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1 Introduction

In this paper we study an extension and reformulation of one of the earliest
finite elements in plane elasticity, the Turner rectangle, designed in 1953 [6]
and published in 1956 [30]. The element was originally thought of as a beam
element and aimed for approximating the deformations of the supporting
ribs and spars in airplane wing structures [30|. The design appears a natural
extension of a simpler one-dimensional Timoshenko beam element — this was
likewise introduced in [30] and was used as an alternative of the rectangle.

The third element introduced in [30], the (standard) linear triangle, was
aimed for approximating the deformation of wing panels as a membrane.
In retrospect, the triangle (proposed earlier by Courant [7] in a different
context) had the greatest impact on the later breakthrough of finite element
methodology in structural mechanics |6, 24|. Anyhow, the Turner rectangle
— the second candidate for the "first finite element" in plane elasticity —
has later created a vivid discussion as well. Again in retrospect, this was the
first finite element that fully avoided the parametric locking effects in a plane
elastic problem. Attempts to reformulate the element as a geometrically more
flexible quadrilateral have been numerous.

In modern finite element terminology, the rectangular "direct stiffness" for-
mulation of Turner et al. is viewed as a nonconforming displacement method.
The key idea was to deform the (now) standard bilinear shape functions into
problem specific quadratic shapes so as to exactly capture the two simplest
bending modes when the element bends like a beam. As now is widely un-
derstood, the standard bilinear (or linear) element perfoms very poorly as
a beam element, a numerical phenomenon known as overstiffness or locking
[15, Ch 6]. Due to the quadratic shapes assumed, the Turner rectangle for-
mally avoids the locking problem — as does the corresponding one-dimensional
beam element in [30]. However, unlike in 1D, the two-dimensional shape func-
tions are incompatible, so the otherwise natural extension from 1D to 2D is
shadowed by a "variational crime". The convergence of such an approach,
or extension to more general quadrilateral element shapes, is by no means
obvious.

Alternative ways of improving the bending behavior of the standard bilinear
rectangle, or the corresponding bilinear quadrilateral element, have been pro-
posed by a number of authors over the years. The two classics among these
are the hybrid formulation of Pian [18] and another nonconforming formu-
lation by Wilson et al. [31, 29]. In general, these formulations have been
most successful in the rectangular reference configuration or its simple affine
images, less on general quadrilateral meshes [15, 16]. On the other hand, in
the rectangular reference configuration there have been more formulations
than actually new methods. For example, the formulations of Turner, Pian
and Wilson all lead to the same stiffness matrix for the nodal displacements
when the mesh is rectangular and aligned with the coordinates [8, 9].

More recently, a new systematic approach for deriving robust plane elastic



quadrilaterals from the bilinear basis was taken by Belytschko et al. [2], cf.
also [3, 15]. Here the idea is to combine numerical strain reductions (or
strain projections, or underintegration) with stabilization. The approach
involves free parameters and again extends the Turner rectangle, this time
to a parameter dependent family of conforming quadrilateral elements [2].

The approach we take here is close to that in [2]. We introduce a parametric
family of conforming bilinear quadrilaterals, derived by modifying the strain
energy by projections (local averaging) and added "correction terms" involv-
ing two free parameters. Based on this formulation we present — for the first
time — the full story of the first locking-free finite element in a mathemat-
ical frame. Our mission is not to seek for intuitive physical justification or
derivation. Rather, we explain the formulation a posteriori by means of di-
rect stability and error analysis. The analysis is carried out in the energy
norm and attempts to be sharp, involving even lower error bounds. Besides
explaining the underlying (perhaps more numerical than physical) ideas, this
analysis shows also the limitations of the formulation.

The main conclusions from our theory are in agreement with those already
drawn from engineering expertise [16]: The overstiffness in bending can be
avoided (with appropriate choice of the free parameters) on rectangular grids,
but cannot be avoided on general quadrilateral meshes by any of the assumed
algorithms. On general meshes (on general polygonal domains) we can only
show that the modified bilinear elements perform nearly as well — or as badly
depending on case — as standard elements. There is one exception of this
rule: In case of plane strain and nearly incompressible material, the modified
bilinear elements turn out to be better than the standard ones also on more
general meshes. As now is well known, standard elements are overstiff not
only in bending but also when subject to volumetric constraints [10, 15]. In
retrospect, it appears rather surprising that the Turner rectangle, which re-
ally was designed for capturing the beam bending asymptotics only, actually
is able to handle the volumetric locking problem as well. Our error analysis
describes the mathematical background of this additional "miracle". Here
the existing finite element theory [12, 21] turns out to be relevant.

In short, the aim of the paper is to put the Turner rectangle in a mathematical
frame and show the limits of its extended formulation. Besides this, the paper
has a dual goal, which perhaps is more important. The aim is to use the
early finite element formulation as a frame to popularize some of the recent
advances of finite element theory more generally. As we claim, this theory is
about to take its natural shape, while finally being able to explain the "first
variational crime" in finite element engineering. Somewhat paradoxally, this
early formulation was never given full blessing by finite element theory.

In modern finite element software, "variational crimes" are usually commit-
ted on purpose. The temptation arises in general in parameter dependent
problems where uniform convergence of FEM with respect to a parameter
would be desirable. In many of such problems in structural mechanics, stan-
dard low-order elements fail to converge uniformly. In the present problem,



one of the critical parameters is related to the shape of the (two-dimensional)
body considered. Suppose the body is a rectangle of length L and height H.
Then one would wish the convergence of FEM to be uniform with respect to
the aspect ratio t = H/L when this ratio takes arbitrarily small (or large)
values. In particular, if ¢ is relatively small and the body is discretized by a
single layer of, say bilinear elements of length a = hL, one would wish that
the relative discretization error would only depend on A when a > H. This
actually is the case if the body is in the stretching state of deformation. In
the bending state of deformation, however, the error is amplified by factor
t~! and convergence fails completely. The aim of the "crime" is then to avoid
the amplification and thus achieve the same convergence rate in both defor-
mation states. The incompatible Turner rectangle apparently was the first
formulation to achieve that.

In the alternative formulation of the Turner element considered here, the
"crime" is committed within conforming FE framework. In our theory, how-
ever, the leading ideas are actually borrowed from the theory of nonconform-
ing finite element methods. This theory was developed in the early 1970’s
— apparently as inspired by the existing incompatible approaches of finite
element engineering by that time. So we end up closing the circle here.

In the nonconforming finite element theory, it became common practice to
split the error in two components, the approrimation error and the consis-
tency error, using what later has been cited as the (second) Strang lemma
[28, 27, 5]. This same principle extends naturally to any "variational crime"
proceeding from (or interpreted as proceeding from) the standard energy/dis-
placement framework. The resulting theory is rather straightforward, being
free of mathematical artifacts like specific (mixed, hybrid, etc.) variational
formulations or auxiliary fields. In [22, 23] it was demonstrated that the
earlier (mixed) theory of reduced-strain plate-bending elements can be con-
siderably simplified and extended by this approach. This theory also holds
promises for shell problems where earlier FEM theory is largely missing.

In the present problem, the earlier theory was based — rather naturally — on
nonconforming FE theory [13, 14, 25, 26]. However, the newer (extended)
Wilson formulation [31, 29] is assumed here. One also assumes a fixed domain
and makes further simplifications regarding either the finite element mesh [13]
or the differential equations to be solved [14, 25, 26]. The result of this earlier
theory is (roughly) that the Wilson element is no worse than the standard
bilinear element when the body under consideration is "thick". Thus the
theory so far gives no indication on why the "crime" in the Turner — Pian —
Wilson element was actually made. Here we provide the missing pieces, by
taking into account the full parametric dependence of the problem. On thin
(rectangular) domains, our main concern is obviously in bending states of
deformation, but our theory handles the "easy" stretching state as well (or
any combination of the two states). — We underline that the ability to handle
different asymptotic deformation states within the same formalism is one of
the strong features of our theory. Such flexibility is of prime importance



especially when approaching the asymptotic diversity of shell problems [20].

Besides being asymptotically flexible, our theory has the interesting feature
of giving lower error bounds as well. This option emergres from the simple
observation that the approximation and consistency errors are orthogonal
error terms, and that it is relatively easy to obtain lower bounds for the con-
sistency error. We use the option here to demonstrate that some of our upper
error bounds are sharp. We can also predict in this way some total failures
of convergence due to large consistency errors. In [23], lower error bounds of
this type were obtained for certain low-order plate-bending elements.

In the practical finite element design, some preliminary checking of conver-
gence has traditionally been included in a design principle called patch test.
Here again, much of the original motivation came from nonconforming ap-
proaches [11]. In [15, Ch 5], the patch test is formulated as a two-fold test
involving an "interpolation test" and an "equilibrium test". This resembles
our error analysis philosophy, where approximation error analysis may be
understood as a generalized interpolation test and consistency error analysis
corresponds to equilibrium testing. However, we need both more precise and
more quantitative formulation of these tests, since our aim is to resolve para-
metric dependence and goal to achieve uniform convergence with respect to a
parameter. Facing such demands, the required analysis necessarily becomes
somewhat abstract and thus less handy to use as an a priori design tool.
Anyhow, we attempt to formulate the principles of our "mathematical patch
test" as simply as possible without compromising in precision.

