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Implicit functions from locally convex spaces to Banach spaces
by

SEPPO HILTUNEN

Abstract. We generalize the classical implicit function theorem of Hildebrandt
and Graves to the case where we have a Keller C'{frmap f, defined on an open subset of
the space F x F' and with values in F, for E an arbitrary Hausdorff locally convez space
and F' a Banach space. As an application, we prove that under a certain transversality
condition the preimage of a submanifold is a submanifold for a map from a Fréchet
manifold to a Banach manifold.

0. Introduction and preliminaries. Our main objective is the
following

ImpLICIT FUNCTION THEOREM. Let E and F be locally conver spaces
with F' Banach. Assuming k € IN U {oo}, let f: EX F D dom f — F
be a C*—map with f(x,y) = 2. If Oaf(z,y) : F — F is bijective, there
exist open sets U and V in the spaces E and F, respectively, such that
(z,y) € U xV C dom f and the set f~1(2) N (U x V) is a C*~map
EDU— F

Here IN is the set of positive integers and dom f is the domain set
of the function f. By definition 0.8 below, a C*-map always has open
domain. Based on the above implicit function theorem, we then prove as
a corollary the following

THEOREM. Assuming k € IN U {cc}, let M and N be C*-manifolds
with M modelled on Fréchet and N on Banach spaces. Let f : M D
dom f — N be a Ck-map. If S is a C*-submanifold of N and for all
(y,z) € f~S conditions (1) and (2) below are satisfied, then f~1(S) is
a C*—submanifold of M.

(1) mwoTfy:TyM — TyN — T,N/T,S is surjective

(2) Ker(woTf,) is complemented in Ty M

Here f~!|S is the relation f~! restricted to the set S. The 7 above
is the quotient map Ty,N — T,N/T,S. If T,N/T,S is finite dimensional,
then the requirement (2) is superfluous. We treat real and complex scalars

simultaneously. Consequently, the holomorphic case is also included; cf.
Remarks 0.12 below and [6; Lemma 2.6].

Now we explain our notion C* of continuous differentiability, which for
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2 S. Hiltunen

real scalars is a weakened adaptation of the concept Cy of [1], and which
for maps between locally convex spaces coincides with CE of [4].

Our fundamental category of maps is that formed by all separated limit
(or convergence) spaces as objects and all continuous functions from some
open subset of the domain space to the range space. A limit space X is
a set S endowed with a convergence (structure; in [1] a pseudo-topology)
A, X = (S, A). It is separated iff for any filter ® on S converging to both
z and y, we have z = y. A set V C S is open iff V € ® for every filter ®
converging to any x € V. A function is continuous iff it maps convergent
filter bases in its domain set to convergent filter bases in its range space. A
filter base in a subset of a limit space is convergent iff the filter generated
by it on the whole space is convergent. We really obtain a category by

0.1 LEMMA. Let X,Y be convergence spaces and f: X O dom f — Y

a continuous function, with dom f open in X. If B is open in Y, then
A= f~Y(B) is open in X.

Proof. If a filter ® in X converges to x € A, then {UNdom f: U €
$ } is a filter base in dom f, converging to . Thus the filter ¥ = {V : 3U €
®; f(UnNdom f) CV C Y} converges to f(x) in Y. Hence B € . So, for
some U € ®, we have f(UNdom f) C B. Thus UNndom f C f~}(B) = A.
Hence A € @, due to dom f € &. We are ready, because ® and z are
arbitrary. a

As an embedded full subcategory, we consider continuous maps be-
tween separated real (IK = IR) or complex (IK = €) convergence vector
spaces. In [1], these are called pseudo-topological vector spaces. To every
convergence space we have adjoined a topology in the above way. Con-
versely, a topology defines a convergence. A topological vector space can
thus be interpreted as a convergence vector space. For the basic facts
about convergence vector spaces, see, e.g., [1] or [2].

For a convergence vector space F, denote by N, E the neighbourhood
filter of zero in the topology of E. Put V, = N, IK. A filter ® on a vector
space X is called equable iff ® = [V,®]. Here [V,®] is the filter on X
generated by the filter base V,® formed by the sets VB = {A\z : A € V and
z € B}, where V € V, and B € ®. A convergence vector space F is called
equable iff for every zero filter (i.e., converging to zero) ® there exists a
smaller (i.e., ¥ C ®) equable zero filter ¥'. With every convergence vector
space F, we associate the equable space E°? with the same underlying
vector space and as zero filters those filters on E for which there is a
smaller equable zero filter. Every topological vector space E is equable,
because N, F is equable and contained in every zero filter. For more about
equable spaces, see [1]. There E¢ is denoted by E#.

To a pair E,| F' of convergence vector spaces, we adjoin the equable

space Leq(E, F') of continuous linear mappings as follows. Call a filter ¢
on E quasi bounded iff [V,(] is a zero filter in E. Let M = L(E, F) be
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the vector space of continuous linear maps £ — F' (defined on all of E).
Adjoin to M the unique vector convergence, the zero filters of which are
those filters ¢ on M satisfying the condition, that for all quasi bounded ¢
in E, the filter [®(] on F is a zero filter in F. In this way, we obtain the
convergence vector space Lqgp(E, F'). Now put Loo(E, F) = (Lu(E, F))ed.
In [1] the space L.,(E, F) is denoted by L#(FE;F). For locally convex
spaces I/, F, we have L.,(E, F) = Ly (F, F), where the latter space is that
considered in [4]. By [4; p. 56, Corollary 0.7.4], we have

0.2 LEMMA. Let G, F be locally convex spaces, with F normable. Then
a filter ® on L(G, F) converges to zero in Loq(G, F) iff

(©) AU EN,G:YWEeN,F;3Led; LUCW.

