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1 Introduction

Consider the fixed point problem x = Ax + b, where A is a bounded linear
operator in a separable complex Hilbert space H. This problem can be solved
iteratively by applying some Krylov space method, e.g. GMRES. In [7] it
is shown that for operators with meromorphic resolvents the convergence of
GMRES is related to the growth of the resolvent of A. The growth of the
resolvent (1 — zA)™! is measured by a function

Too(r, (1 —2A)71),

which is the straight forward generalization [9] of the Nevanlinna character-
istic function [13], [14], used to measure the growth of scalar valued mero-
morphic functions. The function Ty (7, (1 — 2A) 1) consists of two parts:

Too(r, (1 —2A)™") = Noo(r, (1 — 2A)™) 4+ meo(r, (1 — 2zA)™H),

where N (r, (1 — 2A4)7!) is determined by the spectrum of A alone, while
Moo (T, (1 — 2A) 1) contains the nonspectral information. For bounded, self-
adjoint A with a meromorphic resolvent it has been shown in [9] that

Meo(r, (1 — 2zA) 1) < log 2,
in which case
Too(r, (1 — 24)™") = No(r, (1 — zA)™H) + O(1).
On the other hand, it is not difficult to give examples of operators such that
Noo(r, (1 = 24)™1) =0

and
Too(r, (1 — 24) 1) = mgo(r, (1 — 2A) 1),

see e.g. [4] and Section 6 in this paper. To gain further insight as to how
Too(r, (1—2A)™") grows for different A and how this growth is divided between
Nyo(r, (1—2A)™") and me(r, (1 — 24)71), we have studied here a number of
examples and answered this question in these cases.

This work is motivated by the desire to understand the convergence behavior
of iterative methods. In practice the problems that are solved are finite
dimensional. However, the number of iteration steps we can afford to take is
small compared to the size of the problem. So though the iteration always
terminates in a number of steps less or equal to the dimension of the problem,
this is something we do not expect to witness in practice. Therefore it is
reasonable to discuss the more general case of infinite matrices. This way
we get a better picture of the behavior of iterative methods. In particular
we get a clear picture of the asymptotic behavior of the iteration error, as
termination at the point where the iteration step equals the dimension of the
problem does not occur.



In Section 2 we introduce the generalization To (7, F') of the Nevanlinna char-
acteristic function and state some of its properties. In Section 3 we formulate
a class of model problems, for which we estimate N (r, (1—2A)~!) in Section
4 and muo(r, (1—2A) ') in Section 5. We discuss an example which does not
fit our class of model problems in Section 6. Finally, in Section 7 we present
some numerical experiments. The results of this work are summarized in
Section 8.

2 The Nevanlinna characteristic function

Consider now the operator valued function
F:z— F(z)
in a separable Hilbert space H with the norm || - ||.

Definition 1 A function F(z) is called meromorphic for |z| < R < oo if
around each zy in |zg| < R < oo it has a representation of the form

F(z)= > Fi(z—2)". (1)
k=—h
Here Fy, 1s a bounded linear operator in H and F_p, is nontrivial. If —h < 0,
then F' has a pole at zy of order h, otherwise F' s analytic at zy. If F 1is
analytic in the whole complex plane, it is said to be entire.

Rolf Nevanlinna [13], [14], introduced in 1925 a characteristic function 7'(r, f)
to measure the growth of meromorphic functions. This can be generalized to
operator valued functions. The obvious way is to replace the absolute value

by the norm of the operator valued function. This leads to a generalization
denoted here by T (r, F') [11], [12], [9], [7], defined as follows:

Definition 2 Let F(z) be a meromorphic operator valued function as above.

Denote h(z) := max{h,0} and define
Neo(r, F) := > h(b).
o] <r
Thus ne counts the poles in {z | |z| < r} together with their orders. Fur-

thermore define

! F) — F
Neo(r, F) ::/ neo(t, F) tnoo(O, )dt+noo(0,F) logr
0

and . .
Meoo(r, F) := 2—/ log™ || F(re™)||de.
T )

Finally define
Too(r, F) = Moo (r, F) + Noo(r, F).



If F is an entire function, then the growth of F' can also be measured by
looking at the maximum modulus

My (r, F) := sup | F(2)].

2|=r

When no confusion arises, we write Too(7), Moo(7), Noo(r) and My (r) for
Too(r, F), Moo(1, F), Neo(r, F') and My (r, F) respectively.

Definition 3 Let F(z) be a meromorphic operator valued function for |z| <
o0. The function F is of Nevanlinna order w and (if 0 < w < o0) of Nevan-
linna type T where
, log Too(r, F')
w :=lim sup ———=
r—o00 logr
7:=lim sup r “Tuo(r, F).
r—00
Similarly, let F(z) be an operator valued entire function. Then F(z) is of
order w and (if the order is positive) type T, where the order and type are
defined as follows:
) loglog My (r, F)
w := lim sup
r—00 10g r

7 := lim sup r “log My (7, F).

r—0Q

With a slight abuse of language we say that in the above case Ty (7, F') grows
with order wye, and type Tmer, and My (r, F') grows with order w and type
7. Furthermore, we sometimes wish to distinguish between the growth of
Nyo(r, F) and me(r, F). Then we say that N (r, F') grows with order wy
and type 7y, where
log Noo(r, F
wy = lim sup og—(r)
r—oo  logr
Ty = lim sup r ¥ Ny (r, F),
r—0o0

and mey(r, F') grows with order w,, and type 7,,, where w,, and 7, are ob-
tained by replacing N by m in the expressions above.

