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1. INTRODUCTION

In recent years the boundary value problems which are nonlinear
in highest derivatives and/or whose boundary conditions are nonlinear
have received some attention, see [2], [3], [5], [7], [8], [9], [10], [11], [14],
[15], [17], [18], [19], [20], [21], [22], [24], [27] and references therein.
The older results are summarized in the well-known monograph [1]
whose bibliography in turn contains numerous references to more clas-
sical material. We propose here a geometric approach to these kind of
problems and examine certain consequences of this point of view. The
tools used are very different from the ones used in the above mentioned
references, hence we must spend quite a lot of space to introduce the
appropriate framework. In spite of this the treatment cannot possibly
be self contained as far as jet geometry is concerned and we refer the
reader to [31] which contains an accessible introduction to these mat-
ters as well as an extensive list of relevant references. Of course we do
not suggest that this geometric point of view replaces or should replace
the older ones, rather we view it as an interesting complement to other
approaches.

There are several consequences of our approach. First we can prove
a general existence theorem for a certain class of boundary conditions.
These boundary conditions look perhaps rather peculiar at first sight,
but as our example shows such problems can arise in a natural way
in variational problems. Another important point is that the general-
ized solutions obtained in this framework are really smooth curves in
high dimensional space, and the singularities encountered in a classi-
cal setting are only seen when the curves are projected to appropriate
subspaces. So whether these generalized solutions are ‘physically rea-
sonable’ or not we shall indicate how they are sometimes quite useful
in numerical computations. How to actually compute numerically in
jet spaces is outside the scope of the present article and we refer to [31]
and [30] for information on these matters.

The contents of the article is as follows. In section 2 we introduce the
basic differential geometric tools that are needed in the analysis and
explain in detail how standard problems are seen in this framework.
We also make a few remarks on the use of transversality in the analysis
boundary value problems. In section 3 we analyse two examples. In
the first one we discuss the relevance of our generalized solutions and
conclude with a modified problem where the solution is in fact classical,
but using the shooting method to find it, one has generalized solutions
in the intermediate stages. Since our generalized solutions are in fact
smooth curves, the algorithm does not see the difference between gen-
eralized and classical solutions, and consequently the problems with
(apparent) singularities are avoided. In the other example we present
an elementary proof of an old existence result for a scalar equation,
and in fact we can improve the statement by showing that there are at
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least two solutions. We note in particular that nonlinearity in bound-
ary conditions for this type of problems does not make the problem
more difficult than the linear one from the geometric point of view.

In section 4 we finally present the main result. Using the concept
of a linking number we prove an existence result for a certain class of
boundary conditions. The idea is that if the boundary conditions are
linked, then moving the other with the flow one must sooner or later hit
the other boundary condition. In particular no asymptotic properties
or growth restrictions are required of the relevant vector field.

Acknowledgment All the figures were made with Mathematica [32].

2. GEOMETRIC FORMULATION OF THE PROBLEM

2.1. Differential systems in jet spaces. Here we simply give the
basic definitions and refer to [31] for a thorough discussion and moti-
vation of these concepts as well as extensive further references. Basic
material on standard differential geometry can be found in [26] and on
jet geometry in [25]. All maps are assumed to be smooth, i.e. infinitely
differentiable and all manifolds are smooth and without boundary. Let
M be a manifold and p € M; T'M, is the tangent space at p and T'M
is the tangent bundle. A distribution on M is a map which associates
to each point p € M a certain subspace of T'M,. An integral manifold
of some distribution is a connected submanifold whose tangent space
coincides with the distribution. Let 7 : & — B be a bundle and let
J,(€) be the bundle of ¢-jets of £.

Definition 2.1. A (partial) differential system (or equation) of order
q on & is a submanifold R, of J,(E).

