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Abstract

Assume that a bounded body has been embedded in a homogeneous half space.
Our aim is to reconstruct the electromagnetic material parameters, viz. the
electric permittivity, conductivity and magnetic permeability, of the body from
local field measurements on the surface of the half space. All fields are supposed
to be governed by time harmonic Maxwell’s equations. We consider two kinds
of initial data. The first data set consists of tangential electric and magnetic
field vectors of a tangential magnetic dipole for all field and source points in an
open subset of the surface. The second alternative is that we know locally on
the surface the admittance map which, by definition, associates the tangential
magnetic field with the tangential electric field. The purpose of this paper is to
show that both of the data sets determine the material parameters uniquely.
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1 Introduction

In general, a wave propagation inverse problem deals with the question whether
some material parameters of a body can be determined by boundary measure-
ments without penetration into the interior of the body. In [4] Lassas, Ch-
eney and Uhlmann have studied an inverse problem associated with a scalar
Schrédinger operator in a homogeneous half space that contains a bounded per-
turbation. Lassas et al proved that the perturbation is uniquely determined by
the Dirichlet-to-Neumann map

u
dii

on an open subset of the boundary of the half space.

Auw—

The uniqueness question of time harmonic electromagnetic inversion has been
completely answered by Ola, Paivirinta and Somersalo in [7] for bounded bod-
ies. They proved that the admittance map

Y:ixE—ixH

(denoted by A in the referred work) on the surface of the body determines the
material parameters p, € and o uniquely except for some resonance frequencies
w. Later in [8] Ola and Somersalo improved the result by pointing out that it
suffices to consider the fields of tangential magnetic dipole sources only.

Our mission is, on one hand, to transfer the result of Lassas et al to electromag-
netism. On the other hand, we will study if it is sufficient to restrict ourselves to
an open subset of the boundary when executing measurements of Ola-Somersalo
type as in [8]. Our method is, unfortunately perhaps, analytic continuation.

2 Fields of Dipole Sources

The time harmonic Maxwell’s equations are

V x E(z) —iwp(z)H(z) = M(z),

V x H(z) + iwy(z)E(z) = J(z),
where w > 0 is the angular frequency, p(z) > 0 is the magnetic permeability,
and v(z) = e(x) + iwo(x) is the complex permittivity fabricated of the electric

permittivity e(z) > 0 and the electric conductivity o(z) > 0. The material
parameters y, € and o are supposed to be measurable functions in R® and

Wy~ = supp(p — o) Usupp(y — €o)

is supposed to be compact, unless explicitly specified. This set is referred to as
the body, the scatterer or the inhomogeneity. The corresponding homogeneous



Maxwell’s equations are

V x E(z) —iwp(z)H(z) = 0, (1)
V x H(z) + iwy(z)E(z) = 0. (2)
If u(z) = po and 7y(z) = eo are constants or, in other words, the space is

homogeneous, the equations (1)—(2) imply the Helmholtz equations

AE(z) + K’ E(z) =

AH(z)+Kk*H(z) =

==t

The wave number k is chosen such that ki = w?eoug and Imk > 0. Note that
0=V -(V x E) =tiwugV - H implies V- H = 0. Likewise V- E = 0.

Every electromagnetic field (E, H) in this treatise satisfies the Silver-Miiller
radiation conditions (see [2], p. 113)

i x H(z)+ 2B = 6(%)
1

+

, 3)
A) = 0(3).

& x E(z) — (4)

<

as |z| = r — oo, uniformly for all directions & = z/r. Here n = (u/e)'/? is the
wave impedance.

2.1 Dipole Fields in a Homogeneous Space

Let ko]
1 eitla=
d(z,y) = ey

be the fundamental solution of the scalar Helmholtz equation. That is to say

Am¢(xay) + k2¢($,y) = _6('7: - y)

The electromagnetic field generated by a magnetic dipole in a homogeneous
space has the representation (see [2], p. 112)

Cn(@,y)-§ = Vax(dz,y)d),
Gnl(e,y) T = ——V, x Vs x (6, 9)7).

W

Here ¥ is a constant vector. For brevity, we talk about the dipole ¢. The vector

—=E

Gy (z,y) - U represents the electric field at the field point x € R?® of the magnetic
—=H

dipole 7 located at the source point y € R*. Correspondingly, Gy (z,y) -7 is the



magnetic field. The equations

=E . 1 S
GE(way) v = _iWEU vm X V:L‘ X (¢(.’E,y)’l}),
—H

represent the electromagnetic field generated by an electric dipole ¢ in a homo-
geneous space.

The above dyadics satisfy the Maxwell’s equations

—E . =H =
V xGg(y) —iwpGg(y) = o(-—y)l,
V x GH(ay) + iWSUGH('ay) = 07
and
—E . =H =
V xGg(y) —iwpeGg(y) = 0,
—H —F =
V x Gg(-y) +iveoGr(-,y) = (- —y)l.

