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1 Introduction

The usual convergence analysis of Krylov methods uses different mathemat-
ical techniques for normal and for nonnormal operators. Yet, rank-one per-
turbations to an operator can change it from self-adjoint to quasinilpotent,
and such an analysis cannot explain why the basic convergence speed is still
essentially the same.

Our aim in this paper is to present an approach where normal and nonnormal
operators are treated in the same way. Notice, that the convergence discus-
sion can be divided into two parts. The first question, that of the speed with
which ||g,|| decays as n increases, where g, are monic polynomials such that
|lgn(A)b]| is as small as possible, is insensitive to low rank perturbations. On
the other hand the second question, that of solving for the spectrum or for
a solution of an equation, is in general sensitive to low rank perturbations.
We emphasize that our discussion aims to create reasonable upper bounds for
inf ||g,(A)b||, or in fact for inf ||g,(A)||, in the case of one cluster of spectrum.
Multiple clusters can be dealt with by mapping the clusters to the origin by
a polynomial p and considering (for analysis only) the fixed point problem
for p(A) instead. Some of this approach has already appeared in our earlier
papers [7], [8], [9], [10], [15], [16], [17], [18], [19], and those of our colleagues
6], [12]

We shall discuss bounded operators in separable complex Hilbert spaces. The
reader should have a fized point formulation in mind as a model problem:

z = Az +b. (1)

This is, of course, mathematically equivalent to the more common formula-
tion Ax = b. However, the fixed point formulation is a natural one after the
original problem has been preconditioned and it suggests more mathematical
tools as then it is natural that the spectrum is clustered at the origin and
the operator can be scanned simply by looking at the growth of the resolvent
function
2 (1—zA)!

as z grows.

We wish to be able to estimate the growth of the resolvent in terms that are
not sensitive to low rank perturbations. This means in particular, that the
analysis must not depend too strongly on the spectrum, as it is sensitive to
low rank perturbations.

As an analogy, suppose that f is a scalar valued meromorphic function. If
we “perturb” f by considering

1
g:=7 5
? —a
where a € C is a constant, then f and g are usually not close when evaluated
pointwise, but as meromorphic functions they are still essentially equally

large.



The outline of this paper is as follows. In Section 2 we give a representation
for the resolvent in the case that (1 —2A4)~! is meromorphic in the disc |z| <
R(< o0). This representation gives a natural sequence of monic polynomials
qn such that

qn(/\) = /\anl()\) + a,

and that ¢,(A) appear as Taylor coefficients of an associated function ® 4(z).
Now, the decay of ||¢,(A)|| as n tends to infinity is connected with the growth
of sup|, <, [[®a(z)|| as 7 grows, and therefore the focus in this paper is in
estimating the latter.

Notice that we do not discuss the infimum over all monic polynomials (nor
the dependence of these polynomials on b) but instead focus on defining a
natural “reference” sequence {q,}, which always majorizes that created by,
say, the Arnoldi method.

For example, when the operator is quasinilpotent, that is; o(A) = {0}, then
the polynomials ¢,(\) = A" and ®4(z) = (1 — zA)"! is an entire function.
In general, however, we do not know the function ® 4 but the idea is that its
growth (and thus the decay of ||g,(A)||) can still be estimated from the growth
of (1 — zA)™! if the growth of the resolvent is measured as a meromorphic
function.

In Section 3 we present the connections between the growth estimates for the
analytic functions ® 4 (and of y4) and the meromorphic function (1 —2A4)™".
The growth of (1 — zA)~! is measured by a function

Too(r, (1= 2A) 1),

which is the straight forward generalization of the Nevanlinna characteris-
tic function [20], used to measure the growth of scalar valued meromorphic
functions. The growth of Ty (r, (1 — zA)™!) can be used to divide operators
into several classes. When

Too(r, (1 —2zA)™") <00 forallr >0
the operator is almost algebraic, while
To(r,(1 —24)1) = O(logr) asr — oo

holds when the operator is algebraic. These classes are discussed in Sections
4 and 5 respectively. In Section 6 we show how perturbations of A by a
small rank operator can be estimated. Section 7 is devoted to the decay of
monic polynomials g,. We show that the decay of ||g,(A)|| as n — oo can be
traced back to the growth of the resolvent, which is insensitive to low rank
perturbations.

In Section 8 we return to the connection between estimating the decay of
the monic polynomials g,(A) and the convergence of Krylov methods. We
formulate a convergence result for the polynomials related to solving the
fixed point equation. This gives an upper bound for the decay of the error of



GMRES. This bound is naturally divided into two parts. One depends solely
on the spectrum, and consequently is sensitive to low rank perturbations.
The other one depends on the growth of the resolvent, which, as stated
above, is insensitive to low rank perturbations.

2 Representations for the resolvent

Let A be a bounded linear operator in a separable complex Hilbert space H.
Unless otherwise stated we assume that z — (1 — 2zA)~! is meromorphic for
|z| < R(< o0).

Definition 1 A function F(z) is called meromorphic for |z| < R < oo if
around each zy in |zg| < R < 0o it has a representation of the form

z) = Z Fi(z — 20)". (2)

k=—h

Here Fy, is a bounded linear operator in H and F_j is nontrivial.

