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1 Introduction

We shall consider numerical results obtained with the methods analysed in
[8]. For a general background we refer to [9].

2 Numerical implementation

The equation to be solved is given in form

f(x7 Y, Y1, Y2, - -+ yq) =0 (21)

where f : R® — RF y € R" and subscripts denote derivatives; we denote
the components of y by upper indices. Here k > n. Note especially that we
allow k > n.

There are three subproblems in implementing the algorithm:

1. Given a point p € M, compute the distribution D,
2. Step size control
3. Orthogonal projection to M.

All of these reduce to fairly standard numerical problems. The implementa-
tion was done on Maple V. It would probably be more efficient to produce
e.g. Fortran code from the Maple procedures, but this will be considered in
a future paper.

2.1 Computing the distribution

As it is seen in [9], the distribution D, can be computed as the nullspace of
the following (k + nq) X (ng + n + 1) matrix A:

<U Inq anxn)
dfy

where v = —m(p) where 7 is the projection picking up components corre-
sponding to (Y1, Y2, ---,Yq). It can be further reduced to computing the
nullspace of the k& x (1 + n)-matrix:

(Al — A2'U Ag)

where (A1 A, Ag) is a suitable partition of the jacobian df,: the sizes of
matrices A; are k x 1, k x ng, k x n, respectively.

When computing numerically the nullspace, we use the singular value
decomposition USVT for the matrix above and take the last column of V,
which corresponds to the smallest ( = zero) singular value. However, often
we are able to find an explicit formula for the nullspace.



2.2 Step size control

Here we have used two standard techniques [5]: either take two sequential
steps with stepsize h and compare the result with one step with stepsize 2h,
or Fehlberg-like: compare two parallel steps, the other of order p and the
other of order p + 1.

We implemented explicit methods: classical RK4, Fehlberg 4(5) (denote
this by RKF45), Dopri 5(4). In case of RK4 the “2 % h compared to 2h” was
used.

2.3 Projection

Projection was done by chord Newton iteration. The needed jacobian was
evaluated every third step and its LU—decomposition is used. Initial point
is selected either as

Qinit =D+ Vb (2‘2)
Minit = 0
or yet better as
Ginit = P+ hV, — (dfp) 2 B® (2.3)
Pinit = piz B? = (dfy(dfy)) ™" £, (Vy, Vp)B2/2

The initial point in (2.2) is of order O(h?) and in (2.3) of order O(h?). In
the numerical examples we use the initial point (2.3). Although it was not
extensively studied, this seemed to reduce the number of needed Newton
iterations.

Here the h?-coefficient has an interesting geometrical interpretation:

- (normal curvature at p),

[N

|(dfp) o] =

see [9]. In the latter case evaluation of d?f is needed, which can be consid-
erably slow for large system.

Fortunately this might be overcome by automatic differentiation. But
this is a topic of future research and we refer to [2] for more information on
this subject.

However, in these moderate size examples we construct d?f analytically
so only a function evaluation is needed.

Note that d?f is used also in the chord Newton.

3 Examples

In this section we study 4 examples. Two of them are hamiltonian and
two otherwise interesting. It is well known [7| that in case of hamiltonian
systems the symplectic Runge-Kutta methods are superior. However, we



have not implemented a symplectic method, mainly because the theory for
the symplecticity of the integrator is not directly applicable to our method.

This would require further inspection and will be a topic of future re-
search. At this stage we are interested mainly in the behaviour of ’the most
classical’ Runge-Kutta integrators in context of our method.

3.1 A simple example

Let us look at a simple system in J; (R x R):
Yy —3y—22°=0 (3.1)

whose explicit solution with initial point y(0) = 2 is

The motivation for this example is to test the order of the method Dopri5.
Note that the theory is so far only up to order 4. We would like to test nu-
merically if the theory could be extended also to higher orders. We compute
for 2 = 0..0.01 with constant stepsize h = 27% where k € {6, 7, ..., 13}.

The result is encouraging, the order really seems to be 5. In figure 3.1 is
shown in log-log scale the errors at z = 0.002 and = = 0.01. The slopes are
4.836 and 4.952, respectively. At h = 2713 one can see the effect of round-off
errors, the computations were done with 30 decimals. Without the points
where h = 2712 the slopes would be 5.008 and 5.011, respectively.