Let £ = R x R* and let us denote the coordinates of J,(£) by
(z,y ...,y u1,...,y7). Let us define the one forms

(2.1) a;:dy;_l—y;dx i1=1,....n j=1,...,q
Let p € J,(€) and v, € (T J,(€)), and let us further set

Cp :{Up € (TJ(€))y ‘ O‘;(Up) = 0}

(2.2)
Dy :(TRq)p NCp

C is called the Cartan distribution and dim(C,) = n + 1. Suppose that
we are given a system of k q’th order ordinary differential equations

(23) f(xﬁyayla---ayq)zo

We interprete f as a morphism of bundles J,(€) and R x R* which in
terms of coordinates can be taken to be a map R*+Detl 5 RE Ifk =n
we have the ordinary situation of n equations and n unknowns, and if
k > n we have an overdetermined system, or a DAE system. Recall
that geometrically there is no difference between ODEs and DAEs, see
[31] for more details.
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The equation (2.3) defines a certain submanifold of J,(€) which we
denote by R, and in terms of coordinates R, is simply given by f~(0).
Now we can define the solutions of our equations as follows.

Definition 2.2. Let R, C J,(€) be involutive and suppose that the
distribution D defined in (2.2) is one-dimensional. A solution of R, is
an integral manifold of D.

Recall that one-dimensional distributions always have integral man-
ifolds, so solutions always exist as far as initial value problems are
concerned. We cannot discuss the important notion of involution here
and refer to [31] for ample explanations. Intuitively one might say
that the system is involutive if it contains all of its differential conse-
quences up to order q. This concept is not really needed below, but for
completeness we stated the definition in appropriate generality.

2.2. A class of boundary value problems. We have seen that the
geometric framework outlined above leads us to consider manifolds,
one-dimensional distributions on them and the corresponding integral
manifolds. Hence it is rather natural to formulate the concept of bound-
ary condition directly with these terms.

Definition 2.3. Let M be any smooth manifold and let D be a one-
dimensional distribution on M. A submanifold B of M is a boundary
condition, if TB, N D, = {0} for allp € B.

The conditions on B could be relaxed somewhat, but this definition
is convenient for the purposes of the present paper. Intuitively one may
express the content of the definition by saying that boundary conditions
are differential equations which have no solutions. Perhaps this sounds
a bit strange, but there is an analoguous situation in hyperbolic PDEs:
namely, the Cauchy data should be prescribed on a manifold which
does not contain any characteristics. Compared to the more usual
ways to express the boundary conditions, our definition does not cover
the cases where initial and final states are related, but is more general
than the usual ones in other cases; for example the boundary condition
may involve also the highest order derivatives.

We are going to study the following type of boundary value problems.

Definition 2.4. A two point boundary value problem is the following
collection of data:

e a manifold M of dimension m,
e a one-dimensional distribution D on M and
e two disjoint boundary conditions By and By such that dim(B;) = k
and diim(By) =m — k — 1.
A solution of the two point boundary value problem is an integral man-
ifold T of D such that TN By # 0 and I N By # 0.

2.3. Transversality. We expect that in a ‘regular’ situation there are
only a finite number of solutions to a given boundary value problem,
or at least the solutions should be isolated. But is this nice situation
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typical among ‘all’ problems? The notion of transversality allows us
to conclude that perturbing a little the given problem we can always
recover the regular problem, with certain reservations to be discussed
below.

Let us recall that if M and N are submanifolds of (), then M and N
intersect transversely, if for allp € M NN, TM, + TN, = TQ,. More-
over if the intersection is transversal, then M NN is a submanifold of @)
and dim(M N N) = dim(M) + dim(N) — dim(Q). The following basic
theorem says that in a ‘typical’ situation the intersection is transverse
[13].

Theorem 2.1. Let M and N be submanifolds of Q). FEvery neighbor-
hood of the inclusion iy : N — @Q contains an embedding which is
transverse to M.

In a similar fashion it is seen that the condition T8, N D, = {0} in
Definition 2.3 can always by achieved (at least locally) by perturbing a
little either the boundary condition B or the distribution D (or both).

In order to use transversality to study the behaviour of the solution
set, it is convenient to introduce the following terms [4].

Definition 2.5. Let p, z € M and let D be a distribution on M; p ~ z
if there is an integral manifold I of D such that p, z € T. Let A C M;
the saturation of A is the following set

sat(A) = {p € M |3 z € A such that p ~ 2z}

The existence of the solutions for the problem in Definition 2.4 can
thus be expressed as follows:

The boundary value problem in Definition 2.4 has a solution if
and only if

sat(By) N By # 0 ( equivalently sat(Bs) N By # 0 ).
Now the solution set in a nice situation behaves as follows.