In order to discuss properties of (1 — zA)~! as a meromorphic function we
need to have a natural representation for it and means to estimate its growth.
The simplest representation

(1—-2z2A)" szAk

only works for |z| < ﬁ and gives the function as an analytic function.

Theorem 1 Let z — (1 — zA)™' be meromorphic for |z| < R(< o). Then
there exists a scalar valued function x4, analytic for |z| < R, xa(0) =1 and

xa(z) # 0 for % ¢ o(A), such that
2 xa(2)(1 = 2A) 7" = B4 (2),

is analytic for |z| < R.

Proof. Let (1 — 24)"! be meromorphic in a domain D = {z]|z] < R}
and let {\;} be the nonzero points of o(A). Furthermore, let m; denote
the order of the pole of the resolvent at z; = % (Note that {z;} may
only have a limit point on the boundary of D.) Then by a generalization of
Weierstrass’ theorem (Theorem 3.3 in volume 3 of [13]) there exists a function
f(2) analytic in D such that f(0) =1 and f has a zero at z; of multiplicity
m; for every j, and is nonzero elsewhere. Now xa(z) := f(z) is a scalar
valued function, analytic for |z| < R. Moreover, as we have locally around

each z;
(o)

(1—zA) "= Y Alz—z)*

k=—m;



and since x4 has a zero of multiplicity m; at z;, the singularities of x 4(2)(1—
2zA)™! get removed, so ®4(2) is analytic for |z| < R. O

Note that the function x4 (and thus ®4) are not uniquely defined, as y 4 can
be multiplied by any normalized, analytic, nonvanishing function. However,
it provides a natural representation for the resolvent:

Theorem 2 Let x4 and ®4 be functions as in Theorem 1. If
xa(z) =14 a1z +ax2® + ...

then define ' '
q]()\) =\ + al)\Jil +...+ a.

Then for |z| < R we have

D=3 a(4) ©)

and thus

. 1 < -
(1—2zA)t= > gi(A)2. (4)
Conversely, if {a;} C C is such that

i , 1
limsup [|g;(4)||"7 =: = ()
then x4 and ® 4 are analytic for |z| < R.

Proof.

Since x4 and ® 4 are analytic for |z| < R they have convergent series expan-
sions for |z| < R. Since

(1—-2A)" szAk
1

converges for |z| < (4] We have (as necessarily ﬁ < R) for |z| < ﬁ
(a0 =1)

xa(z)(1—zA)" Zakz ZAkzk) = ZZakAj*kzj = qu(A)zJ

=0 k=0 §=0 k=0

Thus, (3) holds for |z| < ﬁ and as the expansion of ®, converges for

|z| < R, (3) must indeed hold for |z| < R.
Conversely, if (5) holds, then (3) converges for |z| < R. Moreover,

xa(z) = (1 — 2A)P4(2)



and as the right side converges for |z| < R we can look at the coefficients
which satisfy
qj(A)2? — 2Aq; 1(A)2 ™ = a;2

and thus we obtain the power series for x 4. O
The representation (4) gives a natural sequence of monic polynomials {g;}
the behavior of which is our primary interest in this paper. We view them
as Taylor coefficients of the analytic function 4 and exploit the well known
fact that the decay of coefficients of an analytic function is intimately related

to the growth of the function. To that end, let us introduce the following
notation. The maximum modulus of an analytic (vector valued) function F

My (r, F) := sup | F(2)|.

|z|<r

Then we have the following.

Theorem 3 Let ®4 and q; be as in Theorem 2. Then for r < R

g5 (AN < Moo (r, a)r ™. (6)
Conversely,
(r,04) < 3 llgs( Al (7)
j=0

Proof. The first inequality (6) follows from the fact that

G(4) = —5

27

297 @ (2)d2, r <R,

|z|l=r
while (7) follows from (3). O

The crucial step then is to estimate the growth of M, (r, ®4) asr — R. In our
approach we base this on estimating (1 — zA) ! as a meromorphic function,
because then it is insensitive to the actual location of the spectrum.

Corollary 1 Assume R = oo and
Moo (r,®4(2)) = Moo (7, xa(2)(1 — 2A) 1) < Ce™

for r > 0. Then for j > 1

Tew . /.,
lai(All < C(—= yire. (8)
Proof. The inequality (8) follows from (6) by choosing r* = L. O

Remark 1 In Section 7 we shall use the results presented in this section
in such a way that for each n < R we choose a x4(2) = xa,(2), valid for
r < n. This leads to sharper estimates than choosing a single y 4(z) valid for
|z| < R.



3 Growth of meromorphic resolvents

As Theorem 3 shows, the polynomial sequence {g;} evaluated at A is in a
natural way associated with the growth of My (r,®4). In practice we do
not know x4, and hence not ®4 either, and estimating M (r, ®4) has to be
based on the resolvent directly.

Rolf Nevanlinna [20], [21] introduced in 1925 a characteristic function T' to
measure meromorphic functions. In particular it has the following property:
if f is meromorphic and f(0) = 1, then (by the first main theorem)

?)- (9)

This can be generalized to operator valued functions. The obvious way is
to replace the absolute value by the norm of the (operator valued) function.
This leads to a generalization denoted here by T (7, F'), see below. Another
useful generalization Ti(r, F') is introduced in [17], and is discussed shortly
in Section 6. We only mention here that Ti(r, F) satisfies the identity (9),
and that we always have T, < T7. The function T, is defined as follows.

