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1 Introduction

Pseudodifferential operators are a natural generalization of linear partial dif-
ferential operators on R". These operators act on a suitable test function
space by weighing the Fourier transform “nicely”.

In a series of path-breaking papers in the 1960’s, Hormander set the study
of pseudodifferential operators on a solid basis, and pseudodifferential oper-
ators on manifolds were defined locally using the Fourier integrals on R”. In
1979 Agranovich [1| proposed, crediting L. R. Volevich, a global definition of
pseudodifferential operators on the unit circle S?, called the periodic pseu-
dodifferential operators. Of course, the definition was readily generalizable
for any torus T”. Due to the group structure of T", by exploiting the Fourier
series representation these new operators admitted globally defined symbols
instead of mere local analysis.

It is a non-trivial fact, however, that the definitions of pseudodifferen-
tial operators on a torus given by Agranovich and Hormander are equiva-
lent. Agranovich proved this in [2] in the special case of classical operators,
and later without some details in [3] in the case of the Hérmander (1,0)-
operators. Another treatise of the classical operators was presented in [15].
A complete proof was provided by McLean [13] for all the Hérmander (p, §)-
classes. McLean proved the equivalence of the global and local definitions
by directly studying the charts of the tori. Recently, another proof of this
type was given in [14] for the (1,0)-class. In this paper, we give one more
approach, described as follows:

On a smooth closed manifold the pseudodifferential operators can be char-
acterized by taking commutators with vector fields, i.e. first order partial
derivatives. This approach is due to Beals ([4], 1977), Dunau ([8], 1977),
and Coifman and Meyer ([6], 1978); perhaps the first ones to consider these
kinds of commutator properties were Calderon and his school [5]. For other
contributions, see also [7] and [18].

The commutators provide us a new, quite simple way of proving the
equivalence of local and global definitions of pseudodifferential operators on
a torus, and we derive related commutator characterizations for operators of
general order on the scale of Sobolev spaces.

The structure of the paper is following: First, we review necessary pseu-
dodifferential calculus on R", obtaining a commutator characterization of
local pseudodifferential operators (Theorem 2.1). After that, corresponding
global characterization is given on closed manifolds (Theorem 3.1). Lastly,
the global symbol analysis of periodic pseudodifferential operators is studied
in analogy with the symbol analysis on R", and these operators are proven
to be precisely the Hérmander pseudodifferential operators on T" (Theorem
4.2).



2 Pseudodifferential operators on R"

In this section we refresh some necessary background on pseudodifferential
analysis on Euclidean spaces (see [17], [19], [11] or [16] for more information).
The commutator characterization of local pseudodifferential operators on R”
provided by Theorem 2.1 is needed in the next section for the commutator
characterization result on closed manifolds.

Let S(R") be the Schwartz test function space of smooth rapidly de-
creasing functions on R"™ with the usual Fréchet space structure. Its dual
S'(R*) = L(8(R"),C) is the space of tempered distributions. The Fourier
transform F € L(S(R™)) is an isomorphism given by

ile) = Gu)(e) = | ulw)e=da,
where £ € R™.

By duality, the Fourier transform extends to isomorphism F € L(8'(R")),
and we consider 8$(R") as a natural subspace of §'(R"). The Sobolev space
H*(R") C §'(R") (s € R) is the completion of §(R") in the Sobolev norm
|| - || zzs(mn) corresponding to the Sobolev inner product (-, -)ps(rn) defined by

(o) = (20) ™" [ (1 el a(e) e

where [¢] = (|&|2+ -+ [&]*)"% Then $(R") = (,cp H*(R") and §'(R") =
U,er H°(R™). A linear operator A : §(R*) — 8(R") is said to be of order
(or degree) m € R on the Sobolev scale (H*(R"))scr, if it has bounded
extensions A s, € L(H*(R™), H*~™(R")) for every s € R. In this case, the
extension is unique in the sense that A has the extension Ag € L(8'(R™))
satisfying Ags|ps(mn) = Ass—m. Thereby any of the operators A, ,_m, or Ag
is also denoted by A.