Proposition 2.1. Suppose that sat(Bi) is a closed submanifold, By is
closed and that the intersection of sat(B;) and By is transverse. Then
sat(By) N By does not have any accumulation points. If in addition By
18 compact, then the intersection is a finite set.

In other words, when the intersection is transverse the solutions are
isolated and if one of the boundary conditions is compact there is only
a finite number of solutions.

Proof. By counting the dimensions it is seen that the intersection must
be zero dimensional. Let p € sat(B;) N By. Then there is a neighbor-
hood of p € U C M and the coordinate map such that sat(B;) N U is
represented by the first coordinates and B, N U by the last coordinates
[16]. Hence there are no other points of intersection in U. The finite-
ness property follows because on a compact manifold there cannot be
an infinite number of isolated points. O
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Note that the condition that By be a closed submanifold is not restric-
tive at all in practice because usually boundary conditions are given as
zero sets and thus by Sard’s theorem they usually satisfy the required
condition. As an immediate corollary of the above proposition and
Theorem 2.1 we get

Corollary 2.1. Consider the problem in Definition 2.4 and suppose
that sat(B;) is a closed submanifold. Then by perturbing Bs arbitrarily
little the intersection of sat(By) and By becomes transverse.

Hence if the saturation is nice then any problem can be approxi-
mated by a nice problem. Of course in general the saturation can be
a very complicated set, for instance if the system is chaotic. Another
indication of complexities that may arise is given by the fact that the
space M/~ may be non-Hausdorff, see [4] for an example. However, if
the saturation as a whole is not a closed submanifold we may still get
a meaningful problem by restricting our attention to an appropriate
subset.

2.4. Examples. Let us then see how the standard two point boundary
value problem looks like in this framework. Consider the following
scalar problem.

y' — f(z,y,9') =0
y(a) =c
y(b) =d

Hence Ry C Jo(R x R) ~ R* is defined by y, — f(2,9,:1) = 0 and the
boundary conditions by

Y2 — f(2,9,11) =0 Y2 — f(2,y,01) =0
Bl : <z—a=0 By : <z —b=0

Clearly dim(B;) = dim(Bs) = 1 and dim(Ry) = 3, so the dimensions of
the problem are ‘right’. Since y, is given explicitly R, and the corre-
sponding dirstribution can be diffeomorphically projected to J;(RxR).
Doing this we can directly see the problem in three dimensional space.
The distribution is given by the nullspace of the following matrix.

—Y1 1 0 0
A= -y 0 10
—0f/0x —af/0y —0f/oy: 1

So using the projection ¥ : (x,y,y1,¥2) — (7, ¥, y1) we get the follow-
ing problem in J;(R x R) ~ R3.

D = Span(17 Y1, f(xa Y, yl))

B, - r—a=20 B, : r—b=0
y—c=20 y—d=
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Hence the boundary conditions are vertical lines and the distribution
is defined and one-dimensional in all of R®. Similarly if we have the
problem

Rq : yq_f(xaya"'ayq—l)zo

. yq_f(xaya""yqfl)zo . yq_f(x7y7"'7yq71)zo
B : By :
91($,y,---,yq71) =0 g2(x)y7"')yq71) =0

then this is equivalent to the problem

D - Span(]-a Y1y ooy yq717 f(x7 Yy ooy yqfl))
(2.4)

Bl : gl(xaya"'ayqfl)zo 82 : g2(x7y7"'7yq71)20

In standard problems of course one can get rid of the highest deriva-
tives in the boundary conditions using the differential equation. In the
general case, however, this is not possible, and thus we can write the
general form of the problem as follows.

(2.5)
Ry : flz,y,...,y,) =0

. f(xaya"'ayq)zo X f(x7y7"-7yq):0
Bl . 82 .
gl(xaya"'ayq):o g2(x7y7---7yq):0

Writing in this way the statement that boundary conditions are just
certain kind of differential equations becomes quite natural. Let us
stress that geometrically the presence (resp. absence) of y, in g; does
not a priori make the problem more difficult (resp. easier).

3. NEW SOLUTIONS AND PROOFS

In this section we analyse two examples to show what kind of benefit
our geometric formulation can have in the study of two point boundary
value problems. In the first one the main point is that our new general-
ized solutions are in fact smooth curves in a higher dimensional space,
so the singularities encountered in the classical setting are avoided.
Whether these generalized solutions are in fact ‘physically reasonable’
depends of course on the particular application, but we show that in
any case they are useful in numerical computations.

