1. INTRODUCTION

We continue the work started in [4] where we formulated differential systems (ODEs,
DAEs, etc) using jet bundles and showed that this approach was useful and interest-
ing also from the numerical point of view. Here we shall pursue this topic further by
studying Runge-Kutta and Taylor type methods which are relevant in this context.
Formulating the problem in jet bundles leads to computing one-dimensional integral
manifolds (or curves) of a distribution (or a vector field) on a manifold which is em-
bedded in some Euclidean space. Note that one may quite naturally arrive at this
formulation also without using jets: for instance in Hamiltonian problems the relevant
vector field restricts to the manifold where the Hamiltonian is constant. Hence the
results obtained below can be interesting also in some numerical problems where the
jets are not used.

We shall start by analysing some Taylor type methods and compute explicitly the
terms needed to get methods of orders up to three. It is seen that the information
required can quite naturally be expressed in terms of standard concepts of Riemannian
geometry. Since we expect that Runge-Kutta methods are more useful in practice we
devote more time to them. Now there are many ways one could try to formulate Runge-
Kutta methods in the present context. We take the point of view that the vector field
or distribution is given only on the manifold, and hence all the intermediate results
have to be projected back to the manifold. Moreover the projection is required to be
orthogonal. Then the vectors are combined in ordinary fashion, interpreting them to
be vectors in the ambient space. Proceeding in this fashion in the construction of the
methods, we find somewhat surprisingly that there are no new order conditions, at
least for methods of order up to four. The question naturally arises if this property
holds in general. Unfortunately the proofs do not admit an immediate generalisation
which is required in this general question.

Another way to implement Runge-Kutta methods would be to use parallel transla-
tion in the addition of vectors. This would be quite difficult from the parctical point
of view, because in that case one would have to construct explicitly coordinates for the
manifold and then solve (numerically) the differential equations which give the par-
allel translation. Although this appears numerically unattractive, it might still be of
theoretical interest to analyse this situation more carefully.

One could also try to analyse multistep methods in a similar fashion, and the compu-
tation of the order conditions would proceed much in the same way as for Runge-Kutta
methods. However, the stability analysis would be quite difficult and would require con-
siderations that are beyond the scope of the present paper. Perhaps more importantly,
linear multistep methods may appear a bit dubious at the outset: when the computa-
tions are done on manifolds, one may wonder if the past information is as useful as it
is in the linear spaces.

In [4] the background and motivations for using jets was explained in great detail
with extensive references to relevant literature. Hence in the present article we simply
recall the notations and refer to [4] for more details in order to minimize repetitions.

Since there are no new conditions for Runge-Kutta methods (at least for methods
of order up to four), and the ambient space is used in the combination of vectors, the
implementation of these methods is quite straightforward. Actual numerical results
using these methods will be presented separately.
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2. BASIC TOOLS

We recall briefly the main notions that are needed. For more details on standard
differential geometry we refer to [3] and on jets to [2]. All maps and manifolds are
assumed to be smooth, i.e. infinitely differentiable. All analysis is local, hence various
maps and manifolds need to be smooth or defined only in some appropriate subsets. To
simplify the notation these subsets are not indicated. Moreover, if M is a submanifold
of M, then objects defined on M can be taken to be defined on M without writing
exphc1tly the inclusion map.

2.1. Riemannian geometry. The j'th differential of a map f : R™ — R is denoted
by d’ f and its value at p by d’f,. Let M be a manifold. The set of maps M — R is
denoted by C*°(M), the tangent bundle of M by T'M, and the tangent space at p € M
by T'M,. A distribution D is a map that associates to each point p € M a subspace
D, of TM,. If £ is a bundle, then the set of its (local) sections is denoted by I'(£).
Tangent vectors can be identified with differential operators, thus if f € C*°(M) and
X € I(TM), then X(f) € C>(M).

Let M be a submanifold of R™ for some m with standard Riemannian metric. We give
M the Riemannian metric induced by this embedding. Recall that Riemannian metric
is a positive definite bilinear map on the tangent space T'M,, which varies differentiably
with p. It is denoted by (-,-) and the same notation is used for the standard inner
product in R™. The normal bundle of M with respect to R™ is denoted by NM and
the normal space at p by NM,. Since (TR™), = T'M, & NM, we have the orthogonal
projections m; : (T'R™), — TM, and m, : (TR™), — NM,. Recall that sections of
TM and NM can locally be extended to sections of TIR™. These extensions will be
denoted by the same symbol as the original sections.