Moreover, the convergence of Leq(F, F) is given by the norm topology of
the normed space L(F, F) of continuous linear maps F' — F.

For a proof, note that condition (©) above is equivalent to the require-
ment that the filter ® is a zero filter in the space Lo (G, F) of [4].

Let E be a convergence vector space. By a differentiable curve in E,
we mean a function ¢ : [0, 1] — E, which is continuous at the points 0 and
1 and, moreover, is such that for 0 < ¢ < 1 there exists ¢/(t) € E such that
the filter base

{{(s—=t)" e(s) —c(t):0<s<land 0 <|s—t| <6}:6>0}

converges to ¢'(t) in E. By separatedness, ¢/(¢) is unique. The function
d 10,13t~ (t) € E is the derivative of c.

0.3 LEMMA. Let E be a locally convex space and U a closed conver set
in E. If ¢ is a differentiable curve in E with ¢(0) = 0g € U and rng ¢’ C U,
then rng ¢ C U, in particular, ¢(1) € U.

Proof. Without restriction, assume real scalars. If the claim is false,
then c(s) ¢ U for some s € ]0,1]. By Hahn-Banach, for some £ € L(E, IR)
we have £(U) C ] — oo, 1[ and #(¢(s)) = 1. The function £ o ¢ satisfies the
requirements of the classical intermediate value theorem. Consequently,
for some ¢ € ]0,s] we get 1 < 571 = s71(c(s)) = (Loc)'(t) = £(c(t)) €
L(U) C ] — o0, 1], a contradiction. 0

Our principal concept of differentiability for maps f : £ D dom f — F
between locally convex, or, more generally, between (equable) convergence
vector spaces, is FB~differentiability, originally introduced in [1]. As aux-
iliary concepts we need G- and MK-differentiabilities. Here the letters
refer to Géteaux, Michal and Keller. First we define the corresponding
”smallness” or remainder concepts.

0.4 DEFINITIONS. Let E, F' be convergence vector spaces and r : F —
F a function (defined on all of E). Let X denote any of the symbols G,
MK or FB. We say that v : ' — F, or the triple 7 = (£, F,r), is X—small
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iff the corresponding condition below is satisfied. For MK we make the
restriction that E, F' have to be topological vector spaces.

(G) For all h € E, the filter base {{t~'r(th) : 0 < [t| < 6} : § > 0}
converges to 0, in F, e, lim¢_,ot~1r(th) =0,.

(MK) 3UeN,E; VW eN,F;3VeN,E;VteIK\{0},h¢
U;theV = t71ir(th) e W.

(FB) For all quasi bounded ¢ in E, the filter base {{t~!r(th) : 0 <
|t <0 and h € B} :d >0 and B € (} converges to 0, in F.

For a convergence vector space G, if r : F — F is X—small and b €
L(F,G), then also bor : E — G is X-small (for MK the above restriction).
Trivially, FB-smallness implies G-smallness. Using 0.5 below, we get MK
= FB = G. So G-smallness is the weakest.

0.5 PROPOSITION. If7 is MK -—small, then 7 is FB - small.

Proof. Let 7 = (E,F,r) be MK-small. Thus E, F are topological
vector spaces, and 0.4(MK) holds. Given quasi bounded ¢ in E, we have
to prove that for all W € N, F there exist § > 0 and B € ¢ such that the
implication 0 < [t| <d = t~lr(th) € W holds for t € IK,h € B.

By N, E C[V,(], for the U in 0.4(MK), we have eB; C U for some
e >0 and B; € (. Given W € N, F, take eW as the W in 0.4(MK).
Again using N, E C [V, (], for the V, now given by 0.4(MK), we find
0 > 0 and By € ( satisfying tBy C V for |t| < §. Writing B = B N By,
we obtain B € (. Let now ¢t € IK,h € B be arbitrary with 0 < |t| < 6.
For s = &7t and k = €h, we have k € U and sk = th € V. Consequently,
t7ir(th) = e (s ir(sk)) € e HeW) = W. 0

From now on, by a vector map we mean a triple f = (E,F, f) such
that E, I’ are convergence vector spaces and f is a function defined on
some subset of ' and with range included in F, ie., f C E x F. Instead,
we may use the phrase "map f: F O dom f — F”.

0.6 DEFINITIONS. Let f = (E, F, f) be a vector map and let X denote
any of the symbols G, MK, FB. Then a pair (¢, r) is called an X—ezpansion
of f at z iff z is an interior point of dom f in the topology of F, £ &
L(E,F),r:E — Fis X-small, and f(z+ h) = f(z) + £(h) + r(h) holds
for x + h € dom f.