The other example is about a new and elementary proof of an old re-
sult about scalar equation. We show that in fact we can get a stronger
result in a particular case and that the same type of reasoning ex-
tends in a straightforward way to the case where one of the boundary
conditions is one dimensional.

3.1. Periodic solution. Let us consider an example taken from [10]

(3.1) Ry : flzyy, ) =2y —y)* —9(y1 —y) > +12(y1 —y) —z =0
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with the boundary condition y(0) = y(9).! In fact this is not the type
of a boundary condition which is covered by Definition 2.3. However,
we take it up because this problem illustrates quite well how the solu-
tions in our sense can be different from the classical solutions as well
as various generalized solutions, and what are the consequences this
approach from the point of view of applications.

Let Ry = f71(0) € Ji(R x R) ~ R®. Obviously R, is a smooth
manifold and the distribution D is given by the nullspace of

A= <__y11 _15 2) where b= 6(y1 —y)* — 18(y1 — y) + 12
Evidently D is one-dimensional in the whole of Ry, and it is spanned
by the vector field V' = (b,by;, 1 + by;). Hence we can consider the
following system of ODEs

v =6(y; —y)?— 18(y1 — y) + 12
(3.2) Y = (6(y1 —y)? —18(y1 —y) + 12) (1
yi =1+ (6(y1 —9)*> — 18(y1 —y) +12) 1

Denote the auxiliary independent variable by s, let z = (z,y,y;) and
let

Bi={(z,y,;) € Ra|e =0} and By, ={(2,y,y1) € Ra|z =09}

Then the problem can be formulated as follows: find a solution z of
(3.2) such that 2(0) € By, 2(s*) € By and y(0) = y(s*). Using this
formulation we shall prove

Proposition 3.1. The problem 3.1 with condition y(0) = y(9) has at
least one solution.

Proof. We see immediately that y;(s) — y(s) = s and thus z(s) =
253 — 952 + 125 which in turn implies that s* = 3. This proves also that
all solutions starting at B; eventually reach By which is not a priori
clear. Then one checks that if the initial point p = (0,y,v1) € By is
taken such that y is sufficiently big then the corresponding solution
satisfies y(9) > y(0) and if y is sufficiently small the corresponding
solution satisfies y(9) < y(0). Hence by continuity there is (at least) one
p € By such that the corresponding solution satisfies y(0) = y(9). O

Note that ‘time’ x flows backwards when 1 < s < 2 which explains
the remark in [10] about the inexistence of the classical solution on a
larger time interval than [0, 5] because z(1) = 5. In our framework we
have smooth solutions on R; independent of the time interval. The
singularities are only seen when the solution is projected to (z,y) —
plane using the standard projection 7 : (z,y,vy1) — (z,y). In figure
3.1 on the left there is Ry and in figure 3.2 there is a solution computed
by the shooting method. In the present case the system is very stable
backwards in s, hence the convergence is very fast.

1The interval in the original problem was [0, 6], but changing it to [0,9] does not
alter the nature of the problem.
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Obviously the generalized solution obtained here is different from the
one obtained in [10] and it depends on the application which one if any
is the relevant one.?2 Of course it is also possible that at z = 5 the model
simply ceases to be physically relevant and there is no point of trying
to go beyond that point. However, from the numerical point of view
our framework would still be useful. Namely, numerically one usually
encounters difficulties when approaching a singularity and hence in a
classical setting the solution near x = 5 would perhaps be inaccurate.
In jet context the points at z = 5 are simply regular points, so the
numerical solution should be as accurate as everywhere else. Similar
situation arises when analysing impasse points, see [28] and references
therein for more information on impasse points. Jets are also useful in
the resolution of other types of singularities, see [29].

Let us give another example of the numerical usefulness of the jet
point of view. Consider the following modified problem

(3.3)
fleym) =2 -y 91—y +un)) i —y)’ + 121 —y) —z =0
where

—522

o <3
exp (81 - 922) 12l

0 , 2l >3

p(2) =

The manifold is shown in figure 3.1 on the right and one may expect
that there is a classical solution. However, in the initial guess of the
shooting method the solution does not stay in the corridor and hence
the projection is singular. The next iteration, however, already gives
a classical solution, see figure 3.2 on the right. So these generalized
solutions might appear in the intermediate stages in the numerical so-
lution even though the the actual solution is smooth in the classical
sense. Because these generalized solutions are smooth in the relevant
manifold, they are indistinguishable from the classical solutions for the
algorithm and therefore the (apparent) singularities do not make the
problem numerically harder.