For an entire function the growth of T (r, F') and My (r, F) are related in
the following way [7], [15, pp. 181-182].

Theorem 1 If F(z) is an operator valued entire function, then its orders as
an entire and a meromorphic function are equal: Wyer = w. Furthermore the
types satisfy the following inequality:

Tmer < T < (2w + 1)eTper-

Moreover, the order and type of an entire function can be read from the
decay of the coefficients of its power series representation:



Theorem 2 Assume F(z) =Y o, Fiz* is entire of order w. Then

w = lim su .
k—o00 P ]og —

If F(z) is of finite positive order w and of finite type T, then

1
ew

T= |“/k.

lim sup k|| Fy|
k—o0

For a proof modify that of the scalar case in e.g. [1, pp.9-12].
Finally, it is easy to show that the following holds:

Lemma 1 Let F' be an entire function such that F(z) = G(|z|) for some G.
Then

Meo(r, F) = log™ M(r, F).

3 Problem formulation

Let A be a bounded linear operator in a separable Hilbert space H. Then
A admits a matrix representation. Assume there is a bounded S with a
bounded inverse S~! such that B = SAS™!. Then

(1—2A4)" =8 (1-2B)S,

and it is easy to see that the growth of the resolvents of A and B are related
in the following way:

Theorem 3 Assume there is a bounded S with a bounded inverse S~ such

that B = SAS™'. Then
1

K(S)

Furthermore,

11— 2B)7H < l(1 = zA) 7 < s(S)I(1 = zB) 7. (2)

Noo(r, (1 = 2A)™") = No(r, (1 — 2B)™Y),

while

Meo (7, (1—2B) 1) —log™ k(S) < Meo(r, (1—2A) 1) < Mmoo (r, (1—2B) H+log™ k(S).

Let us introduce the following model classes, which are motivated by the
Jordan canonical forms of matrices. Note, that for infinite matrices not all
operators can be transformed into an operator belonging to one of the model
classes, which, nevertheless, provide interesting examples to study.



Assume first that A is diagonalizable in the sense, that there is a bounded
S with a bounded inverse S~! such that SAS™! = A, where A is a diagonal
operator the diagonal elements of which are the eigenvalues \; of A. Then

1
1—2A)"Y= —————
0= 287 = o

SO
1 1

£(S)inf; |1 — z)|

1
i]flfj |1 — Z)\]|

< 11— 24) 1] < &(S) (3)

Assume now that there is a bounded S with a bounded inverse S~! such that
SAS~ = J, where J = diag(J;) and J; are Jordan blocks, each of dimension
dim(J;) = d;. We have

1
— (1 =zD)7Y < ||(1-z4)7Y < 1—2zJ) ! 4
5(5)”( ) <= 2A) 7 < k(SA = 2J) 7, (4)
where
(1= 2J) 7 = sup [|(1 = 2J;) 7. (5)
J
For all j
1 1—_22)\]' Tt (1—_22)\]' )dj
(1—2J;)7" = - B
l—z)\j

is a Toeplitz matrix so we know that

J

d; d;
1 ! z 1 z
- 2k < ||(1—2J)7 Y < — k. 6
2 T, S 0 s ) I (6)

k=1

Now if the dimensions of the Jordan blocks are not bounded, i.e. there exists
Nno dpqe such that sup; d; < dyag, then the resolvent of J is not meromorphic
in the whole complex plane, see Section 5.2.1. It is natural to look at a slightly
different model class. Namely, let J = diag(J;), where dim(J;) = d; and J;
is defined by



where 2; = £;2. Now

1 25
| |2’“<||(1—zJ) < = —I=*. (8
|Zg| Z — |j|kz:; 1 =2
Furthermore note that
d; R R 1—| Zj |d,-
>l = (9)
Pl LY 1=2 1- |5

We assume in Sections 4 and 5 that there exists a bounded S with a bounded
inverse S~! such that A = S~1JS, where J is as above. In practice it is not
realistic to assume this form to be known. For analytical purposes, however,
this is a enlightening form to look at. The choice of the ¢; in J depends on
the choice of S, which of course should be made so that x(S) is as small as
possible. Consider the following example.

Example 1 Assume
A=S571JS, J=diag(J))
where J; are the Jordan blocks, dimJ; = d;. Fix a sequence {¢;}. Then
Ji =TTy,

where J; are as in (7), dimJ; = d;, and

T; = dz'ag(s;-lrl, 8;_1,-72, .. 1).

Now
A= (TS)'J(TS),

where J = diag(J;) and T = diag(T}). In this case the sequence {;} should
be chosen so that k(7'S) is as small as possible.