If X = MK, we require I, F' to be topological vector spaces. Using a
standard argument, the linear mapping / is seen to be unique. The map
f is said to be X—differentiable at z iff there exists an X—expansion at x.
A map is X-differentiable iff it is X-differentiable at every point in its
domain set. Then the domain is necessarily open. Mere differentiability
will from now on refer to FB-differentiability.

The (Gateaux) derivative function f’ of the map f is defined to be the
set of all pairs (z, £), such that for some r the pair (¢,7) is a G—expansion
of f at . Then the function f’ : dom f’ — L(E, F) is defined at every
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point at which f is G-, FB- or MK-differentiable.

The (Frélicher-Bucher) derivative (map) of a vector map f is the vector
map Df = (E,Lq(E, F), f/|A) having as domain set the subset A of
dom f’ formed by the points at which f is FB-differentiable. If f is
differentiable, then A = dom f’ = dom f.

Following the conventional customs and not too severe logical pedantry,
we may write Df instead of Df, and also f instead of f = (F, F, f).

0.7 PROPOSITION. Let E, F be locally convex spaces, with F' normable,
and let the map [ = (E,F, f) be G- differentiable. If f' is continuous
E D dom f — Leg(E, F), then f is MK-differentiable.

Proof. In view of Lemma 0.2, the claim follows from [4; p. 76, Th.
1.2.11]. O

Let now C, be the (proper) class (not a set) consisting of all contin-
uwous vector maps (E, F, f), where E, F are equable and dom f is open
in E. Putting IN, = {0} UIN and co + 1 = oo, we then construct our
differentiability classes C* for k € IN, U {oo}, as follows.

0.8 DEFINITION. A vector map f belongs to C* iff there are maps
fWin C, for | € IN,,l < k + 1, such that f(® = f and such that f® is
differentiable with f0+Y) = Df® for i € IN,,i < k.

The usual recursivity of continuous differentiability holds. That is, for
any k € IN, U {oco} we have the equivalences: f € Ck*l & [ f € C! and
Df € C*] & | f differentiable and f,Df € C*].

Consider maps between equable spaces. By a trivial induction, one
sees that constants, defined on an open subset of the domain space, are in
C*®°. This implies, by the above recursivity, that continuous linear maps
are in C'°°. To prove that continuous bilinear maps are in C°°, using [1;
p. 44, 4.2.3], one only has to show the continuity of the derivative. By [1;
Propositions 6.3.3, p. 72 and 2.8.3, p. 24], the bilinear composition map
comp : Leg(E,F) X Leg(F,G) 3 (k,£) = Lok € Lg(E,G) is continuous,
hence in C°°.

For maps f = (E,F,f) and § = (F,G,g) in C" = C,, we define the
composition f§ as (E,G,gof). Here dom (go f) = f~!(dom g) is open in
E by Lemma 0.1. If f,§ € C*, then f§ is differentiable and the first order
chain rule formula (go f)" = compo|[f’, g'o f] holds, see [1; pp. 38-41]. In
general, for maps f; = (E, F;, f;) where i = 1,2, we define the map [fl, fg}
as [f1, fo] : E D (dom f1) N (dom f2) 3 z — (fi(x), f2(x)) € Fy x Fy, cf.
[1;p. 3, 1.3.2].

Each class C* forms a category under the composition (f,3) — f§
defined above. This follows from a general order &k chain rule, Proposition
0.11 below. We also get functors T : C’f“ — C* by forming tangent
maps; for f = (E,F,fyput T : f = Tf = (Ex E,F x F,Tf), where
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in the sense of [4]. Our concept C* is, in general, weaker than the con-
cept Cy, considered in [1]. In this respect, there is some confusion in [4],
because Keller seems to think that they are equivalent for maps between
locally convex spaces. However, this is not the case even for scalar valued
maps defined on the whole of an infinite dimensional Hilbert space. Cf.
[4; p. 11, (2), p. 74, 1.2.7. Remark, p. 97, 2.6.3. Remarks (2)].

Proceeding-by induction, using Lemma 0.2, [1; p. 42, Prop. 4.1.1],
and the recursive property stated after 0.8, one can directly prove that
for normable spaces E, F, we have (E,F, f) € C* iff f is a C*-function
E D dom f — F in the classical sense.

0.13 REMARKS. Denote by Lis (E,F) the set of linear homeomor-
phisms £/ — F. By the open mapping theorem, for Fréchet spaces E, F, we
have £ € Lis(E, F) iff £ is a continuous linear isomorphism F — F. Later
we need to know that for a Banach space F, the map inv : L.,(F, F) 2
Lis(F,F) 3 £~ {7t € L4(F, F) is in C*. This follows from the last
part of 0.12 by recalling that in Banach space calculus inv is a C*°—map.
In particular, note that the set Lis (F, F') is open in L ,(F, F).

We also need to know that for maps (E1, F, f), (E., G, g) € C*, the
map [ x g: E=FE; x Ey 2 (dom f) x (dom g)  (z,y) = (f(x),9(y)) €
F x G is in C*. This follows from 0.10 and 0.11, because we can write
fxg=/|[fopgogq], where p: E — FE; and q : E — E5 are natural
continuous linear projections.