Moreover, for

=H

Lo —=E L =H 2\ [=E . B
(EaH) € GH(ay) U, GH(ay) ' ’U> ) <GE(ay) v, GE(vy) ’ ’l))}
the Silver-Miiller radiation conditions (3)—(4) are satisfied (see [2], p. 113).
—E —H —E —H
The dyadics G and Gf; are symmetric while G and G are antisymmetric
with respect to the transposition operator G — G*. Because ¢(z, y) is a function

of the absolute value |z — y| we have, for all I = 1,2, 3, the identity

8y1¢($7y) = - xz¢($ay)-

Hence the reciprocity relations

—F —F —H = ‘
aE(yax) = aE(may) = aE(l‘ay)ta
GH(yﬂ‘T) = GH(xay) = GH(way) )

hold.

Denote for z € R* and r > 0

S*Hz,r) = S(,r) = {yeR*|lyl=r},
B(w,r) = Blw,r) = {yeR" |y <r}
B (z,r) = B(z,r) = B"(z,r)uS™I(z,r).



If a point ¥ € R® has a neighbourhood* in which (E, H) satisfies (1)~(2) with
constant coefficents p(x) = po and y(r) = eo, then for all constant vectors
7€ 8% = §%(0,1) there exists a limit

—

Ely)-v =

—

lim [(ﬁ(m) x H(z)) - Tpla.y) 7+ () x E(@)) - Tp (ar.9) -17] dS (x)

r—0+
S(y,r)

uniformly in @ (see [2], p. 111). Therefore we have the important equality

E(y) = (5)
lim [(ﬁ(m) x ﬁ(m)) Tolr,y)+ (ﬁ(m) x E(m)) -ﬁg(x,y)] dS().
S(y,r)
Likewise
() = ©
Jim, [(ﬁ(m) x ﬁ(m)) Go(z,y) + (ﬁ(m) x E(m)) Eﬁ(x,y)} dS(z).
S(y,r)

2.2 Dipole Fields in an Inhomogeneous Space

We define the dyadic electromagnetic field of a magnetic dipole located at a
source point y € R\ W, , as a pair (E, H) = (E(-,y), H(-,y)) with the following
properties:

(i) E(-,y) and H(-,y) are C'-dyadics.

(ii) In the exterior of the scatterer W, - the total field (E, ﬁ) has a decompo-
sition

(E’ﬁ) = (flanln) + (Esc;Hsc); (7)

= = =B —H = =
where (Ein, Hin) = (Gg,Gg) is the incident field and (Es., H,.) is the
scattered field.

(iii) The scattered field satisfies, for z € R* \ W, ., the homogeneous Maxwell’s
equations

Vg Esc(fﬁa y) - iwuoﬁsc(iﬂ, y) =

==l

Vg X Fsc(wa y) + Z.(4‘)50Esc($a y) =

*In our terminology neighbourhoods are open sets.



and radiation conditions

. —_— ]_: = ].
T X Hsc(ac,y) + EEsc(xay) = O(T_Q)a (8)
. = == = ].
& X Bse(z,y) —nHse(z,y) = O(r_2)7 9)
as T — 0o.
(iv) The total field satisfies, for € W, ., the Maxwell’s equations
Ve x E(z,y) —iwp(@)H(z,y) = 0,
Ve x H(z,y) +iwy(@)B(z,y) = 0
Tt is clear from (ii)—(iv) that the total field satisfies
Ve x E(z,y) —iwp(@)H(z,y) = -y, (10)
Ve X H(z,y) +iwy(z)E(z,y) 0,
for all x € R®, and
A.E(w,y)+ K E(xy) = 0,
A;H(a,y) + KH,y) = 0,

for all z € B3\ (W, U{y}). Actually, E(-,y) and H(-,y) are then C°°-dyadics
in R3 \ (W, U{y}) (see [9], p. 201). Because both the incident and scattered
field satisfy Silver-Miiller radiation conditions in dyadic form (cf. (8)—(9)) the
same applies to the total field. We denote

—€

EH) = G, Gy).

—e =h
The electromagnetic field (G,, G,) of an electric dipole in an inhomogeneous
space is defined in the same way. It obeys the equations

€ —h =
Va % Ge(mvy) - iw/i(x)Ge (a:,y) = 0,

—h —e =
VI X Ge (ilf,y) + zwy(m)Ge(m,y) = 6('7: - y)Ia

and Silver-Miiller radiation conditions. According to [2] (pp. 116-117) every
dyadic field

—e —h

G € (@), Gr(o0), Golow). To o))

has the asymptotic form

— etk — -1

Ba) = “—F(@)+0(). (11)
— etkr — —

H(z) = = & x F(2) + O(rl?)’ (12)



where F : §? — €33 is the far-field pattern of (E, ﬁ) with the property

A

xT-

o]l

(&) = 0.