The unique symmetric connection on M compatible with metric is denoted by V.
There are many equivalent definitions of a connection; for our purposes it is convenient
to regard V as a map I'(TM) x T(TM) — I'(TM), denoted by (X,Y) — VxY, which
satisfies the following conditions.

e VY isR - linearin Y.

o VxY is C®°(M) — linear in X.

o Vx(fY)=fVxY+X(f)Y
Fixing X € T'(TM) we may define a map Vy : I'(TM) - I'(TM) by Y — VxY;
this is called the covariant derivative of Y with respect to X. In standard Euclidean
space it is just the directional derivative. Let us further recall that the bracket is a
map [-,-] : T(TM) x T(TM) — T'(TM), defined by [X,Y](f) = X(Y(f)) —Y(X(f)),
where f € C®(M). The same notation is used when the bracket is interpreted in R™.
In terms of the bracket, the symmetry of the connection means that

(2.1) VxY —=VyX =[X,Y]

The compatibility of the connection with the metric is equivalent to

(2.2) X(Y,Z)=(VxY,Z)+(Y,VxZ)

Let us finally recall the following basic property. Let p € M and X Y € I'(T' M), then
(2.3) dY (X,) = m(dY(X,)) + m,(dY (X)) = Vi,V + S(X,,Y),)

where S is a symmetric tensor, called the second fundamental tensor.



2.2. Differential systems in jet spaces. Here we simply give the basic definitions
and refer to [4] for a discussion and motivation of these concepts. Let 7 : £ — B be a

bundle and let J,(€) be the bundle of ¢-jets of &.

Definition 2.1. A (partial) differential system (or equation) of order q on & is a
submanifold R, of J,(£).

Let & = RxR™ and let us denote the coordinates of J,(€) by (z,y*,....y", yi,. .. 2 Ya)-
Let us define the one forms

(2.4) a;'-:dy;-fl—y;-da: i=1,....n ji=1,....q
Let p € J,(€) and v, € (T'J,(E)), and let us further set

Cp ={vp € (TJ,(€)), | () = 0}

D, =(TR,),NC,

Now we can define the solutions as follows.

(2.5)

Definition 2.2. Let R, C J,(€) be involutive and suppose that the distribution D
defined in (2.5) is one-dimensional. A solution of R, is an integral manifold of D.

Suppose that we are given a system of £ q’th order ordinary differential equations

(26) f(xayayla--'ayq)zo

We interprete f as a morphism of bundles J,(€) and R x R¥ which in terms of coor-
dinates can be taken to be a map R"+De+!l — Rk The above equation then defines a
certain submanifold of J,(€) which we denote by R, and in terms of coordinates R,
is simply given by f~1(0). Let us assume that R, is involutive and the corresponding
distribution D one-dimensional. Since one-dimensional distributions always have inte-
gral manifolds, there always exists a solution to our problem in these circumstances.
In the following sections we discuss how to compute these solutions.

3. TAYLOR TYPE METHODS

Let kK < m and f : R™ — R* and M := f~'(0) C R™. Let D be a smooth
one-dimensional distribution on M and let V' be the vector field associated to it, i.e.
|V, =1 and V), € D,. Given a point p € M we would like to compute the integral
manifold that passes through p.

Let p € M be the current point and ¢ : R — M be the integral curve of the
associated vector field with ¢(0) = p and ¢(0) = V,. Note that ¢ is parametrized by
arclength. Let w € (TR™),; then an approximation to c(h) is obtained by computing
the solution ¢ of the following system.

q+ (dfy)'n=p+hw
flg) =0

where ;1 € R*. Note that the solution exists for h sufficiently small. It will be convenient
to define a curve &(s) = solution ¢ of (3.1) with 2 = s. Evidently ¢(0) = &(0) = p, and
we would like to measure the difference ¢(h) — é(h) for small h and to choose w in such
a way that this difference is as small as possible. Let us start with simple

(3.1)



Lemma 3.1. Let ¢ and ¢ be as above; if &% (0) = ¢®(0) for 1 < k < n, then & (0) —
™ (0) € TM,.

Proof. The curve c satisfies identically f o ¢ = 0. Hence

n

ds"
The same holds for ¢, so the hypothesis implies that df, (5(") (0) — c(")(())) =0. O

(f 0 c) = df <™ 4 terms with lower order derivatives of ¢ =0

We then use expansions to determine ‘good’ directions. Let us consider the system

g+ (df) ' p=p+ > w*h
flg) =0

We would like to find w* € (TR™), in such a way that c(h) — ¢ = O(h"*1). The next
result shows that good directions of arbitrary order exist, even if w”* are restricted to

TM,,.

(3.2)

Theorem 3.1. For any n there are vectors w* € TM,, 1 < k < n, such that if q is a
solution of (3.2), then c(h) —q = O(h™*1).