The symbol o4 of a linear operator A of a finite order is the distribution

oa(w,§) = e (Aeg) (v), (1)

where e¢(z) = €€, and z,£ € R". Then A can be retrieved from its symbol.
Indeed, let u € §(R™) and fix s < —n/2. The function ¢ : R* — H*(R"),
P (€) = eg, is Bochner-integrable (see [9]) with respect to (27) "a(§)d€, and
therefore

(Au)(z) = (2m)" / 0.4(z, €)a(€)ede. 2)

n

Distribution Au can be viewed as a o4-weighted inverse Fourier transform
of 4. Unfortunately, the algebra of the finite order operators on the Sobolev
scale is too large to admit fruitful symbol analysis, while the non-trivial
restrictions by the symbol inequalities (3) yield a well-behaving subalgebra,
called pseudodifferential operators.

An operator A : §(R") — S(R") of order m € R is called a pseudodiffer-
ential operator of order (or degree) m on R", denoted by A € OpS™(R"), if



its symbol given by (1) is a C*-function o4 : R* x R* — C satisfying the
symbol inequalities

1080804 (, )| < Cap(1 + €)™, (3)

uniformly in £ and z for every multi-index a,3 € Nj. Here Ny is the
set of the non-negative integers including 0, [a| = a1 + -+ + a,, 98 =
(0/0e,)2t -+ (D)0, ) and 02 = (8/Dy, )Pt - -+ (8/0,, ). Then o4 is called a
symbol of order (or degree) m on R", o4 € S™(R").

Actually, in the definition of pseudodifferential operators, it is redundant
to require the operators to be of finite order: if 04 is any smooth function
satisfying inequalities (3), the operator A which it defines by (2) is necessarily
of order m.

The class of pseudodifferential operators just defined contains only those
of the partial differential operators that have bounded smooth coefficients.
Therefore it is often more convenient to work with a less restricted class. Let
C§°(R™) denote the set of compactly supported smooth functions. A linear
operator A defined on C§°(R") is called a local pseudodifferential operator
of order m € R on R*, A € OpSL(R"), if pAy € OpS™(R") for every
o, € C(R™). Naturally, here ((pAY)u)(z) = ¢(z)A(Yu)(x).

In addition to the symbol inequalities (3), there is another appealing way
of characterizing pseudodifferential operators, namely via commutators. This
characterization dates back to [4] by Beals, to [8] by Dunau, and to [6] by
Coifman and Meyer. We present a related result, Theorem 2.1, about local
pseudodifferential operators.

Let us define the commutators L;j(A) = [0,,, A] and Ry(A) = [A, My, ],
where M,, is the multiplication operator (M,, f)(z) = zrf(z). Set R* =
R{* .- R and accordingly LP = L’fl -+- LP for multi-indices «, 3, with
convention LY = I = R}.

Theorem 2.1 Let deg(C') denote the degree of a partial differential operator
C on R*. Let m € R and let A be a linear operator defined on C§*(R™).
Then the following conditions are equivalent:

(i) A€ OpSy

loc

(R").

(i) For any ¢, € CP(R™), for any s € R and for any sequence C =
(C)E, C OpSL.(R™) of partial differential operators, it holds that

loc

{ By = ¢Ayp € L(H*(R"), H~™(R")),
Biy1 = [Bi, Ci] € L(HS(R™), H* ™ Hder(R™)),

where dej = 25:0(1 — deg(C})).

(iit) For any ¢, € CP(R™), for any s € R and for every o, € Ny, it
holds that

ROLP(¢AY) € L(H*(RM), H*~(m=leD(RnY),



Remark. At first sight, condition (7i) in Theorem 2.1 may seem awkward,
at least when compared to condition (7i:). However, this result will be needed
in the pseudodifferential analysis on manifolds, and it is crucial in the proof
of Theorem 3.1. Also notice the similarities in the formulations of Theorems
2.1 and 3.1, and in the proofs of Theorems 2.1 and 4.2.