4 Estimating N (r, (1 —zA4)™1)

Let A be an operator, for which there exists a bounded S with a bounded
inverse S~! such that
A=S5"1JS,

where J = diag(J;), dimJ; = d; and J; is given by (7). Let the eigenvalues
of A satisfy



The pole z, = 5= of the resolvent is inside the disk |z| < r when
" \1/a
Zn|l = (== <r
that is, n < 7or®. So the number of separate poles in the disk |z| < r is
| For?].
Assume that the dimension of the j* block jj satisfies

d; = aji®, a,b>0,

then
o (1=2A)H = d; ~ - blj = — 2 (7or@)btt
el (L)) = D [ 0 = )
and ("")b-l—l
Nyo(r, (1 —zA)™) =~ ATW) e+

If Too(r, (1 — 2A) 1) is of finite order, then we must have @ < oo and b < oo,
for the order of T, (r, (1 — 24)7 1) is greater or equal to that of Ny (r, (1 —
2zA)™).

In fact we have the following.
Theorem 4 Let the eigenvalues of A satisfy
aj P <A < agj ™

for some a1, az, b1, B2 > 0 such that By < By and if B1 = B2 then an < .
Furthermore, let the dimension d; of each block J; satisfy

arj” < d; < azj”

for some ay, as, by, by > 0 such that by < by and if by = by then a; < a,. Then
Neo(r, (1 — 2A)™Y) grows with order w and type T, where

bl—|—1< by +1

B2 s B
and - by
a1 3 a252 <r< as lﬁl
(by +1)2 (by +1)2
Remark 1 Note that L
N = () =0y

where a = (@)% and 8 = 1/@. Throughout this text we use both represen-
tations.

The growth of Ny (r, (1—2A) ') is easily determined in the above cases. But
what can we say about that of mu(r, (1 — 24)™1)?



5 Estimating mq(r, (1 — zA)™)

5.1 Dimensions of Jordan blocks are bounded

Assume that the dimensions of the Jordan blocks are bounded, so that
dmaz := sup; d; < co. Then by (6)

1 |k -1 d; |k
— < (1 — ; < S P
12%}511- |z||1—z)\j| < M =2J5) _12}2}2,- |z||1—z)\j|
so by (5)
sup | | < (1 —2J)7Y| < sup dmaa max | z ¥
; N T 2] ask<d 1 — 20
Note that as long as |1—2>\j| > 1 it is true that
Lk _ 4 % (dmas
1@%}§j|1—z/\j| |1—Z)\j| _|1—Z)\j|
On the other hand if |1_Z2Aj| <1 then
1 + kzl + Z :1 +#dmaz:0
08 1@%}51]- 1—2/\]'| 08 |1—Z)\j| 08 |1—Z)\j|
So for all z
z z
| + k:l +7dj<1 +]__ %  |dmaz
8 1I§I}czi§j|1—z)\j| 8 |1—z)\j| =08 |1—z)\j|
Thus, for |z| > dpa, we have
1 + < 1 + 1 _ J -1 < 1 + # dmaz
suplog” || < log" (1= 2)"!|| < suplog” |-
and
o [ logtla e de < e [Tt T
2 ), - 2 J, inf; |1 — reiv )|
< dm‘”;/wloJr L dy + dpag log T
- 2 /., & inf; |1 — re@),| P Gmaz 0BT

So we have the following.

Theorem 5 Assume that A can be transformed into Jordan form J = diag(J;),
where J; are the Jordan blocks, each of dimension dim(J;) = d;, and dpep =
sup, d; < oo. Then for |z| > dmas

d T 1
wo(r, (1—2A4)7h) < 22 log™ . dp+dmaez | log™ k(S
Mol (1-2A) ) < gt [ dogt A logrlog” K(S)

-

and

Mo, (1= 24)7) > o / log* dp — log* #(S).

TJ x inf; |1 — re® )|

10



Our problem is reduced to finding estimates for

1 [7 1
— log™ . d
27 /_7r ©8 inf; |1 — retv )| 4

We do this for two special cases.

Case 5.1.1. If the spectrum lies on the real axis then
inf |1 — e’ )\;| > inf |1 — re"’ | = |si
inf |1 —re™A;| > inf [1 - reA] = |sin |

SO

1 ™ 1 1 ﬂ- 1
il logt . dp < — 1 dy = log?2
2 /_ ©8 inf; |1 — re® )| =0 /_7r o8 | sin | v=08

and
Meo(r, (1 — zA)’l) < dmas(log2 +logr) + log™ K(S).

Case 5.1.2. If the spectrum lies on the lines [ = {2 | 2 = re%, r € R},
k=1,...,K, then

1 1 1
supi_ sup—————— = » ————
|1 — rei? )| %:Aelk |1 — ret? )| Ek: | sin(p + ;)|
SO

1/ﬂ1 Z / dp = K log2
— 0 ———dp=Klo
27 | g' inf; |1—rew)\| de < |sm <p+9k)| ? &

™

and
Moo (T, (1 — zA)_l) < dmaz (K log2 +logr) + log™ k(.9).

So we have the following.

Theorem 6 Assume that A can be transformed into Jordan form J = diag(J;),
where J; are the Jordan blocks, each of dimension dim(J;) = d;. Assume fur-
thermore that

1. dmaq :=sup; d; < oco.