Certainly the same applies for vector fields.

2.3 Maxwell Duality

Denote by D a region in R?, i.e., D is a nonempty bounded connected open
subset of R® whose boundary is piecewise smoothf. Assume that p and ~
are C'-functions in a neigbourhood of D. Let us define two formal operators,

M =M, and M* = M;, , by setting
M E1 _ V x E1 — iw,qu
H, a V x Hy +iwyE; )’
M* HQ _ V x HQ + iW’yEQ
EQ - V x EQ — inHQ ’

and a formal bilinear form

(8).(6)), = [wcreola

where E;, Hy, Es, Hy, A, B, C and D are either vectors! or dyadics. We call the
integral equation of the following lemma Mazwell duality:

Lemma 2.1 (Maxwell duality) If, in a neighbourhood of D, (Ei,H,) is either
a C'-vector field or C*-dyadic field and, independently, (E2,Hs) is either a C*-
vector field or C'-dyadic field, then

(R )-(E)), - a

<< ", >M< E: >>D+/((ﬁXEl>t'Hz+(ﬁx Hy)! - Ex) dS.
oD

Proof: The formula follows immediately from the divergence theorem by ap-
plying well known identities from vector and dyadic analysis (see e.g. [1], pp.
487-491 and 506-509). |

TWe don’t specify exactly what we mean with a piecewise smooth boundary. The only
purpose to introduce this smoothness requirement is that we should be able to apply the
divergence theorem to D.

1For vectors @ = > oje1 @€ (which we usually write as @ = a;€ using the Einstein’s
summation convention) the transposition is regarded as identity operator.



If (Ey, Hy), (E,, H,) satisfy the radiation conditions (3)—(4), then the far-field
patterns satisfy

— — — — — —

Fi(2) x (2 x F5(2)) = 2(F\(

IS
S—
5
—~~
IS
S—
S—
|
5
—~~
IS
S—
—~~
=
=
>
S—
I
>
e
—~~
IS
5
—~~
IS

and in the same manner

— — — —

Fy(2) x (& x F1(2)) = 2(F2(2) - Fi(&)).

Thus, as r — oo,

E1Xﬁ2+ﬁ1XE2 = EIXHQ_EQXﬁl
62ik1‘ N N 21
= ) (:1: x F2(x)) +0(=5)

e2ikr o N 1
F5(z) % (A X T ) —
v »(2) x (2 x F1(2)
=~ 1
= 0(3)
In the integral equation (13) for vectors then
ix By Hy+ix H By = it (Ey x Hy+ Hi x Ey) = O(=).
r

For a measurable subset T of S? the Lebesgue measure of 7T is O(r?); so we
obtain
lim (ﬁxﬁl-ﬁ2+ﬁxﬁ1-ﬁ2)dszo. (14)

rT

Suppose T is a two dimensional region on S? which implies, by definition, that
the boundary curve 9T is piecewise smooth. We shall use the notation

CT = U rT.

>0

From (14) and the Maxwell duality (13) it follows for the cone CT that

() (%)) - 19

— —

(50 (2] [ mveen 2
H, Es cr i

2.4 Boundary Integral Equation

By denoting (E1, H;) = (E, H) in (14) and setting



the equation (14) becomes

— —e =

lim [(ﬁ x H(ac)) G.(z,y) T+ (ﬁ x E(w)) .G, (z,y) -ra] ds(z) = 0,

7—00
rT

which leads to

—h

—€

lim (ﬁ x ﬁ(w)) G.(z,y) + (ﬁ x E(w)) .G, (z,y)| dS(z) = 0. (16)
r—00
rT .
The corresponding formula for magnetic dipoles is
[ _ —e — =h i -
lim (ﬁ x H(:c)) Gy (z,y) + (ﬁ x E(m)) Gy(z,y)| dS@@) = 0. (17)

rT

Note the complementary nature of (5)—(6) and (16)—(17). In the next lemma we
prove an analogue of the Stratton-Chu formula for conical unbounded surfaces:

Lemma 2.2 Let T be a two dimensional region on S* and y an interior point
of the cone CT. In addition we assume the following:

(i) The inclusion W, . C B(0,R) \ B(y,r) holds for some radii r > 0 and
R>0.

(ii) The C'-field (E, H) satisfies the homogeneous Mazwell’s equations (1)—(2)
and Silver-Miiller radiation conditions (3)-(4) in a neighbourhood of CT.

Then

H(y) = (19)

[(ﬁ X ﬁ(m)) Gz, y) + (ﬁ X E(m)) -éh(x,y)} ds(z).