Proof. The case n = 1 follows by choosing w! = Vp. Let us suppose there are wh e TM,,
1 <k < n, such that c(h) — p* = O(h"), where

P (dfpe) = p + 5z wh

flp)=0
Let p* = p + p'h + p?h? 4+ ...; then by lemma 3.1 %c(")(O) —p" € TM, Putw" =
L™ (0) - p and let ¢ be a solution of (3.2) with this w". Let ¢ = p+¢'h+ ¢*h®> +
evidently p* = ¢* for 1 < k < n, so we have to show that ¢" = —c(")(()).

Now expanding the second equation in (3.2) we get df,(¢" —p ) = (. Hence 7,(¢") =
To(p") = mu(5¢™(0)). Then expanding the first equation we get

where b" contains the terms with p*, k < n. Note that b® does not contain ¢" (since
p = O(h?)), and consequently " is the same for p* and q. Now

m(q") = m(w™) — m (") = Wt(%c(")((]) — p") + m(p") = ﬂt(#c(") (0))
O

Let us compute the second order terms in (3.2) with w' =V, and w? = 0. We get the
system

¢+ (df)'u* =0
df ¢+ 52f(V,, V) = 0

Hence using lemma 5.1 we compute that ¢*> = 1 S(V},,V,) which combined with ¢’(0) =
dV'V, and (2.3) implies that

5¢"(0) = ¢* =3 (Vy, V)

Hence by the proof of the previous theorem we obtain at once



Corollary 3.1. If g is the solution of (3.2) with w' =V, and w? = 5 (V\,V),, then
c(h) —q=O(Rh?).

Note that the correction terms w' and w? are just what one would expect them to
be by the classical theory. To proceed in the computation of higher order terms let us
introduce some convenient notations. Let B = df(df)! and let Sy (resp. Sy) denote
the section of the normal bundle defined by S(V, V) (resp. S(V,VyV)). From now
on we shall also drop the subscript p in formulas like Vy, V' when the meaning is clear
from the context.

In the computations that follow the formula (2.3) and lemma 5.1 are used very often.
Note also that m, = (df)'B~'df.

Proposition 3.1. If q is the solution of (3.2) with w' =V, w? = %VVV and
w® = Vy(VyV) + 1o ((dV)'Sy)
then c(h) —q = O(h?).
Proof. Expanding the system (3.2) we first compute that ¢®> = %dVV and Bp? =
—% df Sy. Then the third order terms are obtained from

(3.3) ¢+ (df) ' pd = L2 f(V, - )B7Ndf Sy = w?
' dfq3+%d2f(dVV,V)+%d3f(V,V,V):0
By theorem 3.1, it is sufficient to choose w® € TM, in such a way that m(¢3) =

m(3 "(0)). Hence we need not compute 4 at all and can ignore the second equation

in (3.3). Using lemma 5.2 we get from the first equation
m(¢*) = v — L ((dV)' Sy)
Now combining lemmas 5.3 and 5.4 leads to the result. (]

There is now a non-classical correction term X, = ﬂt((dV)tSV). Let us then give a
more geometric characterization of this term.

Lemma 3.2. Let {z*} be an orthonormal basis of TM,,. Then
(3.4) X, =) (Sy,S(V,z)"
k

Proof. 1f zF € TM,, then
(%, (dV)'Sy) = (dV 2*,Sy) = (S(V,z*), Sv)
O

Note that X, depends only on V' at p. Now theorem 3.1 says that we need only
tangential directions to get arbitrarily high order. However, it may still be useful to
consider also normal directions. Let us start with the following simple observation.

Proposition 3.2. If q is the solution of (3.2), then
m(w') =V, < c(h)—q=0(r")
Hence the normal component of w' has no effect for a first order method. However,

it obviously affects higher order error terms. Could we choose ,(w!) in such a way
that c(h) — ¢ = O(h®) ? Unfortunately we have



Lemma 3.3. Let g be the solution of (3.1) with w = V, +Y,, where Y, € NM,.
If dim(TM,) > dim(NM,), then in general it is impossible to choose Y, such that
c(h) —q = O(h?).

Proof. Expanding (3.1) we get ¢! =V and ' = B~'df Y. Then

¢+ (d) P+ Ef(V, - )pt =0

df @+ 5 d*F(V,V) =0
Hence By? = df ((dV)'Y — 1 Sy) and

¢ =3 Sv+ (dV)'Y = (df)' B Hdf (dV)'Y = 3 Sy + m((dV)'Y)
Consequently c(h) — g = O(h?), if 7, ((dV)'Y) = 1 Vy/ V. Let z* € TM,; then
(2", m ((dV)'Y)) = (dV 2*,Y) = (S(V,2"),Y)
For all 2% € TM, we then get equations
(S(V,2"),Y) = 31(VyV, 2¥)