2. the spectrum of A lies on K lines I}, of the form I;, = {z | z = e r €
R},

Then
Moo (r, (1 — 2A)™") < dppae (K log 2 4 logr) + log™ k(). (10)

This means that the term mq(r, (1 — zA) 1) does not affect the type nor the
order of the function Th(r, (1 — 2A4)71).

As discussed in Section 5.2.1, the violation of the first requirement leads to
operators the resolvents of which are not meromorphic outside the unit disc,
in which case the function Ty (7, (1 — 24)™1) no longer is a useful tool. Nu-
merical experiments presented in Section 7 show that the second requirement
is not essential.

11



5.2 Dimensions of Jordan blocks are not bounded
5.2.1 The resolvent of J is not meromorphic outside the unit disc

From (6) we have
|d

|1 2z

| ]|
AT =zA 0 1|

dj < 1—z2J;)
o wREI (G

1—2)\]‘

To get a lower bound for the norm of the resolvent of J we need an estimate
for .

inf |—e™% — \;|%.

ir

Assume that

TO 45
A= ()M
J
and that
dj = ajb
for some 0 < @, 7,a,b < co. Now
~~ 5
et — (TRt = (2 pete(Z2a)”
r J J
B ( |(1 ztp(Tw)l/w )n|)an£zb—1
rn n
where n = /% which tends to infinity as j — co. Now as n — oo
(1- ret? (7o)'@ . et (F0)1/
n
and . Vi
K3 = w
|(1_7-et,0(7- ) ) |_>e 7 cos (7@ )l/w’
n

which for any r > 0, ¢ € [—7, 7] is bounded from above and below by

1/

e—r(ﬁb)l/‘:’ < e—rcosgo(,}:&v))l/d; < er(?d))
So for large n and r > 1
1 @(Tw)l/(b n an®t~1 e—rcosga(id’;)l/@ an@b—1
(Hlo-"—=)" & ()
n r
Ifbo > % then clearly this tends to zero as n — oo. On the other hand if
0 < @b < 1, then this can be written as

l/wanwb—l

e~ T cos p(7@)
(——=
Here as n — oo the denominator tends to e = 1 and the nominator tends

to infinity, so again the above expression tends to zero. So we have the
following.

12



Lemma 2 Assume that

and that

for some 0 < ©,7,a,b < co. Then for r > 1

1 .
inf|—e™% — )\;|% = 0.
J T

But this means that the norm of the resolvent of J is not bounded outside
the unit disc, and indeed that the resolvent is not meromorphic outside the
unit disc.

5.2.2 Estimating m.(r, (1 — 2J)™1)

Now let J = diag(J;), where J; is given by (7).
If \; =0 for all j then (9) together with (8) yields

1 — |24 o 1—|2]%
Sup e S 1_ZJ Ssupi/\
A Topgp S M0 < s
SO
1 — (e.7)2d; 3 1 — (e.r)d
sup &)2] < (1 = 20) Y| < sup 1-(gm)%
j 1—(6_7‘?") j 1—6_7'?"

We have Ny (r) = 0 and

1 1— (g;7)%% = 1 — (gjmr)%
“logtsup —— 2L < moo(r, (1 — 2J) 1) < log* sup ——22
ylog"sup T s = m (r,(1—2J)") <log sup

1,(51.7.)4]‘
1—gjr

So we need estimates for sup;

Let us first assume for simplicity that ¢; = 1/j and d; = j. We need an
estimate for sup;_; o _f(j), where

L 1=(5)
FU) ===
J
Proposition 1 Let f(j) = 11@]. Then for r > 2e
J
r/e _ 1 r(1+1/e) _ 1
e e
< )< —
e—1 —fglff(])— e—1

13



Proof. First of all

1o
j
so f'(j) > 0 for j < I. So the supremum is achieved with some j > T, and
r/e _ 1
r e
NS Ty
sgpf(J) > ) =1
which gives the lower limit. Now for 7 = ¢r, ¢ > 1 we have g = % <1 and
1 c
N _ ‘
F) = 1= A
Now if r > C'e where C' > 1, then
C ef’le — 1

<
c—1 e—1

holds for ¢ > ZT§Z:2’ and therefore it holds for ¢ > 3311 > ZT§Z:2 So for

r > 2e we know that for

e2—1 1
c> — =1+ -
ez —e e
it is true that
C er/e — 1

< .
c—1 e—1
Therefore we know that for r > 2e the supremum of f(j) is obtained on the
interval j € [£,r(14%)] =: I,. So

. . T . e'r(1+1/e) 1
sup £(j) = sup £(j) = sup 3 (%) < =
j>1 jel j€l =g J =0 e
which completes the proof. O

Corollary 1 Let J = diag(J;), where J; s given by (7). Assume \; = 0,
e; =1/j and dj = j. Then muo(r,(1 — 2J) ') grows with order w = 1 and
type 7, <7 <141

Numerical estimation gives mq.(r) &~ cr where ¢ ~ 0.37 ~ 1/e so the lower
limit seems to give the correct behavior.

]

A similar argumentation is valid also if £; = 57 and d; = aj°.