Proof. First, let A € OpSp.(R"), and fix ¢,¢ € C;°(R*). Then By, =
pAY € OpS™(R™). Let x € C§°(R™) be such that x(z) = 1 in a neighbour-
hood of the compact set supp(¢) Usupp(¢) C R", so that By 1 = [By, Cy| =
[By, xCi]. Notice that Oy € OpS9e8(©s)(R™). Hence by induction and by the
well-known property of the commutators of pseudodifferential operators (see

e.g. [11]), it follows that By, € OpS™ “e*(R"). This proves implication
It is really trivial that (i¢) implies (¢47).
Then assume (ii7), and fix ¢, ¢ € C§°(R™); we have to prove that ¢ Ay €
OpS™(R™). Let x € C§°(R™) be such that x(z) = 1 in a neighbourhood of
the compact set supp(¢) Usupp(¢)) C R™. Evidently, A is of order m, and

Of 0 0gap(2,8) = Opars(pay (@, §)
= RO L (gAY )ee) o)
= e "Y(RLP(9AY)(xee)) (x).
If 2s > n = dim(R"), s € N, then
lu(z)| < (@m)™ [ [a(§)|d¢

< n [[asierma [ aeaer
1/2

= Cillullms@n < Co | Y 1070 0n :

lv|<s

1/2

so that
1/2

080} pan (2, )] < C | D 10807 00y (- )l o

[vI<s
1/2

(
=C Z le_¢ (R*LPT (¢ Av)) (Xeﬁ)H%{O(R")

lvI<s

( 1/2
<O D Nlecell o IR P (SAN) ggom-ion oy IX€e fpmien | -

[vI<s

By the Peetre inequality
Vs ERV EER - (L+[n+&)" < 2P+ )P+, (9)



it holds that
1/2
m—|a) (== 2
Iedmrogeny = ([ 141D 500 an

— </n(1+ I+ &[)20mleD |>A<(77)|2dn>1/2

< 2771 | ppimota gy (1 4 €)™ 1,

Hence
108070(5a0),. (2, )| < Capop(1+ €)™ 1,
and consequently A € OpS/%(R"). Thus (i) is obtained from (7i1). O

3 Pseudodifferential operators on closed
manifolds

In this section we consider the pseudodifferential calculus on manifolds ([17],
[19], [11], [3]), and the main result is Theorem 3.1 about the commutator
characterization (cf. Theorems 2.1 and 4.2), which was stated by Coifman
and Meyer [6] in the case of 0-order operators on L?(M) (see also [8] for a
kindred treatise). This will be applied in the final part of this paper concern-
ing periodic pseudodifferential operators. The differential geometry needed
in the study is quite simple, sufficient general reference being any text book
in the field, e.g. [10].

A compact manifold without boundary is called closed, and through-
out this section, M is a closed smooth orientable manifold. C*(M) is
the set of smooth complex-valued functions on M, and C°(U) is the set
of smooth functions with compact supports in an open set U C M. If
A:C®(M) — C>®(M) and ¢,7p € C®(M), we define the operator ¢pAyp :
C*(M) — C=(M) by ((pAY)u)(z) = ¢(z) - A(¢ - u)(z).

If (U, k) is a chart on M, the k-transfer A, : C°(k(U)) — C*(k(U)) of
an operator A : C®(U) — C*(U) is defined by

Au=A(uor)or

Similarly, the s-transfer of a function ¢ is ¢. = ¢ o k~!. Notice that the
transfer of a commutator is the commutator of transfers: [A, B], = [A, Byl

Pseudodifferential operators on the manifold M in the Hoérmander sense
are defined as follows: a linear operator A : C®(M) — C°°(M) is a pseu-
dodifferential operator of order (or degree) m € R on M, if for every chart
(U, k) and for any ¢, 9 € C§°(U), the operator (¢ A1), is a pseudodifferential
operator of order m on R™. It is known that the class of pseudodifferential
operators of order m on R" is diffeomorphism invariant, implying that the
corresponding class on M is well-defined. We denote the set of pseudodiffer-
ential operators of order m on M by ¥™(M).



Let Diff(M) be the x-algebra
Diff (M) = |_J Diff* (M),
k=0

where Diff*(M) is the set of at most kth order partial differential operators
on M with smooth coefficients. Here, Diff’(M) =2 C*(M), and Diff' (M) \
Diff®(M) corresponds to the non-trivial smooth vector fields on M, i.e. the
non-trivial smooth sections of the tangent bundle T'M.

A differential operator D € Diff(M) defines a seminorm pp on C*°(M) by
pp(u) = supyep |(Du)(z)|. The seminorm family {pp : C*°(M) - R | D €
Diff(M)} induces a Fréchet space structure on C*(M). This test function
space is denoted by D(M), and the distributions by D'(M) = L(D(M), C).