From this the result follows. U

Of course, nothing guarantees third order local error, even if dim(7T'M,) < dim(NM,)).
In spite of the above result, the normal directions are useful.
Proposition 3.3. If ¢ is the solution of (3.2) with w' =V, w? = %(VVPV)}, + %SV
and w* = §(Vy,(Vy,V)),. then c(h) —q = O(h*).
Proof. From

¢+ (df)'1® =5 (V,V)p + 5 Sv

df ¢ +1dF(V,V)=0
we get By?> = —¢ df Sy and ¢ = § dV'V. Using this 1% in (3.3) gives

m(q®) = $ Vv(VvV) = m((dV)'Sy)

which yields the result. O

Note that computing just Sy is much easier than computing X, in (3.4). It is seen
that the vectors w® for ¢« = 1, 2, 3 admit direct interpretations in terms of standard
operations in Riemannian geometry. Characterizing higher order terms in this way
seems to be more difficult. However, our main interest is in Runge-Kutta methods,
since we expect that they are more useful in practice, and consequently we now turn
our attention to them.

4. RUNGE-KUTTA TYPE METHODS

4.1. Explicit methods. We have already seen that one obtains a first order method
by taking an Euler step along V), i.e. if ¢ is a solution of

q+ (dfy)tn =p+ NV,
flg) =0



then c(h) — ¢ = O(h?). Now let us try to construct an explicit two stage Runge-
Kutta scheme whose local error is O(h?). In our context this can be formulated in the
following way.

¢+ (df;)'ii = p + haxnV,

@) =0
(4.1) g+ (dfy)) i = p+ h(b1V, + boVp)
flg=0

Here we use trivial parallel translation in the ambient space to add vectors with different
base points. Hence we have to choose agy, b; and by such that c(h) — G = O(h?).

Let us recall the classical order conditions for Runge-Kutta methods, see for example
[1]. Let A € R™" be the matrix containing the coefficients of the (r-stage) method.
Let b= (by,...,b.) and 1 = (1,...,1). Let us denote the component-wise (or Schur or
Hadamard) product of vectors by a ¢ b = (a1by,...,a,b,). Then the order conditions
for orders up to four are given by

(4.2) (b,1) =1
(4.3) (b, A1) = 1/2

b, A’1) = 1/6
(44) { b, Alo Al) = 1/3

b,A?10 A1) =1/8
b,Alo Alo A1) =1/4
b,A(Alo Al1)) =1/12

{
{
(b, A%1) = 1/24
{
(4.5) <
{

Proposition 4.1. The scheme (4.1) is of order 2 if and only if the conditions (4.2)
and (4.3) are satisfied.
Proof. Proceeding as in the previous section we readily get
(4.6) G =p+anVyh + O(h?)
Vi =V, +andVVh+O(h?)

Then computing the expansion of ¢ we first get

¢+ (dfy)'n" = (b +0)V,

df ¢ =0
Hence p' = 0 and ¢' = (by + by)V, which implies b + by = 1, i.e. the condition (4.2).
Proceeding further we get

¢’ + (df) i = brandV'V

df ¢ + 5 f(V,V) =0

For the second order method ¢* = % dV'V. Hence p? = 0 and byay = 1/2,i.e. condition
(4.3) holds. O
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Next let us consider a scheme with 3 stages.

(G+ (dfy)tii = p + hax V,,
f(@) =0
(4.7) ) G+ (dfy) i =p+ h(aznV, + azV;)
f(@) =0
¢+ (dfy) 1 =p+h(bV, + bV + b3V5)
flg) =0

Proposition 4.2. The scheme (4.7) is of order 3 if and only if the conditions (4.2),
(4.3) and (4.4) are satisfied.

Proof. We need more terms in the expansion (4.6). The second order terms give
&+ (df) i =0
df  + L a3 P f(V.V) = 0

Hence Bji> = —% a3,df Sy and ¢ = %a%lsv. Next we must compute the expansion
§=p+q'h+§*h*+ O(h?). Evidently ' =0 and ¢' = (a3 + as)V, and for the second
order terms we obtain

QQ + (dfp)tﬂQ = a32a21dvv
df 62 + % (CL31 + a32)2d2f(V, V) =0
This yields
BﬂQ =df | azra — : (as + a32)2 Sy
(4.8) ~2 ( ] 1 >2
q" =az200 VvV + 5 (ag1 + az)”Sy