Proof: One can assume, without loss of generality, that B(y,r) C CT N B(0, R).
We apply Maxwell duality (13) to the fields (E1,H;) = (E, H) and (Ea, Hy) =
= —h

(6:(-,31), G, (,y)) in the region D = Dg, = CT N B(0,R) \ B(y,r). Because
both of the fields satisfy the homogeneous Maxwell’s equations in D the duality
(13) implies

= / [(ﬁ X ﬁ(m)) G.(z,y) + (ﬁ x E(m)) -5:(38,34)} dS(z)  (20)

DR,

10



By decomposing 0Dpg,, to a disjoint union
dDg, = S(y,r)U(S(0,R)NCT)U (B(0,R) NICT)

the boundary integral becomes a sum of three integrals. According to (5) the
first of them tends to —E(y) as r — 0T. This is an implication of the de-
composition (7) and the fact that the normal vectors 7 in (5) and here point to
opposite directions. According to (16) the second integral tends to 0 as R — oc.
The third boundary integral tends to the right hand side of (18) as r — 01 and
R — oc. Thus we get (18) from (20) via a limit process. The latter formula
(19) for magnetic dipoles is proved mutatis mutandis. m|

The formula (18) has a straightforward formal derivation from the Maxwell
duality® (13) by the replacements

(i Hy) = (B, H),  (Es,Hy) = @ (+9). G (1)).

This is a consequence of the Maxwell’s equations

S S —h =
E . .
M<ﬂ>:<9>, M Gelow) ) — (90wl )
H 0 Ge ('a y) 0
and the radiation conditions that kill the boundary integral like in (16). The
same kind of a formal derivation applies, of course, for (19).

2.5 Reciprocity

We are going to express the field ﬁ(y, z) at y generated by a dipole located at
z by means of the field G(z,%) at z generated by a dipole located at .

Lemma 2.3 Let W, , C B(0,R) \ (B(y,r) U B(z,r)) for some radii v > 0 and
R > 0. Then we have the following reciprocity relations:

=h =h

gh(yaz) = Eh(zay)t’ (21)
ae(yaz) = ée(zay)tv (22)
—h —e

Ge (y,z) = Gh(zay)t' (23)

Proof: A rigorous proof could be accomplished (as in Lemma 2.2)_by applying
the Maxwell duality (13) in the region D = B(0,R) \ (B(y,r) UB(z,r)) and
letting r — 07 and R — oo. Formally (21) is proved by replacing in (13)

E 5(-—y)T H 0
M<H1>: ) e e ) = 7
1 0 2 0(-—2)I
§Note that the field of a dipole located at y has a singularity at y. Therefore the field is
not C1.

11



(22) is proved by replacing in (13)

()= (oS ) ()= (577)

and (23) is proved by replacing in (13)

M(&) _ <(5(-—ﬁy)?>’ M(Ej) _ <5(._ﬁz)?>_

3 Determination of y, ¢ and ¢ by Local Mea-
surements

In this section we prove the first of our main results. Suppose we know ap-
proximately where the inhomogeneous body is located. In other words we are
given a compact subset W of the lower half space outside of which the space is
known to be homogeneous. Then we measure the tangential component of the
electromagnetic field of a magnetic dipole ¥ for all tangential orientations of ¥
(actually two linearly independent tangential orientations will do for linearity),
for all field points x € U, and for all source points y € U where U # {} is an
arbitrary open subset of the planar surface of the half space. We claim that
within W there is at most one possible material distribution which is compati-
ble with our measurement results or, strictly speaking, our data determine the
functions /J,|W, 5|W and 0|W uniquely.

This result is, in a sense, seemingly stronger than which was proved by Ola and
Somersalo in [8] where the body is totally surrounded by a closed surface 9
of source points without gaps. For every source point a measurement has to
be made at every point of 9. In addition there are some magnetic resonance
frequencies w for which the uniqueness in [8] possibly doesn’t hold. In case
of our measurement arrangement no such frequencies appear. Nevertheless,
our localized and frequency independent version is just a seeming improvement
because it rests on the theorem of Ola and Somersalo (THEOREM B on p. 1131
in [8]).

3.1 Field Continuation Outside a Surface Element

Let us denote

R = {zeR|z3>0},
R = {zeR|z3<0},
R = {zeR|z3=0}

12



Thus R3 is the upper half space, R? is the lower half space and R? is the
surface or boundary of the lower (or as well of the upper) half space. For
x = (21,72,73) € R® and ¥ = v;€; € R® we denote

(1'1,1'2, —.7,'3),

[STREET

o N o
= V1€] + v2€2 — V3€3.

