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1. INTRODUCTION.

The purpose of this paper is to study the maximal regularity of the solu-
tions of the partial differential equation

(D2 — u)) (1 2) + et 2yualto2) = fity2), 220, (1)
with initial and boundary conditions

u(0,2) = uo(z),

u(t,0) = uy(1). (2)

Here D§ denotes the fractional derivative of order o € (0, 1), see [8, p. 133],
1e.,

o d [
(Dfv)(t) d:fg/ Ji—a(t —s)v(s)ds, t>0,
0
h
def .. 1
D7 v)(0 zhm—/ J1—a(h — s)v(s)ds,
o)) Ltim b [ gimalh— o)
where .
gs() < Frmt®™ 10, B>,

T(3)

and where v is (at least) continuous and satisfies v(0) = 0. If w(t, z) is a function
of two variables, then (D{w)(t,z) is the function (t,2) — (Dgw(e, x))(1).

The maximal regularity results that we prove state essentially that if ¢
and f are Holder continuous with respect to one variable, ¢ is strictly positive
and satisfies an additional continuity assumption, and the initial/boundary
data satisfy certain compatibility conditions, then there is a unique solution
of (1) such that u, and D{(u — ug) are Holder continuous with respect to the
same variable. In addition, appropriate Schauder estimates are obtained. By
integration and subsequent interpolation we obtain additional results on the
regularity of u in both variables.

Our work on the smoothness of solutions of (1) is motivated by problems
related to the nonlinear fractional conservation law

D (u = o) + o(u)e = f. (3)

Equations of this type can be employed to approximate solutions of nonlinear
conservation laws, [3], and the properties of their solutions have been studied in
e.g. [4] and [5]. A sufficiently smooth solution of (3) satisfies (1) with ¢(¢,2) =
o'(u(t,z)). Thus the results we prove below can be used to show that if there
is a solution of (3) that is Holder continuous in one variable (continuously with
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respect to the other), then it follows, provided the functions f, uy and uy are
sufficiently smooth, that it satisfies better Holder conditions in both variables.
Since this inference relies on quite strong assumptions on the smoothness of
the solution it is, of course, not satisfactory. Unfortunately, there appear to be
grave difficulties involved in trying to get the necessary bounds if one applies
a direct bootstrapping technique. So it seems that one has to use a slightly
different approach. We will return to this problem in future work.

Another motivation for studying equation (1) is that it is (when ¢ = 1)
the special case f = 1 of the equation

Df(u =)+ DJ(u—w) = f,

studied in [2] for the cases «, € (0,1).

Our proofs rely on an extension of [2, Thm. 6] to the nonconstant coef-
ficient case and on an analogous extension of [7, Thms. 4.5, 5.5]. A key fact
necessary for our analysis is that D is a positive operator with spectral angle
ar/2 < 7/2. The condition o < 1 is crucial for maximal regularity to hold.
The Holder spaces repeatedly appear in the analysis as interpolation spaces,
see e.g. [1].

2. STATEMENT OF RESULTS.

Let X be a (complex) Banach space and let I be an interval. The Holder
spaces CO)(I; X), v € [0, 1] are defined by

|t — sl

C(V)(I;X) def {f T X ‘ sup I£(t) = f(s)llx < 00}7
S;;&th

with norm

L) — Fo)lx

5 = su t + su
L e
If v € (1,2], then CON(L;X) € {f € CHI;X) | f € COI(I; X))} with
def
norm || flleenry = superl|f(Hlx + | lcr-1(ry- Observe that C(®) £ C and

et 2t

We consider a function of two variables to be a function of the first variable
with values in a function space, that is, f(¢, z) is the function t — (z — f(¢,2)).
When we have to consider the other possibility, namely the function x — (¢ —
f(t,2)) we use the notation f~ for the function, that is, we define

def

falz,t) = f(t,z).
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In addition, in each particular case below, the domains of the variables indicate
how the function is to be viewed. The letters 7, T', etc. refer to the first variable
t and ¢, X, etc. to the second variable .

Observe that the statement f € C([0,7];C([0,£];C)) is not equivalent
to f~ € C([0,£];C™([0,7];C)). The second implies the first, but not con-
versely. We do, however, have f € CU([0,7];C*)(]0,£];C)) if and only if
fAeC(]o,g];cM([0,7]; C))

Our first result concerns Holder continuity in ¢. We will use the notation
Coio for functions vanishing at 0.