Then we compute
Vi =V, 4 andV V h+ 1 a3, (V. ViV]+dSyV)R* + O(h?)
(49) Vi =Vp+ (31 + az)dV V h + (asaas (Vo (VV) + S¢) +
(3 (a31 + az2)?® — agoan) [V, V' V] + 3 (a1 + a32)2dSVV> h% + O(h?)
Finally we must expand ¢. From the equations

q" + (dfy) ' = (by + by + b3)V
df ¢ =0
we get p! = 0 and ¢' = (b + by + b3)V which gives the condition by + by + b3 = 1.
Expanding further we obtain
¢ + (df,) p* = (b2a21 + b3(az + a32))dVV
df ¢ + 5 Pf(V,V) =0
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Requiring ¢* = 5dV'V leads to p? = 0 and boas; + bg(as + ag) = 1/2. Finally using
(4.9) and (4.4) we get
¢’ + (df,) 11> =1 (baa3, + bs(azi + az)?) ([V, Vi V] + dSyV) +
byagsan (Vv (Vy'V) = [V, Vi V] + Sy)

=1 (Vv (Vv V) +dSy V + v

Comparing to lemma 5.3 we conclude that ¢* = ¢ ¢’(0) and i = 0. O
Let us then consider a scheme with 4 stages.
(¢ + (df3)' it = p + hax 'V,
@) =0
G+ (dfy) i =p+ h(aznV, + azV;)
(4.10) JH@=0"
g+ (dfy)'n=p + h(anV, + anV; + ai3V;)
fl@=0
g+ (dfy) 1 =p + h(b1V, + b2V + b3V + baV7)
\f(Q) =0

Proposition 4.3. The scheme (4.10) is of order 4 if and only if the conditions (4.2),
(4.3), (4.4) and (4.5) are satisfied.

Proof. We need more terms in various expansions. First we have to solve
3+ (d) P + and®f(V, )2 =0
df @ + 3 a3, P F(V,Sv) + £ a3, f(V,V,V) =0
We obtain using lemmas 5.2 and 5.5
Bt =3 ay, & f(V,V,V) + 5a3,d° f(V, Sy) + 5 a3, df & f(V,-)B~'df Sy
=g a3,df (2Sv — dSyV — 3(dV)'Sy)
¢ =+ a3, (3m(dSyV) + m,(dSyV) — 2S5v)
Next we compute third order terms in the expansion of ¢.
Q* + (dfy)'i° + (ag1 + age)d* f(V, ) ji* = 5 aqy a3 ([V, VvV] + dSyV)
df (.73 + % (as1 + a32)d2f(va QQ) + % (as) + 6132)3d3f(va V,V) =0
{2 and ¢? are given in (4.8). Solving this yields
Bj? =df (ul(dV)tSV + udSyV + u;;Sv)
¢* =1 a3,a3[V, Vi V] + usm, (dSyV) — u3Sv + 3 (a1 + az)*m, (dSy'V)
where u;’s are given by
Uy =as1asp(as; + asp) — % (agi + az)?

U :% a a3y — % (a31 + ag)”
U3 :% (a3 + a32)3 — ayaz(az + az)

Uy 2621632(% as — az — az) + % (a1 + 032)3
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Then we move on to . Obviously i! = 0 and ¢' = usV, where us = as1 + aso + as3.
The second order terms are solved from

T+ (df,)' * = (6142@21 + ass(asz + a32))dV V
df & + 2PV, V) =0
Puttmg Ug = Q49091 + a43(a31 + 032) we get
Bi® =df (uﬁdvv 1 u5SV)
qQ :UGVVV + % U5SV
Then the third order equations are
T+ (dfy,) 1 + usd® F(V, )i = ws[V, Vi V] + ugdSyV + asiazeass (Vv (Vi V) + Sy)
df q3 + U5U6d2f(V, VVV) + 3 u5d2f(V7 SV) + 35 u5d3f(v7 V7 V) =0
where
1 2 1 2
U7 =35 4203, + 5 as3(az1 + az2)” — as1azzays
ug Z% aspas; + %a43(a31 + 032)2
Then
B’ = df((U5U6 us)(dV)'Sy + (us — g uz)dSyV +

(anazsaqs + éu% — U5U6)SV>
7 = u7[V,Vy'V] + asiaza3Vy (Vy'V) + (usug — £ u3)Sy +
(ug + %ug — usug)m(dSy' V) + %ugﬂn(dSVV)

We shall need third order terms in the expansions (4.9) (denoted by V7> and V') as
well as the expansion of V.