Lemma 3.1 Suppose U is an open nonempty subset of R2, V is an open con-
nected subset ofﬁj_ =R, UR*, andU C V. If (E,H) is a C'-field in V, such
that for every x € V

E(z) —iwpoH(z) =
H(z) +iweoE(z) =

(24)
; (25)

oL oL

V x

V x
then the tangential field (77 x E|U,ﬁ X H|
Here 71 = é5.

) determines (E|V,H|V) uniquely* .

Proof: Let us write (24) as

82E3 — 83E2 — iwuoHl = 0, (26)
83E1 — 81E3 — ’iwuoHQ = 0, (27)
81E2 - 82E1 - iwung = 0. (28)

-

From the knowledge of (77 x E|U,n X ﬁ|U) we obtain E5|U’ HS|U’ for s=1,2,
and therefore also arEs|U, 8TH5|U, for r,s = 1,2. Thus we can solve Hj
from (28) and thereafter we obtain 8TH3|U,
find out E3|U and 0, F3 |U, r = 1,2, by writing (25) componentwise. After that
we solve 83ES|U, s = 1,2, from (26) and (27), and likewise 83HS|U, s =1,2,
from the first two components of (25). Finally we solve the divergence equations
V-E=0and V-H =0 to obtain d3F3|,, and 8;H
that the Cauchy data

|
r = 1,2. In the same manner we

Especially, we observe

v v

E|U, 83E|U, ﬁ|U, 83ﬁ|U,

are uniquely determined. Since E and H both satisfy Helmholtz equationt in
V', the unique continuation of (E|U,H|U) to V follows from the Holmgren’s
Uniqueness Theorem (see [2], p. 194). O

For future needs we prove a generalization of the preceding lemma for curved
surface elements in Appendix.

*In other words: if we have a single tangential field (7 x E‘U,ﬁ X FI‘U) on U for some

material distributions (u,~) and (¢’,~") outside V, then we also have a single field (E‘V’ FI‘V)
in V for both of the distributions, provided that (24)—(25) are satisfied within V' in both cases.
This is exactly what we mean when talking about unique determination in the sequel.

TThe vector Helmholtz AA + k24 = § consists of three scalar Helmholtz equations AA; +
k2A; =0,1=1,2,3.

13



3.2 Admittance Map Y and Impedance Map 7

We are going to express the tangential component 77 x H |R2 of a magnetic field
as a function of the tangential component 77 x E|R2 of the electric field and vice

versa. Here @i = &;. To this end we define, for a function f : R® — C, the
symmetrized functions f; and f_ by setting

_J f(@), 23>0, _J f(@), 23<0,
(@) = { 1@, m<o, @ = { 1), >0

—e+ —h+ —e+ —h+ . X X X

Let (G, ,G, ), (G, ,G, ) denote dipole fields associated with the material
e :h_

distribution p, 4 for a compact W, , C R3., and analogously, let (GZ .Gy ),

—e— —h—
(C;e ,G, ) represent dipole fields associated with y_, y— for a compact W, , C
R .

=€— :h_
Definition 3.1 The magnetically symmetric Green’s dyadics QZ , G, for the
lower half space in the symmetric material distribution p_, v_ are defined by
—e— —_—e— N —_—e— - =
Gn (z,9)- Gy (z,y) - T+ Gy (2,9) -0
—=h— —h— —h— -
Gn (z,9)- 7 = G (2,y) - T+G, (2,7)- 0.

S
[l

S

—e— =h—
The electrically symmetric Green’s dyadics G, , G, for the lower half space
in the symmetric material distribution pu—, v— are defined by

—e— —e—

ge (may) U= Ge (x’y)-’[-)'-kﬁzi(x’g)-'[:f,
—h— —h— —=h— ~
ge (m,y) T = Ge (.’E,y) T+ Ge (m,ﬂ) - .

Here ¥ = vi&; € R? is an arbitrary directional vector. The corresponding dyadics
—e+ =h+ =—e+ —=h+
Gn , G, , G, and G, for the upper half space are defined analogously.

—et —h+
The field (gz ,Gp, ) satisfies the PEC (perfect electric conductor) boundary
condition on the plane R? of symmetry (cf. [6], pp. 117-122); that is to say

—e+ ~ —et
-G, (Z,y)- 7 = —-u-G, (z,y) -7,
. :Z:I:(N ) . - :Z:I:( ) . (29)
u'gh .’E,y)"l) = u'gh (may *v.

—et —h+
The field (gz ,G, ) satisfies the PMC (perfect magnetic conductor) boundary
condition on R2. Accordingly

. Eei(N ) . ~ :e:l:( ) .
u- r,y)-v = u- T,Y)-v,
v et =g ) (30)
-G, (Z,y)-v = —-a-G, (z,y) 0



From (29) and (30) we conclude that, for all x € R?, y, 7 € R?,

L, =ex . o L, =h* .
nth (.'E,y)"l) = 0’ In"gh (.'E,y)"l) = 07

—h+ N —e+ (31)
ixgG, (x,y)-v = 0, i-G, (x,y)-7 = 0.