Finally note that the numerical computations could be performed
without explicit knowledge of the vector field in (3.2). This is explained
in [31] to which we refer for further details.

3.2. Problems with fixed initial and final ‘time’. A lot of prob-
lems arising in practice are of the following type.

D = Span(L Y1y - - ayqflv f(x7 Yy -y yqfl))

(3.4) o o
Bl:{xaﬂ 82:{:13b0

gl(ya"'ayqfl) =0 92(y)"'7yq71):0

%In [10] the authors remark that equation (3.1) admits smooth solution curves
implicitly given by an equation of the form F'(z,y) = c. However, this seems to be
incorrect, see figure 3.2.
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FiGURE 3.1. Differential equations (3.1) (on the left)
and (3.3) (on the right).

FIGURE 3.2. Solutions of the equations (3.1) (on the
left) and (3.3) (on the right) by the shooting method.
The solid lines are the first guesses and the dashed lines
the second iterations whose accuracy is already quite sat-
isfactory.

To analyse these problems in more detail let us first introduce some
notations. The (vector field spanning the) distribution naturally defines
aflow Rx J,_1(RxR") — J,_1(R x R"), but for the problems of this
type another flow is more approriate. Recall that J, (R x R?) ~
R x R™ and define ¢y : R x R x R — R™ as follows. Let 2, be
a parametrization of an integral manifold of the distribution in (3.4)
with parameter z which satisfies the initial condition z,(s) = p. Then
we define 9(z, s,p) = zp(r). Further if we fix the parameters we can
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define ¢°(p) = v(b,a,p). Note that ) and ° may not be defined for
all values of the arguments, but for simplicity of notation this is not
indicated. Let us further set

To={p€ J-1i(RxR") |z =a} ~R™

Hence ¢° : T, — T,. Now B, C T, and By C T, and they can be
identified with submanifolds M; and M, defined as

M; = {p € R"| gi(p) = 0}
Then we finally can formulate the existence of the solutions of problem
(3.4) with these terms.

Problem (3.4) has a solution if and only if there is p € My such
that Y2 (p) € M.

Let us consider the scalar second order case.

D= span(l, 1, f(z, 9, Z/l))

(3.5) o b=
Blz{xao Bzz{xb()

91(y,91) =0 92(y, 1) = 0
Let us further define the following sets.
Q= {peR| g >0}
Q_ = {p € R? | gy(p) < 0}

Then we can formulate

Proposition 3.2. Suppose that M; in the problem (3.5) are connected
and ¥° is defined for all p € R2. If there is p, € M; N Q. such that
Y(py) € Qp and p. € My N Q. such that Y2(p_) € Q_, then the
problem (3.5) has at least one solution.

Proof. Since M is connected, then by continuity there must be p € M;
such that ¥2(p) € M,. O

Of course this proposition admits an easy generalization to the general
case if one of the boundary conditions is one-dimensional. Note also
that the connectedness is no real restriction because we could examine
each component seprately as in the example below. In spite of the
elementary character of the above proposition we can in fact use it to
improve a result from [11]. Consider the following problem.

D= span(l, 1, f(=,y, Z/l))

Bl : 9 9 Bz : 9
Y-y +c=0 2y — 2yy1 +d =0

Here ¢ and d are arbitrary real parameters and the vector field V =
(1, u1, f(z,y, yl)) is supposed to satisfy the condition |f(z,y,y1)| < w
for (z,y,v1) € [0,1] x R? for some w > 0. In [11] it was proved using
degree theory that the problem has at least one solution. We shall
prove that
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Proposition 3.3. If ¢ > 0 and d < 0, then the problem (3.6) has at
least two solutions.