The Sobolev space H*(M) (s € R) is the set of those distributions u €
D'(M) such that (¢u), € H*(R") for every chart (U, k) on M and for every
¢ € Cg°(U) (see [12], [11], [17]). Then equalities C*°(M) = (,.p H*(M) and
D'(M) = Uyer H*(M) hold. Let U = {(Uj, x;)} be a cover of M with charts.
Due to the compactness of M, we can require the cover to be finite. Fix a
smooth partition of unity {(U;, ¢;)} with respect to the cover U. Then equip
the Sobolev space H*(M) with the norm

1/2
)
He (R") :

In fact, any other choice of Uj, k;, ¢; would have resulted to an equivalent
norm. Moreover, H*(M) is a Hilbert space. A linear operator A on C*°(M)
is said to be of order (or degree) m € R on M, if it extends boundedly
between H*(M) and H* ™(M) for every s € R. Thereby operator A has
also the continuous extension Ap : D'(M) — D'(M). As it is in the case of
R"™, any of these extensions coincide in their mutual domains, so that it is
meaningful to denote any one of them by A.

Naturally, D € Diff*(M) is of order (degree) deg(D) = k. Recall that
algebra Diff (M) has the well-known “almost-commuting property”,

[Dift (M), Diff*(M)] c Dift’ ™% 1(M),

[ull s () 1 050803 = (Z [(@52)x, |
j

which follows by the Leibniz formula. Actually, pseudodifferential operators
are characterized by the “almost-commuting” with differential operators:

Theorem 3.1 Let m € R and let A: C®(M) — C*®°(M) be a linear opera-
tor. Then the following conditions are equivalent:

(1) Ae ¥™(M).
(i) For any s € R and for any sequence D = (D;)32, C Diff' (M), it holds
that
Ag=Ae L(HS(M),Hs™(M)),
A1 = [Ax, Di] € L(H* (M), H =™k (M),

where dp j, = 25:0(1 — deg(D;)).



The following auxiliary result can easily be generalized to smooth para-
compact manifolds:

Lemma 3.1 Let M be a closed smooth manifold. Then there exists a smooth
partition of unity with respect to a cover U on M such that U UV 1is a chart
netghbourhood whenever U,V € U.

Proof. Let V be a cover of M with chart neighbourhoods. Since M is a
compact metrizable space by Whitney Imbedding Theorem [10], the cover
V has the Lebesgue number A > 0 — i.e. if S C M has a small diameter,
diam(S) < A, then there exists V' € V such that S C V. Let W be a cover of
M with chart neighbourhoods of diameter less than A/2, and choose a finite
subcover U C 'W. Now there exists a smooth partition of unity on M with
respect to U, and if U, V' € U intersect, then diam(U U V) < A. On the other
hand, if U NV = 0, then U UV is clearly a chart neighbourhood. O

Proof of Theorem 3.1. ((i) = (4i)) Assume that A € ¥™(M). Lemma
3.1 provides a smooth partition of unity {(U;, ¢;)}}.; such that U; U Uj is
always a chart neighbourhood, so that the study can be localized:

N N
A= iAd;.

i=1 j=1

Let (U; U Uj, k45) be a chart. Now ¢;,¢; € C§°(U; U Uj), so that the k-
transfer (¢;A¢;),,; is a pseudodifferential operator of order m on R", hence
belonging to L(H*(R™), H*"™(R")). Thereby ¢;A¢; = ((quiAqu)m].)H;jl be-
longs to L(H*(M), H*™(M)), and consequently A € L(H*(M), H*"™(M)).
Thus we have the result Y™ (M) C L(H*(M), H*"™(M)).

In order to get (i), also inclusions [¥™(M), Diff'(M)] ¢ ¥™(M) and
(™ (M), Diff’(M)] € ¥™ (M) must be proven. Let A € ¥™(M) and
D ¢ Diff'(M), and fix an arbitrary chart (U, ) and arbitrary functions
¢, € C§°(U). By a direct calculation,

¢[A, DIy = [pAy, D] — ¢ A, D] — [¢, D] Ae),

so that

(0[A, DJ9p)x = [(9AY)s, Di] — ($A[), D])x — ([¢; DIAY)s.