If we set T = S?NR2 in (19), then we obtain for all y € R \ W

(% 8w) G @ + (i B@) 5w dsto)

whenever (E, H) satisfies the homogeneous Maxwell’s equations (1)—(2) and

Silver-Miiller radiation conditions (3)—(4) in a neighbourhood of R Since, for
z € R?,

(7 x A@) T (@) = ~A@)- (ﬁxﬁimy)) — di() T =0,

we have

— — —h—
i) = [ (% E@) T @)ds@).
and consequently

S0 _ 7t x E(x .:h_m, 7 ).
ix Ay = HJ( x B(z) (gh( y) X )dS()

The left side has a limit as y3 — 0. Therefore the right side also has a limit
asys — 0~ and

i x H(y12) = — lim (ﬁ x E(w)) : (EZ(x,y) x ﬁ) ds(z),

y3—0~
2

where we have denoted y12 = (y1,¥2,0). Because of a strong singularity in

62 (z,y) at = y the limit cannot be moved under the integral sign. By
imitating the preceding procedure we obtain the corresponding expression for
7 X E(ylg). The two integral equations can also be derived for the upper half
space. In the following proposition we put these results together:

Proposition 3.2 Let W, , ﬂﬁi be a compact subset of R, and suppose (E, ﬁ)
is a C'-field in a neighbourhood of Ki. If (E, ﬁ) satisfies the homogeneous

1t is clear that (19) also applies to a sum of two dipole fields although we derived the
formula for a single dipole only.

15



Mazwell’s equations (1)-(2) and Silver-Miiller radiation conditions (3)-(4) in
a neighbourhood of Ri, then

ix ) = - lim, (7 x Bla)) - (E'f(x,y) x ﬁ) iS(z), (32)
RQ

i x Blyra) = - lim, (ﬁ x ﬁ(w)) : <§Zi(w,y) x ﬁ) dS(z), (33)
RQ

for il = Fes.

At this point we are ready to define concepts analogous to the Dirichlet-to-
Neumann map A and its inverse A=1:

Definition 3.2 The equation (32) defines the admittance map
Yi:ﬁxE|R2Hﬁxﬁ|R2

and (33) defines the impedance map
n :ﬁxﬁ|R2r—>ﬁxE|R2

for the half space R3..

As a straightforward consequence of the definitions we see that Y. and its inverse
Z4 are independent of the material distribution in ]R?’;. A note-worthy feature
of the half space geometry, when compared with the interior of a closed surface
as in [7] or [8], is that these maps exist for all frequencies w > 0. This is, of
course, imposed by the radiation condition.

3.3 Unique Continuation of Local Measurements

Assume that W is a compact subset of R® \ R?, R® \ W is connected and
Wy, C W. We consider the @-component

@Gy (e,y) - B, - Gr(2,9) - D) (34)

of an electromagnetic field at = generated by a magnetic dipole ¥ located at y.
By a local measurement we mean an arrangement which results in the knowledge
of (34) for

(z,y) EUXU, i € R, ¥ € R?,

where U # () is a fixed open subset of R*> and Ax B is defined for sets A and B
by
AxB = {(z,y) € AxB|z#y}.
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A local measurement extends, as a consequence of Lemma 3.1, to the knowledge
of (34) for all
(z,y) € (R*\W)xU, @ € R®, ¥ € R?, (35)

and further, by reciprocity (21), to the knowledge of

U-Gyly,2) @ = @ Gylz,y) -0

on the conditions (35). Especially, we know the perpendicular tangential com-

ponents € - G, (-, x) -4, 1 = 1,2, of the field G, (-, z) - 4. Since these components
satisfy the Helmholtz equation on R? \ {z} the Unique Continuation Principle
for elliptic partial differential equations (see [3], p. 212, or [5], pp. 64-69) implies

:h
the existence of a unique extension of & - G, (-,z) - @ from U \ {z} to R? \ {z},
I =1,2. If we know the restrictions /J,|R3 , 7|R3 , then for x € R® \W and @ € R3
+ +

the impedance map Z, gives a unique

—e —h
ﬁXGh('ax)|R2'u = Z+(nXGh('ax)|R2'u)v
and from Lemma 3.1 we obtain a unique field

=h

(ah('am)hga\w . '17:7 Gh("$)|R3\W . ’l_j)

Thus we have proved:

Lemma 3.3 Let W be a compact subset of R3\R?, such that R*\W is connected
and W, C W. We suppose further that ,u|R3 and 7|R3 are known. If U # 0
3 3

is an open subset of R2, then the restriction
(UxU) x (R* xR*) — CxC,
(0,), @) = (@ Gylesy) T, T Gpley) 0,
determines the map
(REN\W)x(RE\W)) x (R®* xR*) — CxC,
—h

(2,9),(@,7) = (@-Gylwy) -5, i@-Gylz,y) D),

uniquely.