T(r,f) ="1T(r,

Definition 2 Let F(z) be a meromorphic operator valued function as in Def-
wnition 1. If —h < 0, then F has a pole at zy of order h, otherwise F is
analytic at zg. Denote h(zp) := max{h,0} and define

Neo(r, F) 1= _ h(b).
[bl<r

Thus ne counts the poles in {z | |z| < r} together with their orders. Fur-
thermore define

! F) — F
Neo(r, F) ::/ neo(t, F) tnoo(O, )dt+noo(0,F) logr
0

and

1 [7 ;
meo(r,F) = o= [ log™ |[P(re®)]

where

logt, t>1
1°g+t:{ 0 bt

Finally define Too(r, F) = Mmoo (7, F) + Neo(r, F).

Here we only deal with functions such that ny(0, F) = 0, in which case the
above expression for N (r, F') is simplifies to Noo(r, F) = [ Mdt.

By Theorem 2.1 in [19] the following holds.
Theorem 4 Let F and G be meromorphic for |z| < R < co. Then Too(r, F)

1s a nmonnegative and nondecreasing function in r for 0 < r < R which is
convez in the variable logr. The following inequality holds:

Teo(r, FG) < Too(r, F) + Too (1, G).



For an analytic function T (7, F') and My (7, F') are related in the following
way:

Theorem 5 If F' is an operator valued analytic function for |z| < R and
0<r<ébr<R, then

9+1

To(r, F) < log" Moo(r, F) < 5

Too(Or, F).

This is Theorem 2.2 in [19]. It allows one to move back and forth between
the maximum norm analysis and logarithmic averages when working with
Dy

Furthermore we have the following result.

Theorem 6 Let x4 and ®4 be as in Theorem 1. Then for r < R

Too(r, @a(2)) < T(r,xa(2)) + Tuo(r, (1 — 2A)7), (10)
Too(r,(1—24)") < T(r,xa(2)) + Too(r, 2a(2)), (11)
T(r,xa(z)) < Toolr, ®a(2)) +log(1 +r[|Al). (12)

Proof. The inequality (10) follows directly by applying Theorem 4 to
D4(2) = xa(2)(1 — zA)"t. To get (11), apply Theorem 4 to (1 — 2zA)! =
m@A(z) and notice that by (9) we have T(T,XLA) = T(r,xa). To get
(12), again apply Theorem 4, this time to xa(z) = (1 — 2zA)P4(2). As
Neo(r,1 —2A) = 0, we have

1 i .
Tl 1-24) = mas(ry 1= 24) = 5 [ log" 1= réA|dp < log(L-+7]4]),

which completes the proof. O

Remark 2 Trivially T'(r, x4) < Too(r, (1 — 24)7") is possible. To see this,
consider the case where (1 — zA)~! is entire in z. However, Theorem 6 does
not give us a bound for T'(r, x4) in terms of Ty (7, (1 — 2A)~1), quite simply
because such a bound does not exist. To see this consider Example 4 in
Section 7. It is however possible to choose for each n < R the function
x4(z) = xan(z), valid for » < n. This has been done in Section 7. Then it
is possible to show that

T(r,x4) < Noo(n, (1= 2A4)71) < Teo(n, (1 — 24) 7).

4 Almost algebraic operators

In this section we assume that R = co. Recall that an operator A is called
quasinilpotent if
|A™||Y" -0 asn—0,



which is equivalent with o(A) = {0}. This has been generalized to quasial-
gebraic operators [4]. Quasialgebraicity again is a smallness property of the
spectrum alone: the logarithmic capacity of o(A) vanishes.

Quasinilpotent operators have also a function theoretic property: their re-
solvents are entire. There is a natural generalization of quasinilpotent (and
of algebraic) operators which form a subclass of quasialgebraic operators.

Definition 3 A bounded operator A is called almost algebraic if there exists
a sequence {a;} C C such that

lg; (A =0 asj—0,

where
gi(z) =2 +a 7+ +a

It was shown in [15, Section 5.7| that an operator A is almost algebraic if and
only if the resolvent operator (1 — zA)™! is meromorphic in |z| < oo. This
also follows from Theorem 2 in Section 2 of this paper, by choosing R = .

Compact, quasinilpotent and algebraic operators are all examples of almost
algebraic operators. The whole class is closed under perturbing with finite
rank operators, which follows from a general perturbation result in [19], see
also Section 6 below.

Remark 3 It also follows that an operator is almost algebraic if and only if
Too(r, (1 —2A)7") is finite for all finite 7. In the next section we demonstrate
that if

Too(r, (1 — 24)7") = O(logr)

then A is algebraic. The growth of To(r, (1 — 2A)™!) thus divides operators
into subclasses.

Definition 4 Let F' be meromorphic for |z| < co. We say that as a mero-
morphic function F(z) is of order wmer and (if 0 < wmer < 00) of type Tmer
where
. log Too(r, F)
Wer = lim sup ————=
r—oo  logr

Tmer = lim sup r~ “m T (r, F).
r—00

Similarly, if F' is entire, it is of order w and type T, where

) loglog My (7, F)
w = lim sup
r—00 10g T

7 := lim sup r~“log M (r, F).

r—00

10



With a slight abuse of language we say that in the above case To (7, F') grows
with order wye, and type Tier, and My (7, F') grows with order w and type
7. Furthermore, we sometimes wish to distinguish between the growth of
Neo(r, F) and meo(r, F'). They we say that Noo(r, F') grows with order wy
and type 7y, where
, log Neo(r, F)
wy = lim sup ————=
r—00 logr
Ty = lim sup r~“N¥ Ny (r, F),
r—00

and my(r, F') grows with order w,, and type 7,,, where w,, and 7, are ob-
tained by replacing N by m in the expressions above.