1. Implicit Function Theorem. Let E, F be locally convex spaces.
Let the topology of F' be given by a Banach norm z — ||z||. Put G = E x F.
Let B(x,d), B(6) and B(§) be the open and closed balls in F with radius
0 and centered at x and zero, respectively. The partial derivatives below
are derivatives of the corresponding partial maps.

1.1 LEMMA. Let the map ¢ : G 2O dome — F be in Ct, with ¢
and ¢’ mapping zero to zero. Then for every { € L(E,F) there exists
a continuous seminorm p in E, an open neighbourhood U of zero in E,
and § > 0, such that for V. = B(d) we have U x V C dom ¢ and the set
g={(z,y) e UxV :p(z,y)+l(x) =1y} is a function with dom g = U,
rng g C V, and satisfying ||g(u) — g(v)|| < p(u —v) for all u,v € U.

Proof. Put ® ={B:3 A€ N,G; ¢'[A] C B C L(G,F)}. Then,
by the assumptions, ® is a zero filter in L4(G, F'). Applying Lemma 0.2,
let W,, € N, G be the U given by condition (©).

The linear mapping £ being continuous, we have ¢(U;) C B(1) for some
absolutely convex U; € N, E. We can assume U; x B(d;) C W, for some
d1 > 0. Let p; be the Minkowski functional of U;. Put p = 6p; to obtain
the continuous seminorm searched for. Let ¢ : G 3 (z,y) — p1(z) + ||y||.

For oo = inf{3, 161}, let B(a) be the W in condition 0.2(©). Then, for
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some Uy € N, E and some ¢ > 0 we have ||¢'(z)w|| < o for 2 € Uy x B(6)
and w € W,. By the openness of dom ¢, we can assume U, C U; and
Uyp x B(6) C dom .

By the continuity of ¢ : dom ¢ 3 (z,y) — p(z,y) + £(z) we find an
absolutely convex open neighbourhood U of zero in E with U C Uy, such
that ||¢(z,0,)|| < 30 for z € U. Write V = B(6) and W = U x V. Then
W C Uy x B(§) C dom .

Next, we consecutively state and prove claims (1) through (6) below.
From these claims we get our Lemma.

(1) Vze WweG;ll¢(z)w] < qlw). To prove this, let z € W,
w = (u,v) € G, and assume s = g(w ) # 0 for the begmmng We have
pi($ )= S < & (g(w) =0 < § and [0 = o] = 2 o)) <

(q(w)) 2a < 24;. Hence Su 6 U; and —u € B(41). So Sw =
(B, 20) € Uy x 8(51) C W, Then ||/ (z)ul = 2|1y’ () Swl < ga=
s = ¢(w). Assuming next g(w) = 0, for all s > 0, we have p1(su) = [|sv]| =
0, hence sw € Uy x {0, } € W,. So s||¢'(z)w|| = ||¢'(2)(sw)|| < a. Thus
" (2)wll = 0 < q(w).

(2) Vw,ze W; |le(w) —p(2)]] < g(w—2z). To prove this, fix w, z and
let ¢: [0,1] ¢+ cp(z +t(w — 2)) — p(2) € F. Then ¢ is a differentiable
curve in F with ¢(0) = 0, and ¢'(t) = ¢'(z+t (w—2))(w—2) for 0 < t < 1.
So, by (1), we have ||c/(¢ )H < q(w — z). Taking then E( (w— 2)) as the U
in Lemma 0.3, we get [lp(w) — ¢ (2)]| = [[c(D)]] < q(w — 2).

(S)VazeUyéB( 8); Yz, y) € ( J) . For a proof, by (2) we first
obtain |j¢(z, y) oz, 0l < q(0,,y) = —é—HyH NOW recall the relation
[9(2,0,)] < 56, to get ()l < vz, y) = ¢(z,0)] + ([ (2, 0,)]| =
le(z,y) + (= ) (p(2,0.) + ()] + [|4(2,0, )H~H§0(i€ y) — oz, 0,)] +
oo, 0.)l < Sl + 56 < 525+ Lo =24

(4) Yz eUy,zeV;|vxy)

—pla, )| < Yy - 2l As in (3),
we calculate: [[v(z,y) — ¢ (z, 2)|| = |lo(z,y) + £(z) — (@(z,2) + £(z))]| =
lp(@,y) — oz, 2|l < (0,9 — 2) = 5 ly — |-

By (3) and (4), for a fixed z € U, the function { (v,z2): (z,v,2) € ¥},
Le., y > 9(z,y), is contractive B(26) — B(26). Thus (z,y,y) € ¢ holds
for some unique y € B(£6) € B(§) = V. Then g = { (z,y) : (z,y,y) €
YN (U x V) is a function U — V.

(5) Yu € E; |[6(u)]| < 2p1(u). For a proof, assuming first s = p1(u) #
0, we have py (5= u) = 55 p1(u) = 5. Hence 5= u € Uy. Thus £(£ u) € B(1),
and we get [[£(u)|| = 2s[|£(5 u)|| < 25 = 2p1(u). Assuming now p; (u) = 0,
for all s > 0, we have su € Uy, hence s|[{(u)|| = ||[£(su)|| < 1. Thus
[£(u) ]} = 0 < 2py(u).