Proof. First let us note that because f is bounded )} is defined for all
p € R2. Let us further define the sets

M; ={(y,1n) €eR*|y; —y° +c=0}
Suppose that ¢ > 0 and d < 0, see figure 3.3. Let us denote the lower
(resp. upper) half plane branch of M¢ by Mg (resp. Mg, ) and the

left (resp. right) half plane branch of My by M{_ (resp. Mf,). Let us
define the sets

O ={(,n) ER’ |y > ty+1Vy?—2d}
Q- ={(y,y) ER’ |y1 < 2y +1y>—2d}

Let a > 0 and put p = (—a,va? —¢) € M{ . Then using this initial
point and taking a sufficiently big we have

yi(z) > y1(0) — / £ (&, y(t), 11(t))|dt > §a— wa
0
Similarly we get y;(z) < a + wz. Hence
y(z) = —a +/ yi(t)dt < —a+ az +  wa?
0

Thus y(1) < Zw and y(1) > 3 a — w which implies that ¢§(p) € Q4
for sufficiently big a.

Then taking still @ > 0 and using p = (—va? +¢,—a) € M{_ as an
initial point we easily deduce that

() = —a+ / " F(t y0), 1 (8) dt < —a + wa

Clearly y;(1) < 0 for sufficiently big a and hence 9§ (p) € Q_. By the
previous proposition we conclude that there is a p € My such that
Y5 (p) € MY, . Reasoning similarly with sets Mg , M{, and

Dy ={(y;) ER |y > Ly —L/o? — 2d)
D_={(yy) e R |y <ly—1\/2—2d

produces another solution. O

The same conclusion holds also in the limiting cases ¢ = 0 or d = 0.
For other values of the parameters the above simple argument does
not work because of the way the asymptotes of the curves happen to
coincide. This, however, is naturally not a generic situation, in other
words perturbing the coefficients of the equations slightly makes the
method of proof applicable. Recall that in [11] the degree of a map
associated to this problem was two, hence in a sense it is ‘natural’ that
there are (at least) two solutions.

Note that we needed only information about asymptotic properties
of the curves and hence the fact that the boundary conditions were
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FIGURE 3.3. The curves M} (solid line) and M, ? (dashed).

nonlinear was rather irrelevant. Also nonlinearities need not be poly-
nomial. For example consider the problem

D= span(l, 1, f(z, 9, 211))

(3.7) z=0 z=1
Bl : 9 BQ : 9
Yy —e¥r =0 297 +2yy1 —1=0

Then the same argument as above easily yields that the problem (3.7)
has at least three solutions.

The whole process can be interpreted as follows: in the beginning
some manifolds M; = ¢¢(M;) and M, intersect and we hope to find
‘natural’ conditions on the flow such that 1?(M;) and M, also intersect
for some values b # a. Hence it is seen that with different boundary
conditions we might require rather different conditions on the flow as
far as the direction is concerned. The conditions on the size are more
‘uniform’ because they are required to guarantee that the flow is well-
defined for the relevant values of the parameters.

As noted above the method of proof extends to the case when one
of the boundary conditions is one dimensional, because then the other
boundary condition separates the relevant space into different compo-
nents. In general one needs tools from algebraic topology to study the
intersections; this is beyond the scope of the present article.

Since the proof relies on asymptotic properties of the boundary con-
ditions, we cannot get any upper bound on the number of solutions.
Also the proof cannot be applied to the cases where at least one of the
boundary conditions is compact. In the next section we study one type
of problems where both boundary conditions are compact and hence
asymptotic properties do not play any role.

4. EXISTENCE THEOREM FOR A CERTAIN CLASS OF PROBLEMS

4.1. Linking number. We review briefly the basic definitions and
refer to [26, vol. 1] and [6] for more details. All manifolds in this
section are assumed to be connected, oriented and compact. Let M
and N be two m—dimensional manifolds and let f : M — N. This
induces a map between tangent spaces: df, : TM, — T Nyy,).
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Definition 4.1. Let z be a reqular value of f. The degree of f is
deg(f)= ) sign(det(dfy,))

pi€f1(2)

Note that regular values exist, by Sard’s theorem, that the sum above
is finite and that the result does not depend on the choice of the regular
value. Recall also that points not in the image of f are also called
regular values, and in that case deg(f) = 0.

Definition 4.2. Maps f, g : M — N are homotopic, if there is a
map h : M x [0,1] — N such that h(p,0) = f(p) and h(p,1) = g(p).
Two submanifolds are said to be homotopic if their inclusion maps are
homotopic.