For an entire function the growth of T (r, F') and My (r, F) are related in
the following way.

Theorem 7 If F(z) is an operator valued entire function, then its orders as
an entire and a meromorphic function are equal: Wyer = w. Furthermore the
types satisfy the following inequality:

Tmer < T < (2w + 1)eTper-

Proof. Following the proof of the scalar valued case in [22, pp. 181-182],
choose § = (1+ 1) in Theorem 5 to get

2+ Ly

1
log™ My(r,F) < T To((1+ —)r, F)
s w

Too((1+ ), F)(1 N l)wrw‘

= (2w+1) ((1—|—%)r)‘” 5

Divide by r“ and let r — oo to get

1
T < (2w~ 1)Tmer (1 + =) < (2w + 1)eTier-
w

O

This means that instead of My (r,®4) we can look at T (r,®,4), as these
both grow with the same order and their types are related as indicated by
Theorem 7.

In particular we see that the orders w and wy,., are both either zero, finite
or infinite. Following the tradition in scalar valued theory we distinguish the
following type-classes:

Definition 5 We say that F(z) has

1. minimal type if Tyer = 0,

2. mean type if 0 < Tier < 00,

11



3. maximal type if Tper = 0.

Definition 6 We say that an almost algebraic operator F belongs to the
class AA(wmer,m) if F is of order wper and type-class m, where m stands
for minimal, mean or maximal. Moreover we say that F' belongs to the class
AA(exp) if it is of order wme, < 1 and when wpe, = 1 then Tyer = 0.

Example 1 Let A be a compact operator such that [|Afl; :=>_; 0;(A4) < o0
where 0;(A) indicate the singular values of A. Then by Theorem 5.1 in [19]

(1-zA)! € AA(exp).

Theorem 8 The growth of Too(r, F') divides the operators F into subclasses
as in Definition 6 such that each class is closed under finite rank perturba-
tions.

Proof. This follows from Theorem 12. O

5 Algebraic operators

An operator A is said to be algebraic if there exists a polynomial g, which
we require to be monic and of smallest degree, such that g(A) = 0. The
polynomial is called the minimal polynomial of A and we say that A is
algebraic of degree deg A = d where d is the degree of q. The Arnoldi process
terminates (in a finite number of steps) at every starting vector if and only
if A is algebraic. This is a simple consequence of Kaplansky’s theorem, see
Sections 2.8 and 5.4 in [15|. Furthermore, an operator has a rational resolvent
if and only if it is algebraic (Theorem 2.8.9. in [15]). In this section we discuss
the growth of resolvents for algebraic operators.

Assume that A is algebraic. If the minimal polynomial is
q(2) = 2% + a2 + ..+ ag,

then we put
xa(z) =14a1z+ ...+ a,2",

where a, # 0, n < d and x4(1/2)2% = q(z). Now the resolvent takes the form

L d_l. i
(1 - zA) _XA(Z);%(A) .

(This follows from Theorem 2 since qi(A) = A¥9g(A) = 0 for k > d.) This
representation implies immediately that

Too(r, (1= 2A)™) < T(r,xa) + Too(r,®4) < nlogtr+(d—1)log" 7+ O(1),

as xa and ®4 are polynomials of degree n and d — 1 respectively. Actually,
the growth is slower, as we show below that for all » > 0

Too(r, (1 — 24)™") = max{n,d — 1} logt r + O(1).

12



Definition 7 Given an algebraic A with deg A = d, call the number
max{n,d — 1} =: d
the degree of the rational function (1 — zA)™L.

Observe that
_ { d if A is nonsingular,

d= d—1 if A is singular.
In fact, if A is nonsingular, n = d, otherwise n < d.

1

Theorem 9 Suppose (1 — zA)~" is meromorphic for all |z| < oo and that

Too(r, (1 — 24) 1) = O(logr) asr — oo. (13)
Then A is algebraic and

Too(r, (1 — zA)™Y) = dlogr + O(1) asr — oco.

Proof. Since (13) holds it means that there is a constant K such that say
for r > 2
Noo(r, (1 —24)™1) < Klogr.

Furthermore

Noo(T, (1 _ ZA)fl) > /\; noo(t, (1 t— ZA)il)dt > noo(\/;, (1 _ ZA)fl) log%

= Jnal/r (1 24) ) logr,

S0 Noo(+/T, (1 — 2A)71) < 2K for all r. Thus, the number of poles of the
resolvent is bounded. That is, there exists a (monic) polynomial p(z) such
that ®(2) := p(z)(1 — 2A) ! has no poles and is therefore entire.

Next conclude that
Too(r,®(2)) < T(r,p(2)) + Too(r, (1 — zA)™") = O(log 7).