(6) Yu,veUs;lg(u)—g)|| < plu—v). To prove this, write z = g(u)
and y = g( ), S0 that r = Pu,z) = p(u,z) + £(u) and y = ¢P(v,y) =
¢(v,y) + £(v). By (2) and (5), we obtain [lz — y|| = [l¢(u,z) — ¢(v,y) +
= 0)]| < llp(ar)— (o, )| 4 [~ )] < ot 7 —3) + 291 (1= ) —
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3p1(u — v) + 3llz — yll, from which we get [lg(u) — g(v)]| = [lz — y[| <
6p1(u—v) = plu—v). 0

1.2 LEMMA. Let f : G 2 dom f — F be in C, with f(xo,y0) = 0,
and O f (xo, yo) bijective F — F. Then there erists a continuous seminorm
p in B, an open neighbourhood U of ¢ in E, and § > 0, such that for
V = B(y0,8) and g = f~10,)N (U x V), we have U x V C dom f and ¢
is a function U — V satisfying ||g(u) — g(v)|] < p(u — v) for all u,v € U.

Proof Put 51 P 81f(:7:0,y0) and 52 = 82f(33‘0, yo). Then 51 & £(E, F)
and ¢ € Lis(F,F), by 0.13. Hence £ = ~€2“1 oly € L(E,F). Let the
maps ¥, p : G O —(zo,y9) + dom f — F be defined by the relations
P (z,y) =y — (€570 f)(wo+z,y0 +y) and ¢ (z,y) = ¥(z,y) — £(z). Then
we have 1, ¢ € C' and p(0,,0,) =0,.

Trivially, f71(0,) = {(zo + z,90 + v) : (z,y,y) € ¥}. Moreover, for
(u,v) € G we have ¢'(0,,0,)(u,v) =v'(0,,0,)(u,v) — £(u)
= — egl(f/(ﬂﬁo, yo)(u, U)) -+ E;l(ﬁlu) = U - Zz—l(élu + Eg’v) -+ Z;l(ﬂlu)
= 0,.. So also ¢’ maps zero to zero.

By Lemma 1.1, there exists a continuous seminorm p in F, an open
neighbourhood Uy of zero in E, and § > 0, such that the conclusion of 1.1
holds with U replaced by Uy, and g replaced by go = { (z,y) € Uy x B(J) :
o(z,y) + (z) = y}. Then for U = z¢ + Uy, we get our claim, since
o )N U x V)= {(zo+x,y0+y): (z,y) €g0}. 0

1.3 LEMMA. Let f : G 2 dom f — F be in C, with f(xo,y0) = 0,
and O f (0, yo) bijective F' — F. Then there exists a continuous seminorm
p in E, an open neighbourhood U of xo in E, and & > 0, such that for
V = B(yo,8) we have U x V C dom f and the set g = f~1(0,)N (U x V)
s a continuous function U — 'V satisfying

(1) G f(UxV)C Lis(F F),
(2) (E,F,g) is MK-differentiable,
(3) ¢'(z) == (02f(z,9(z))) " o (01f(z,9(x))) for all z € U.

Proof. For jo: F 5 v~ (0,,v) € G, the partial composition map
I': Leg(G,F) 34— Lo jy € Leg(F, F) is continuous. By d2f =T'o f’ and
continuity of f’, we get continuity of dof : G O dom f — L.4(F, F). Ap-
plying Lemma 0.1 and recalling 0.13, we see that A = (95f)~1(Lis (F, F))
is open in G and that (zg,yo) € A.

Let p,U, 4,V be those given by Lemma 1.2, when applied to the map
flA:G D An(dom f) — F. Then the only non-trivial claims are (2) and
(3), which we now prove. For this, let z; = (z1,y1) € ¢ be arbitrary. The
function f’ is continuous G' 2 dom f — L.4(G, F). Thus, by Proposition
0.7, (G, F, f) is MK—differentiable. So, for some MK-small s : G — F,
we have f(z1 +w) = f(z1) + f'(z1)w + s(w) for z; + w € dom f. Write
0y = 01f(z1) and f5 = O3f(z1). Then £y € Lis(F,F). Consequently,
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s1 = —£3' 05 is MK-small G — F.

Define r : E — F by h +— sy(h,g(z1 + h) — g(x1)) for 21 + h € U,
and by h — 0, otherwise. To show 7 = (E, F,r) to be MK-small, let
Uy € N,G be the U of 0.4(MK) for the map §; = (G, F, s1). Then, for
some Uy € N, FE and §; > 0, we have Uy x B(6;) C Uy. Putting now
Ul = Uy, np~10,64[, we have U] € N, E.

To show that U] can be taken as the U in 0.4(MK), let W € N, F be
arbitrary, and let Vy € N, G be the V of 0.4(MK) for the map 5;. Then,
for some V, € N, E and §; > 0, we have Vo x B(d3) C Vp. Putting now
Vi =Von (—z1+U)N (p70,83]), we get V{ € N, E.