We will need the following basic property.
Theorem 4.1. If f and g are homotopic, then deg(f) = deg(g).

Let M and N be manifolds of dimensions k and m — k — 1, let
f:M—=R" g: N—=R"and f(M)Ng(N) = 0. Let us further
define a map

a: MxN-—=S™t | apz)= —égj;:

where S™~! is the unit sphere of dimension m — 1.

Definition 4.3. The linking number of f and g is link(f, g) = deg(«).
If M and N are disjoint submanifolds of R™ we define link(M, N) =
link (i1 (M), i5(N)) where iy and iy are the inclusion maps.

Let hy (resp. hy) define a homotopy between f and f (resp. g and
g). Then from Theorem 4.1 we deduce

Theorem 4.2. If for allt € [0,1]
{hi(p,t)[p€ M} {ho(2,t) |z € N} =0
then link(f, g) = link(f, g).
We shall need the following simple consequence of this Theorem.

Lemma 4.1. Let M and N be submanifolds of R™ and suppose that
there exist r > 0 such that |p| < r for allp € M and |z| > r for all
z € N. Then link(M,N) = 0.

Proof. We can shrink M to a point with a homotopy taking the inclu-
sion to a constant map without violating the condition in Theorem 4.2.
But if f or g is constant then « cannot be onto. O

Evidently an analoguous statement is valid in the case M and N are
separated by a hyperplane. Note finally that two manifolds can be
nontrivially linked although their linking number is zero, see [6, p.
293] for an example.
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4.2. Main theorem. Let us consider the problem (2.4) where the
boundary conditions are compact, oriented and connected.

Theorem 4.3. If link(By, B2) # 0, then the problem (2.4) has at least
two solutions.

Proof. Let V' be the unit vector field such that

V, €Dy = Span(l, Yty Ygr, f(@y, . o yq_l))
Hence V is a vector field on J,_1(RxR"™) ~ R™ where m = ng+1. Since
V is globally Lipschitz we have the flow ¢ : R x R™ — R™ and the
corresponding one parameter family of diffeomorphisms 1! : R™ — R™
which are defined for all ¢t € R.

Take 7 > 0 such that |z| < r for all z € By U By. Now choosing
b=(1,0,...,0) or b =(—1,0,...,0) we have (V,,b) > 0 for all p € R™
and hence by Lemmas 4.2 and 4.3 below for any p € B there is ¢; and
an open neighborhood U, of p such that [¢% (z)| > r for all £ > ¢} and
for all z € U,. By compactness there is a finite subcover

j
B C U Ul

i=1
Defining t* = max; 5 we have [¢)" (p)| > r for all ¢ > ¢* and for all
p € B;. Now ¢ : [0,t*] x R™ — R™ defines a homotopy between
B, and ¥* (B;). By Lemma 4.1 link(¢)*" (B;), Bo) = 0 which implies
that the condition in Theorem 4.2 is violated. Thus there is p € B;
and t € [0,t*] such that ¥ (f,p) € B,. Reasoning similarly with —V
produces another solution. O

Lemma 4.2. Let V be a unit vector field on R™ and suppose that
there exist a unit vector b such that (V,b) > 0. Then for any r > 0 and
p € R™ there exists t, such that |%(p)| > r for all t > t,.

Proof. Suppose on the contrary that there exist a sequence {t,} with
lim,, .o t, = oo such that |y (p)] < r. Passing to a subsequence if
necessary there is thus z such that lim, .. %' (p) = z. Let us prove
that in fact lim; .o, 9% (p) = 2. Let p, = ¥ (p), consider the interval
[tnathrl] and let 0 S h S tn+1 - tn Now |¢h(pn) _pn| S |pn+1 - pn|
because

() = Pal = [(0*(P) — P, b)| = / (V (6 (pa), bYds > 0

and hence [¢"(p,) — pn| is a monotonically increasing function of h.
This implies that

W)h(pn) - Z| < |pn+1 _pn| + |pn - Z|
Hence for any ¢ > 0 there is n such |f(p) — 2| < e for t > ¢, or in
other words lim;_,, ¥*(p) = 2. Now taking any fixed h > 0 we have

¢ = lim ¢ (p) = lim 4" 0 y'(p) = wh(tlgrgo wt(p)) = y"(2)
But this is impossible because V' (z) # 0 and hence ¥"(z) # 2. 0
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Lemma 4.3. Let V satisfy the hypothesis of the previous lemma, let
p € R and |p| < r. Then there is an open neighborhood U, of p and
ts such that ()| > r for all z € U, and t > t;.