Entire (vector valued or not) functions growing this slow are polynomials. In
fact Theorem 5 implies

Moo (r, ®(2)) < O™ a5 ¢ — oo,

and such functions are polynomials by the maximum principle (see Lemma
5.4.2. in [15]). But then

is rational and A is algebraic (Theorem 2.8.9. in [15]). Since A is algebraic,
we can choose x4(z) = p(z) and ®4(z) = ®(2).

13



Since the number of poles of the resolvent of A is bounded, ny(r, (1 —
2zA)~1) = n for large enough r. Therefore

Noo(r, (1 —2A) 1) = nlog™ r + O(1). (14)

On the other hand
d—1
12a(2)[| = 11D ¢;(A)2] = [lga—1(A)||Ir* (1 + o(1))
j=0

and
Ixa(2)| = lan|r"(1 + o(1))
which imply

Meo(r, (1 —2zA)™ ) = log" Mrd’l’”(l +0(1))

|an]
0 for r large when n =d
= O(1) whenn=d-1 (15)
(d—1-n)log"r+O(1) whenn<d—1

Summing up (14) and (15) gives the result. O

Remark 4 Notice that if A is nonsingular then (1 — 2A4)~! is analytic at
z = oo and either A is algebraic or (1 — 2A4)~! has a singularity at a finite
point which is not a pole. If A is both nonsingular and algebraic (for example,
a nonsingular matrix in a finite dimensional space), then

Too(ra (1 - ZA)il) = Noo(’f‘, (1 - ZA)il) = m(?", XA)
Theorem 9 suggests to look for a constant ¢ such that
Too(r, (1 — zA) 1) = dlogt r + &+ o(1).

Observe that both d and ¢ are given (in the nonsingular case) strictly by the
spectrum and o(1) may be very large.

6 Operators of small rank

The sum of two algebraic operators need not be algebraic, or even quasial-
gebraic. For example, the bilateral shift S can be represented as a sum of
two nilpotent operators, S = S, + .S,, where S, shifts the evenly indexed
coordinates and S, the odd ones.

In contrast, perturbations of finite rank within classes of e.g. algebraic oper-
ators, almost algebraic operators, operators with meromorphic resolvents for
|z] < R etc. stay within the class.

14



As previously seen, these classes correspond to

Too(r, (1 = 24)71) = O(log* 1), 7 — oo,
Too(r, (1 — 2A)™!) < o0, r < o0,
Too(r, (1 — 2A)™Y) < o0, r < R.

We formulate a perturbation result and a “characterization” of finite rank
operators. These results are based on another generalization of T'(r, f) for
operator valued functions, which we only shortly mention.

The function T (7, F) is obtained by replacing log™ |f| in the scalar theory
by log® ||F||. An alternative generalization is given in [19] for finitely Si-
meromorphic functions F. Here it suffices to know that if F(0) = 0 then
(unlike in the case of Ty,) the first main theorem holds

Ti(r,1—F)=Ty(r,(1— F)™),

and that, therefore, when applied to the resolvent operator (1 — 2A4)7! its
value can be computed directly from (1 — zA):

Ti(r,(1—2A)"1Y) = Ti(r,1—zA)
= my(r1— 2A) = % /ﬂ zj:log+(0j(1 e A))dp,
where o; indicates the singular values. Since o;(1 — re?A) < 1+ ro;(A) so
that log*(0;(1 — re¥ A)) < ro;(A), we always have
Ti(r,1 - zA) < r[|Allx,

where ||A]|; is the trace norm of A:

1Al = o;(A).

Moreover, we have always To(r,1 — F) < Ty(r,1 — F). This allows us to
formulate the following simple result:

Theorem 10 If ||A||; < oo, then for all T >0
Too(r, (1 — 2A)7Y) < Ti(r,1 — zA) < 7| A1

Theorem 11 If Ty(r,1 — 2A) = O(log* r), then A is of finite rank and as

T — 00
k

Ti(r,1 —zA) = klogtr + Z logo;(A) + o(1), (16)

=1

where k = rankA.

15



Proof. Suppose Ti(r,1—zA) < Klogr for r > 2 and 0;(A) > 0 for some [ >
K. Then (as the singular values are assumed to be ordered nonincreasingly)

0;(1—2A) >ro;(A) -1,

so that for j <l and r > 2/0y(A)

log" oj(1—2A) > log(ro;(A))+log(l —

7‘01(14))
> logr+logoj;(A) +log(l —

1
roy(A) )

Thus, as r — oo,

1 .
mi(r,1—zA) > g Dy /logJr o;(1—re¥A)dyp
m

=1

I
[logr + Zlog 0;(A) +llog(1 —
7j=1
I
= llogr + Zlogaj(A) + o(1).

=1

1
TO'[(A)

v

)

This contradicts the assumption and rankA < K.
Let £k = rankA. Then

0;(1—2A) <ro;j(A)+1

implies for all r > 0

my(r,1 —zA) < Zlog*(raj(A) +1)=klogr+ Zlogaj(A) +0(1)

j=1
as r — oQ. O
Observe that for nonsingular finite dimensional operators Hle o;(A) =
| det A| and thus ) logo;(A) =log|det A|. Thus

Ti(r,1 — zA) = klogr +log | det A| 4+ o(1)

where the o(1)-term contains also “nonspectral” information. The function
Ty was designed for perturbation analysis [19]. We give a simple result con-
cerning resolvents.