It is tempting to conjecture that the main result of [8] can be extended
to all orders, i.e. there would be no new order conditions!

x=0.002 ==0.01

-3 -12 -1 - -4 -3 -7 -B -13-12 -11 -1 -3 -8 -7 -B

Figure 3.1: Testing the order of dopri5(4).



3.2 Henon-Heiles system

The equations of this famous example from astronomy are:
v +y' +2y'y" =0
vy + (') = (7)) =0 (3.2)
sluil” + 51+ ()% - 357’ —a =0
The computation is reduced [9] to:
Mol + 3w+ () - 5(*) —a=0
D = span(V) (3.3)
V= (L v -yt — 20" =2 — (1) + (17)?)

where a is the constant energy. We are interested in quasiperiodic motion,
which is achieved by the initial point (z,y,y1) = (0,0.12,0.12,0.12,0.12).
We take the Poincaré section at the hyperplane y' = 0 and look at (y?, y?).

We compute 'approximately two rounds’ in the Poincaré section, which
means taking £ = 0..1100 and hence about 340 points in the section. The
point in the section is chosen by Hermite interpolation between points p,, pmt1
which are sequential such that sgn(y!) changes.

Results: in dopri5 we used the 4" order point as the new starting point
for the next step. Although it was not extensively studied, it seemed like
using 5" order point required so small tolerance that proceeding along the
solution was actually slower than in the 4" order case.

Dopri5 was clearly more efficient than RKF45. Surprisingly, also RK4
was clearly better than RKF45, despite the more elementary step size control.
RKF45 required very small stepsize to produce qualitatively correct solution,
it was not reasonable to compute even one round. Compared to this Doprib
and RK4 used quite big steps. Some results of computations are in table 1.

toler | =110 | =550 | z=1100
Dopri5(4) 4% order pt | 5-107° 186 920 1837
Dopri5(4) 5% order pt | 1-107° | 242 | 1201 | 2404
Dopri5(4) 4%" order pt | 5-107% | 268 1373 2722

RK4 5-107* 268 2897 5801

Table 1: Some results of Hénon-Heiles (3.3): number of steps.

The qualitative performance of RKF45 did not depend on using local
extrapolation.

On the left of figure 3.2 is the result with doprib, tol.= 5-107°. 1840
points was needed. With bigger tolerances the algorithm rejected consider-
ably more points. By looking at the figure, the result is slightly less "uniformly
distributed’ than in the following RK4 case.



On the right of figure 3.2 is the result with RK4, tol.= 5. 107%. 5800
points was needed. It is interesting to compare these two figures: the points
in the sections are clearly not at same places, but the shapes of the sections
are still the same.
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Figure 3.2: Poincaré sections in the (y?, y?)-plane for the Henon-Heiles system
(3.3).

In the light of the RKF45 case, it seems that the traditional step size
controlling methods need some revision in the case of our method.

3.3 Stiff pendulum

This is a pendulum with massless, stiff spring and a mass of 1 unit at the end

of the spring. The rest length of the spring and the gravitational constant
are taken to be 1. The equations are:

(45 +y'y* =0
vty +1=0
(") + ) (2 - 1) - 1=0
2yt + (y'uh +v%2) (%%* —1)° =0
(ey® = 1)%y3 — 3e*(y})?
A2+ 02— ) (P 1) =P (P - 1) =0
and the computation in reduced form [9]:
(@) + @) (2 -1)° =1=0
D = span(V) (3.5)

V= (1L,yh 03, — (vl + v22) (2° — 1)° /2, —y'o®, —y2y® — 1)




We investigate the cases ¢ € {0.1, 0.01}.

Let us choose first ¢ = 0.01 and use the initial point (0, 0.85, 0, —1765, 0, 0),
which is not exactly on the manifold but close enough: then f = 0.00005.
This initial point will quickly be iterated to correct manifold. We compute
x =0.1.5.

Doprib is, as in previous example, clearly more efficient than RKF45.
The latter has trouble keeping the solution qualitatively correct, it suffers
from dissipativity (figure 3.3) for all reasonable stepsizes. Some results of
computations are in table 2.

toler | x =05 | x=1.5

Dopri5(4) | 104 357 1141

Dopri5(4) | 107° 685 2051
RK4 1072 643 1931
RK4 1073 957 2857

Table 2: Stiff pendulum (3.5) ¢ = 0.01, number of steps.

rkf45 to10.0001
085 08082 08 1102 108 11112 rkf45 tol, 0.00001
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Figure 3.3: Dissipativity of RKF45 in stiff pendulum (3.5), € = 0.01.