‘/63 =dV ¢ q + = CLQldQV(V, Sv) + % agld3V(Va Va V)
‘/233 =dV ¢ + anazs(az + a32)d2V(V, VvV) +
% ((131 + a32)3d2V(V, SV) + % ((131 + a32)3d3V(V, V7 V)

e V, =V, + usdV V h + (u6 (Vv (VyV) + Sg) +

(32 — ug) [V, Vi V] + S uddSyV )0 +
(dv & + usugd®V (V, Vi V) +
LuddPV(V, Sy) + LuddV(V,V,V) )P + O(hY)

Finally we must expand ¢. First order terms are y! = 0 and ¢! = (by + by + b3 + b,)V,
hence (b, 1) = 1. Expanding further we obtain

¢+ (df,) ' = (b, A1)dV'V
df ¢+ 1LFV,V)=0
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Requiring ¢> = 3 dV'V leads to y? = 0 and (b, A1) = 1/2. Then using (4.4) we get
¢ + (df,)'11* = (3 (b, AL o A1) — (b, A1) [V, Vi V] +
(4.12) L (b, ALo AL)ASyV + (b, A1) (Vi (Vo V) + S¢)

2

(Vo (Vv V) +dSy V + 5v)

=

Hence we conclude that ¢* = ¢ ¢”(0) and p* = 0. Note that the fact that ;* = 0
simplifies the computations in the last step. Consequently the equation for ¢* is

(413) q4 + (df)t/,t4 = bzx/g + b3‘/[j3 + b4‘/q3

Anyway, at this point the computations became so tedious that it was necessary to use
Mathematica [5]. Now guided by the previous steps we expect that y* = 0. Indeed,
using the conditions (4.5) and simplifying we find that b,V + b3V + 0,V = 5 ¢(0),
where ¢ (0) is given in lemma 5.8. There is one feature in this computation which is
perhaps worth commenting. Looking at the right hand side of (4.13) there seems to
be a term dV Sy, but curiously its coefficient is zero without assuming the conditions

(4.5). O

4.2. Implicit methods. The analysis follows the same lines as in the explicit case so
we proceed here more rapidly. Let us start by the one-stage method

g+ (dfy)' i =p+ ha V5

(4.14) fg)=0
q+ (df,) = p+ hby V;
flg) =0

Proposition 4.4. The scheme (4.14) is of order 1 if and only if by = 1 (condition
(4.2) ) and of order 2 if and only if in addition a;y = 1/2 (condition (4.3)).

Proof. We easily get
i =0(h?)
g =p+anVh+O(h?
Vi =V, + apdV'V h + O(h?)

Hence ;! = 0 and ¢! = bV, = V},. The second order terms give

¢+ (dfp)tu2 =adVV

df ¢ + 5 f(V,V) =0
Hence the scheme is of second order if a;; = 1/2 in which case 12 =0. ]

Note that the amount of work would be saved if § = p (a;; = 0, explicit Euler) or
q = q (a11 = by, implicit Euler), but the maximal order is obtained only with a;; = 1/2
(midpoint rule).
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Let us then consider the general two stage method.

((.7 + (dfg)'ii=p+ h(anvg + aqu)
fl@)=0

(4.15) g+ (dfg)' it =p+h(a21Vg+a22V4)
fl@) =0
g+ (dfy)' 1t = p 4 h(b:V; + baVy)
(flg) =0

Proposition 4.5. The scheme (4.15) is of order 3 if and only if conditions (4.2), (4.3)
and (4.4) are satisfied.

Proof. We readily get ji' = i = 0, ¢' = (a1 + a12)V and ¢' = (ag; + aze)V. The
second order terms for ¢ give

@+ (df,) 2 =t dVV
df (.72 + % (a1 + 012)2d2f(va V)=0
where t1 = aj1(a11 + a12) + a12(ag + as). Hence
Bji* =df (h - % (a; + a12)2) Sy
7 =t;VyV + % (a11 + a12)*Sy
Similar computations show that
ij,Q :df (tQ — % (a21 + a22)2> SV
¢’ =ty VyV + % (ag1 + ag)’Sy
where t9 = a9 (a1 + ai2) + aga(as; + ass). This implies
V;i :V;) + (aH + alg)dV Vh+ (tl (Vv(VVV) + Sv) +
(% (an + a12)2 - tl)[V, Vvv] + % (all + a12)2dSVV> h2 + O(h3)
(

(4.16)
VyV)+ Sy) +

V;j :V;) + (a21 + agg)dv Vh+ (tQ (VV
(3 (a21 + a2)® — t2)[V, Vi V] + 1 (a2 + azz)QdSVV) B? + O(h?)

Then expanding ¢ we find that first that u! = 0 and ¢! = (b; + b2)V. Then the next
equations are

¢+ (df,)' 122 = (b, ALYaV V

df ¢ + 32 f(V,V) =0
which imply (b, A1) = 1/2 and p? = 0 as usual. The equation for ¢* is the same as
(4.12). Hence ¢* = ¢ ¢”(0) and i = 0. O

Here again we can save the amount of work if we choose either aj; = a19 = 0 or as; = by
and age = by. Here it is possible to have a third order method with these choices. In
the first case we obtain ag) = age = 1/3, by = 1/4 and by = 3/4, and in the second case
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apn = 5/12, a9 = —1/12, as; = 3/4 and age = 1/4. The former scheme is known as
RADAU I and the latter as RADAU IIA [1].
Let us then consider the general three stage method.