Theorem 1. Assume that o € (0,1), 7> 0, { >0, u € (0,«), and that

(i) en €C([0,£;,C7([0,7];R)), and
c(t,z) >0, (t,z)€[0,7] x[0,£];

(i) fec([0,7]:€([0,£]:C)) and f(0,0) = 0;
(iil) uo € CY([0,£];C), uo(0) = uh(0) = 0 and

c(0,z)up(z) — £(0,2) € CH/([0,£];C);

(iv) u1 € Coro([0,7];C) and Dfuy € CY,([0,7];C).
Then there exists a unique solution u € C([0,7]x[0,£];C) of (1) on [0, 7] x [0, €]
such that

(a) uy € ([0, 7];C([0,£];C));

(b) uwe([0,7];€([0,£];C));

(¢) u e ctt=0(0,7];C9([0,¢];C)) for every 6 € (0,1).

Moreover, there 1s a constant M that depends on «, p, 7, €, and ¢ such that
[zlleo qo,meo.en) + [ellecqo,rieqo.y T lullecrsa-nwo e o,
< M (|1 llew o.rpeqto.gy + €0 2)up(z) = F(0,2)llenrao.e)
+ ||D§“u1||w<[o,r]>>.

The claim (b) (and therefore also (¢)) can be improved as follows: What
we actuallly have is that

u(t, 2) = uo(2) + L=t (6(0, 2)ul(x) — £(0,2)) € CF([0, 7 €([0, €] C)),

(except in the case where o + = 1; then the space of Lipschitz functions
should be replaced by the Zygmund class). In order to use interpolation to get
an improved version of (¢) one must make extra assumptions on the smoothness
of the term ¢(0, z)uy(z) — f(0,2) or not use the full force of (a).

Our second result concerns Holder continuity in .
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Theorem 2. Assume that o € (0,1), 7 >0, £ >0, v € (0,1), and that
(i) e€c([0,7],€™([0,€]; R)) and

c(t,z) >0, (t,z)€[0,7] x[0,£];

(i) fm € C™([0,€];¢([0,7);C)) and £(0,0) =0;

(i) uo € CU*([0,€];C), uo(0) = ug(0) = 0;

(i) w1 € Coro([0,7]; €) and 55 (D )(t) — £(£,0)) € €57 ([0, 7]; C).
Then there exists a unique solution u € C([0,7] x [0,&];C) of (1) such that

(a) (uz)~ € C¥([0,€;C([0,7):C));

(b) w e ([0, ]; ([0, ¢]: C));

(¢) u e =90, 7];C9*)([0,£];C)) for each 6 € (0,1).

Moreover, there 1s a constant M that depends on o, v, 7, £ and ¢ such that
[[w2llew o, 3:co0 0.y F lulle o, e o,y T lullec-ore o, g0+ (0,

< M<||f||c<°><[o,r];c<v><[o,£]>> + lluller o.en

) (5)
eve([o,7])

We need the following simple lemma which is an extension of [6,
Prop. 1.1.5, 2.2.12]. For the definition of the spaces (X,Y )s o and the K-
method, see, e.g., [1] or [6].

_|_

@ <(D?ul)(t) - f(t, 0))

Lemma 3. Let X and Y be Banach spaces that are continuously injected in
a Hausdorff locally convex topological vector space. If I 1s an interval and f €

ClONI; X)NCO(L;Y) where o, B € (0,2], then f € CLO=DFIB(T (XY )g.00)
for each 6 € (0,1) and

[ flleca-oatomrxvyo ) < 2 Flecrrx) + Il r3)
{ 21" supser [l f' (D x,  ifa>1,8<1,
2 supe || f' (), i B>1a <l
Here |I| denotes the length of the interval I.