Our "equilibrium test" consists more precisely of estimating the seminorm
of a consistency error functional. This arises from the "crime" made in the
formulation. As in nonconforming theory, an essential step in the analysis
is to find an appropriate expansion formula for this functional. The aim
of the formula is to explicitly resolve the effect of the "crime" so that the
"punishment" (= consistency error) can be judged correctly. Finding such
expansions is sometimes tricky. For example, unexpected boundary terms
may appear from seemingly harmless modifications and cause unwanted error
growth, cf. [22, 23].

In our consistency error analysis, stability plays a central role (as in noncon-
forming theory). The minimal stability condition, as known from engineering
design criteria [10, 15], is that there should arise no unphysical zero-energy
modes (mechanisms, hourglass modes, spurious modes). In our error analy-
sis, this condition again needs to be replaced by more quantitative stability
estimates. Proving such estimates for our formulation turns out to be non-
trivial and the result somewhat mesh dependent (Theorem 6.1 below). Our
analysis indicates weaker stability when the elements have high aspect ratios
— a characteristic of the original Turner rectangle as well. As thin elements
are natural when discretizing thin bodies, we cannot rule them out. However,
we can show that if the mesh is rectangular, the weakened stability can be
partly compensated with better consistency, i. e., with a better expansion of
the consistency error functional (Theorem 8.1). There remains a slight mesh



dependent effect, however, and we demonstrate by a lower error bound that
on extreme meshes, convergence can actually fail because of this effect. We
demonstrate the whole interplay between stability and consistency in sections
7-8, where the error analysis in case of a fixed polygonal body is carried out.

In case of a "thick" body, the consistency error analysis of our extended
quadrilateral formulation is rather straightforward, as far as possible error
growth from badly shaped elements is tolerated (Theorem 7.1). The same
holds for a thin body in a stretching state of deformation, whereas in the
bending state, our analysis indicates possible "equilibrium locking", i. e.,
error amplification by factor t~! due to consistency error. Further analysis
shows that this actually is a true effect but can be avoided on specific meshes,
including rectangular ones. A necessary condition in all meshes, however, is
that one of the free parameters in the FE formulation is set to a proper value
(Theorem 9.1).

The approximation error analysis is very straightforward in all cases where
the standard bilinear element works well. Such "easy" deformation states
arise when volumetric constraints are not imposed, and when the body un-
der consideration is either "thick" or in a stretching state state of deformation
when thin. In these cases the approximation error may be bounded by the
usual interpolation-test argument, as in the standard FE theory [5, 4]. In-
stead when volumetric constraints are imposed (or nearly imposed), or when
the body is thin and in the bending state of deformation, the approxima-
tion error analysis becomes more difficult. The main problem is to find, by
mathematical construction, a clever "unlocking interpolant” that avoids the
parametric growth of the approximation error in these cases. The best "inter-
polant" would in fact be the finite element solution itself, so the mathematical
construction may be viewed as an attempt to simulate the FE algorithm. In
a parametric situation, such a simulation must in general be guided by the
asymptotics of the exact solution at the parametric limit where locking may
occur. In the present problem we have two such parameters. These cause
two different asymptotics, so we need also two different (in fact, unrelated)
approaches when constructing the "unlocking" interpolants.

When dealing with volumetric constraints, it turns out that we can apply the
earlier finite element theory [12, 21](Theorem 7.1). Instead when approxi-
mating the asymptotic beam bending mode of a thin body, no earlier theory
is available. Our result here is rather specific: We find the desired interpolant
in case of a rectangular mesh. This result (Theorem 10.1) is anyhow the main
result of the paper. It actually leaves open only the case of parallelogram
(or nearly parallelogram) meshes, since more general meshes are ruled out
by lower error bounds (Theorem 4.1). In our construction, some of the ideas
are borrowed from the error analysis of reduced-strain shell elements in [19].

In summary, our "generalized interpolation" test (Theorem 10.1) combined
with the standard interpolation and “generalized equilibrium” tests (Theo-
rems 7.1, 8.1 and 9.1) provides the final justification of the Turner — Pian —
Wilson — et al. rectangle. In our formulation the Turner element is actually
extended to a single-parameter family of locking-free rectangles, but if invari-



ance under switching of coordinates is required, the formulation ends up being
unique. In [2] this reformulation of the Turner rectangle was named QBI. For
a "thick" polygonal body, or even for a thin body in a stretching state of de-
formation, our theory extends the Turner rectangle to a two-parameter family
of quadrilateral elements (also found in [2]). These "unlock" the overstiff-
ness in case of plane strain and nearly incompressible material (on restricted
meshes at least), otherwise they perform nearly as well as the standard bilin-
ear quadrilaterals in such problems. Finally when the bending of thin bodies
is taken into account, the fully locking-free eight-dof quadrilateral of general
shape is still the dream element — and perhaps has to remain such [16].

In what follows we want to present the full story and therefore start the
finite element error analysis from standard bilinear elements. This prologue
also gives us a way to somewhat "derive" the reduced-strain formulation that
we are aiming at. The verification, however, comes a posteriori. The more
detailed plan is the following.

In Section 2 we introduce the two-dimensional elastic problem to be con-
sidered. We assume homogeneous isotropic material, treating in parallel
the cases of plane stress and plane strain. The body under consideration
is assumed to be either of fixed polygonal shape, or of parametric rectan-
gular shape with the aspect ratio varying arbitrarily. Basic regularity re-
sults/assumptions on the exact displacement field are stated that are needed
later in the error analysis. These assumptions are collected in Hypotheses 2.1
and 2.2 at the end of the section. The physical as well as numerical reasoning
behind these assumptions is clarified.

The convergence of the standard (isoparametric) bilinear scheme is studied
in Section 3. Here and throughout the work we use relative error in the
energy norm (possibly modified numerically) as the basic error indicator.
The convergence results are summarized in Theorem 3.1. The two numerical
locking effects, the volumetric locking and the "thickness locking" on thin
bodies, are predicted.

In section 4, the locking effects of standard bilinear elements are analyzed
in more detail in case of a thin rectangular body and a single-layer mesh.
Our conclusions are very similar to those drawn in [15] from more qualita-
tive reasoning. We first isolate the locking effect at small ¢ to the leading
asymptotic bending mode of the displacement field, and then trace the effect
further back to two constrained approximation problems, each acting as an
independent source of locking. The analysis is based on rewriting the energy
density so that the strain terms causing locking appear explicitly. We detect
the two locking effects, named dilatation locking and shear locking according
to [15, Ch 6], by strict lower error bounds in case of a single-layer rectangu-
lar mesh. A third approximation failure, named trapezoidal locking in [15],
is likewise detected by a lower error bound in case of a single-layer trape-
zoidal mesh. Finally, we detect the additional volumetric locking effect in a
stretching state of deformation where other locking modes are absent.

In section 5 we "derive" the (stabilized) reduced-strain formulation based on
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the analysis of section 4. We introduce two equivalent formulations and show
the historical connection to the Turner — Wilson — Pian rectangle (Theorem
5.1).

Section 6 marks the beginning of our main error analysis. We state here a
basic stability theorem and introduce the leading error analysis principles
forming the theoretical framework of the analysis that follows. The stability
theorem (Theorem 6.1) may be considered the first main result of the paper.
The rather technical proof is given in Appendix A. The error analysis prin-
ciples are quite straightforward on a general level. It is demonstrated how
the error can be split in two orthogonal error components, and how these
components can be further bounded from above and from below.

In section 7 we carry out the approximation and consistency error analysis
in the case where the body under consideration is of fixed polygonal shape.
In the absence of volumetric constraints, the main concern here is in the
consistency error. The analysis of this error term shows that the reduced-
strain formulation performs essentially as well as the standard formulation,
except for possible mesh geometric error amplification when the elements
have high aspect ratios (Theorem 7.1). We then extend the error analysis to
cover also the case of plane strain and nearly imcompressible material where
volumetric constraints appear. In this case the approximation error analysis
becomes the main issue — we cite the existing theory [12, 21].

In section 8, we give a further analysis of the mesh effect predicted in Theorem
7.1, in the special case of a rectangular mesh. Using a special expansion of
the consistency error functional possible in that case, we can show that the
mesh geometric error effect on a rectangular mesh is milder than predicted
in Theorem 7.1. We further confirm by a counterexample that the sharpened
bound (Theorem 8.1) is no more improvable.

In section 9 and in the associated Appendix B, we analyze the consistency
error in case of parametric rectangular bodies. The main result here is that
one of the free parameters in the formulation needs to be set to a specific
value, and also the mesh has to be restricted severely, to avoid "equilibrium
locking" in the bending state of deformation. We consider mainly the case
of a rectangular mesh, where the avoidance of parametric error growth can
be demonstrated relatively easily. Some further examples/counterexamples
are given in Appendix B. The consistency error analysis is summarized in
Theorem 9.1, the second main result of the paper.