(G+ (df3)' o = p + k(a1 V + a12V; + ai3V;)
f@) =0
G+ (dfy)'p=p+ h(amvg + a»V; + a23Vq)
(4.17) J /@ =0
g+ (dfy)' = p+ h(az Vi + azVy + azVy)
Hg =0
q+ (df) it = p+ h(b Vs + baVy + b3V
(f(q) =0

Proposition 4.6. The scheme (4.17) is of order 4 if and only if conditions (4.2),
(4.3), (4.4) and (4.5) are satisfied.

Proof. We readily get ol = gt = gt = 0, ¢ = (a1 + app + ai3)V = 71V, ¢ =
(ag1 + ags + as3)V = 7V and ¢ = (a3 + azs + az3)V = 7 V. The second order terms
for q give

G+ (df,) [i? = 7odV'V
df @+ L7 f(V,V)=0
where 79 = a7 + a1971 + a137,. Hence
Bji* =df (7, — 17%) Sy
§ =t VyV + 17 Sy
Similar computations show that
Bi? =df (73 _ %f%) Sy
¢ =FVyV + 5718y
Bp? =df (’I_"Q — %ff) Sy
7 =RVyvV + 1Sy

where 79 = a9 71 + ag9 + a3y and 7o = agzi 7 + azofy + azzT;. To compute the third
order terms we need the second order terms in the expansions of V3, V; and V. They
are as follows:

V2 =R (Vy(VvV) + Sv) + (377 — 72) [V, Vi V] + § 71dSyV

V2 = (Vi (VvV) + Sv) + (377 = 2) [V, Vi V] + $#11dSyV

V2 =P (Vy(VyV) + Sy) + (371 — 1) [V, Vi V] + $ 7dSyV

q

Then the third order terms give
@+ (df,) i+ 7 f(V, )i = 73 (Vv (Vv V) + Sg) + 7V, Vi V] + 75dSy V
df @ + Fod® f(V,VV V) + 3R f(V, Sv) + g rid* f(V,V, V) = 0
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where
T3 =aj Ty + 127y + @137
Py =an (375 — 72) + ara (377 — 72) + a3 (3 7] — 7o)
75 =L an? + L ari? + Lagi?
Solving these yields
Bji® = df (71> — L) (dV)'Sy + (7 — Lid)dSyV +
(75 + L7t = 7o) Sy )
@ = [V, Vy V] + 7V (Vy V) + (717 — %f?)SV +
(F5 + 73 — Fif)m, (dSy V) + L7, (dSy V)

In exactly the same way we obtain a formula for ¢* (resp. @) by replacing 7; by 7;
(resp. 7;) using the formulas

T3 =A21T2 + G272 + A237T2
7§4 :agl(% f% - 7:2) + azz(% 'f% - 7:2) + 023(%77% - 772)
725 :%(Zglf%—{— %(ZQQ’IA“%—{— %(IQ:;F%
T3 =a317Ty + azafy + a337>
774 :(131(%7:%—F2) +a32(%f°% —7A’2) +a33(%77%—772)
775 :%(Z;;lf%—{— %(Z;;Q’IA“%—{— %a;;ﬁ%

Hence we get

Vi =dV @+ niad V(V.Vy V) + s RdV(V, Sy) + RV (V. V. V)

V(
Vi =dV @ + 1idV(V, YY) + 3 VY, Sy) + 5 1V (V V. V)
Vy =dV @ + nndV(V.Vy V) + 5 dV(V.Sy) + 5 RV (V. V. V)
Then expanding ¢ we find first that ' = 0 and ¢' = (b; +by+b3)V. The next equations
are
¢+ (df,)' 1* = (b, A1)dV' V
df ¢ + 3P F(V,V) =0

which imply (b, A1) = 1/2 and p? = 0 as usual. The equation for ¢* is again the same
3

as (4.12). Hence ¢* = ¢ ¢”(0) and p* = 0. Finally for the fourth order terms it was

again necessary to use Mathematica. The equation is analogous to (4.13), namely
4 to4 _ 3 3 3

and again we find that if the conditions (4.5) hold, the right hand side of (4.18) is
5; ¢(0). Hence ¢* = ;¢ (0) and p* = 0. Again the coefficient of the term dV Sy
on the right hand side of (4.18) vanishes without assuming the conditions (4.5). O