3. PROOFS.

Proof of Lemma 3. First we recall that by [1, (2.2.2)] we have

oll e < IOINN0ll3. v € (XY ) 00 (6)
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Using this inequality we get
S| f)llx vyo.o < supllf)lx +supl F()]y-
Similarly, if & and 3 > 1 then

sup|[ £ ()l (x vy oo < 5Dl (B)l[x + supl| £ (#)]]y-
tel tel tel

Furthermore, in the case where 0 < a, f < 1, we get

t) — t) — 1) —
sp /() = F)llx )00 < sup MO = FG)lIx “up [1£(2) f(s)||Y7
t,s€T |t—8|(1_9)0‘+96 t,s€T |t—8|a t,s€T |t—8|ﬁ
sF#t sF#t sF#t

and, in the case where 1 < «, f < 2, we have

")y — (s 1) — £ ") —
ap MO = F M IO =Sl 0 = Py
t,s€T |t—8|(1_9)0‘+96—1 t,s€l |t—8|a_1 t,s€l |t—8|ﬁ_1
sF#t sF#t sF#t

Next we consider the case where (a« — 1)(f — 1) < 0 and we assume first
that @ > 1 and 3 < 1. Furthermore, let us assume that § = (o — 1)/(a — 3) so
that (1 — #)a + 63 = 1. This case is made more difficult by the fact that the
estimates we obtain depend on the length of the interval. First we derive an
estimate on f.

Let t € I and let h # 0 be such that t + h € I. Now we have

and we see that the first term belongs to X and the second to Y. If p > 0, then

[1£'(1) = ()l x

K(p. f'(£),X,Y) < [h]*~" sup

S PR P
sF#£t
- t)— fs)lly
el sup s
sF#£t

If I is unbounded we can for any p > 0 choose h such that || = p!/(@=8),
Then

I_t _ 1 -t o
p 'K (p, f'(1),X,Y) < sup 710 = Fllx oI = FGlly.
t,s€T |t — S|a_1 t,s€T |t — 3|ﬁ
sF#£t bkt
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If I has length |I| we can only be certain to be able to have |h| < |I|/2 and this
means that we get the inequality above for p < (|I]/2)*~5. For larger values of
p we have

B ! I 1—a«
w0 X7 < () sl
ter
Thus we have shown that f'(#) € (X,Y )~ and, since f(t)—f(s) = fst f'(o)do,
and as we can treat f'(o) as above, we conclude that f € C(I;(X,Y )s.o0)
and that we have the estimate

IlLf(t) — f'(s)llx
1 . <
I#llewariximn. = e |t — s|o—t
sF#£t
ILF(#) = f(s)]ly <|I|>1_a .
su + | = su t )
t,q;e]? |t — 3|5 92 tE]f:)”f ( )”X

If @« <1 and > 1, then we use the fact that (X,Y )g o = (¥, X )1-6,00
and obtain a similar result.

Next we consider the case where @ > 1 and f = 1. Let t € I. Since
f is differentiable in X we see that {3(f(t 4+ h) — f(t))} is Cauchy sequence
in X as h — 0 (such that t + h € I) and then it follows from (6) that it is
a Cauchy sequence in (X,Y ) oo as well. Therefore it converges in this space
and this shows that f is differentiable in (X,Y")s 0. Applying inequality (6) to

%(f(t +h)— f(t)) — %(f(s +k)— f(s)) and then letting h and & — 0 we get

10 = OMixyme PO = FG)lx Ly I = )y

t,s€T |t—8|(1_9)0‘+96 - t,s€T |t—8|a t,s€T |t—8|ﬁ ’
sF#t sF#t sF#t

which is the desired result. If « = 1 and # > 1 we again use the fact that
(XY )p0o = (V. X )14 0.

The remaining cases can be obtained by combining the results already
obtained and using the reiteration theorem.

Lemma 4. Let 7 > 0, a € C([0,7];R) with a(t) > 0, and let ¥ =
Co0([0,7];C([0,£]; C)). Define the operator A, in'Y by Aqu(t) = ﬁ(Dfu)(t)
Then there is for each n > 0 a constant N that depends onn, «, 7, infyepo - a(t),
SUP4e(o, 7] a(t), and on the modulus of continuity of a, such that

B «
N+ Ad) ey < when |arg A\| < 7(1 — 5) — 7.

A +1°
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Proof of Lemma 4. If we can prove this lemma with C([0,¢]; C) replaced by
C, then we get pointwise estimates for functions depending on a second vari-
able, and these estimates also imply continuity, so we get the original claim.
Therefore we shall consider this case only.