3.4 From Local Measurements to Material Parameters

In what follows W is a fixed compact subset of R® and W, ., C W. Because of
the formulation of the THEOREM B in [8] we also require that e, u and o are
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C*°-functions and there are strictly positive constants &,,, €, tm, ptar and opg
for which

em <e(x) <em, pm < @) <pm, 0<o(z) <ou.

In [8] the fields of magnetic dipoles are defined as distributions that satisfy
Maxwell’s equations of type (10) and radiation conditions. For our purposes it
is crucial that these distributions actually turn out to be C'-fields (as a matter
of fact they are C°) which can be seen by representing them by the layer
potential operators (see [8], LEMMA 3.5 on p. 1138 and (23) on p. 1139). This
guarantees that the conditions (i)—(iv) in Section 2.2 are satisfied. Now we are
ready to prove the first of our main results:

Theorem 3.4 Assume that W, ¢, p and o fulfill the foregoing requirements
and U # () is an open subset of R2. The local measurement

(UxU) x (R xR?) — CxC,

—e =h (36)
((z,9), (@,0)) = (@-Gp(z,y) -0, @ Gy(z,y)-0),

on U determines the material parameters €, pu and o in W uniquely.

Proof: Let (! be a nonempty bounded connected open subset of R3 with a smooth
boundary, connected exterior R® \ 2, and the property that W Cc Q C Q C R?® .
THEOREM B in [8] states that the boundary measurement

=h
Uy - Gh(za y) ' 17?1)? . (37)
Ty ii(z) =0, T,-y) =0, (z,y)€dNXd,

uniquely determines the material distribution within 2 except for a discrete set
F, C R of magnetic resonance frequencies (these frequencies only appear when
o = 0). We may assume, without loss of generality, that w ¢ Fq (otherwise we
take another 2). On the other hand, from Lemma 3.3 we know that the local
measurement (36) determines the boundary measurement (37) uniquely. i

4 Determination of y, ¢ and o from Local Ad-
mittance Kernel

In this section the values of material parameters in the upper half space Rﬁr
are of no importance. We shall derive a counterpart to the uniqueness theorem
of Lassas et al (see [4], Theorem 2.1 on p. 681) for R . It states that for
the scalar Schrodinger equation (A + ¢(z))u(z) = 0, where Img(z) > 0 and
supp(¢ — ) C W C R® for a fixed compact W, the inhomogeneity q|W is
uniquely determined by knowledge of the Dirichlet-to-Neumann map

ou
A:u|R2|—> B

R2
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on an open subset U # () of the boundary of the half space*. The map A is
formally an integral operator whose kernel K,(.,.) has a restriction to UxU.
This makes it meaningful to talk about A on U.

We shall prove the corresponding theorem in electromagnetism: 5|W, ,u|W and

0|W are uniquely determined by knowledge of the admittance map Y_ on U
provided that we a priori know the inhomogeneity to be contained in W. Like
A, according to Definition 3.2, the map Y_ is formally an integral operator with

=h—
the kernel Ky (-,-) =G, (-,-) x 7.

4.1 Connection between the Kernels of Y and 7

We assume that W is a compact subset of R® and W, , N R CW. Let U #0
be an open subset of R?. It is a straightforward consequence of the definition

—h—
of G, and the reciprocity formula (21) that

—h— —h—

Gn () = Gy (29" (38)

=h
If U # (0 is an open subset of R?, the restriction G, is uniquely deter-

|U>'<U
mined by the restriction G, |, ., x i of the formal kernel G, |52 X 7 Of
the admittance map Y_. This is easily verified by componentwise checking and

—h— -
using the fact that, by definition, G, (-,y) -7 = 0 for all y € R2.

Denote }

W={zeR|zeWorzecW}
and assume that R3 \ W is connected (or equivalently: R® \ W is connected).
For a fixed y € U and @ € R* we see from (31) that 7 x 52_ -7 =0.
On the other hand, Lemma 3.1 implies that

("y)|U\{y}

—=e— =h—

(,,‘-L’ X gh (’y) -17, ﬁ X gh (ay) 17)|U\{y}

determines the field

—_—e—

:h
(G ()0, G, (y) '17)|R3\({y}UW)

=€ — :h_
uniquely.  We conclude that (Q; G )| (RE\TI) XU is uniquely determined

=h— —=h
by G, |U>-<U. From (38) it follows that especially G and thus

|U>'<(]R3\W)

*For the sake of coherence we use a notation different from that of the referred article.
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According to (31)

X G |U*(R3\W) are uniquely determined by G, |U*U.