Theorem 12 Let A be a bounded operator such that (1—2zA)~! is meromor-
phic for |z| < R and let B be a finite rank operator of rank k. Then

Too(r,(1—2(A+B)) ) < (k+1)Teo(r, (1—2A) H+k(log™ r+log™ || B||+1og 2).
(17)
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Proof. Factor 1 — z(A+ B) = (1 — zA)(1 — (1 — 24)7'2B) so that
Too(r,(1=2(A+B))™") < Too(r, (1 — 2A) ™) + Too(r, (1 — (1 — 2A)"'2B) 7).
By definition, Ty (r, F) < Ti(r, F') for any F, so we have

Too(r,(1— (1 —2A)""2B)™") < Ty(r,(1— (1 —2A)"'2B)™).

But
Ti(r,(1— (1 —2zA) '2B) ") =Ty (r, (1 — (1 — zA) 'zB)).

Now, we have
oj(1—(1—2zA)""2B) < |1 - (1-zA) 2B
for j =1,2,...,k and thus
Ti(r,1— (1 —2A)""2B) < kT (r,1 — (1 — 24)"'2B).

But

log™ |1 — (1 —2A)"'2B|| <log||(1 — 24)7Y| +log™ r + log™ || B|| + log 2
and therefore

Too(r,1 — (1 — 24) 12B) < Too(r, (1 — 2A) 1) +log™ 7 +log™ || B|| + log 2.

O

Example 2 If A =1 and B = diag(f,..., B, 0,...) with

Gy > P2 >...> 0 >0,

then (1 — z(A + B)) ! has poles at 1 and at W so that for » > 1 we have

To(r,(1—2(A+B))™) = log" ?"+Zlog (1+8;)r)
= (k+1)10g+r+210g+(1+ﬁj).
7j=1

For r > 2 we have T (r, (1 — 2A)™!) = log™ r and therefore for r > 2

Too(r, (1 — 2(A+ B)) ™) = (k + 1) T (r, (1 — 2A)~ +Zlog 1+ 3).

17



Example 3 Define

S = and L =
1
0 1

where S and L are of equal size and let

S 0 L
S
A= B =
L
S 0
so that
S L
A+ B= 5
L
S

where A is block diagonal with (k 4 1) identical blocks S of dimension d on
the diagonal, so B is of rank k. By Theorem 9

Too(r, (1= 2A) 1) = (d—1)log" r + O(1)
while
Too(r, (1= 2(A+B)) ™) = ((k+1)d — 1) log" r + O(1).
Compare this to the fact that by Theorem 12 we have

To(r,(1—2(A+B))™") < (k+1)Tw(r,(1—2A)"Y) + klog™r+ O(1)
= (k+1)(d—1)log"r +klog"r+ O(1)
= (k+1)d—1)log"r+ O(1),

so in fact in this example equality holds in (17).

7 Decay of monic polynomials

One of the topics in this paper is to estimate a basic convergence speed and to
show that it is insensitive to low rank perturbations. In the previous chapters
this has been done by showing that given a growth estimate for Ty (r, (1 —
2zA)71) there exists a sequence of monic polynomials decaying with at least
the given speed. The Arnoldi method (if implemented formally in a Hilbert
space) would produce not these polynomials but minimal ones. Here we
demonstrate that also the basic speed of convergence of the Arnoldi method

18



is essentially unchanged by low rank perturbations. Consider updating A by
a rank one operator uv*:
AL = A+ w’.

If we denote by K, (A,b) the Krylov subspaces

K,(A,b) = span{A7b}"_}

7=0"
then the following subspaces are identical:
Kp(A u) = Ku(A u).

Thus the monic polynomials of given degree minimizing ||g,(A)u|| and ||g, (A )ul|
would in general be different but they would represent the same vector and
the norms would be equal. The remaining question concerns problems re-
lated to the relative size of the terms inf ||g,(A)ul|, supy—; inf ||g,(A)b|| and
inf ||g,(A)||. Here the infimum is taken over all monic polynomials of degree
n. First, for a fixed n and any constant € > 0 there are matrices A such that

Sup. inf [|¢n(A)b]| < €inf [|gn(A)]]

See [23], [3]. Yet, when we look at the speed with which these decay when
n increases, the picture changes. An important result was that of V. Miiller
[14] which says that if

lim sup(inf ||g, (A))" > 0
then there is a dense set of initial vectors b so that
lim sup(inf || g, (A)b|)*/™ > 0.

See also [6], [15].

Now let g; be as in Theorem 3. Obtaining an upper bound for these poly-
nomials gives a bound for the monic polynomials generated by the Arnoldi
method. By Theorem 3 we have

g5 (A)]] < Moo (r, @a)r,

where ®4(2) = xa(2)(1 — 24)7" and x4(z) are as in Theorem 1.
Let n < R and let {2;}}_, be the poles of (1 —24)~" (with multiplicities) up
to |z| <. Denote by B,(z) the Blaschke product

n

|2k| 2k — 2
By(z) = [[ni 22— 2
77( ) Hn 2k 772_2_];;2

B,(2)(1 — zA) ! is analytic in |z| < n and M(n, B,) = 1. Moreover,



SO
1 n -1
log —— = E logt — = Noo(n, (1 —zA .