Proposition 2 Let \; =0, ¢; = vi~% and d; = aj®. Then for sufficiently

large v
eclrb/zs . 1 ecrzrb/S _ 1

G S Sjglff(]) <1

14



where

and

We know that for » > %65/1)

b/8

da rb/é
1/6 e s / -1

. ()
sup f9) = - G) = —am

b/s
So for r > (- 2;*/5)5/1’ we have ‘MZ—erb/‘s > 2% and

b/s

ay” rb/o
e —1 - c
ed/b — 1 c—
holds for
6a1b/‘5 rb/s
e —1
c>

sayb/9
e Ze rb/& — e&/b

and therefore it holds for
29/ _ 1 1 ZR g

> = 14— > :
ed/b(ed/b — 1) ed/b e&azz/ /5 /b

So the supremum is obtained on the intervalj € [1, (14 5%)r)"/?]. Moreover
one can show that f'(j) > 0 for j < l/b (yr)'/% so in fact the supremum is
obtained on the interval

. 1/6 71/6 1 1/6
Jj e [01?“ yer =11, ¢ = Y = ((1+ m)) .
Therefore
ajb—1 yr acy bpb/d_q o7 egacg rb/é 1
. . k k —
su =su =su — )" < - ) =
jZIIJf(J) jellzf(J) 1P k}%(]é) ;; (c‘{r) T

Corollary 2 Let J = diag(J;), where J; is given by (7). Assume \j = 0,
gj =i and d; = aj®. Then moo(r, (1 — 2J)7 ') grows with order w = %

and type 7, C1 < 17 < Cy, where C1 and Cy are as in Proposition 2.

15



When A; # 0, things get slightly more complicated. First of all, we need the
following lemmas.

Lemma 3 Let \; € R and 2 = rel. Then

1 - 1
sup < — .
i 11— X2 7 [sing]

Proof.

11— Ajz| =1 = \jre?| = |e ¥ — \jr| = \/(cosgo — \jr)2+sin® ¢ > |sing|.

O
Lemma 4 Let \; = aj P, &; = vj7°

and d; = aj®. Assume furthermore
that § > 3. Fiz M > 1 and let j > max{1, (M~ + a)r)*/8.} Then

R w
11— )z 1_|1ijzz)\j M —17|sing|

Proof. That j > ((M~v + a)r)"/# implies £* 4+ 1 < i—ﬂ SO
My 1

M '/8 .ﬂ ',8
55 < 7<‘7——1<j——cos90: (‘7——cos<)0)2
a jo- a ar ar ar
8
< \/(‘7— — cos )% + sin® .
ar
Therefore

i3
Mlejz| = M~j°r < ajﬁr\/(J

“— —cosp)? +sin® p = |1—aj’ﬁrei‘p| = |1—z)|,
ar
and furthermore
ezl _ 1y
so finally we have
TR el P vl 1 1
11— Xz 1_|1j]zz,\,- |1—/\jz|1—|1f’z)\]_
1 1 M 1

< )
1—Xjz|1— 4 (M—1)|sing0|
where the last inequality follows from Lemma 3.

O
Lemma 5 Let \; = aj P, &; = vj7°

and d; = aj®. Assume furthermore
that § < 3. Fiz M > 1 and let j > max{1, (M~ + a)r)'/°.} Then

1 1= M1
1= Xz] 1= 525

( a—
= M — 17 |sing|

16



Proof. That j > ((M~y + a)r)'/? implies j° > ar(2L 4+ 1) so (as j > 1)

M M I
L+] (ﬂ7‘5)<7—+1<—j‘s
o o ar

and furthermore

M 1 1 1
T < = - 1< — 5 —cosg < \/(—j" — cosp)? +sin’ g,
ar ar ar

and the rest follows as in Lemma 4.
O

Proposition 3 Assume \; = aj ™, ¢; = vi~® and d; = aj®. Fix M > 1.

Then

sup f(j) < —“(”W”(H( Lyl (11)

[sing \ " \[singl

where p := min{ﬁ, 0} and ¢ := M~ + a.

Proof. Choose r such that a(cr)®? > -M- and cr > 1. Then by Lemmas 4
and 5 we have
M 1
) < for j > (cr)”. 12

Consider now j € I,, where I, := [1, (cr)/?]. We have

el _ ot i
11— Xz|  |1—ajPrev| |e7¥ —aj=fr| = |sing
S0
a(cr)b/P—1
. 1 I \k
1) = |1—)\Z|Z|1—/\z ~ |sing| kz% (|sing0|)
b/p
< U a1, (o yeter 1y
| sin | | sin ¢
a(er)” I yaer)/o=1)
| sin | | sin ¢

As a(er)b? > M_ (12) guarantees that sup,.; f(j) = sup;-, f(j), so the
M-1 JELy j>1

above yields (11).
O

Corollary 3 Let J = diag(J;), where J; is given by (7). Assume \; = aj P,

e;j =vj~° and dj = aj®. Then the order Wi 0f Meo(r, (1 — 2J)71) satisfies

b
wm<_a

where p ;== min{3,}.
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Corollary 4 Let J = dz’ag(jj), where jj is given by (7). Assume \; = aj=P,
e; =77 % and dj = aj®. Then for B > § mu(r, (1 — 2J) 1) grows with order
b