Let

aop def mln{l inf a(t)} and aq def sup a(t).
tefo,r tefo,7]

For every h € Y we have to show that there is a solution ¢ of the equation

Ag + Aug = h such that ||¢]y < N%Hh”y We can rewrite this equation as

(D g)(t) + Aa(t)g(t) = a(t)h(t). (7)
By [2, Lemma 11.(b)], there is a constant M; depending on 7, «, and
such that

o (8%
(D7 + uD) ™ ey < larg u| < (1= 5) — 1. (8)

M,
e
Let

ap
2M,°

and let T, be a positive number such that

€ —

la(t) —a(s)| <€, t,s€[0,7], |t—s|<Te

Suppose that T € [0, 7) and that there is a continuous solution ¢ of (7) on
[0, T] such that for some constant Np, depending on 71, «, 7, and on the sup,
inf, and modulus of continuity of a, one has

Nt
su 1 ———— sup |h(2 9
s lo()] < [ sup (0 )

for all A € C satisfying |arg \| < 7(1 — 5 ) —n. If T = 0 we take ¢ = 0. Now we
rewrite (7) in the form

(Dfw)(t) + Aa(T)w(t) = a(t)h(t) + A(a(T) — a(D)o(),  (10)

and we see that if v = w, then we have a solution of (7).

We define T' = min{7, T+ T.} and
U = {0 € Coall0,71:C) | o) = gl1), 1€ [0,7]}.

Since D¢ + Aa(T)I is invertible in CO,_,O([O,T];(C) there is a solution of (10)

for each v € U and the uniqueness guarantees that we have w € U. Denote
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w = G(v). If v; and vy are two functions in U, then we have by (8) and our
choices of T, and e and by the fact that v1(#) — v2(¢) = 0 when t € [0, T] that

sup |G(v1)(t) — G(v2)(#)| < o sup [A|[a(T) = a(#)|[v1 () — va(t)|
tef0,7] [Ala(T) +1 te[0,7]
M, 1
< T up [a(T) — at)] sup [oa(t) —vat) < 3 sup for() — va(H)].
A0 e[, 1 te[0,77] tef0,7]

Thus G is a contraction on U and we get a unique fixed-point ¢ that is

the solution of (7) on [0,7]. If we let vy € U be such that ve(t) = ¢(T) for
t € [T, T), then we get from (8) and (10) the estimate

2M1a1|/\| Mlal
sup [G(vo)()| < 77— sup 9D+ = sup [R(P)].
tE[O,T] |/\| (T) +1 t€[0,T] |/\|G(T) +1 tE[O,T]

Because sup, T]|UO ()] = supsefo,77/9(1)| and the contraction factor is :

we get the following estimate for the norm of the fixed-point,

4 M 2Mia
sup Jg(t)] < (3+ =) sup |g(#)] + ——L" sup [(1)],
te[0,77] o t€[0,7T7] ao(|Al +1) t€[o0,T]

and we conclude that (9) holds with [0, 7] replaced by [0, T] and Nt replaced
by N;., where

4M1a1> I 2M1a1 .

ag

Ny =Nr(3+
o

Since the choice of T, only depends on My, the lower bound of ¢ and on the

modulus of continuity of a, we get the desired conclusion by induction.

Proof of Theorem 1.

By the linearity of the problem it can easily be split into two parts, where
in the first part we have u; = 0 and f(¢,0) = 0 and in the second part we have
ug = 0 and f(0,2) = 0. We start by considering the case where uy = 0 and

f(t,0)=0.
Let
co = inf ¢(t,z), cp = sup c(t,x). (11)
t€[0,7] te[o, 7]
z€[0,¢] z€[0,¢]

We begin by studying the following equation:

(Df(u — u0)>(t,x) +b(x)u,(t,z) =g(t,x), te[0,7], x€]0,&, (12)
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with boundary condition u(t,0) = 0 under the following assumption on the
function b:

be C(RT;R) and 0 < ¢p < b(z) < ¢ < oo (13)
We denote by By the linear operator in Co—o([0, £]; C) with domain
Dp, = {0 € C'([0,£];,C) | v(0) =2"(0) =0}
and
(Byo)(x) = b(x)o'(x), = €[0,£].