E

1

Therefore x4(z) := By (0)

thermore for r < g

B,(2) is analytic for |2| < n and so is ®4(z). Fur-

T(Ta XA) < log = Noo(na (1 - ZA)il)'

B,(0)
To summarize, we have the following.

Theorem 13 Let A be a bounded linear operator such that (1 — zA)™! is
meromorphic for |z| < R. Then there exist, for every n < R, functions
XA = X4,y and @4 = P4, satisfying the requirements of Theorem 1 such that
forr <n

T(r, xa) < Neo(n, (1 = zA)7") (18)
and

Too(r,®4) < Noo(n, (1 — 2A) 1) + T (r, (1 — 2A) ). (19)

Theorem 14 Let n < R be fized. Then there exists a sequence of monic
polynomials {q;}, each of degree j, such that for all 6 > 1

+1

()] < exp (251 T, (1 24) ) ()

n

Proof. This follows from Theorem 3 together with Theorem 5 by applying
(19) for fr = n and remembering that Tw, (0, (1—2A4)7!) > Neo(n, (1—zA) 7).
O

Consider now the case R = co. We have the following:
Theorem 15 Let R = oo, and assume that for all r > 1
Too(r, (1 —zA) 1) < 7r¥.
Then for j > Tw there are monic polynomials such that
Te

llg; (Al < (T)j/“, (20)

where

21+t wHVIF W)+ VI w?)
N (1-—w+V1+w)w '

7F=c(w)r, c(w)

Proof. By Theorem 14 for every n
1

(A < exp (25 Toelr (1= 24) )
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holds for all § > 1. Write r = T to get

6+1

laj(A)] < exp (25— Toe(Or, (1 = 24)7) )r .

Define a = 231’—}7’9“’ and consider the function
f(r)=e*"r . (21)

Now

f'(r)=e""r 7 Hawr’ —j) =0
for r = (-L)"/¢, which is a minimum of f(r). As 7 > 1 we must have j > aw.
Insert this r into (21) to get

f((i)l/w) _ (2w7'e(9+1)9‘” 2w_'7-e

ile — il g(g)ilw
aw i —1) )= ; )< g(6)", (22)

where g(6) = (iji)l(;w. Now ¢(f) has a minimum at § = “24¢° Tngert this
to

into (22) to get
f= (c(w)Tew)j/w () = 2(1 + w+ V1 + w?)(1+ V1 +w?)¥
a J ’ a (1—-w+V1+w?w ’
and (20) holds for j > Twc(w). O

This sequence {g;} is obtained by using a different x 4(r), valid for r < n < R,
for each n. It is in fact possible to find a x 4(r), valid for all » < R. Using such
a xa(r) would lead to a sequence {g;} which gives the Taylor coefficients of
® 4, but the speed bound obtained this way is coarser than the one obtained
above.

Theorem 16 Let (1—2A)~! be meromorphic in |z| < oo with the poles {2}
and let the infimum of a for which

o0

Z i (23)

k=1

converges be v, and let the smallest integer for which (28) converges be 7.
Moreover, define for any positive integer q the Weierstrass primary factor

Blz,q) = (1 — 2)e 22 /2+420

and
E(z,0)=1-z.
Then the product
HE(z/zk, v—1)
k=1
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converges absolutely and uniformly in any bounded part of the plane to an
entire function x4 satisfying the requirements of Theorem 1 and having the
same order as Nuoo(r, (1—2A)"1), w = v, and the same type-class if the order
is not an integer. Further xa(z) satisfies the inequality

|2
g I1(2)| < 90 (1 [ ¢ meyae+ o7

z|

o0

t’7’1n(t)dt>, (24)
where C(y) =1 ify=1, C(y) = 2(2 + log~y), for v > 1.

This follows directly from Theorem 1.11 in [5]. See also Lemma 1.4 in [5]
and Theorem 2.6.5 in [1].

Suppose that ne(t, xa) < ct” for t > to, where v — 1 < v < . Then (24)
gives for |z| =7 > tg
1 1

log" [xa()l < vCMe(——7 + o= )"+ 0("™)

from which we see that the type of x4(2) as a meromorphic function satisfies

1 1
T <A00)el g )

Moreover the type of Nyo(r, (1 — 2zA)~1) satisfies

T < cv.

Note that if the order of x4(2) is an integer then it need not have the same
type-class as Nyo(r, (1 — zA)™!). Consider the following example.

Example 4 Let A be a bounded, self-adjoint operator the eigenvalues of
which are A, = £. By Theorem 5.5 in [19] we know that since A is bounded
and self-adjoint
Meo(r, (1 — 2zA)™1) < log 2,
S0
Too(r, (1 — 2A) 1) = Noo(r, (1 — zA) 1) + O(1) = r + O(1).
Too(r, (1 — 2A)™") grows with order w = 1 and type Tye, = 1. The function
z
xa(z) = 1+ Z)e?/m 25
(2) L[l( o) (25)

satisfies the requirements of Theorem 1 and from [5, p. 29] we know that
this is of order w = 1 and of maximal type. Here the weight functions e /™
are necessary for the product 25 to converge. Naturally the weights can be
chosen differently. Observe however, that to get an entire function convergent
in the complex plane with the zeros z, = n some weights are needed, and
these will cause the function x4 to grow faster than the resolvent.