Wm =

Proof. That w,, < % follows from Corollary 3. Choose § < u < [ and
choose 7 such that (cr)/# > 1. Let J := (cr)*/*. Now

1 VI e
)2 f() > =S|
i‘;‘fﬂj)—ﬂ )_W |1—aJ—ﬁre‘¢|
and
5 —0 41
e El e P
1—aJBreée' = "1+ aJBr' 1+d7‘u_ﬂ

where 4 = y¢ 7/# and & = ac B/*. So

p—0e
. u=s
sup f(j) > TrETH|LHM;|a(cr)b/M
5=l v 1+ ar =
and -
Ar = .
a(er)?#log® | ———| < log" |yr # sup f(4)]
1+ar« j=1
Finally
1" '
. Arw L u=s
mao(r) = 5 [ Jog" sup £(7)ldp > aler)*log" |-y | - log" 415
2 J & 1+ ar »

holds for all x such that 6 < p < 3, which shows that the order w,, of m(r)
satisfies w,, > g. O

5.2.3 The main result

Let us summarize what we’ve learned in the following theorem.

Theorem 7 Let J = dz’ag(jj), where jj is given by (7). Let \; = aj?,
g; =777 and d;j = aj’. Then Ny (r,(1 — 2J)7") grows with order wy and
type T, and moo(r, (1 — 2J)™Y) grows with order wy,, and type T.,, where

b+1 W <
WN = ——,
ﬂ Wm =

for B <,
for B> 6.

SOiSaey(S

So for 0 > ﬂb%l

while for § < ﬁbJ%l
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6 A nonnormal example

Transforming A into Jordan form is not a good idea if the condition number
k(S) of the transformation matrix S is large, for in such a case (4) does not
give any information. In such a case it is useful to look at the resolvent itself.
Consider the following example.

Let D be the unit disk in the complex plane and let A(D) denote the set of
analytic functions in ID. Let H? be the Hilbert space

H?:={f € AD |Zakz =f(2), Y lal* < oo},

equipped with the inner product
1

(f.9) = Zakz Zbkz = axby = o f( )g(w) dw

and the norm induced by the inner product. Consider the integration oper-
ator

that is
00 [es) a .
Vv apz® —

So integration in H? corresponds to operating with W in /5, where the op-
erator W is defined by

0
10
1
W= 2 0
1
3
The resolvent of W is
( 1
z 1
22 2
g oz !
Q-zw)y't=| s 5 1

8,
E

\

where the it" subdiagonal contains the terms

24k —i)!

o k=il
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It is entire in z. The resolvent has no poles, so Nyo(r) = 0 and T (r) =
Meo(T).

Theorem 8 The resolvent of W is entire of order w =1 and of type 7 = 1.
Proof. First take the absolute value of each term of the resolvent matrix;

notice that the elements of the matrix thus obtained decrease along each
subdiagonal:

) LS ) L p ,
Denote by 7' the corresponding Toeplitz matrix

1
z

o ——

2

[2[*

S

Now it is known that the norm of a Toeplitz matrix is less than the sum of
the absolute values of it’s first column. We are interested in the norm of the
resolvent. But clearly

) E
11— =) s < Tl < 30 B = e,
k

So the order and the type of the resolvent satisfy

On the other hand, choose v = (1,0,0,0,...)" to get

B B |Z|2k
(1= 2W) 75 = (1= =) Moll5 = E >zl
) k

k

where for even £ (use Stirling)

S~ s = (O
((k/2)!)? ((%@)k/z)z TNk

ap =

and as by Theorem 2 the order and the type can be read from these coefhi-

cients: ew
aj ~ (T)k/w

we have for the type and the order of the resolvent squared

w>1 7>2
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But f2(r) ~ ™™ implies that f(r) ~ eT™ | so the order and the type of
the resolvent satisfy

O

Theorem 9 T, (r, (1—2W)~1) grows with the same order and the same type
as Muyo(r, (1 — 2W)71):

Wmer = W,  Tmer = T.

This follows from Lemma 1 in Section 2.

7 Numerical experiments

In the following we shall present some numerical examples, which illustrate
the behavior of T (7, (1 — 2A4)™"), Noo(r, (1 — 2A)™) and muo(r, (1 — 2A4)71)
for different A. Here A belongs to one of the model classes discussed in
Section 3, so it is block diagonal, where the blocks are of form A;, J; or jj,
where

J

Aj

and J; = jj with ¢; = 1 for all j. The dimension of the blocks are d; in
each case. Note in particular that the condition number of the transformation
matrix £(.5) does not appear in these examples. The numerical computations
are actually done for submatrices of the infinite matrix A.

In the following we shall write Too (1), Neo(r) and muo (1) for T (r, (1—24)71),
Noo(r, (1 — 2A)™1) and me(r, (1 — 2zA)™!) respectively. We always plot
log Too(7), logmeo(r) and log Noo(r) as functions of logr. If T (r) grows
with order w and type 7, then Too(r) ~ 7r% and log Too(7) ~ log 7 + wlogr,
so the order w equals the slope of log To, (). We use solid, dashed and dash-
dotted lines for log T (1), log meo(r) and log Nuo(7) respectively. Instead of
plotting the eigenvalues A; of A in the complex plane we frequently plot the
poles z; = 1/\; of the resolvent (1 — zA) L.