Again it is possible to save the amount of work and to have order four by RADAU
type methods, i.e. by requiring that either a;; = 0 or as; = b;. In fact one can impose
both conditions and keep order four; these kind of schemes are known as LOBATTO
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IITA. So even though in this case there are 8 conditions and only 6 parameters, there
happens to be a unique solution: ay; = 5/24, ass = 1/3, as3 = —1/24, azy = 1/6,
aszs = 2/3, ass = 1/6
5. AUXILIARY LEMMAS

Let f : R™ = RF, B = df(df)! and M := f~1(0) C R™ as before. V will always be
a vector field on M, ie. V € T(TM).
Lemma 5.1. Letp € M andY € T(TM); then

S(Vp V) = —(dfy) B~ d* f(V,,Y})

P p p>-p

Proof. Let ¢ : R — M with ¢(0) and ¢/(0) = V,. Then S(V,,V,) is given by the

=P
above formula, since S(V,,V,) = m,(c’(0)). The general result follows by bilinearity

and symmetry of S. (]
Lemma 5.2. LetY € T'(TR™); then

PV, ) = —(dV)!(df)’

FfVY)=—dfdVY

Proof. We observe that

25 J J Ok 7 Ok
(@f(v. ), =S IS e O OF e 0P OV e OF O
& dxidxk oxi xk dzk Q' oxk Q'
k ke k k
since (df’, V) = 0. The proof of the other statement is similar. O

Lemma 5.3. Let ¢ : R+ M and ¢(0) = p; then
CI"(O) =Vy (Vvv) +dSyV + Sy

Proof. Recall that ¢'(0) = dVV = V'V + Sy. Then we get the result by noting that
d"(0) = d(VyV + Sy)V and using (2.3). O

Lemma 5.4.

T (dSyV) = —m,((dV)' Sy)

Proof. Let Y € I'(T'M); then using (2.2) and (2.3) we get
0="V,(Sv,Y) =(dSyV,Y) + (Sy,dYV) = (dSyV,Y) + (Sv,S(Y,V))
On the other hand
((dV)'Sy.,Y) = (Sv,dVY) = (Sy, S(Y.V))



18

Lemma 5.5.

Pf(V,V,V) = df (3dV Sy — dSy V +25v)

Proof.
a3fi ]
& =N T ikt
( f(vavav))l . laxﬂaxkaxlv v
; O’f v,
= vt — 2 l
Z dx! Z 83:3(93: Y dxidxk Oxt s
d(df’ SV) —2d°f(dV V, V)
Hence
B f(V,V,V) = —df dSy V + 2df Sy — 3d>f(Sv, V')
which combined with lemma 5.2 gives the result. O

Lemma 5.6. LetY € I'(TM); then
PV(V,Y) =Vy(Vy V) = Vi (Vy V) + [V, VY] = [V, [V, Y]] +
dSyY —dV S(V,Y) + S(Y,Vy V) = S(V, Vy V)
In particular A2V (V,V) = [V,V,V] 4+ dSy V — dV Sy.

Proof. First we compute

(V(VY)), =

: , o' ol
axﬂaxk vy = Zy a:k @ - Z 929 9z*”
Jk
From this we deduce using properties (2.1) and (2.3)
PV(V.Y)=d(dV V)Y —dVdVY

=d(VyV + Sy)Y —dV (VyV + S(V,Y))
=Vy(VyV) + S(Y,VyV) +dSyY — Ve, vY — S(V,VyV) —dV S(V,Y)

The result now follows by applying the formula (2.1). O

Lemma 5.7.

BV (V,V,V) =2V (Vy,vV) — 2V, (Vi V) + ViV =2[V,Vy(Vy V)] +
3[V,[V, Vi V]] +25(V,Vy(VyV)) = 2S(VyV,V, V) = S(V,[V,V,/V]) +
2dV Sy + [V, [V, Sy]] — 2dSy VvV +dV [V, Sy] — 2d*V (V, Sy)

Proof. Using the identity @®V(V,V,V) = [V,[V,dV V]]+dV[V,dV V]=2 >V (V,dV V),
lemma 5.6 and (2.3) we obtain the result. O
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Lemma 5.8. Let ¢ : R M and ¢(0) = p; then
D(0) =V (V,V,V) + 38V (dV V,V) + dV &®V(V,V) + dV dV dV V
=Vy(Vv(VvV)) = Vi (Vo V) + Vo ViV +
VvV + 25V, [V, Vi V]) + S(VyV, Vi V) +
d*V(V,Sy) +[V,[V,Sy]] + 2dV dSy V — dV dV Sy + dSy VvV

Proof. Using (2.1) and (2.3) as usual we obtain
AV dV VvV =V (Vy(Vy V) = [V, Vy(Vy V)] = dV [V, V V] +
dV Sy + S(V,Vy (VyV))
Combining this with lemmas 5.6 and 5.7 gives the result. (]
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