Comparing dopri5 and RK4: on the left of figure 3.4 is the result with
doprib tol. = 107*, we use the usual 5% order point as the new point on
solution. 1141 points was needed. With tolerances bigger than that, dopri5
lost the qualitatively correct behaviour. With tolerances 1078 or smaller, the
propagation along the solution was painfully slow.

In RK4 the computed solution has good quality even with 'big’ tolerances.
Hence in this example RK4 easily beats RKF45. RK4 is also more reliable
but slower than dopri5, which hopefully (to be seen in the near future...) is
of higher order.



On the right of figure 3.4 is the result with RK4 tol. = 1072, 1931 points
was needed. In doprib the effect of tolerance is clearly more visible than in
RK4 case.
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Figure 3.4: Stiff pendulum (3.5) ¢ = 0.01, z = 0...1.5.

Let us choose then ¢ = 0.1 and the initial point pg = (0, .85, 0, —17.65, 0, 0).
This, as in the previous case, is not exactly on the manifold but close enough:
f(po) = 0.00005. This initial point will quickly be iterated to correct mani-
fold.

We compute x = 0..20. The results are quite similar to previous case;
RK4 beats RKF45 and doprib is clearly superior to both of these. RKF45 is
dissipative for all reasonable stepsizes.

Some results of computations are in table 3. The column x = 3.7 corre-
sponds to the 'one swing’ case mentioned below. In figure 3.5 is the result by

toler | x =3.7| 2 =20

Dopri5(4) | 104 136 751

Dopri5(4) | 107° 260 1444
RK4 1072 223 1259
RK4 1073 371 2082

Table 3: Stiff pendulum (3.5) £ = 0.1, number of steps.

dopri5 with tolerance 10~4, on the left only one swing to show the ’speed’ of
numerical solution, on the right the qualitative behaviour over longer time
interval.

3.4 Four bar system

This is a classical example in multibody dynamics. The links are rigid and
of negligible mass. Joints are frictionless and joints 0 and 3 are fixed. There
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Figure 3.5: Stiff pendulum (3.5), ¢ = 0.1.
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Figure 3.6: Four-bar linkage.
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are point masses my, ms at joints 1 and 2, respectively. The effecting forces
are gravity and a constant torque 7" acting on the origin.

The equations of motion, where (3!, 3?), (v%, y*) are coordinates for joints
1 and 2 respectively, are in descriptor form:

B(.’L’, Y, yl)y2 + f(ma Y, yl) + (dg)t)\ =0 (3 6)
g9(y) =0
with
B = diag(mq, my, ma, my), ~ = gravitation constant,
2/ 2
y*T/a . )
—y'T/a?> +m 1 W)+ ()" —
f=" /0 7 g=5 (& —yl)gj;( yt — ; ) b2 (3.7)
d +
- @ P -

In addition to these, the energy of the system is constant and expressed by

emergy = 5 (ma((l)? + (2)7) + mal(9)? + () + (muy? + oy

(3.8)

The constraints are holonomic, hence we can use in computations the reduced
form introduced in [9]:

([ 9(y)=0
dgyr =0
D = span(V) (3.9)
V= (1a Y1, Z/z)
B (dg)t Y2 f o
L (dg 0 ) (/\> i (dzg(yl,y1)> -

We shall consider the motion of joint 2 with different choices of a, b, ¢, d.
Also, we will see the same phenomenon as in the multibody example of [9]:
augmenting the system by constant energy condition changes the qualitative
behaviour of the solution quite radically.

Choose (a,b,c,d) = (1,2, 1.5,2) and T = 0.8, my = 0.2, my = 0.1. We
look at component y*. The initial point is (0, 0.5, ...,0,0,0,0) In figure 3.7
is the result with the energy equation augmented (solid line) and without it
(dashed line). The change of energy in the latter case is shown in figure 3.8.
In the constant energy case the result is beautifully oscillatory, as one might
heuristically expect, since the effecting forces (gravitation and torque T') are
constants. In the non-constant energy case the result is likewise oscillatory
but the period of the oscillation is clearly shorter than in the 'correct’ case
of constant energy. Also, in down position the behaviour is quite different:
it makes only a small 'cup’ there.