We denote by B the corresponding operator with b(2) = 1 and ¢ replaced by

o = &/co.
Thus (12) can be written as

D (u —ug) + Byu = g. (14)

Next, perform a change of variable y = fox b(l—s)ds, so that equation (14) is

replaced by
DY (b — ud) + Bub = g (15)

where
9" (t.y) = g(t. p(y)),
up(y) = uo(p(y)),

g (t.y) = g(t.€),
y €1[0,&] and u (g)—: wo6), y € (&, Lol

where &, = ff b(l—s) ds and p is the inverse of the function = +— fox b(l—s) ds. By [2,
Thm. 6.(a)] equation (15) has a unique solution u® which satisfies the bound

| Bu®(t) — "(0)|lcr ([0, 71:¢omo([0,60]))

< M, <||Bu3 = " (0)lenrao.cop + lg*(®) — gb(o)||CM([0,T];COH0([0,£O]))>7

where M, depends on «, p, 7 and &y. Now we change variables back again, that
is, we define

u(t, ) = u® (L/x ﬁ d3> , for z €[0,£].
0

We can therefore conclude that there is a unique solution u of (12) such that

||ur||C(u>([0,r];c([0,£];©)) < M; <||b(£)u6(£) —9(0, @cha([o,g])

+llgllewo.mpeqoey):  (16)
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where (with some crude estimates) M; = %(Mg max{1, c’f/a} + 2). Note that
since M, depends on &y, M3 depends on ¢q as well.
Choose € to be so small that

M3€ 1
co S 57 (17)
and choose T, > 0 such that
€
llellecn o, 7o, TE < - (18)

T2
Suppose T € [0, 7) and that we have found a solution of (1) on [0, 7] x [0, ¢]
that satisfies the inequality
[ualleo o myeqo.en
< Nz (11 llewsqo.mpeqoy + 160 2)ub(@) = FO,2)llewrnqog ) (19)
for some constant N7 depending only on «, pu, 7, &, ¢, and ¢1. If T = 0 we
take this solution to be u(0,2) = ug(z). We let T'= min{7, T + T.} and let U
denote the set
U= {vec™([0.70:C((0.€]:C)) | o(t.z) = un(t.z). 0<t<T,
v(t,0)=0}.

For each v € U we proceed to find a solution w of the equation
DY (w —uo)(t,z) + (T, z2)w,(t,x) = f(t.2) + («(T,2) — e(t, z))v(t,z), (20)

with boundary condition w(t,0) = 0. Observe that the right-hand side of (20)
evaluated at t = 0 is

f(07 ;L') + (C(T7 ;L') - C(O7 ;L’))ui)(;l}),

and therefore the element b(x)ug(z) — f(0,2) appearing in (16) when b(z) =
co(T,z) is ¢(0,z)ug(x) — f(0,2). Thus we conclude from (iii) and from the
results above that we can find a solution w of (20) such that w, €

c([o, T], C([0,£]; C)) and the uniqueness guarantees that we have w, € U.
Let us denote the mapping v — w, by w, = G(v). Using the linearity of
equation (20), and (16) with b(z) = ¢(T,2) once more, we conclude that

[(G(v1) — G(v2))(i7£)||c<u>([o,T];C([o,5]))
< Ms|[(e(T,z) — e(t, z))(vr — v2)(Es )|l ey o, 11:0[0,7))-
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Let va = vy —vy and ea(t,z) = (T, 2) —¢(t, 2). Since v; and vy € U it follows
that va(t,2) = 0 for t € [0, T] and therefore we can, when analyzing the term
(e(T,z)—c(t,z))(v1 —v2)(t, 2) assume that ¢(t,2) = (T, z) for ¢t € [0,T]. Thus
we conclude from (18) that

sup Jeat,2)oa(t,a)] < e sup oalt, )],
t€[0,7] t€[0,7]
2€[0,¢] z€[0,£]

Furthermore, if we write ca(t, 2)va(t,2)—ca(s,2)va(s, ) = cal(t,x)(va(t,z)—
va(s, ) + (ea(t,z) — ea(s,z))(va(s,2) — va(T,z)), using the fact that
va(T,2) =0, and use (18) once again, we conclude that
[(e(T,x) — et 2))(v1 — va2)(t, x)”c(u)([o,T];C([O,f]))
< el[(vr = v2)(E @)l e o, 77:¢ 70,600

Hence we have

M3€

Co

[(G(v1) = G(v2))(E @)l e o, 717:0(0.67)) = [[(v1 = v2)(t, @)l e o, 77:¢(10,1))

and we see that the mapping G is a contraction and there is a unique fixed-
point. Thus we get a solution on the interval [0, T].
If we take vg € U to be such that vo(t,z2) = w(T,2) for t € [T,T]

then [[vol| oo o, 110,61y = Nllewqo,pse(jo,¢) 2nd using (16) to estimate
||G(v0)||c(#)([0 e(o.6) Ve conclude from (19) that (19) holds with T replaced

by T and Nt replaced by

4M2€1

Co

N :<3+ >NT—|—2M2.