Because A € U™ (M), Theorem 2.1 implies that the operators on the right-
hand-side of the previous equality are pseudodifferential operators of order
m — (1 — deg(D)) on R*. Therefore [A, D] € ¥m~(1=ds(D))(]]) proving
implication (i) = (77).

((it) = (7)) Let A : C°(M) — C°°(M) satisfy condition (i¢), and fix
a chart (U,k) on M and ¢,¢ € C§°(U). To get (i), we have to prove that
(pAY), € OpS™(R™), which by Theorem 2.1 follows, if we can prove the
following variant of condition (i7):



(1) For any s € R and for any sequence € = (Cj)$2, C OpS,,(R") of
partial differential operators, it holds that

{ By = (¢pAY). € L(H*(R"), H*™™(R")),
Biiy = [By, Ci] € L(H*(R), He~mHdex(R™)),

where de j = 25:0(1 — deg(C;)).

Indeed, By = (pAY), € L(H*(R"), H*"™(R")) by (i7). Let x € C§°(k(U))
such that y(z) = 1 in a neighbourhood of the compact set supp(¢,) U
supp(¢x) C R*. Then define D = (D)%, C Diff' (M) so that D;|yuv =0,
and Dj|y = (xCj)x-1. Then dpy > dey, and due to condition (i¢), we get

Bri1 = [Bi, Ci] = [Br, XCk] = [(Br)s-1, Dis
c ﬁ(}?sﬂRp),f{&”n+d®*(Rw))
C L(H'(R™),H* "™ ex(R")),

verifying (4i)’. Hence A € ¥™(M). O
The pseudodifferential operators on M form a *-algebra

(M) = | vm(m),

meR

where U™ (M) C L(H*(M), H*=™(M)). Tt is true that Diff*(M) c ¥k (M),
and U(M) has properties analogous to those of the algebra Diff(M). Espe-
cially, [T (M), T™ (M)] ¢ Gmi+ma=1(}f),

4 Periodic pseudodifferential operators

On the torus T" = R™/Z" one has a well-defined global symbol analysis of
so called periodic pseudodifferential operators (see [22], [20], [21]). As it was
mentioned in the introduction, this set of operators is known to equal ¥(T").
In this section, we provide a new proof of this fact by applying Theorem 3.1.
To get a good comprehension about the periodic pseudodifferential calculus,
it is advisable to compare the material in this section to the pseudodifferential
calculus in Section 2.

Let {ec : Tt — C | £ € Z", e¢(z) = €™¢} be the basis of the space
of trigonometric polynomials, TrigPol = TrigPol(T"), which is dense in the
test function space C* = D(T") with the usual Fréchet space topology. The
Fourier transform of a test function v € C*° is the function o : Z" — C
defined by

e) = | uloecald.

The Fourier transform is generalized to the distribution dual, and the inner
product for the Sobolev space H®* = H*(T") (s € R) is

(u,0)me = Y (14 E)*a(€)0(E).

gen
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The associated Sobolev norm is ||ul|gs = (u, u)}j{f

The symbol of a linear operator A : TrigPol — C* is defined by

oa(w,§) = e ™ (Aeg)(x). ()

The mapping o can be viewed as an additive group homomorphism: o4, 5 =
o4+ op, but usually o4 # 040p. It should be emphasized that the symbol
of a linear operator is unique (A = 0 = o4(z,§) = 0). Conversely, a smooth
function o : T" x Z™ — C defines a linear operator Op(o) : TrigPol — C*
by
Op(o)u(t) = Y oz, E)a(§)e™™ <. (6)
genn

By (5) and (6), o is the symbol of Op(o).

A function o : T" x Z" — C is called a symbol of order m € R, o0 € S™ =
S™(T™), if it is a C°°-smooth function in the first argument and if it satisfies
the following symbol inequalities for every x € T" and & € Z™:

Va,B € Ny 3Cop € R : |Ag050(,€)| < Cap (14 1€)™ (7)

where €] = (327, [;[*)Y/? for € € Z", and |a] = Y 7_ a; for a € Nj. The
partial difference operator Ag = A?ll e A?: is defined by

(Dg; F)(E) = f(E+ ;) — £(E),

where 6; = (§;x)f_; € Z", and J; is the Kronecker delta. The correspond-
ing operator Op(c) given by (6) is then called a periodic pseudodifferential
operator of order m, Op(o) € OpS™ = OpS™(T").