The final obstacle, the approximation error analysis in case of parametric
rectangular bodies, is met in section 10. Here we again assume a rectangular
mesh. In that case we find a nonstandard "unlocking interpolant" show-
ing that the approximation error is bounded uniformly with respect to t.
A more laborious construction, given in Appendix C, further shows that the
uniformity is preserved even in case of plane strain and nearly incompressible
material, so that all locking effects are avoided simultaneously. The approxi-
mation error analysis is summarized in Theorem 10.1, the (third) main result
of the paper.
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2 The problem

Consider an elastic body occupying a region Q C R? and deformable accord-
ing to the laws of plane stress or plane strain. Denote the displacements
along the coordinates x,y by u, v and the displacement vector field by U,

U = (u(z,y),v(z,9)), (z,y) € Q.

Assuming homogeneous material with Young modulus F and Poisson ratio v,
0<rv< %, the strain energy of the body is known to be proportional to the
quadratic functional A(U, U) defined by

~,0u 0Ov,2 _,Ouy2 . _,0v2 _,0u 0v,2
A(U,U)_/Q{A(a—era—y) + 201 () +2“(a_y) +”(a_y+a_x) }dxdy,
(2.1)

where we scale off the dimension of the Lamé coeflicients

E
: Y 5 (plane stress)
—v
A=
Ev .
) (plane strain)
B E
F= 50+

by defining A = \/E, ji = u/E.

We are mainly interested in the reference situation where the domain is a
rectangle,

Q={(z,y)|0<axz< L, —H/2 <y < H/2},

possibly thin vertically so that the dimensionless thickness t = H/L can take
arbitrarily small values. As we may think of switching the coordinates when
H > L, we will assume that 0 < ¢ < 1. In this parameter dependent setting,
we are looking for finite element algorithms that converge uniformly with
respect to t on the reference domains, under certain regularity assumptions
on the exact solution that we make shortly. In addition, we want the scheme
to extend to more general domains as well, so we allow {2 to be alternatively
any "thick" domain of polygonal shape (Fig. 1).

The kinematical constraints possibly imposed at the boundary 92 will play
a role in some parts of our analysis. We allow any usual constraints where
u, v, both or none are restricted on some parts of Q. On the (thin) reference
domains we make the more specific assumption that there are no constraints
at y = +H/2. The body can then behave freely as a "bar" or as a "beam"
when ¢ is small. (At z = 0, L, any usual constraints are allowed.)

11



reference domains

Figure 1: Possible shapes of ().

An important role in our analysis will be played by two kinds of constants,
to be denoted by Q and C. These constants are dimensionless, positive
and finite, and independent of t when concerning problems on the reference
domains. First of all, we make below a number of regularity hypotheses on
the exact solution and introduce in this context a constant denoted by (). The
actual value of () depends on the regularity of the exact displacement field
to be approximated, so ) is problem dependent. What matters in our error
analysis is simply that @ is finite. We comment below on both the physical
and the numerical interpretation of this basic regularity assumption. On the
reference domains where ¢ is a variable parameter, the regularity assumptions
will be formulated so that constant () is independent of t. We need to be
rather careful here to find hypotheses that are both useful and realistic.

Another family of (dimensionless and positive) constants will be given the
generic symbol C'. Unlike ), which is hypothetic and fixed when the problem
setup is fixed, C' is independent of the problem (and of t) and the value of C'is
computable (or can be chosen), but the value can be different in each different
usage. Either, C is an absolute constant (independent of parameters), or it
may depend on the finite element mesh via the angle condition on the mesh
(see section 3 below), or it may depend on the scaled Lamé parameters ), fi.
Some constants in our error analysis actually depend on the finite element
mesh more severely than via the angle condition, but we then resolve the
dependence explicitly. We use here further dimensionless parameters that
characterize the geometry of the mesh (see section 3). When a constant C
depends on the Lamé parameters, it will be proportional to (A + ﬂ)1/2 or to
A + [i, so this dependence is harmless except for the case of plane strain and
nearly incompressible material where v — % implies A — co. In the analysis
that follows, we will first assume, at each step, that A < C for some fixed C.
We then extend the analysis to cover the parametric situation where \ can
be arbitrarily large.
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In the elastic problem considered, the convergence of standard FEM can fail,
or slow down, basically for two kinds of reasons. First, the exact displace-
ment field may simply be irregular causing standard approximation failure.
Secondly, in parameter dependent situations as the one considered, there can
arise asymptotic error amplification or locking as the parameter tends to a
limit value, here as t — 0 or as A — oco. Here we focus on these paramet-
ric effects. We will isolate the effects by assuming that the exact solution
is sufficiently smooth, so that the lack of regularity is not a problem simul-
taneously. However, what "sufficiently smooth" means is still an issue in
a two-dimensional elastic problem, since we want assumptions that are not
only convenient but also realistic in some sense. Therefore, before we can
even start, we have to translate some basics of classical linear elasticity into
hypotheses that we will need. This is the subject of the remaining part of
this section. Below we postulate first that A < C, so that t is the only ac-
tive parameter. When )\ is not bounded, we will need additional regularity
hypotheses. These are stated at the end of the section.

On a fixed "thick" domain and when A < C, our basic regularity hypothesis
is easily stated. Let L = diam({2), denote by | - | the (scaled) energy norm
defined as (see (2.1))

Ul = {A(U, U)}"/2 (2.2)

and by |-|2.0 a (Sobolev) seminorm measuring the regularity of U = (u,v) in
terms of the second partial derivatives of u, v as

1/2
Pu \’ v\
_ “u v . 2.
|U|2.0 {HEJ:2 /Q !(axzay1> + <8x10yj> ] dxdy} (2.3)

Then we assume that

L|U[30 < QU (2.4)

where Q is a finite (dimensionless, problem specific) constant. We may view
@ as measuring the (lack of) regularity of the exact solution U. Note that
this measure is scaling invariant. Even if () is not finite in a given situation,
assumption (2.4) can still be justified when considering the "smooth part"
of the exact displacement field. See the discussion at the end of this section.

We note that when no kinematical constraints are posed, || - || is actually
a seminorm giving zero measure for rigid displacements. We assume such
zero-energy modes to be eliminated, e. g. by symmetry conditions. The
energy space where || - || acts as a norm is denoted by U. As is well known,
this is a Hilbert space supplied with the inner product (energy product)
U,V — A(U, V).

On the parametric reference domains, assumption (2.4) is not realistic in
general unless () is allowed to grow without limit as ¢ — 0. As we want to

13



resolve such growth explicitly, we need to study the behavior of the solution
in more detail in this case. The first step is to split the solution as

U="U,+U, (2.5)

where Uy = (ug, v5) and Uy = (up, vp) are defined so that ug, v, are even and
up, vs are odd functions of y. This splitting is obviously always possible (and
unique). On the reference domain, it is orthogonal in the energy norm, so
that

U] = U 1* + U . (2.6)
If U, = 0, we may call the corresponding deformation state a pure stretching

state and if Uy = 0, a pure bending state.
We expand Uy in (2.5) further as

U, = (y8(z), w(z) + 33°¢(x)) + Up,
= Upyp + Uy, (2.7)

Here we have simply separated the leading term in the asymptotic expansion
of U, for small ¢. Such expansions form the core of the dimension reduction
theory in classical linear elasticity and apply in particular to the elastic strip
under consideration. Here we note only that by the classical theory, the
functions 6, w, ¢ appearing in the leading term in (2.7) are related by

0+w' =0, Y++0 =0, (2.8)
where
v plane stress

V= v _ (2.9)
plane strain
1—v

and that the remaining terms U, = (us,vs) and Uy, = (upy, vp) in (2.5),
(2.7) can be further expanded as (cf. [17])

us = ¢(z) + t*¢oo(z) + y’Poa(z) + - -,

2.10
Vs = ygp(x) + t2:l/(,021($) + yg(p03(x) 4o ( )

and

Uppr = t2y921($) + y3903(x) + - y

2.11
Vg = t2wzo () + t1wag(2) + 2y s (z) + y'boa(z) + - - -, (2.11)

where the dropped terms are (formally) of order O(¢?) smaller than the last
terms shown. In a normal problem setup, when only ¢ varies, we may assume
that after proper rescaling of U, and Uy, functions 6, w, v in (2.7) and also
&, ijy Py ij, 05, Wij, ¥ij in expansions (2.10)—(2.11) are either independent of
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t or admit further, simple expansions in terms of ¢ [17]. This is the underlying
assumption behind the regularity hypotheses ahead. The actual scaling of
U, and Uy is irrelevant for our analysis, since all our regularity assumptions
and also the finite element error bounds will be scaling invariant and separate
for U, and U,.