Case 7.1 Figure 1 illustrates the effect of the length of the Jordan blocks.

Here A = diag(J;) and the eigenvalues of the matrix A are \; = (FJ—.‘E)I/‘:’

where 7 =1, 0 = % In each subfigure the dimension d; of the Jordan blocks
Jj is a different constant: d; = d = 1,2,4,5 in figures (a), (b), (c¢) and (d)
respectively. The longer the Jordan block, the longer it takes for N (r) to
exceed mqo(r), but eventually this will happen and for large enough r it is
true that Te (7) & Neo(T).
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Case 7.2 Figure 2 shows that it is not essential that the eigenvalues of A be
on a finite number of lines for mq(r) to be bounded (see Theorem 6). Here
A = diag();) and the eigenvalues of the matrix A satisfy

/\4jfk = (%)2(3@’%1, k’ZO,...,?), j = 1,2,...

In the first case oy ; = k%, 80 @ j = @rn. In the second case ¢ ; = k5 + ¢,
where ¢ ; = @mpn only if £ = m and j = n. On the left hand side you
see the poles z; = 1/); of the resolvent (1 — zA)™! of A and on the right
hand side the growth of log T (r), log me(r) and log Ny (r) as functions of
logr. In the first case the eigenvalues are on the real and the imaginary
axes. In the second case for each j the eigenvalues are rotated slightly, so
that all eigenvalues have different phase angles. So in the first case the 2.
requirement in Theorem 6 is satisfied, in the second case it is not. Yet there
is no difference in the behaviors of Too(r), Meo(r) and Neo(r). So clearly
the second requirement is not the ’right’ one, but only necessary for this
particular proof.

Case 7.3 In Figure 3 we compare four cases, where in each the eigenvalues
of the matrix A are \; = (TJ—.“’)I/&, where 7 =1, @ = 7. Let A; and J; be as
defined by (13). The figures (a)—(d) show the functions log Tw (), log meo(7)

and log Noo(7), where A in the different subfigures is

(a) A=diag(A;), dimA; =2,
(b) A= diag(J;), dimJ; = 2,
(¢) A=diag(A;,J;), dimA; =dimJ; = 2,
(d) A= diag(J;), dimJ; = 4.

In the first two cases all eigenvalues are of multiplicity 2, and in the latter
two cases all eigenvalues are of multiplicity 4. The poles z; = 1/); of the
resolvent of A are of order 1 in (a), 2 in (b) and (c) and 4 in (d). The higher
the multiplicity of the pole, the longer it takes for N (r) to exceed mq (7).
The multiplicity of the eigenvalue is not decisive.

Case 7.4 Though in Case 7.2 it is true that there are a fixed number of
eigenvalues with [A| = (£2)!/% this is not essential. In Figure 4 the number
of eigenvalues (all simple) with [A| = (Z2)/% increases with k, and still
Too(r) ~ Neo(T).

Case 7.5 It is essential that d.. < oo. To see this consider Figure 5.
1

Here the eigenvalues \; = (5;)* are all of multiplicity k. In 5 (a) we have
A = diag(J;), where dimJ; = j, which tends to infinity as j — oco. Here
indeed T (7) ~ Mmeo(r). A word of caution: Figure 5(a) is not very reliable,
as A is close to singular and for large |z| so is (1 — zA) which has to be
inverted when calculating my. In 5(b) we have A = diag(A;), where again
dimA; = j, so though the eigenvalue ), is of multiplicity j, the pole z; = 1/);

of the resolvent of A is simple. Again as it should Teo () ~ Noo(7).
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Case 7.6 Finally let A = dz’ag(jj), where \; = aj ™ and g; = vj°. In
Section 5.2 we concluded that when ¢ < ﬁb%l, then my(r) grows faster than
Noo(r), whereas if 6 > ﬂb%l, then N (r) will grow faster. Figure 6 illustrates
this phenomenon. Here \; = (%)2 and d; = j, which means that § = 2 and
b=1,so ﬂb%l = 1. Moreover ¢; = )\f, so 0 = k3, where the values for k and
0 can be found in the table below.

subplot | & )
a 2 4
b 1 2
3
d 06]1.2
e : 1
f 041]0.8

In the subplots (a)~(d) we have § > (3%, and No(r) grows faster than
Meo(T), as it should. In subplot (e) we have § = ﬁbJ%l‘ Here me(r) and
Noo(r) grow with the same speed. Finally, in subplot (f) § < ﬂb%l, and
Meo(r) grows faster than N (r). The slowdown of the growth of mu.(r) in
subplot (e) is due to numerical errors which occur for large r in the case of
resolvents of nearly singular matrices [3].