To show that V/ can be taken as the V in 0.4(MK), let ¢t € IK \ {0}
and h € Uj be such that th € V{. Then z1 +th € U and h € p~1[0,4[.
Writing k =t~ (g(z1+t h)—g(z1)), we have [|k]| < |t|"1p(th) = p(h) < é;.
Hence w = (h,k) € Up. By the fact that th € V{ C p71[0, 5[, we have
Itkl] = |lg(z1 +th) — g(z1)|| < p(th) < d2. So tw = (th,tk) € V. Hence
t7r(th) = t7ts1(th, g(z1 + th) — g(z1)) = t71sy(th, tk) = t~tsy (tw) € W.

Above we have shown 7 to be MK-small. To conclude the proof, let
1+ h € U, and write k = g(z1 + h) — g(x1). Then we have

0, = f(ll?l -+ h,g(l‘l + h)) = f<£131 + h,y1 + ]C)
= f(z1) + f'(z1)(h, k) + s(h, k) = £1(h) + £2(k) + s(h, k).
Hence g(z1+ h) = g(w1) + k = g(w1) — £5 ' (&1(h)) — 5 (s(h, k))
= g(z1) — 45" (42 (h)) +r(h). a

Our Implicit Function Theorem is a trivial corollary of the following

1.4 PROPOSITION. Assumek € INU{cc}. Let f : ExF 2 dom f — F
be in C¥, with f(xo,y0) = 20 and O2f (x0,y0) bijective F — F. Then there
exists an open neighbourhood U of xo in E, and § > 0, such that for
V = B(yo,0) and g = f~1(20) N (U x V), the relations (1), ... (4) below
hold.

) UxV Cdom f

(2) (E,F,g)€C* anddomg="U and mggCV

) Oof(z,g(x)) € Lis(F,F) for x €U

4) ¢'(z) =~ (0af(x,y)) " o (01 f(z,y)) for (z,y) € g

Proof. Taking the function w — f(w) — 29 as f in Lemma 1.3, we
find U and 4. Then everything claimed is trivial except g = (E, F, g) € C*.
Using induction, we prove this by showing that g € C* for [ < k + 1. For
[ = 0 this is mere continuity of g, which is given by Lemma 1.3.

Assume now | < k and § € C*. We assert that § € C'*1. By Proposition
0.5 and 1.3(2), g is differentiable. So it suffices to show Dg € C'. Write
G=ExF K =Lyg(GF),L=~LyFE F)and M = L.4(F,F). Then
Dg=(E,L,¢"). By (4), and with j; : E — G and j3 : F — G the natural
injections, the map Dg can be decomposed as
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2 (z,2) = (1,2) S (3,9(2) = 25 f/(2) = £ (4,0) =

(£,0) N (Loj1,8 0j3) = (u,v) N (u, —v™1) = (u, w) Ky woy = J'(z),

where we have the following maps.

(1) E — E x E, continuous linear, thus in C* C C*.

(2) (idE)xg: ExFE 2 ExU — @, which by the induction hypothesis
and by 0.13 is in C*.

(3) (G,K,fyecCck1tccl

(4) K — K x K, continuous linear, thus in C>* C C*.

(5) T'y xI'y: K x K — L x M, where we have the partial composition
functions I'y : K 34—~ fLoji € Land 'y : K 5 ¢ + ¢ 0 jo € M. These
are continuous linear, hence so is the map (5), thus in C* C C'.

(6) (IdL)x (=inv): Lx M D L x Lis(F,F)— Lx M, by 0.13 in C".

(7) comp: L x M — L, in C* C C!, by what we said after 0.8.

By Proposition 0.11, we have Dj € C*. ]

2. Infinite dimensional manifolds. To define manifolds, assume we
are given a class C consisting of some G-differentiable maps f = (E, F, f).
Assume also that Cs becomes a category S under the composition intro-
duced after 0.8. We also require the chain rule formula (g o f)'(z)h =
g (f(2))(f'(x)h) to hold for f,§ € Cs,z € f~'(dom g),h € E. Let O be
the class of objects of S, and for F, F € O, let S(E, F) be the set of all
functions f such that (E, F, f) € Cs.

We want to build categories whose objects are manifolds. To make
this possible, manifolds, as defined below, have to be sets and not proper
classes. To this end, we use the following technical trick. We call a space
E € O standard, and write E/ € Oy, iff the underlying vector space of F
is of the form K for some cardinal number I. The vectors of KD are
those of IK! with only finitely many nonzero coordinates. Then, for every
E € O, theclass { FF: F € Os and Lis(E,F) # 0} is always a set. We
assume this set to be nonempty.

Later we choose O to be the class of all Fréchet spaces, and with
k € INU{oo} fixed (so k > 0) we let C; be the class C* restricted to those
maps (E, F, f) for which E, F € O. To enlarge the applicability of what
follows, recall Remarks 0.12.

For any class A, recall that dom A= {z:3y; (z,y) € A}, mmg A =
{y:3z;(z,y)€ A}, and put Dom A= |J{dom¢: ¢ € dom A}.

2.1 DEFINITIONS. A relation A is called an atlas iff Dom A is a set,
) ¢ dom A, and (¢, E), (¢, F) € A implies that ¢ is an injection, that
E,F € O and that Yo ¢~ € S(E, F).

For an atlas A, the members of rng A are its model spaces. Any o =
(¢, E), for which also AU {«} is an atlas and dom ¢ C Dom A, is called a
chart for A. If also z € dom ¢, then « is called a chart at x. The underlying
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set of an atlas A is Dom A. An atlas is called standard iff its model spaces
are standard.