Below we refer to Uy, as the asymptotic bending mode. As is well known,
this mode (as determined by w in view of (2.8)) constitutes the simplest
dimension reduction theory for a beam as ¢t — 0. Taking into account (2.8)—
(2.9), the strain energy of the asymptotic bending mode can be evaluated
from (2.1)—(2.2) as

L L
Uil = 5DL% [ (¢Vdo+ gomP’e [ @Pde, (212
0 0
where
1 plane stress
D= 1 (2.13)
T plane strain

In what follows we assume that 6 # 0 whenever |Uy|| # 0, so that the
leading term in (2.12) is dominant when ¢ is small and 6 is smooth enough.
The assumption "smooth enough" is made precise by assuming that for some
finite () independent of ¢,

1/2 1/2
th=2 k-1 {/L(e(’“))%x} <Q {/L(e')%;} , k=23 (2.14)
0 0

(Here the case k = 3 is added for our later use.) Regarding the remaining
terms in (2.5), (2.7), we assume finally that these obey the assumption (2.4)
uniformly in ¢, so that

LIUsls0 < QIUs[l,  LIUs |20 < QU (2.15)

That assumptions (2.15) are realistic for smooth fields, can be checked from
expansions (2.7) and (2.10)—(2.11). Note first that since inequalities (2.14)-
(2.15) are scaling invariant, we may assume any rescaling of U, and U,
(separately) as ¢ varies. Suppose that after such rescaling, 6 in (2.7) and ¢
in (2.10) are independent of ¢ and that 8’ # 0 and ¢’ # 0. Assume also
that these functions are smooth and that ¢;;, ¢, ¢ij, 0i;, wi;, ¥;; in expansions
(2.10)—(2.11) are likewise smooth uniformly with respect to ¢. Then by (2.12)
and by (2.10)~(2.11), |Us|og ~ [[U,]| ~ /2 and |Up|a0 ~ [[Us]l ~ 32, so
estimates (2.15) must hold with some finite @ independent of ¢.

Our regularity hypotheses are now all set for the case A < C. On thin
domains, (2.12) and assumptions (2.14)—(2.15) can be condensed into two
simpler hypotheses that will be more convenient for our analysis. We sum-
marize these simpler hypotheses (involving a slightly different constant @Q),
as well as (2.4), in the following
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Hypothesis 2.1 (Regularity assumptions) Assume the existence of a fi-
nite dimensionless constant Q such that (a) on a fized polygonal domain the
exact displacement field U satisfies

L|U}y0 < QU

where L = diam(R2), and (b) on the parametrized rectangular domains with
0 <t <1, U satisfies (2.5)~(2.9), where

L|Us 2,0 S Q|||Us|”7

and

1/2

L
[ eremy s or@p 209 i 2uska} < ViZQIUL
0

where ) 1s independent of t.

As to the practical relevance of the hypotheses made, we note that in practice,
these assumptions may fail in basically in two different ways. First, on a
fixed polygonal domain, constant ) may not be finite because of strong
corner irregularities, or because of local irregularities do to the load or the
kinematical constraints. Secondly, on the thin reference domains, the Saint
Venant principle implies that there arises a boundary layer which decays
exponentially from £ = 0 and x = L in a length scale proportional to H = tL
(c. £.[17]) In the presence of the layer, constant @ is typically not bounded
uniformly as ¢ — 0, even if other irregularities were "turned oft".

The inevitable conclusion is that our regularity assumptions are rather opti-
mistic, or even unrealistic, except for benchmark situtations where the solu-
tion is known to be smooth (say, a polynomial) a priori. There is, however,
another interpretation of our assumptions. Let us assume (quite realistically)
that our exact displacement field can be decomposed as

U= Usmooth + Usingular + Ulayer’ (2.16)

where Un9uar contains the leading terms of, e. g. the corner irregularities,
and the last term represents the Saint Venant boundary layer (or its leading
part). Then the finite element scheme, being a linear projection method, may
be viewed as projecting the three components of U separately. Adopting this
view, we may consider our regularity assumptions realistic when estimating
the projection error of the smooth part U*m°t"  We take this standpoint
below, so that the "exact solution" actually means the smooth part of the
exact solution. In the neglected error terms, locking plays less central role,
so this simplification is justified. One should note, however, that in practice
one can only see the combined effect of the three error terms. Also, when
designing remedies to avoid locking, it could happen that a design based
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on the smooth part only (or on the asymptotic solution) actually causes
unwanted error growth in some other part of the solution, such as the layer.
Such issues, albeit relevant, will not be addressed here. The reader is referred
to [22, 23| for an analysis of a conflict of this kind in a plate bending problem.

Let us finally state briefly the additional regularity hypotheses to be needed
when extending our finite element error analysis beyond the assumption
A < C. We consider then )\ as another free parameter, so that a fixed-
domain problem becomes parametric as well, and the family of thin-domain
problems becomes doubly parametric. In such fully parametrized situations,
we assume that \ varies in the range 1 < A\ < oo.

In case of a fixed domain, we postulate the splitting

U="U,+\'Uy, (2.17)
where Uy = (ug, v) satisifes
0%0 0’00
—+—=0 2.18
and U; obeys the bound
L|Uilp0 < Q|IUY, (2.19)

where now @ is assumed independent of A. Here constraint (2.18) is known
as the volumetric constraint.

In case of parametric thin domains, we postulate a similar splitting for U,
and Uy, in (2.5) and (2.7):

U, = Us,O + 5‘_lle,la Uy = Ubr,O + 5‘_llJbr,la (220)
where U, g = (us0,Vs,0) and Uprg = (Upr0, Upr0) satisfy

aus,O 8Us,O 8ubr,O 8vbr,0

=0 =0 2.21
ox oy ’ oz oy ’ (221)

and U, 1, Uy, ; obey the bounds
L|U; 400 < Q| US|, L|Up 120 < Q| Us|, (2.22)

where @ is assumed independent of both ¢ and .

The above assumptions can be formally justified by asymptotic expansion of
the solution with respect to the parameter ¢ = A~1/2. The assumptions are
realistic when U is "smooth enough". In practice, one should again think in
terms of the basic expansion (2.16) where the last two terms (or their leading
parts) must be disregarded when disturbing.

We summarize the additional hypotheses in

Hypothesis 2.2 (Regularity assumptions when ) > 1) When consid-
ering a family of probems where 1 < X\ < 0o is a free parameter, assume
that there exists a constant Q independent of both t and X such that U satis-
fies Hypothesis 2.1. In addition, assume that (a) in case of a fized polygonal
domain, U satisfies (2.17)—(2.19), and (b) in case of parametrized rectangular
domains, Uy and Uy, in (2.5), (2.7) satisfy (2.20)—(2.22).
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3 The standard bilinear scheme

In this section we consider the finite element approximation of the problem
introduced above, assuming standard (conforming, isoparametric) bilinear
quadrilateral elements. The reduced-strain formulation to be introduced later
on (in section 5) will also be based on this simple finite element framework.

We will use K as a generic symbol for a quadrilateral (K C Q) taken from a
finite element mesh on 2. As usual, we assume that the quadrilaterals in the
same mesh can only touch at a common vertex or along a common edge. We
further assume the meshes to be (locally) regular so that any interior angle
of any K satisfies

0 < (¢ <angle(K)<m—{, (3.1)

where ( is an absolute constant. (The constants C below may sepend on (.)
We characterize the shape of the quadrilaterals also by two other dimension-
less parameters. Let ax be length of the largest side of K and let cx be the
diameter of the smallest and dx the diameter of the largest inscribed circle
in K that touches three sides of K (there are at most two such circles). We
define

mK:aK/dK, ’I’LK:dK/CK (32)

and assume that each K is non-degenerate, so that mg,ng are finite. In
case of a rectangle or a parallelogram one has ng = 1, whereas my (referred
to as the aspect ratio), can obviously be arbitrarily large.

A given mesh that subdivides 2 will be characterized by three global param-
eters, which are likewise dimensionless. We define the dimensionless mesh
spacing as

h = (m}gxaK)/L, (3.3)

where the max is taken over the mesh and L is the characteristic dimension
of the domain (as in section 2). In our error analysis, h is the principal mesh
parameter. We use h also as an index for a mesh and for the associated finite
element solution. The remaining two mesh parameters are defined as

My, = Max mi, Ny, = Max n, (3.4)

where my,ng are defined by (3.2). Some of our error bounds depend on
these parameters as well, and our aim is to resolve any such dependence
explicitly.

Families of meshes such that M}, and N}, are uniformly bounded will be called
strongly reqular here. This is a standard assumption in finite element theories
[5, 4, 10], but here it would be harmful on the parametric thin domains as
it would prevent the possible growth of the global mesh aspect ratio M} as
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(a) (b) (c)

Figure 2: Different quadrilateral shapes: (a) mx = 1.9, nx = 1.7,
(b) mg — 10, nNg = 1, (C) mg — 24, nNg = 10.

t — 0. For example, in case of a single-layer rectangular mesh with a fixed
number of elements as t — 0, one necessarily has M}, ~ t~!. Such meshes are
obviously quite reasonable when ¢ is small, so we do not want to rule them
out.