7 X 52_ |U>'<(]R3\W) = 0. Therefore Lemma 3.1 implies that

—e— —h—
(gh s gh )|(R3\W)5<(R3\W) (39)
—h—

is uniquely determined by G, |, ;-

Because of the reciprocity (23), the first component of (39) determines the
second component of

—_—e—

:hi
G+ Ge Moy xmovivy 1o

via transposition. The first component of (40) is then uniquely determined by
Maxwell’s equations. Hence we have proved:

Proposition 4.1 Let W be a compact subset of B2, such that R2 \ W is con-

nected, and let U # 0 be an open subset of R*. If W, ., N R C W, then the
pair
—e— =h

ge age )|(R3\W)5<(R3\W) (41)

—e— =—=h—
(gh vgh )|(R3\W)><(R3\W)’ (

—=h—
is uniquely determined by the restriction G, | X 7i of the formal kernel of

the lower admittance map Y_.

UxU

4.2 From Local Kernel to Material Parameters

According to Definition 3.1

—h— N 1=h— N
Gy ()T = 10 ()
Ge ('7y)'v = 9Je (ay) v,

for all y € R? and ¢ € R?. From these equations and the reciprocity rules (21)
and (23) it follows that the tangential components on R? for all magnetic dipoles
located in R3 \ W are uniquely determined by (41). Lemma 3.1 then implies
that (41) determines the total fields of the above dipoles everywhere in R® \ TW/.
Now we can convince us of the uniqueness of the material distribution in W just
like we did in Theorem 3.4. In other words, we have proved the second of the
two main theorems:

Theorem 4.2 Suppose €, it and o are C®-functions in R> and there are
strictly positive constants €, Enr, fm, by and oar for which

em <e(x) <em, pm <p(x) <pu, 0<Lo0(x) <o,
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whenever x € R® . Let W be a compact subset of R® , such that Wuﬁﬂﬁi cw.
IfU # () is an open subset of R%, then the values of €, p and o in WNRS are

:h_
uniquely determined by the restriction G, | x 7 of the formal kernel of the

lower admittance map Y_.

UxU

Note that in Theorem 3.4 it is required that the inhomogeneity lies totally in the
lower half space R? but in case of Theorem 4.2 this assumption is unnecessary.
In the proof of the former result we used the upper impedance map Z, while
the latter is based on Y_ and Z_.
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Appendix. Field Continuation Outside a Surface
Element

In this appendix we will generalize Lemma 3.1 for curved surfaces. By a surface
element T we mean a 2-manifold in R?® with the property that there is an open
set D C R® and a C?-diffeomorphism ¢ : R* — D for which ¢(R?) = T. The
surface element T' corresponds to U in Lemma 3.1.

Lemma 3.1’ Suppose T' and ¢ are as above. Denote V = g@(@i) and let (E, H)
be a C*-field, such that for every z € o(RY)

V x E(z) — iwpoH (z) =

V x H(z) + iwegE(z) = (“42)

LSl

Then the tangential field (7 x E|T,ﬁ X ﬁ|T) determines (E|V, .F_f|v) uniquely.

Proof: Because (E, H) is a C'-field (42) also holds for z € T. We utilize the
generic formula (see [3], p. 162)

Div(i x E) = —i1-V x E
where Div means surface divergence. Applied to E and H in (42) it yields

Div(it x E) = —iwpoit- H, Div(ii x H) = iweoft - E.
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Thus if we know the tangential components of E and H on T, then we also
know their normal components. In the sequel we assume that the total field
(E|T,H|T) is known.

Let us keep u € R? fixed and let z = ¢(u) € T. In case of E the chain rule gives
D(E o ¢)(u) = DE(x)Dg(u) € R*3, (43)

where the left side is known for except for the last column. The matrix element
r,s on the right side is
VE,(z) - dyp(u). (44)

Since (01¢(u),d2¢(u)) is a basis for the tangent space of T' at = we obtain any
tangential derivative of E,., r = 1,2,3, as a linear combination of the known
scalars (44), s = 1,2. Likewise we find out the tangential derivatives of H,,
r=1,2,3.

Because the curl operator is invariant under rotations and translations, so are
the Maxwell’s equations (42). Thefore we can treat them in any orthonormal
right-handed coordinate system. Let (€7,€) be a basis for the tangent space at
z and €3 = 7i(x). By solving the six scalar equations equivalent to (42) together
with the divergence equations V - E(z) = 0 and V - H(z) = 0 we obtain the
normal derivatives of E and H at z.

At this stage we have the Cauchy data at every point x of the surface T'. The rest
of the proof goes as we did when proving Lemma 3.1 by Holmgren’s theorem.
O
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