A standard atlas M is called a manifold iff we have (¢, E) € M when-
ever M U {(¢, E)} is a standard atlas with dom ¢ € Dom A. Thus mani-
folds are maximal standard atlases for some fixed set.

Let M, N be manifolds and f a function with f C (Dom M)x(Dom N) 1.
Then f : M 2 dom f — N is called smooth? iff o fo ¢! € S(E, F)
holds whenever (¢, E) € M and (¢, F) € N. We also say that the (mani-
fold) map, i.e., the triple (M, N, f) is smooth. Note that we do not require
dom f = Dom M.

Recall that for a topological vector space G, its closed topological vec-
tor subspaces E, F' are called pairwise complemented, and each is called a
topological complement of the other, iff the function £ : E X F' 5 (z,y)
z +y € G is a linear homeomorphism F x F' — (. By the open mapping
theorem, for a Fréchet space (G, it suffices for £ to be bijective.

2.2 DEFINITIONS. Let M be a manifold modelled on topological vector
spaces and S C Dom M. Then § is called a submanifold of M iff for every
x € S, there exists a chart (¢, G) for M at x and pairwise complemented
topological vector subspaces E, F of G, such that EN(rng ¢) = ¢(S), and
such that this set is open in E. We also call the pair (M, S) a submanifold.

The manifold (structure) S of a submanifold (set) S of M is given
by the following construction. Let Prop [M,N,S] mean the condition
that N is a manifold with Dom N = S, and that for all manifolds P
and functions f: Dom P — S we have the equivalence: (P, M, f) smooth
& (P, N, f) smooth. Then S={a:3 N;a €N and Prop [M,N,S]}
is the unique N satisfying condition Prop [M,N,S]; cf. [7; pp. 24-25].

2.3 DEFINITIONS. The manifold generated by an atlas A is the set
{(¢,F): AU{(¢, E)} is an atlas, dom ¢ C Dom A and E € O,}.If AUB
is an atlas and Dom A = Dom B, then A, B are equivalent atlases and
they generate the same manifold.

The manifold topology defined by an atlas A is the topology for Dom A
generated by the base {¢71(dom f) : 3 E,F € O; (¢,E) € Aand f €
S(E.F)}.

We call g a local diffeomorphism E — F (at z) iff both (E, F,g) and
(F,E,g™ 1) belong to Cs (and z € dom g).

Having given our general basic definitions, we now specialize to the case
O ={E : E Fréchet }, k€ INU{cx}, Cs = {(E,F,f)e C*: E,F € O}.

2.4 PROPOSITION. Let G be a Fréchet space and F' a Banach space.
Let (z9,y0) € [ € S(G,F), and let £1 = f'(z9) : G — F be surjective,

I Abusively, fC M x N
2 or a Cs—map; likewise we would say: Cs-atlas / (sub)manifold / diffeomorphism
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with Ker £ complemented in G. Then there exists a Fréchet space E and
a local diffeomorphism g : EXF — G at (0,, o), satisfying g(0,,y0) = 2o,
rng g € dom f, and such that (f o g)(x,y) =y holds for (z,y) € dom g.

Proof. Let E be Ker £; considered as a topological vector subspace
of G. Then E is Fréchet. Let F; be a complement of E. Then also F}
is Fréchet. Now /;|F; is a continuous linear isomorphism F; — F. By
the open mapping theorem, also £ = (41]|F;)~! is continuous. (So Fy is
normable; hence Banach.) Letting p: G — F and p; : G — F} be the
projections, we have £ o ¢y = p;. Write 29 = z9 — #(yo)-

Put By = E x F and G, = E; x F. Consider f; = (G4, F, f,), where
fi: ((z,0),y) = flx +x0+ £(y)) — v for  + zo + £(y) € dom f. Then
for wo = (0, yo), our map f1 satisfies the requirements of the Implicit
Function Theorem, with fi(wo,y0) = 0,. and daf1(wo,yo) = f'(20) 0 £ =
id F. So we find open neighbourhoods U; and Vi, of wy and yq, in the
spaces Iy and F, respectively, and a function g : Uy — Vi, satisfying
(E1, F,g1) € Cg and g1(0,,90) = yo and f(z + zo + £(g1(x,v))) = v for
(z,v) € Uy. Differentiation with respect to v yields d2g1(0,,y0) = id F.

Let go: Ui 3 (z,y) = x4+ x0 + £(g1(z,y)). Then (E1,G, go) € Cs and

(%) 90(05,90) = 20 and (f o go)(z,y) =y for (z,y) € Us.
Taking into account the direct sum decomposition of G, we can check that
go is injective. However, we do not know whether (G, E1, g5 e C,. To
prove that a suitable restriction of gy is a local diffeomorphism, we make
another application of the Implicit Function Theorem.

Let Go = G x F, and consider the map fo = (G, F, f3), where fo :
(2,9) = 91(p(z—20),y) —£a(z—20) for (p(z—20),y) € Uy. Then f, satisfies
the requirements of the Implicit Function Theorem, with f2(zo,%0) = %o
and 0z f2(20,yo) = id F. So we find open neighbourhoods U; and V5, of z
and yg, in the spaces G and F), respectively, and a function gy : Uy — V5
satisfying (G, F, g2) € Cs and g1(p(z — 20), 92(2)) = yo + £1(z — 2o) for all
z € Uy. We also have g2(20) = yo.