Difference operators resemble differential operators closely. For instance,
the discrete Leibniz formula holds:

M) =Y (“) (ATu(€) AZ0(€ + ) ®)

1<a i
where u,v : Z™ — C. Notice the shift by v in the argument of v.

We are going to prove that OpS™(T") = ¥™(T"). We start by showing
the continuity of the periodic pseudodifferential operators between Sobolev
spaces, without resorting to pseudodifferential calculus on R™. This is a piece
of folk-lore in the field, but since we cannot give any reference other than
[22] or [20], we present a proof here. The proof in [22] is of another type.
The reader should notice the similarities between our treatment of Theorem
4.1 on T" and the corresponding proof on R" in [19].

Theorem 4.1 Let A € OpS™(T"), s € R. Then A € L(H*(T"), H*~™(T")).

We state two lemmata without proofs:

11



Lemma 4.1 (Discrete Young inequality) Assume that h: Z" x Z" — C
18 a function satisfying

C, = sup Z |h(n,&)] < oo, Coy = sup Z |h(n, &)| < oco.
cezm " nezLn™ ;

For any sequence f € P = (P(Z") (1 < p < o0) let us define the function
g:Z" — C by g(n) =3 h(n,§) f(§). Then

lgller < CY7Cy ) £l
where q is the conjugate exponent of p.

Lemma 4.2 Assume that o € S™(T"), and let 6 be its Fourier transform
with respect to the first argument. Then for every a € Ny and r € Ny,

[Ag6(n, )] < cra (L+1n) " (1 + €)™

Proof of Theorem 4.1. First we calculate the Fourier coefficients of Au,
where u € C*°:

Au(‘r) = Z UA(x’ f)ﬁ(g)eizmg.g = Z [Z (ATA(T]’ 5)6127”3‘17] ﬁ(g)emwx-f
¢ n

3

= > [Z G — g,aa(g)]
3

n

In the subsequent estimation process for ||Aul|gs-m the following steps are
taken: we move the absolute value under the summation over &, and then
we successively apply the inequalities of Peetre (4) and Young (Lemma 4.1
with p = g = 2, h(n,€) = (1+ |y — ) (1 — &) ™5a(y — &,6)| and
f(€) = (1+€])*la(€)]), and Lemma 4.2 (with |a| = 0), in this order, yielding
| Al < Cllulle.

JAulfremn =Y (14 [n)*7™)| Au(n)?

n

=2

2

> @+ )t mealn — & &)al€)

n 3
<y [2(1 )l 5,5>||a<5>|]
n ¢
< Py [2(1 0 — €D+ Je) ™aln — & €)]
n 3

a+ |€I)s|ﬁ(£)|]

12



< gl [sup D (=€) T+ €)™ Galn — 5,5)|]
L

sup D1+ b — €)*(1 + e oa(n - 5,5>|]

> @+ [ehace) P

L ¢

< 22|sfm|

sup E cro(1+|n— §|)smT]
7
3

[S‘gp > cro(l+]n— fl)smT] [[ul &
n

2
Hs-

2
2?le=m lcr,OZ(l + |n|)'5"""’"] [l

n

The desired extension on H? is obtained by boundedness. O

In analogy with the pseudodifferential analysis on R", let us define the
transformations L# = L% ... L and R* = R®* - - - R%" acting on PPDOs by
L;(A) = [0s;, A] and Ry(A) = [A, e ]]. The symbols of these operators
are

O-Lj(A)(x7 g) = 093]'0-A(xa 5),
and respectively
Ory(4)(T, &) = €™ Ng 0 a(z, £).
The minor asymmetry in the latter symbol caused by e??™* is due to the
nature of (forward) differences. The commutators are applied in the proof of
the main theorem about the periodic pseudodifferential operators:

Theorem 4.2 The classes of periodic pseudodifferential operators and pseu-
dodifferential operators on T™ coincide. More precisely, for any m € R it
holds that

OpS™(T") = ¥™(T").