We see that Noo(r, (1—2A4)~1) and T'(r, x4) will always grow with the same or-
der, so the order of T'(r, x 4) never exceeds that of Ty (7, (1—2A4) ). However,
it is indeed possible that the orders of T'(r, x 4) and Tw(r, (1—2A) 1) are equal
(and integer) and the type-class of T'(r, x 4) exceeds that of T (7, (1—2A)71).
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8 Decay of normalized polynomials

We have so far dealt with the problem of finding a bound for inf ||g;(A)]|,
where g; is a monic polynomial of degree j. However, applying a Krylov
method to the fixed point problem z = Az + b leads to a sequence of poly-
nomials {p;} such that degp; = j, p;(1) = 1 and the error of the iteration
on the j* iteration step is e; = p;(A)eq, where eq is the initial error. So in
fact we wish to find bound for the decay of inf ||p;(A)||, as j — oo, where
the infimum is taken over all polynomials such that degp; = j, p;(1) = 1.
Trivially this is sensitive to low rank perturbations, as such perturbations
may cause the problem to become singular. Here we show in Theorem 17
that this sensitivity is all due to the spectrum.

Assume 1— A has a bounded inverse and let ¢(\) be an arbitrary polynomial
and set p(A) :=1— (1 — A)g(A). Then by Proposition 1.6.1 in [15] we have

1

MIIP(A)II <[@A=A4) " =g < 1@A=4) "llp(Al- (26)

Now by Theorem 3 we have

(1—24)" = — 3" g ()2,

SO

1-4)1= 1 S g

xa(1) 4

and we get approximations py(A) for (1 — A)~! from this, where

k
1
pe(A) = ;(A) (27)
The error of this approximation is
1 o0
1— A —pe(A) = q;i(A). 28
( ) k( ) XA(I) j%;rl ]( ) ( )

1
xa4(1)
is sensitive to low rank perturbations, while the summation part ) ¢;(A) is

not. As in Section 7, we can choose for each 7 a function x4(z) = xa,(2)
valid for » <. In fact, fix 1 <y < n and define

Both (27) and (28) divide into two parts in a natural way: the part

Ny

e (2) =@~ 2. (29)

V4
k=1 k

where n, = noo(7, (1 — 2zA) 1). Then Theorem 17 gives an upper bound for
the decay of the normalized polynomials generated by GMRES, such that
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the bound is a product of two terms, of which ||‘1 (A)||‘ is sensitive to low rank

perturbations, while the other term is essentially determined by the decay of
the monic polynomials ¢;, which, as discussed in Section 7, is insensitive to
low rank perturbations.

Theorem 17 Let A be a bounded linear operator such that (1 — zA)™!
meromorphic for |z| < oo and assume that for all r > 1

Too(r, (1 — 2A)7Y) < 7%,

Fiza >0, 8>1 andy > 1. Then there exists a sequence of polynomials p;
such that p;(1) =1 and for j > 7w

11— Al (Fewyife
(A < 12 AT
les(l < g (57)
where
- _ %(v(yljla))aw,
- T P
“ = logﬁ(a)

and 7 = c¢(w)T is as in Theorem 15.

Proof. Define p;()\) = XA 0] S o ax(\) where gi(\) are as in Theorem 3,
and set pj(A) =1—(1— )\)p] 1(A). From (26) and (28) we have

1 IR 1
Mllpj(A)llsll(l—A) pi(A)l < ad )|||q]( ). (30)

From Theorem 15 we have for j > Twc(w)

Tew

la; (Al = (== yire. (31)

We need a lower bound for |x4(1)|. Now as in Section 7 we define for |z| <7

(2) n? e
Xa(2) 0 H

1% n? — zZpz’

where n = n(n, (1 — 24)71). So

o2z —1 o 0oz —1
XAJT(l):H_ = H - = )

2 2
2en? —Z 2en?—Z
gy SR T R L AR T AR

where 1 <y < nand n, = ne (7, (1 — 2zA)™1). For v < |2| < n we have
1

1 1
-2 fl-o|=1-~
2k Y Y
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and for |z;| <7

1
o |<1+|"”“| <14-
n’
SO .
H 77_22k_1|>( _?)n—n,7
2__ — 1 7
hem 1 kT Tk 145
and
77 Rk — n
> 7.
1]|M | H| )
Finally we have
1_1 Ny 1
> Y\n -
PeanVl = (o TT-

where n = neo(n, (1 — 2A) 1) and n, = neo(7, (1 — 24) !). Let 3 > 1. Then

Neo(Br, (1 —zA)7Y) = /0 Moo(t, (1= 24) 1) /ﬁr ety (1= 24))

t t
> neo(r, (1 — 2A) 1) (log Br — log )
= ne(r, (1 —24)"")1og B

SO

Ngo(fr, (1 —zA)™1) - Too(Br, (1 — zA)™1) - T(6r)*
log 3 - log 3 ~ logp

Noo(r, (1 —24) 1) <

By choosing n = -1#’ a > 0, we have

T(Bn)” T
log8 a*logf”

n=ne(n, (1 —24)"" <

Moreover, with this choice of 7 we have

1
1+——1+1—<1—|—a
n jie
We have
1 Ty
‘” 1-—— 32
a0l (0 I ~, (32)

where a = af’ﬁ;ﬁ (31) and (32) into (30) to complete the proof. O
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