We denote by U}, the finite element space of continuous piecewise bilinear
fields associated to a given mesh with index h. This is a subspace of the
energy space U introduced above. Let U = (u,v) € U be a displacement field
(component) that satisfies Hypothesis 2.1. Then the finite element projection
U, = (un,vn) € Uy of U is defined so that wu; interpolates u and/or vy
interpolates v at each node where the corresponding kinematical constraint
is imposed in the original problem, and

A(U,, V)= AU, V), Velup, (3.5)

where UJ) C Uy, is a subspace where homogeneous kinematical constraints are
imposed.

We note that the right side of (3.5) may be viewed as the "generalized load"
corresponding to field component U. When summing up the the correspond-
ing components of Uy, as defined by (3.5), we then obtain the finite element
formulation of the original problem where the right side of (3.5) equals the
external load potential. The kinematical constraints come out correctly as
well, by the assumed distribution of the constraints among the subproblems.
Thus we may always think of expanding the finite element solution in this
way, once the expansion of the exact solution is given so that the generalized
loads are determined. Even though such expansions are rarely computed in
practice, the mere thought helps in organizing our error analysis. We will as-
sume the basic expansion (2.16) where we ignore the last two terms as noted.
In the further expansion of U™ according to (2.5), (2.7), the projection
principle (3.5) again applies.

We now turn to the error analysis of scheme (3.5). We will measure the error
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by the relative (scaling invariant) error indicator

_Ju-ul

o (3.6)

where || - || is the energy norm defined by (2.2). The projection principle in
(3.5) implies that Uy, is the best approximation to U in the energy norm,
under the assumed kinematical constraints. Since the constraints were inter-
polation constraints, it follows that

U - Ul < U -1, (3.7)

where U € Uy, is the (standard) interpolant of U. By (2.1)-(2.2), the right
side of (3.7) is bounded as

|U -0l < CJU - Ulsq, (3-8)

where C' = v/2(A + 1)/2, and the (Sobolev) seminorm |-|; o is defined as

|U|1,Q:{ / [(g—g)u(g_z)u(g_;)u(g_;)j dxdy}l/z. (3.9)

Applying next standard FE approximation theory to bound the right side of
(3.8), we get

|U — U|| < ChL|U|zq, (3.10)

where now constant C' depends also on the finite element mesh, staying uni-
formly bounded on strongly regular meshes [5, 4|. Joining finally (3.7), (3.10)
with Hypothesis 2.1, we conclude that on a fixed polygonal domain and on
strongly regular meshes

e < CQh, (3.11)

1/2

where C is proportional to (A + f1)/2. For bilinear elements, this bound is

not improvable.

When approaching thin domains, we should first note that estimates (3.10)
and (3.11) actually remain valid on just regular meshes, i. e. , the constant C
in (3.10) only depends on the parameter ¢ in the angle condition (3.1). This
sharper result — which is of importance to us — is somewhat beyond standard
finite element approximation theory. We refer to [1], the lonely classic in the
field of angle conditions. (The result we need is actually not stated in [1],
but the main argument there is applicable.)

We start the analysis on a thin reference domain by splitting the finite ele-
ment solution in analogy with (2.5) as

Uy = U, + Upy, (3.12)
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where Uy, Uy, are defined by the projection principle, as explained above.
(If the mesh is symmetric with respect to the line y = 0, projection splitting
is quivalent to parity splitting.) Defining

LA
ol

U

As :
1ol

we may then estimate the error, using the triangle inequality, as
€ S Ases + Abeb7

where

o - MU =Uall  _ [Us — Ul
s b b — 9
10l e

so that by the above reasoning

L|Us|2,Q

e bt YY)
10|l

e < Ch <A LW’"“’) .

o Cbl2.0
0]

Applying here the expansion (2.7) of Uy, recalling (2.8) and using Hypothesis
2.1, we conclude that

L|Uqla0 L|Uglaq 1
— =< C0Q, ——=<CQt -, (3.14)
10| 1T
so we obtain the final error bound
e < CQh(A, + Agt™), (3.15)

where C is again proportional to (X + i)'/2.

From (3.15) we conclude that when A < C, we have the uniformly optimal
error bound e = O(h) in the pure stretching state (A, = 0) or more generally
in deformation states such that A, = O(¢t) as ¢ — 0. In the pure bending
state (A; = 0), we can only quarantee that that e = O(h/t), which is also the
worst-case error bound for general deformation states. In practice the relative
magnitude of A,, A, (note that A2+ A? =1 by (3.13) and (2.6)) varies from
case to case, depending on the loading and kinematical constraints, cf. [17].

We summarize the convergence results in

Theorem 3.1 (Convergence of standard FEM) Let U be a displacement
field satisfying Hypothesis 2.1 and let Uy, be the finite element approrimation
of U based on standard isoparametric bilinear elements on a regular mesh
with dimensionless mesh spacing h. Then the relative error in the energy
norm, as defined by (3.6), satisfies either (3.11) (fized polygonal domain) or
(3.15) (thin reference domain), where Ag, Ay, are the relative amplitudes in
the splitting (2.5), as defined by (3.13).
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The error amplification predicted by estimate (3.15) when A, ~ 1 is a
well known (locking) phenomenon. The engineering literature on this phe-
nomenon is numerous and, as noted, essentially starts from the very first
finite element formulations in structural mechanics. Our aim so far has been
to mathematically describe this locking effect. As we have seen, the error
amplification by factor ¢! arises from the second inequality in (3.14) (which
is not improvable). This inequality states that in the pure bending state of
deformation, the energy norm (arising from the physical formulation of the
problem) scales unfavorably as compared with the seminorm |-|5q (arising
from polynomial interpolation theory). On the other hand, the first inequal-
ity in (3.14) tells that this conflict does not arise in the pure stretching state
of deformation.

We note finally that estimates (3.11) and (3.15) predict parametric error
amplification also when A — oo, since constant C' in these estimates was
proportional to (A + [i)"/2. As is well known, this is also a true phe-
nomenon, often named volumetric locking. In the next section we show that
the "thickness locking" at small ¢ actually involves two independent locking
modes. Thus we can actually count (at least) three different locking effects
in problems where both ¢ and A are active parameters.
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4 Locking on thin domains: lower error bounds

In this section we isolate in more detail the sources of the locking effect
predicted by estimate (3.15) when ¢ is small. In this context we prove also
lower error bounds for the case of a single-layer finite element mesh on the
reference domain (Theorem 4.1 below). The lower error bounds underline
that the locking effects we isolate are true phenomena.

The analysis in this section is quite parallel with the more descriptive treat-
ment given in [15, Ch 6], see also [16]. Albeit reproducing the big picture
from these references, our twin analysis turns out to be useful in it self. It
gives us some guidelines on how to "unlock" the FE scheme by means of re-
duced strains. Below we adopt some of the language in [15] when describing
the locking phenomena.

So far we have seen that locking, i. e., error amplification by factor ¢ !, arises
from the term Uy in (2.5). We can immediately sharpen the picture from the
further expansion (2.7). By assumption (2.15) together with the splitting
& interpolation error arguments of section 3, the projection error of the
remainder term in (2.7) cannot contribute to the locking effect. Hence we may
drop this remainder from our analysis and assume that we are approximating
an asymptotic bending mode Uy, only. Thus let the field U = (u,v) to be
approximated be of the form

= yb
u = yb(z), - (4.1)
v =w(z)+ 357Y(x),
where 0, w, 1 satisfy constraints (2.8).
We may rewrite constraints (2.8) in terms of u, v in (4.1) as
Jou Ov
—+—=0 4.2
ou ov | 5,
-1 . 4.3

Here the right side of (4.3) is of relative order O(#?) on 2, so when t — 0,
(4.3) takes the asymptotic form Ou/dy + dv/dx = 0, which is known as
the (asymptotic) shear constraint. We may call (4.2) a dilatation constraint.
Both of these constraints have a role in the locking of the standard bilinear
element, as we shall show by an example.

We will consider the approximation of the simplest nontrivial bending mode,
where 6, w, 1 in (4.1) are defined by
0(z) =6y (z — %L),
w(z) = 10 z(L — x), (4.4)
Tﬁ(x) = _790a
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where 6y # 0 is a constant coefficient. (With proper 6y, this is known as the
unit bending mode.) Then du/dy + dv/dz = 0, and the deformation energy
(2.1) takes the simple form

Ou\ 2
2:D/ — 4,
[olP =0 | (5,) dedv (45)

where D is defined by (2.13).

Y

Ti-1 T;

Figure 3: A single-layer rectangular mesh.