Proof. By the previous lemma there is } such that [1)% (p)| > 6r. Then
given ¢ and taking U, sufficiently small we deduce by the continuity
of ' that |[¢%(z)| > 6r — ¢ for all 2 € U,. Shrinking U, further
if necessary we also have |z — p| < . Recall that |¢*(z) — z| is a
monotonically increasing function of ¢. Hence taking any ¢ € R" with
lc| <7 andt > t; we get the following estimates

[9'(2) — el 2 [9'(2) =2 = |z —c| 2 [9%(2) — 2| = [p—c| — ¢
> [ (2)] = |2l = Ip—¢| =€ = 6r — |p| = |p— | - 3¢
>3r — 3¢
Hence |9%(z) — ¢| > 2r which implies that [¢!(z)]| > 7. O

Note in particular that there are no growth restrictions on f. In-
tuitively the reason is that the solution is found before the integral
manifolds can escape to infinity, hence the asymptotic properties of
the integral manifolds or f do not play any role.

In the problems we have in mind the manifolds will be defined as
zero sets of some maps. For these manifolds the orientability is no
restriction because of the following result [6].

Theorem 4.4. Let k < n, let zero be a reqular value of f : R* — R¥
and let M = f~(0) be nonempty. Then M is an orientable submanifold

of R*.

Of course the connectedness is not really a restriction either because
one could simply examine each component of the boundary conditions
separately.

As an example of the application of the theorem consider the follow-
ing problem.

/

D= Span(lvyh 100 Yy + _x - 11_2)

‘ 2y + 2% =0
By : 2 1,4 2 o _
yi +2xy + 52ttt —2=0

y—222+1=0
B, : 2 4 2
y; — 8xyy + 8z + 162 +8x — 8 =0

\

This problem is the Euler equation for the variational problem

b
I = [ Ly u)da
where L is given by
L(z,y,11) =35 — %(«'L‘ +2xy+£x+4)y1 —

1 4 4 601
8 t5 Y52 — 5l —5T syt
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and (a,y(a)) (resp. (b,y(b))) is constrained to lie on the curve 2y+a? =
0 (resp. y — 22z®> +1 = 0). The other equations in the boundary
conditions are the transversality conditions [12]. In this case the Euler
equations turned out to be linear, but it would be easy to construct
similar examples with nonlinear Euler equations.

Here boundary conditions are one-dimensional closed curves, see fig-
ure 4.1. In other words they are knots (or to be more precise they are
unknots!) and the link is the simplest possible nontrivial link, called
Hopf link. In this case there are various other ways to define the link-
ing number than the one given above. In [23] there are 7 alternative
definitions which are all equivalent to Definition 4.3 (at least up to
sign), but of course in a specific situation some might be much more
convenient than the others to work with. Anyway not all of these def-
initions extend to the many dimensional case which mainly intrests us
here. The discussion of how to actually compute the linking number in
various situations would lead us into the realm of algebraic topology,
and is beyond the scope of the present article.

Theorem 4.3 admits the following straightforward generalization.

Corollary 4.1. Suppose that 7] | : Ry — Jo—1(€) is a diffeomor-
phism and let M; = =}_,(B;). Suppose further that g; in (2.5) do
not depend on the highest derivatives. If link(M;, Ms) # 0, then the

problem (2.5) has at least two solutions.

Proof. Now dr | : (TR,), — (TJg-1(E))az_,n)
hence there is a bijective correspondence between the integral manifolds
of D and dm]_, (D) Further from the hypothesis it follows that B;
(resp. M;) satisfy the conditions of Definition 2.3 for the original (resp.
projected) problem. Hence by previous Theorem the projected problem
has at least two solutions. Lifting these integral manifolds to R, by

(wd_,)~" provides then (at least) two solutions to the original problem.
U

is an isomorphism,

For example the following scalar equations verify the hypothesis on the
projection.

y2+yq+f($aya"'ayqfl):0

eXp(yq) + f(xa Yyeony yq—l) - 0

Note that in the latter case the map «} ; : Ry — J,_1(£) is not
surjective.
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