Proof. Let us first prove the inclusion OpS™(T") C ¥™(T™). We know by
Theorem 4.1 that OpS™ C L(H?®, H*~™). Therefore by Theorem 3.1, it suf-
fices to verify that [OpS™, Diff'(T")] € OpS™ and that [OpS™, Diff’(T")] C
OpS™~!. This is true due to the asymptotic expansion of the composition
of two periodic pseudodifferential operators (see [21]). However, we present
a brief independent proof of the inclusion [OpS™, Diff'(T")] ¢ OpS™. Let
A € OpS™(T") and let X € Diff'(T"), X, = ¢()8,, (1 <k < n). Now

U[A:X](x, §) = i2m& Z[JA(x, E+n) —oalz, g)w)(n)eizm.n

n

—¢()(8z,04) (2, €).
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Notice that

(.17 5"‘77) - UA(x’g) =

n n;—(sgn(n;)+1)/2

Z Z sgn(nj)AgjoA(x,ﬁ + 771(51 +---+ 'I’]jfl(sj',l + (.Ujéj),

J=1 wj=(sgn(n;)—-1)/2

where
1, nj > 0,
sgn(n;) = 0, n; =0,
—1, n; < 0,

and there are at most »_.[n;| < /n(1 + |n|) non-zero terms in the sum.
Hence, applying the ordinary Leibniz formula with respect to x, the discrete
Leibniz formula (8) with respect to £, the inequality of Peetre (4) and Lemma
4.2, we get
| 8887 01a,x) (2, €)]
< G (14 €) 3L+ ™14 (1 =t D=
n

+Capg(1+ [€[)me.
By choosing r > |m — (|a| 4+ 1)| + |3| + 2, the series above converges, so that
|Ag0801a,x) (2, €)| < Cap(1+ €)™ 1.

Hence [A, X] € OpS™(T"). Similarly, but with less effort, one proves that
[OpS™, Diff’(T")] € OpS™!. Thus A € ¥™(T").

Now assume that A € ¥™(T"); we have to prove that o, satisfies inequal-
ities (7). Let us define transformation Ry by Ry(A) = e~2m@ R, (A), and set
R* = R ... R so that

Ag‘afcm(w, §) = Ogars(a)(T;§).

By Theorem 3.1, R°LF(A) € L(H™ el HY). Notice that

1/2 1/2
>+ Ié“l)zs] lZ(l + |£|)2s|ﬂ(£)|2]
3 ¢
1/2

= Cillulm < Co | Y l2ullio |

lvI<s

u(e)] < ) lag)| <
¢

where s € N satisfies 2s > n = dim(T"). Using this we get
1/2

[Ag07oa(x, )| < C | D 18807 al-, &)l

lvI<s

14



1/2

=C | Y lle—eR*LP (A)eel310
[vI<s
1/2

<O D Ne—ellIE aroy) | R*LEFV(A)Z mesat oy leel3rm-ai

lvI<s
< Cap (1+ [y,

References

[1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

Agranovich, M. S.: Spectral properties of elliptic pseudodifferential oper-
ators on a closed curve. Funct. Anal. Appl. 13 (1979), 279-281.

Agranovich, M. S.: On elliptic pseudodifferential operators on a closed
curve. Trans. Moscow Math. Soc. 47 (1985), 23-74.

Agranovich, M. S.: Elliptic operators on closed manifolds (in Russian).
Itogi Nauki i Tehniki, Ser. Sovrem. Probl. Mat. Fund. Napravl. 63 (1990),
5-129. (English translation in Encyclopaedia Math. Sci. 63 (1994), 1-130.)

Beals, R.: Characterization of pseudo-differential operators and applica-
tions. Duke Math. J. 44 (1977), 1, 45-57.

Calder6n, A. P.: Commutators of singular integral operators. Proc. Nat.

Acad. Sci. USA 53 (1965), 1092-1099.

Coifman, R. R. and Y. Meyer: Au-dela des opérateurs pseudo-
différentiels. Astérisque 57, Société Math. de France. 1978.

Cordes, H. O.: On pseudodifferential operators and smoothness of special
Lie group representations. Manuscripta Math. 28 (1979), 51-69.

Dunau, J.: Fonctions d’un operateur elliptique sur une variete compacte.
J. Math. Pures et Appl. 56 (1977), 367-391.

Hille, E. and R. S. Phillips: Functional Analysis and Semi- Groups. Prov-
idence, Rhode Island: American Mathematical Society. 1981.

[10] Hirsch, M. W.: Differential Topology. New York: Springer-Verlag. 1976.

