization of the surface dD. Assume that 0D has a local
parameterization of the form

p=pu)€dD, u=(u',...,u" ") R,

This parameterization yield immediately a tangent—normal coordinate sys-
tem for the exterior domain R \ D,

x(u; h) = p(u) + hn(u),

where h = dist(z,0D) = |z — p(u)| as before and n(u) is the exterior unit
normal at p(u). In order to calculate the fundamental matrix of the exterior
domain in these coordinates, let us denote by g(u) = (g(u); ;) € Rr=1x(r=1)
the fundamental matrix of D in u—coordinates,

op\" [ op .
R - < <n-—1.
Gi,j <auz> <au]> s 1 SLIsn 1
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Further, denote by B(u) = (bf(u))1<kr<n1 € R®™D*=D the matrix whose
elements are determined by the equation

auf Z bi 8u’f

k=1

For 1 <7 <n—1, we have

r dp
o= Z(5k+hbk)a -,

k=1

and a straightforward calculation then shows that for 1 <1i,7 <n —1,

or\" [ oz
Gig = (m) <37)

= g”+hz gisbs + b i) +h2Zb’“gHbf
k=1

= (9+h(gB+ B'g)+h*BTgB)i;.
Using the formula ¢-'B%g = B, or in component form
n—1
Y 9" e = by,
k=1

we obtain
g+ h(gB+ BT g) + h*BT¢B = ¢,

where where v(u; h) = (vF(u; b)) € R=1x(n=1) jg
v=1+2hB+ h*B* = (I + hB)*.

Therefore, we have

Glu; h) = < 9(0“) 0 ) < 7("3 h) ; ) — Go(u)C(u: h).

To find a formal complexification of the fundamental matrix corresponding
to the stretched coordinates, we write the complexified variable z = F(x) as

Z(u; h) = p(u) + (h +ir(h))n(u).
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Thus, the complexified fundamental tensor G'(u; h) attains the form

mmm:<9%)$)<7wh3”m”(Lm%my>zadmamm.

Since the Laplacian in the coordinate system (u; h) reads as

OV
7]
\/|G Z o ( W) |

where u, = h, (G"7) = (G;;)"" and |G| = Det G, a formal complexification
yields the operator

D SN A OV
A_\/@Z% <\/aajam)'

We will show that in this coordinate system, we have A* = A.

Lemma 7.1 The Bérenger equation can be witten in the tangent-normal

coordinate system as
(A* + k*)u = 0.

In particular, this equation allows a divergence form representation

div (A gradv) + kv = 0,

where
N 1/2
o (10 R
and
_ Al (u; ho4i(h)) 'y (u; ) 0
A—ﬁ(“’h)<7 0o u+wwm4>'

Proof: For s > 0, the transformation F, : R* — R" is a C?—diffeomorphism,
and the fundamental tensor transforms as

Gluih) Gy = (40 0 ) (T e )
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Consequently, the Laplacian in these new coordinates becomes

Aty = \/|G72 ( Gy gi)

i,7=1

and by definition, A* = A,. By writing the operators A, and A, in canonical
form, we see that the coefficients of these operators are analytic functions of
s in the neighborhood of the set Res > 0. and so they are identical in the
whole domain. Since

div (Agrad u) = SA*,
we see by looking the second order coefficients that A = SHTH. a

From the divergence form, we can easily obtain the equation e.g. in the
spherical coordinates as given e.g. in [5].
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