Let h: Uy 3 2+ (p(2 — 20), 92(2)) € E1, and put g = go|(rng h). Then
(G,E1,h) € Cs and rng h C dom go. In order to show (F1,G,g) € Cs, it
suffices to show that rng h is open in F;. For all z € Us, we have

go(h(2)) = go(p(z — 20), 92(2))

= p(z = z0) + zo + £(g1(p(2z — 20), 92(2)))

= p(2) — plz0) + 20 — £(yo) + £(yo) + £(£1(z — 20))

= p(2) — p(z0) + 20 + p1(2) — p1(20) = 2.
Hence h C g5'. Then mgh = gy'(domh) = g5 (Us) is open in FEy,
because g is continuous. From h C g5 ' and g = go|(rng h) it follows that
g~' = h. From () and (0,,y0) = h(20) € tng h, we see that g satisfies the
remaining assertions. O

In Banach space calculus there is a corresponding ”dual” theorem to
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Proposition 2.4 above; cf. [7; p. 16, Corollary 1s] or [3; p. 215, A.9.].
Here we cannot prove such a theorem, because we would need an inverse
function theorem for maps between general Fréchet spaces.

We now prove our Theorem stated at the beginning. Tangent spaces
and tangent maps are defined as in [7; pp. 26-27].

Proof. For given z € f~1(S), it suffices to find a chart (¢, E) for M at
x, such that for some pairwise complemented topological vector subspaces
E’ and E" of E, the set ¢(f~*(S)) is included and open in E’. To prove
this, choose charts (¢1,G) € M at z and (¢, F) € N at y = f(z), such
that for some pairwise complemented Banach subspaces Fy and FEs of F,
we have Fy N (rng ¥) = ¥ (S) and such that this set is open in Fy. Let ¢
be the projection F' — F5, and put ¢ =qoto fo gbi‘l. Then we have the
commutative diagram

T fz s
M — T,N — T,N/T,S

E T

G , sy F — E,
(pofody ') (¢1(x)) q

s

where = means linear homeomorphism. To apply Proposition 2.4, note
that o' (¢1(x)) = go ((po fodT ) (41(x))), and use conditions (1) and (2)
of our Theorem. So we find a Fréchet space F1, and a local diffeomorphism
0:FE = E;x Ey — G, such that 0(0, ,q(¢(y))) = ¢1(z ) and ¢(0(u,v)) =
v holds for (u,v) € dom . Writing ¢ = (67! 0 ¢, )](f L(dom v)), we get
a chart (¢, E) for M at z. Moreover, we have ¢(f~1(S)) =

=07 1 (f71(S) N 7 (dom ¥)))
=607 ¢1(f71(S N (dom ¢))))
=07 oL (fH (7 (W (9)))))
=07 (1 (ST (W7 (FL N (g ¥)))))
=07 P (ST (7 H@71(0,))))) = (90 0)71(0,.)

= (E; x {0,}) N (dom @), which is open in the topological vector subspace
E'=E; x {0,} of E. O

2.5 COROLLARY. Let k € INU {oo}, and let f : E D dom f — F
be in C*, with E Fréchet and F Banach. Let y € rng f, and let ¢ be
the identity either on dom f or on E. Then, under conditions (1) and
(2) below, f~Y(y) is a submanifold of the manifold generated by the atlas
{(¢, E)}. Condition (2) is superfluous if F' is finite dimensional.

(1)  f'(z): E — F is surjective for all x € f~1(y)

(2)  Ker f'(z) is complemented in E for all z € f~1(y)

Under the conditions of Corollary 2.5, one can prove that the manifold
topology and the induced subspace topology of f~1(y) coincide. One can
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also see that the submanifold has an equivalent atlas modelled on closed
subspaces of E having complements linearly homeomorphic to F.

2.6 REMARK. The proofs we have given above, allow, with only minor
modifications, the following immediate generalizations of our results.

(1) In Proposition 2.4 and Corollary 2.5, if we assume F to be finite
dimensional, the word "Frechet” can be replaced by ”locally convex”.
Moreover, in our Theorem, if we require T), N/T,S to be finite dimensional,
then the manifolds M and N can be modelled on arbitrary locally convex
spaces. Furthermore, the assumptions on the complementedness of the
kernels are superfluous.

(2) Let us call a locally convex space E an omB-space (for open
mapping Banach) iff for all Banach spaces F' and all linear surjections
{: FE — F, we have the implication: £ continuous = ¢ open. Then, in
Proposition 2.4 and Corollary 2.5, the word ”Frechet” can be replaced
by "omB-". Moreover, in our Theorem, the manifold M only have to be

modelled on omB-spaces and N on arbitrary locally convex spaces, if we
require 7, N/T,S to be Banach.

For example, all (locally convex) webbed spaces (see [ J; pp. 89-93]) are
omB-spaces. Concrete examples of webbed spaces are all Frechet spaces,
the test function spaces D(2), and the distribution spaces D’(£2) and
S'(IR%).
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