[11] Hormander, L.: The Analysis of Linear Partial Differential Operators

III. Berlin: Springer-Verlag. 1985.

[12] Lions, J. L. and E. Magenes: Non-Homogeneous Boundary Value Prob-

lems and Applications. Vol. 1. Berlin etc.: Springer-Verlag. 1972.

15



[13] McLean, W.: Local and global descriptions of periodic pseudodifferential
operators. Math. Nachr. 150 (1991), 151-161.

[14] Melo, S. T.: Characterization of pseudodifferential operators on the cir-
cle. Proc. AMS 125 (1997), 5, 1407-1412.

[15] Saranen, J. and W. L. Wendland: The Fourier series representation of
pseudodifferential operators on closed curves. Complex Variables Theory
Appl. 8 (1987), 55-64.

[16] Stein, E. M.: Harmonic analysis. Real-variable methods, orthogonality,
and oscillatory integrals. Princeton: Princeton University Press. 1993.

[17] Taylor, M. E.: Pseudodifferential operators. Princeton: Princeton Uni-
versity Press. 1981.

[18] Taylor, M. E.: Beals—Cordes-type characterizations of pseudodifferential
operators. Proc. AMS 125 (1997), 6, 1711-1716.

[19] Treves, F.: Introduction to pseudodifferential and Fourier integral oper-
ators. New York: Plenum Press. 1980.

[20] Turunen, V.: Symbol analysis of periodic pseudodifferential operators.
Master’s Thesis. Helsinki Univ. Techn. 1997.

[21] Turunen, V. and G. Vainikko: On symbol analysis of periodic pseudo-
differential operators. Z. Anal. Anw. 17 (1998), 9-22.

[22] Vainikko, G.: Periodic integral and pseudodifferential equations. Helsinki
Univ. Techn. 1996.

16



(continued from the back cover)

A396

A395

A393

A392

A391

A390

A389

A388

A387

A386

A385

A384

A383

A382

Cl’ement Ph., Gripenberg G. and Londen S-0
Hélder Regularity for a Linear Fractional Evolution Equation, 1998

Matti Lassas and Erkki Somersalo
Analysis of the PML Equations in General Convex Geometry, 1998

Jukka Tuomela and Teijo Arponen
On the numerical solution of involutive ordinary differential equation systems,
1998

Hermann Brunner, Arvet Pedas, Gennadi Vainikko
The Piecewise Polynomial Collocation Method for Nonlinear Weakly Singular
Volterra Equations, 1997

Kari Eloranta
The bounded Eight-Vertex Model, 1997

Kari Eloranta
Diamond Ice, 1997

Olavi Nevanlinna
Growth of Operator Valued Meromorphic Functions, 1997

Jukka Tuomela
On the Resolution of Singularities of Ordinary Differential Systems, 1997

Gennadi Vainikko
Fast Solvers of the Lippman-Schwinger Equation, 1997

Ville Turunen and Gennadi Vainikko;
On Symbol Analysis of Periodic Pseudodifferential Operators, 1997

Jarmo Malinen
Minimax Control of Distributed Discrete Time Systems through Spectral Fac-
torization; 1997

Jarmo Malinen
Well-Posed Discrete Time Linear Systems and Their Feedbacks, 1997

Kalle Mikkola
On the Stable H? and Hoo Infinite-Dimensional Regular Problems and Their
Algebraic Riccati Equations, 1997

Nikolai Volkov
Algebraizations of the First Order Logic, 1997



HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS
RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are
available at http://www.math.hut.fi/reports/ .

A408 Ville Turunen
Commutator Characterization of Periodic Pseudodifferential Operators,
Dec 1998

A403 Saara Hyvonen and Olavi Nevanlinna
Robust bounds for Krylov method, Nov 1998

A402 Saara HyvoOnen
Growth of resolvents of certain infinite matrice, Nov 1998

A399 Otso Ovaskainen
Asymptotic and Adaptive Approaches to thin Body Problems in Elasticity

A398 Jukka Liukkonen
Uniqueness of Electromagnetic Inversion by Local Surface Measurements,
Aug 1998

A397 Jukka Tuomela
On the Numerical Solution of Involutive Ordinary Differential Systems, 1998

ISBN 951-22-4353-9
ISSN 0784-3143
Edita, Espoo, 1998