11
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Figure 3.8: Evolution of energy of 4bar system (3.7), T'= 0.8.
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The case where a + b = ¢ + d is interesting, since it produces singulari-
ties: then the linkage is capable of reaching position where all the bars are
collinear. In that case, the rank of dg is not maximal and the equations of
motion become singular. This is called constraint singularity. The physical
interpretation for the singularity is that there is a bifurcation: the system
can move either both joints 1 and 2 down (or up) or another joint moves
upwards while the other one moves downwards.

However, if we are modelling a real mechanical device, we might expect
that our system has some (non-modelled) supportive structures that elim-
inate the possibility of a bifurcation. In this case, we have to modify the
equations to remove the singularity also from the equations. See also [1, 6]
for other approaches to this problem.

The technique for resolving this problem is ideal decomposition. We need
some definitions and results (which we state without proofs) from algebraic
geometry [3]:

Definition 3.1 Denote by Clyy, ..., yn] the ring of polynomials inyy, ..., Yn.
A subset T C Clyy, ..., yn] is an ideal if it satisfies
(i) 0€I.

(i) If f,g €L, then f+g € L.

(15i) If f € T and h € Clyy, ..., yn], then hf € T.

Definition 3.2 Let fi,..., fs € Cly1, ..., yn|. Then we set
<f17"'afs> - {thfz : hly"'ahs € (C[yh e yn]}
i=1

We call (f1,..., fs) the ideal generated by f1,..., fs.

We skip the proof of the fact that (fy,..., f) really is an ideal.

Definition 3.3 An ideal T is radical if f™ € I for any integer m > 1
implies that f € T.

An ideal T is prime if whenever f, g € Cly1, ..., yo] and fg € I, then
either f € Z orge T.

Definition 3.4 Let T be an ideal. The radical of I, denoted by \/I, is the
set

{f€Cuyr,...,yn] : f™ €T for some integer m > 1}.

Lemma 3.1 If Z is an ideal, then VT is an ideal. Furthermore, VT is a
radical ideal.

Finally, a strong theorem from algebraic geometry:

13



Lemma 3.2 FEvery radical ideal T in Cly,...,yn] can be written uniquely
as a finite intersection of prime ideals,

I=7Iin---N4Z,
where I; ¢ I; for i # j.

An essential thing is that this decomposition can be computed algorithmically
through the use of the generators of the ideal.

To demonstrate, suppose (a,b,c,d) = (1,2,1,2). Our g is a polynomial,
hence it generates an ideal Z € Cly', 32, y3, y*] which then generates a radical
ideal v/Z. This decomposes to intersection of prime ideals:

\/Z_,' - Il N Iz
where Z; is the prime ideal generated by g;,

") + (") —4y° + 3
2 4

5 = y -y
(°) + (") -4y’ +3
g2 = < 4y*yd —3y? +3y!

(4y°y* + 3y — 3y° + 6

In computing these we found Singular [4] very helpful. Using these equations
actually removes the singularity! For example, if we have the parallelogram
case where both joints 1 and 2 move at the same height, we use g; in place
of g. The situation y?> = y* = 0 is no longer a singularity, g; is of maximal
rank everywhere. Of course, in this simple case we can eliminate y® and 3*,
a geometric fact which is also clearly visible in g;.

Let’s look more closely at go. First, condition y* = y* (parallelogram-like
motion) yields easily y* = y* = 0. Hence the parallelogram motion is possible
only with g;, not with gs.

Second, the middle equation of g, gives

4
yt=y*(1— gy?’)

where the multiplier of y? is negative by the first equation of g, which is
0=(y" -2+ (¥")* -1

and yields 1 < g < 3.

That is, when nonzero, y? and y* have different signs. Hence g, corre-
sponds to situations where the joints 1 and 2 are at different sides of the
d-bar, as expected.

Third, the rank of g, is maximal everywhere and hence the singularity
is vaporized! Let us take an example using g in place of g: the initial

14
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point is (0, 0.5, v/3/2, 1.5, —+/3/2,0,0,0,0) and T, my, my as above. The
component y? is in figure 3.9 and some of the configurations of the linkage
are in figure 3.10. There is no problem passing through points y* = 0 which
would be singularities when using the original g.

Remark. If we had used the Lagrange 2"¢ kind of equations (i.e. us-
ing a minimal set of coordinates, e.g. an angle between bars a and d) for
representing the equations of motion, we would have less equations but they
would still include an algebraic constraint. Moreover, this constraint would
be of non-polynomial type and the ideal decomposition could not be applied.

Acknowledgement. The second author wants to thank prof. E-M Sa-
lonen at the Mechanics Laboratory of HUT for helpful discussions.
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