We now approach the above problem numerically assuming that €2 is subdi-
vided by just a single layer of rectangular elements

Ki:(.’L’i_1<$<.’L’i, —H/2<y<H/2),

where 0 = 29 < 21 < --- < 27 = L. We assume further the subdivision to be
uniform so that z; =ai, i=0...I, a= L/I (Fig.3). For parity reasons,
the finite element solution Uy, = (up, vy) € Uy must then be of the form

Up = yeh(x)v

on = wn(z), (4.6)

where 60, w, are continuous piecewise linear functions on the subdivision of
[0, L] imposed by points z;.

We aim at proving lower bounds for ||U — U||/||U|| in the above example
case. The first step is to rewrite the strain energy (2.1) in terms du/0x and
the strain components appearing in (4.2), (4.3) (recall also (2.9)) as

A(U,U):/Q{D(Z—z)QnL%(7%+g—2)2+ﬂ(g—z+g—;)2}dmy. (4.7)

In view of (4.1)—(4.4) and (4.7), the above finite element approximation prob-
lem may be formulated qualitatively as: Find (up,v) € Uy of the form (4.6)
such that

un ., Ou

oz Oz’
3uh (91}]1 ou ov .
3uh (91}]1 ~ ou v -0

By " or T oy o
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Note that if we impose no kinematical constraints in this example case, then
the three approximation problems (4.8) are trivial each alone: Simply choose
up = u in the first problem (possible since w is bilinear) and u, = v, = 0
in the others. Instead, when looking for a minimal energy solution where
all the three conditions are given the same weight in the least squares sense,
good approximability is less obvious. In fact, our aim is to prove that the
approximability is rather poor. To this end, we split (4.8) in two subproblems.

Consider first the constrained approximation problem
0uh ou 3uh 81;;,
— — 4+ — =0 4.9
or oz ox + oy ’ (4.9)

which is part of (4.8). This corresponds to energy projection where the last
term of the energy density in (4.7) is dropped. Consider then a given element
K; and write

Oh(x) = b() + bl(x — T,

),

)y Tio1 <& < @y, (4.10)

[N (S

wp(z) =co + 1z — z;

where by, by, co, ¢y are constants and z;_1 = $(zi-1 + x;). Then by (4.1),
(4.4), (4.2) and (4.10),

/Ki{D[a(ua;Uh)r + 3 [,ya(ua_xuh) + a(va_yvh)r} dzdy

/KZ{D(g—Z B %)2 + ;\7(%)2} dzdy
— 11—2aH3[D(90 — by)? 4 M

1 2 3p2

= Dy? /Ki<g_;6)2dxdy,

so that summing over K; and using (4.5),

/Q{D [a(ua—xuh)r + 3 [Wa(ua;uh) + 0(1}8_1/ Uh)r} dzdy

> D72/9<g—z)2d:cdy

=70l (4.11)

Next consider the constrained approximation problem (the second part of

(4.8))

“h T TRy TR o, (4.12)

25



interpreted as the energy projection problem where now the middle term in
(4.7) is dropped. Using (4.1), (4.4), (4.3) and (4.10), we then get

/.{D[a(u—uh)r%_ﬂ[@(u—uh) N (v _vh)r}dxdy

Oz dy Ox
= $5DaH (b — )’ + ia* HE, + iaH (bo + 1)’
1 Dja*H?
~ 12 pae* + DH?

Da? Ou\ 2
" a2+ (D/p)H? /K<8_x) dedy,

0

so that again summing over K; and using (4.5),

(P[22 a2 e

Ox

a2

> UJ*.

(4.13)

To sum up, we conclude that estimates (4.11) and (4.13) hold for any (uy, vs) €
Uy, of the form (4.6) and thus also for the the finite element projection Uy,
Therefore, and since the left sides of (4.11) and (4.13) are strict lower bounds
for |[U — Uy||?, we come to the following absolute lower error bound:

2

e 2 max{y, [(a2 T (C;)/g)m]

D=

}. (4.14)

As is obvious from the above reasoning, the two lower bounds in (4.14) arise,
because there exist no accurate solutions to the constrained approximation
problems (4.9) or (4.12). The failure in (4.12), which gave rise to the second
lower bound in (4.14), is usually referred to as shear locking. The failure in
(4.9) causing the first lower bound in (4.14) we may name dilatation locking
[15]. This locking mode is not present if v = 0 (v = 0), because the finite
element solution (4.6) automatically satisfies constraint (4.2) in that case.
More generally, if v = 0, dilatation locking is absent on vertically aligned
layered meshes but still present on more general meshes.

As to the further interpretation of the lower bound (4.14), we note that if
a > H, so that h = max{a/L, H/L} > H/L =t, (4.14) gives

e>(1+D/f) 3,

showing that the upper error bound (3.15) cannot be improved in the pure
bending state when h/t ~ 1. (If @ < H so that h = ¢, estimate (3.15) is
neither improvable when v # 0.) When a > H so that h > ¢, estimates
(4.14) and (3.15) imply that C~! < e < Ch/t for a finite constant C, so there
remains a slight gap. Although closing the gap may not be of great practical

26



interest, let us note that the estimates can still be sharpened in two possible
ways.

First, we note that the lower error bound derived above was not necessarily
sharp if kinematical constraints were imposed at x = 0, L. For example,
suppose we had (built-in) constraints u, = u, v, = v at the four corners of
in the above example case. Then if we choose a = L/2(h = 1/2), the finite
element solution above is computable as

Up = U,
vp = £00 (L* — yH?) — 26 L |z — L/2|,
giving
< _ 1/2
e = [\/D+ (a/D)(h/t)]",
so the upper bound (3.15) is sharp in this case. Note as well that here e — oo

also when A — o0, so the dilatation /volumetric locking effect is stronger than
predicted in (4.14).

There are also situations where the lower bound (4.14) remains sharp for
h > t. This happens in particular when the kinematical constraints are
either missing or happen to come out as homogeneous constraints when ap-
plied to (u,v) (as given by (4.1)). Then the finite element solution Up is a
true projection with maximal error occurring when U, = 0. Hence the gap
between (3.15) and (4.14) is closed this time by the additional upper error
bound e, < 1.

Y

I / \ K; \<xi+piy

Figure 4: A single-layer trapezoidal mesh.

So far we assumed rectangular mesh. On more general meshes, there arises a
locking effect of a different (third) kind when approximating the asymptotic
bending mode. As an example, let us consider a single-layer mesh composed
of the quadrilaterals (see Fig. 4)

Ki={(z,y) | -H/2<y<H/2, m1+py<z<z+py}. (4.15)

In this case it turns out that when p; — p;_1 # 0 (i. e. , when the elements
are not parallelograms), there arises locking already in the unconstrained
approximation dup/0x ~ Ou/dz in (4.8). Namely, a straightforward com-
putation shows that when u = 6,y (z — 3L) (as above) and when u; is any
isoparametric bilinear function on K;, one has the (sharp) lower bound

/Ki [wrdxdy > ci/K (2—3)2dxdy,
27
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where ¢;, defined in terms of

H
1
=zlpi—pi]——— (0<4; <1 4.16
Hpi—pial ——— (0<8<1 (4.16)
as
_ 1 —|— (5, -1
¢ =1-25(1-1%07)" [log 15 254
x© -1
2%
[ +Z 2k+1 2k+3 ) e % ]
k=1
satisfies

1¢2

Hence if all elements are uniformly trapezoidal so that §; > § > 0 for all 4,

we must have
O(u —u)72 12 ou\ 2
il S > 1 -
/Q[ oz ] dedy = 50 /Q<0x) dedy

for any piecewise bilinear @, so that
- Ou — )72
u-op 2o [ [P0 dry
Q 8:17

ou\ 2
152 -
> 6 D/Q<0x) dxdy
= :0%[U]? (4.17)

for any U = (&,9) € U,. This approximation failure, named trapezoidal
locking in [15], obviously has nothing to do with constraints (4.2), (4.3).
These constraints rather contribute to further error amplification when taken
into account.

We have now resolved the modes of "thickness locking" appearing on thin
domains when ¢t — 0. Let us finally confirm that there arises parametric error
amplification also when A\ — oco. This volumetric locking was predicted both
n (3.11) (fixed domain) and in (3.15) (thin domain), since C' ~ (X + i)'/
in these estimates. In the present context, the volumetric locking effect is
most easily demonstrated in the stretching state of deformation where other
locking modes are not present.

Consider the simple stretching state
u = %d)Ox(L_x)a 'U:d)Oy(x_%L)a (418)
where ¢g # 0. Here du/dz + dv/dy = 0, so by (2.1)-(2.2), A(U,U) = |U|?

stays bounded as A — oo. (In fact, U satisfies Hypothesis 2.2.) Assume
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a single-layer rectangular mesh as above (Fig. 3). Then the finite element
solution Uy = (up, vy) takes the form

up = ¢u(z), vn = yon(x),

where ¢y, p, are continuous piecewise linear functions. Assume in addition
that no kinematic constraints are imposed at the boundary. Then by (2.1)-
(2.2) and by the projection principle,

—Buh 01}h2 2 9
M—=—+ =) dzdy < |Ug|I" < ||UJ".
A+ 52y dsay < JUil? < 0]

Here the right side is uniformly bounded, so it follows that

Qun | Ova

% ay:¢'h+g0h—>0 asj\—>oo,

which is possible only if ¢', — ¢ and ¢, — —c for some constant c¢. But
we must have ¢ = 0 by symmetry, so it follows that ||Ug| — 0, hence
e = ||U - U|l/|C|| — 1 as A — oco. Thus the error behaves nonuniformly
with respect to )\, as predicted.