Since this procedure can be repeated with the same T, we find a solution
on [0, 7] that satisfies the desired bounds.

Next we consider the case where ug = 0 and f(0,2) = 0. We proceed in
the same manner as above but instead of using [2, Thm. 6] we use [7, Thm. 5.5]
combined with Lemma 4. The conclusion we can draw is that for every a €
C(”)([O,T]; C) with a(t) > 0 there is a constant M, depending on «, p, 7, and
on infieo - a(t) and [|al|¢w(jo,-) such that if g € cw([0,7];¢([0,€); C)) with
¢(0,2) = 0 and D{uy € CSQO([O, 7]; C), then there is a unique solution u of the

equation

1 o _
S PRt + () = gt 0), (21)

u(t,0) =uq(t), te€]o,7],
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such that

| D7 ullconr (o, 700,61y < Ma <||g”C(l‘)([O,T];C([O,f])) + ||Dtau1||C(“)([O,T])>' (22)

Choose € to be so small that

1 2

et z)

<
cl([o,715¢([0.€])

1
€M4 57

and choose X, > 0 so that

le(t,z) — et y)llcawrqo,p <6 lv—yl <X, z,y€[0,£].

We assume that there is a solution of (1) on [0, 7] x [0, %] for some X € [0,¢)
such that there is a constant Ny satisfying

I D ull e o, m5e00,27)) < Nx <||f||C(#)([O,T];C([O,£])) + ||Dtau1||C(“)([0,T])>' (23)

If X = 0 this is certainly the case. Let X = min{&, £ + X.}. In analogy with the
previous case, we consider the equation

f(t,x) 1 1
e(t, ) (c(m) _c(z@) v(b-z) (24)

ﬁ(l}fw)(b z) + we(t,z) =
w(t, 0) = Ul(t)7

and we see immediately that if v = Dw, then we have equation (1). We define
the set U to be

U= {vec®(o,r]:¢([0,%];C)) | v(t, ) = (Dfu)(t,z), 0<az<X,
v(0,2)=0 }

If vy, vy € U, then va = vy —v9 satisfies va(t, 2) = 0 when = € [0, X]. Therefore
we can use the fact that C(*) is a Banach algebra with pointwise multiplication
to see that

1 1
H (C(Lx) B C(Lg)) UA(L &)

<e

¢ ([o,7];¢([0,%]))
2
1

e(L.z))

HDA”C(M)([O r1;¢([0,%]))"
ct([o,r];e([0.£])

By (22) this shows that the mapping v +— w, is a contraction and therefore
we get a fixed-point which is the solution u, on [0,7] x [0,X]. We can take
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vo in U such that vo(t,z) = (DYu)(t,X), for 2 € [X, %], and then we get
the estimate (23) with X replaced by X and Ny replaced by Ny = Nx(3 +
AM |11/ ellew o, mseo.e)) + 2Mamax{1, [[1/cllcw o, 7):e(0,e)) }- Since we can
choose X, independent of X we get the desired result by iteration.

From the results established so far we know that (a) holds and that
D& (u—up) € CM([0,7];C([0,£]; C)). The inverse of D¢ is given by (D; *h)(t) =
foi gal(t — s)h(s)ds and so it follows from a straightforward calculation that
u—ug € CL([0,7];C([0,£];C)). By assumption ug € C'([0,£];C), and there-
fore we have (b). Since (a) is equivalent to having v € C™ ([0, 7];C'([0, £]; C)),
we get (¢) from Lemma 3. The estimates in (4) follow immediately.

Finally observe that the arguments in the above paragraph can be used
to validate the remark after Theorem 1. [

Proof of Theorem 2.