8 Summary

In this paper we have studied the growth of T, (r, (1 — zA)™!) for various a
bounded linear operators A in a separable Hilbert space H, in which case A
admits a matrix representation. We have mainly considered operators A for
which there exists a bounded S with a bounded inverse S—! such that

A=S5"1J8S,

where J = diag(J;), dimJ; = d; and

i &
j -
€j
Aj
Furthermore we have assumed that
N=aj =770 dj=af’ (14)

where «a, 3, v, 0, a and b are nonnegative real numbers. In Section 4 we show
what in this case Ny (r, (1 —2A)™") grows with order wy and type 7y, where

b+1 af b1
NT T NE et

(15)
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Figure 1: The eigenvalues of the matrix A are \; = (%)2 The lengths of the
Jordan blocks corresponding to each eigenvalue are 1 in (a), 2 in (b), 4 in (c)
and 5 in (d). The longer the Jordan block, the longer it takes for Ny (r) to
exceed Mo (r). logToo(r) (solid), logme(r) (dashed) and log No(r) (dash-

dotted) are plotted as functions of logr.
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Figure 2: The eigenvalues of the matrix A satisfy [A\g; x| = (2%.)2, k=0,...,3,
and each eigenvalue is simple. On the left hand side are the poles of the
resolvent of A and on the right hand side the growth of log T (r) (solid),
logmey(r) (dashed) and log Ny (r) (dash-dotted) as functions of logr. In
the first case the eigenvalues are on the real and the imaginary axes. In
the second case for each j the eigenvalues are rotated slightly, so that all
eigenvalues have different phase angles. This does not seem to affect the
behaviors of T (1), Meo(r) and Ny (7).
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Figure 3: Here we compare four cases, where in each the eigenvalues of the
1

matrix A are A\; = (5:)>. In the first two cases all eigenvalues are of multi-
plicity 2, and the Jordan blocks associated with each eigenvalue are of length
one in (a) and two in (b). In the other two cases all eigenvalues are of mul-
tiplicity 4. The Jordan blocks associated with each eigenvalue are of lengths
1,1 and 2 in (c¢) and 4 in (d). This means that the poles of the resolvent
of A are of order 1 in (a), 2 in (b) and (c) and 4 in (d). log T (r) (solid),
logme(r) (dashed) and log N (r) (dash-dotted) are plotted as functions of

logr.
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Figure 4: The eigenvalues of A are all simple, and the number of eigenvalues
with [A| = (5;)? increases with k. On the left the poles of the resolvent of
A. On the right log T (7) (solid), log ms(r) (dashed) and log N (r) (dash-
dotted) as functions of logr.

100

501

_50 L

-100 -50 0 50 100 1 2 3 4 5

Figure 5: Here the eigenvalues A\, = (5-)? are all of multiplicity k. In (a) the

Jordan block corresponding to the eigenvalue A is of length &, In 5 (b) the A
is diagonal with multiple eigenvalues. log Ty (r) (solid), log ms(r) (dashed)
and log N (r) (dash-dotted) are plotted as functions of logr.

(@) (b)
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Figure 6: Here the eigenvalues \; = (%)2 and the Jordan block corresponding
to the eigenvalue A; is of length j. The off-diagonal elements of each block
are ¢; instead of 1, where ¢; = )\f, and k£ = 2,1, 0.75, 0.6, 0.5 and 0.4 in the
different subplots. In the first four subplots N, (7) grows faster than m(r),
in the last subplot the situation is reversed. logTw(r) (solid), logmu.(r)
(dashed) and log N (7) (dash-dotted) are plotted as functions of logr.
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Note, that these are independent of ;. Furthermore, putting together Theo-
rems 3 and 7 we know that me(r, (1 —24)~!) grows with order w,, and type

Tm, Where where
W <
Wy =

We mention two special cases. First of all, if the size of the blocks jj is
constant, then b = 0 and wy = %, w,, = 0. This follows also from Theorems
4 and 6, from which we see that it actually holds as well in the more general
case when the size of the blocks is bounded by a constant. Secondly, if A; =0
then w,, = %, wyn = 0, and furthermore 7, is, by Corollary 2, bounded from
above and below by constants, which depend on 7, d, a and b.

for B <4,
for B > 0.

S| o

So for 6 > ﬁb% we have w,, < wy, in which case the Ty (r, (1—2A4)71) grows
with w = wy and type 7 = 7y, where wy and 7y are as in (15). Moreover,
for § < ﬂb%l we have

Wm > WN,

50 Too(r, (1 — 2A)™") grows with order w = wy,, = 2. In this case determining
7 is difficult.

The results have been formulated for \;, ¢; and d; satisfying (14). They can,
of course, easily be adapted to give bounds for the growth of N (r, (1—24)™!)
and meo(r, (1 — 2A)™!) in cases such that \j, ¢; and d; have bounds of the
form (14).

We do not need to have the canonical form J available in order to be able
to determine the growth of To(r, (1 — zA)™!). In Section 6 we look at the
weighted shift operator W, and show that the resolvent of W is entire, so

Noo(r,(1 =2W) 1) =0, Te(r,(1—2W) 1) =mu(r,(1—2W) 1),

and that T (7, (1 — 2W)~!) grows with order w = 1 and type 7 = 1.

Numerical calculations presented in Section 7 show that the bounds obtained
hold in practice quite well, also in cases when the spectrum is not on the real
axis.
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