We summarize the analysis in this section in

Theorem 4.1 (Lower error bounds) (a) Let Uy, be the standard bilinear
finite element approximation of the asymptotic bending mode (4.1), (4.4) on
a single-layer mesh of quadrilaterals K;; i =1...1, defined by (4.15), where
z; = ai, a = L/I. Then if p; = 0 for all i so that the elements are
rectangular, the lower error bound (4.14) holds for the relative error in the
energy norm. If the elements are uniformly trapezoidal so that 6; > § > 0,1 =
1...I, where ¢; is defined by (4.16), then the additional approximation-error
lower bound (4.17) holds for any U = (@,7) € Uy. (b) Assume a single-
layer rectangular mesh as in (a), and let Uy be the standard bilinear FE
approzimation of the of the pure stretching mode (4.18). Then if no kinematic
constraints are imposed at the boundary, the relative error in the energy norm

satisfies e — 1 as A — o00.

Regarding thin domains, our expedition has now reached its first goal. We
obtained an error bound, estimate (3.15), and we verified by counterexamples
that this bound is essentially sharp when A < C. We also saw that the error
amplification by factor ~ ¢!, in the pure bending case, was actually due
to the asymptotic bending mode Uy,,. Here we further isolated the source
of numerical locking in the two constrained approximation problems (4.9)
and (4.12). Finally, we detected the additional volumetric locking in the
stretching state of deformation when A — oo.

Having now characterized the basic locking phenomena mathematically, we
set a new goal with some engineering flavor as well. We look for remedies.
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5 The reduced-strain formulation

When the standard finite element scheme suffers from parametric locking, a
remedy may be attempted by modifying the strain energy numerically as

A(U,U) = A,(U,U), (5.1)

where the subscript indicates that the modification is mesh dependent. We
consider modifications of this kind within the conforming bilinear FE frame-
work, i. e., the finite element spaces are not changed.

In the approach to be taken, modification (5.1) will be done in two steps. The
first and primary step is to impose numerical strain reduction operators on
selected strain components. The aim is to slightly weaken the energy norm so
that numerical locking is avoided in the weakened (semi)norm. The second
step is to supply the strain energy with additional (again purely numerical)
"correction terms", each multiplied by a free parameter. The added terms
are chosen so that they have little effect in the approximation error. The
free parameters can then be selected on the basis of stability and consistency
error analysis, as will be shown.

In our approach, modification (5.1) starts from the alternative strain energy
formulation (4.7), where we know that the locking is due to the last two
terms in the energy density. We then leave the first term untouched and
modify the critical strain terms as

8u ov Ju Ov

Yoz oy = a3 8:c+8>’ 52)
8_u+8v g (8u 01}) '
oy Oz "oy " ox/)

Here Ry and Sj are reduction operators to be found, with the minimal re-
quirement that both operators should be true reductions, i. e., weaker than
identity when acting on strains in the finite element space. Indeed, by the
analysis of section 4, both constraints in (4.8) need to be strictly weakened to
avoid locking. The actual "design" of the reduction operators could be based
on spying the error analysis ahead, but our choice is actually very simple:
We choose both Rj, and Sy, (henceforth = Rjy) to be local averaging operators
so that for each quadrilateral K of a given mesh

1

Ryo(z,y) = M

/odx'dy', (z,y) € K. (5.3)
K
Obviously then S, = Ry acts as a true reduction in (5.2) when u,v are

piecewise bilinear.

The second step in (5.1) consists of adding two supplementary terms in the
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modified strain energy functional. These are chosen to be

Bl(U,U)zwln/Q[(g—;‘) (Rhg“) | dzdy,
By(U,U) = 252;@/9[(2—;) (Rth) | dzay,

where [, 32 are so far arbitrary (dimensionless and real) parameters. The
additional terms will again be justified by the error analysis ahead, which
also imposes some restrictions on the two free parameters. At this point we
note only that since Ry, — Identity = O(h) when acting on smooth functions,
the added terms are expected to be relatively harmless by the usual (non-
parametric) equilibrium-test reasoning [15].

(5.4)

In what follows, it is convenient to pass to a shorthand notation involving
L, inner products and norms. As usual, Ls({2) denotes the space of square
integrable (scalar) functions supplied with the inner product and norm

- /Q fadedy, |Ifll = (f, V2.

Using this notation, the modified strain energy as described above takes the
form

A4(U,U) = ‘ H 3“ 8—”) +MHRh(gu 22)2
+2ﬁlu(’ HRh )+2ﬁzu(‘gz HRhgz ). (63)

Note that here Ry, is interpreted globally as the Ly projection (orthogonal
projection) into the space of piecewise constant-valued functions on the finite
element mesh.

The modified strain energy can also be written in an alternative form that
closely resembles the original form (2.1) of the strain energy. As readily
verified, this equivalent form is

A,(U,U) = ) R(au @) T A e P
= "\ Bz y K h oy K hay
ou  ovy|?
HRh<8 8:1;)
/1l 0u ou /Il Ov 2 ov|?
o3 (5|3 o
where
ar =0 +v7+1, ay=p. (5.7)
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By (5.6), we could have derived our modified scheme directly from (2.1), by
first averaging each strain term and then adding the supplementary terms.
This approach (taken in [2]) would in fact be natural when programming.
Our more laborious derivation is natural for the theory instead: We need
formulation (5.5) when dealing with the locking problem on thin domains
(sections 9 and 10 ahead). In the stability analysis (section 6 & Appendix A)
and when bounding the error in case of a fixed polygonal body (sections 7
and 8), formulation (5.6) is somewhat more convenient and will be used.

At this point, let us interpret the main results of our analysis ahead in view of
formulation (5.6). First, the stability analysis shows that the scheme based
on (5.6) is stable if and only if (Theorem 6.1 ahead)

ar >0, ay;>0. (58)

Hence the added terms in (5.6) have the role of stabilizing terms. However,
there is more: The analysis in section 9 shows that one actually needs to
set oy = v+ 1 (corresponding to f; = 0 in (5.5) by (5.7)) to prevent the
consistency error from being amplified by factor ! on thin domains. Only
when this choice is made, the scheme based on (5.6) converges unifromly in
the beam bending state (on rectangular meshes, see Theorems 9.1 and 10.1).
The result still holds for a family of algorithms, since parameter as is only
restricted by the stability constraint (5.8). A rather natural choice, however,
is ag = oy =y + 1, in which case (recall (2.9), (2.13))

1 (plane stress)
2@1/?6 = 2&2/?6 =D= 1 (59)
T (plane strain)

When this choice is made, formulation (5.6) (and hence also formulation (5.5)
& (5.7)) is invariant under switching of the coordinates, so it then applies to
horizontally thin rectangular bodies as well. To handle a more general body
consisting of thin rectangular parts, it is necessary to align the coordinates
locally in each part that is neither horizontal nor vertical. A rather natural
approach computationally is to impose the numerical modifications on the
reference element level [2].

In 2], formulation (5.6) & (5.9) is named QBI. It turns out that this is just
an extension & reformulation of the classical Turner rectangle.

Theorem 5.1 (Equivalence result) When the element is a rectangle aligned
with the coordinates x,y and when the parameters in (5.6) are chosen accord-
ing to (5.9), the element stiffness matrixz arising from (5.6) is identical with
the stiffness matrixz of the Turner—Pian—Wilson rectangle.

In the remaining part of the paper we raise into daylight the error analysis
tools that have so far played a background role only. We state first the main
principles and then apply them to the a posteriori verification of our new-old
finite element formulation (5.5)—(5.7).
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6 Stability. Error estimation principles

When numerically modifying the deformation energy according to (5.1), the
first risk is to lose stability, i.e., to loose the positive definiteness of the energy
(modulo rigid displacements). In practice, the loss of stability is detected by
the appearance of unphysical zero-energy modes or "hourglass" modes, es-
pecially when no kinematical constraints are imposed at the boundary. In
the present situation, it turns out that condition (5.8) in (5.6) is both neces-
sary and sufficient for preventing such spurious modes. This follows from the
following more precise stability theorem, which states the first of our main
results concerning formlation (5.6). The reader is referred to Appendix A for
(the main incredients of) the proof.