First we consider the case where uy = 0 and f(¢,0) = 0. We proceed in
the same way as in the proof of Theorem 1 and by applying [2, Thm. 6.(¢)]
we conclude that there is a unique solution of (12) such that for some constant
M3 (depending on ¢y and ¢; and [[b]|¢v([o,¢)) but not otherwise on b)

[z lle o, e,y < Ms <||u6||c<v>([o,5]) + ||g||C([0,T];C(”)([O,£]))>' (25)
Choose € to be so small that
J\45E S 17
2
and choose T, so that
|e(t, 2) — c(3,§)||c(y)([075]) <e |t—s|<T., t,s€el0,71] (26)

Suppose that we have found a solution of (1) on [0, T] x [0, {] that satisfies
the inequality

1 lle o, 15000 (0,67)) < NT<”f”C([O,T];C(”)([0,5])) + ||u6(£)||c<v>([o,5])>7 (27)

If T = 0 we take this solution to be u(0,2) = ug(x). Let T = min{r,T + T.}
and let U denote the set

U {vA€CM([0,61:0(0,T]C)) | o(t,z) = ua(t,z), 0<t<T,

v(t,0)=0}.
For each v € U, we can by the results above find a solution w of (20) such

that (w;)~ € C(”)([O,f];C([O,T];C)) and we can apply inequality (25). The

uniqueness of the solution guarantees that we have w, € U.
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Let us denote the mapping v — w, by w, = G(v). Using the linearity of
the equation and (25) we conclude that

[(G(v1) — G(v2))(i7£)||C([ojq;c<»>([o,5]))
< Ms||[(e(T, z) — e(t, z)(vr — va ), )l e o, 77,000 ((0,67))-

Again we use the fact that since vy and vy € U it follows that (v —wvy)(t,2) =0

for t € [0,T], together with the fact that C(”)([O,f];C([O,T];C)) is a Banach
algebra, to conclude that

1(e(T,z) — e(t, 2))(v1 — v2)(E 2)|le o, 11000 (0,61
< €l(v1 — v2)”c([o,T];C(v)([o,g]))'

Hence we see that the mapping G is a contraction and there is a unique fixed-
point. Therefore we get a solution on the interval [0, T] and since this procedure
can be repeated with the same T, we find a solution on [0, 7].

To see that the desired bounds hold, we observe that we can take vg € U
such that vo(t,2) = u,(T, ) so that we have a bound on ||v0||C([07ﬂgc(,)([07€])).
We proceed to consider the case where ug = 0 and f(0,2) = 0. Now we
apply [7, Thm 4.5] with A asin Lemma 4 and the x and ¢ variables interchanged.

The conclusion we can draw is that there is a constant Mg depending on «,
v, 7, and on ¢ such that if g € C*)([0,£];C([0,7];C)) with ¢(0,z) = 0 and
g(t,0) — @(Dful)(t) € Cégg([O,T]);C) then there is a unique solution u of
equation (21) such that

D5 ulleqo, o < Mo(llalleq.meepo.cn

£,0 Dy un)(t)| )
e - perencl,..
Due to the uniqueness, the same inequality certainly holds with the same
constant Mg if 7 and £ are replaced by some smaller numbers.

Let € be such that

Mee

Mll—\

and let X, satisfy
1
e(t,z)

X <
c([o,7,¢)([0,€D)

Again we suppose that we have found a solution on [0, 7] x [0, X] and then
Consider (24). Observe that the term ¢(z,0) — ﬁ(Dful)(t) becomes {88)) —
c(t 0) Daul(t)

Mlm




CLEMENT, GRIPENBERG, LONDEN 17

Let X = min{¢, X + X.}. In this case we take the set U to be

U = {wn € CH0.25:([0. 7€) | o(ta) = (Dfu)(to), = € [0,X],
v(0,2)=0}.

If v; and vy are two functions in U and va = vy — vy, then we get, using the
fact that va(t,z) = 0 for = € [0, X] and the argument used in the first part of
the proof of Theorem 1 that

1 1
H (C(Lx) B C(Lg)) UA(L &)

The desired conclusion follows.

From what we have shown so far and from the assumptions it follows
that we have (D@(u — ug))~ and (u,)~ € C¥([0,£];C([0,7];C)). The in-
verse of DY is given by (D; “h)(t) = foiga(t — $)h(s)ds; therefore a straight-
forward caluculation gives that u — ug € C(([0,7];C*)(]0,£];C)). By as-
sumption ug € C'([0,£];C) and we get (b). Since (a) is equivalent to hav-
ing u~ € CUt([0,£];C([0,7];C)) and (b) is equivalent to having u,. €
C([0,£];C([0,7];C)) we obtain (c¢) from Lemma 3. The estimates in (5)

follow immediately. [

< e.
c([0,7);¢)([0,X]))
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