In the theorem, we refer to the modified energy (semi)norm defined as

IVIla = {Ax(V, V)}'2, Vel (6.1)

Theorem 6.1 (Stability estimates) Let A}, be defined by (5.6) where a; >
0, az > 0 and let ||- ||, be defined by (6.1). Further let 6 = min{ay, 1}, &9 =
min{as, 1} and let § = min{dy,d2}. Then for any V = (r,s) € U

or 1 \1/2
5] < Ga) "1V
Os 1 \1/2

—_ < -

Hay _<252ﬂ) IV,

and for any V = (r,s) € Uy,

or 0s
’ 3y " ga|| = CMA(L -+ log i) 2(a0) [V,

where C' is an absolute constant an My, Ny, are the geometric mesh parameters
defined by (3.4), (3.2). These estimates cannot be improved on a general
quadrilateral or even uniform rectangular mesh. Finally, if oy < 0 or ay <
0, there arises in general spurious modes V € Uy with An(V,V) < 0, so
condition (5.8) is also necessary for stability.

In what follows we strengthen the stability condition (5.8) by assuming that
for some given constant C,

071 S Qaq, Q9 S C. (62)

This condition is obviously passed by the recommended choice (5.9).

Under assumption (6.2), the dependence on parameter ¢ in the estimates
of Theorem 6.1 may be disregarded. When combined, these estimates then

imply
VIR = C VL V€l (6.3)

33



where C}, is a mesh dependent constant bounded by
Ch < CMy(1 + log Ni)'2. (6.4)

By (6.3), Ve U, & ||V||n = 0 imply || V]| = 0, (since C}, is finite by (6.4)), so
rigid displacements are the only zero-energy modes in U;. In case of strongly
regular meshes where C, is uniformly bounded, the modified energy norm

Il - ll» and the original energy norm | - | are uniformly equivalent norms in
the finite element spaces. In the entire space U, || - ||» is a seminorm, see
Appendix A.

We establish next the error analysis principles to be used in the sequel. We
first introduce a new error indictator, defined as

_ U= Uyl
ol

where || - ||» is defined by (6.1), (5.6) (under assumption (6.2)). Note that
we need to "soften" the error indicator from (3.6) to be able to detect any
advantage of the modified formulation. (The standard scheme would give
the least error if indicator (3.6) were used.)

(6.5)

At this point we should comment on an issue that arises with the modified
error indicator (6.5). This indicator obviously depends on how the norm |||
on U, (which defines the finite element scheme) is extended to a seminorm
of U. The extension, however, is not unique, since we could add to A; any
positive semidefinite functional that vanishes in Uj. This relates to hidden
ambiguity in the above derivation of the finite element scheme: We could
have derived the same scheme from a number of different modifications of
type (5.1). Thus in this sense the error indicator (6.5) is up to our choice. The
analysis ahead anyhow confirms that the choice we already made works, with
one exception: At the final step of our error analysis in section 10, we need to
slightly weaken the seminorm || ||, to get through. That this change actually
is necessary (as we show) indicates that the convergence characteristics of the
scheme studied are somewhat delicate on thin domains. Below we assume
definition (6.1), (5.6) until the beginning of section 10, where the slightly
altered definition (on a rectangular mesh) will be introduced.

When the strain energy is modified according to (5.1), the finite element
approximation of U € U satisfies (3.5) with A, replacing A on the left side,
i. e,

An(Un, V) = A(U, V), Vel (6.6)

Since the two bilinear forms here are different, (6.6) no more defines a pro-
jection method, i. e., we have committed a "variational crime".

The error analysis for scheme (6.6) will be based on splitting the finite element
solution in two parts as

U, = U, + Zy, (6.7)

34



where we impose on Uy, the same kinematical constraints as on Uy, (the same
as in (3.5)), so that Uy — U, € U and also Zj € U). We define then U,
as the best approximation to U in the seminorm || - || under the assumed
kinematical constraints, so that

An(Un, V) = A,(U, V), Vel (6.8)
By (6.6)-(6.8), the remainder Z;, € Uy then satisfies

Ap(Zp, V) = (A—A)(U, V), Veluy. (6.9)

We note that by (6.8), Ax(U — Uy, Z;) = 0, so (6.7) corresponds to an
orthogonal splitting of the error:

U = ULll;; = 10 = Ul + 1 Zall-
We rewrite the last identity equivalently as
e’ = e +e2, (6.10)
where e is defined by (6.5), e is the approzimation error defined by

_ U -Gl

€4 = , (6.11)
101

and ec is the consistency error defined by (see also (6.9))

Bl (A= A)UY)
IO1 ™ veugavizo  NOTIVIS

ec (6.12)

The idea of the error analysis is now to bound e4 and ec separately (either
from above or from below) and then use (6.10) to bound the total error. Here
we can apply the following simple principles.
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The approximation error principles.

Al. For any U € Uy, satistying the same kinematical constraints as Up,
ea < [[U=U[/[IU].

A2. If |U = U||n/||U|| > 6 for all U € U, then ey > b,
The consistency error principles.

CL. If |(A — Ap)(U, V)| < enl[U[[V[|a for all V € U, then ec < ep.

C2. If there exists V. € UL, |[V|ln # 0, such that [(A — Ax)(U, V)| >
Shll UV s, then ec > b,

Here Principle A1 follows from (6.11) and the fact that Uy, is the best approx-
imation to U in the seminorm | - ||5. Principle A2 is trivial, and principles
C1 and C2 follow immediately from the second expression of the consistency
error in (6.12).

In the remaining three sections, we carry out the error analysis of the scheme
(6.6), (5.6) based on the principles above. Before turning to the details, let
us summarize briefly the main features of the analysis ahead, in view of the
framework just stated.

First, when looking for a sharp upper bound for the consistency error, we
obviously want the (nearly) smallest e, such that Principle C1 is applicable.
Here the role of stability is obvious: The weaker the norm || - || in U}, the
larger the consistency error is expected to be in general. Indeed, if there
exist (spurious) modes V € U such that |[V], = 0, then ec = oo, unless
(A — Ap)(U, V) = A(U,V) = 0 for all such modes. Even in the absence
of spurious modes, we still need stability estimates relating || - ||, with more
standard norms. In our analysis, Theorem 6.1 serves that purpose, and will
be needed heavily. Note that by (6.3), growth of the consistency error is
expected on meshes such that constant C}, is large, as then || - ||, is predicted
to be a relatively weak norm in U}.

Another, more hidden feature of the consistency error analysis in practice is
the need of a (problem specific) ezpansion formula for the functional that
appears on the right side of (6.9). Thinking of U to be fixed, we call this
the consistency error functional (a linear functional on Up). The aim of
the expansion formula is simply to resolve the effect of modification (5.1) so
that the seminorm of the functional, as defined in (6.12), can be estimated
in a sharp way. Special care is needed here to detect any, possibly mesh
dependent, error cancellation. In the present problem, it turns out that on
rectangular meshes, a special expansion of (A — A;)(U, V) is possible that
partly compensates the weaker stability on meshes with large mesh aspect
ratio M}. This leads to an improved consistency error bound on such meshes
(Theorem 8.1 ahead) as compared with the bound on general quadrilateral

36



meshes (Theorem 7.1). We will also show, using Principle C2 above, that
the bound in case of rectangular meshes is sharp.

In case of a fixed, "thick" body, the consistency error analysis ahead (sec-
tion 7) is relatively straightforward, apart from the mentioned mesh geomet-
ric effect. Instead when the body under consideration is thin, special care
is again needed, this time to detect the possible parametric error growth or
"equilibrium locking". We analyze this effect in section 9 and in the related
Appendix B. Using Principle C2 we demonstrate that equilibrium locking
does appear in general in case of a thin rectangular body. We also show that
the effect can be avoided if (and only if) (a) a; = v+ 1 in (5.6) (5 = 0
in (5.5)) and (b) the meshes are rectangular (or otherwise very specific, see
Appendix B).

Regarding the approximation error ey4, let us first quote a lower error bound
due to Theorems 4.1 and 6.1. Note that in general, stability gives no help
when bounding e 4, rather the opposite. Here it follows from the first in-
equality in Theorem 6.1 and from (6.2) that for any U = (@, 9) € U,

ou 0u
Jor Oz

< C|U ~ Ul (6.13)

(This remains valid also after the change of || - |5 in section 10.) Then by The-
orem 4.1 and Principle A2 above, we must conclude that trapezoidal locking
18 unavoidable within the assumed formulation, so we can hope for uniform
convergence with respect to ¢t at most on parallelogram meshes. (A simi-
lar conclusion was drawn in [16].) Despite accepting this "reduced dream"
ahead, we will attempt sharp error analysis with minimal assumptions on
the mesh at each step.

Finally, there remains the problem of finding a sharp upper bound for the
approximation error. Applying Principle A1, the most straightforward "in-
terpolation test" is to bound e4 with the standard interpolant of U as U.
Here this choice is sufficient except when dealing with the leading term in
expansion (2.17) (at large A) or when approximating the leading asymptotic
bending mode in expansion (2.7) (at small ¢). In the former problem we can
cite the existing theory (section 7), whereas the treatment of the asymptotic
bending mode requires a new approach. We devote section 10 to this final
approximation problem.
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7 Error analysis on a fixed domain

Assume a general polygonal domain 2 and a family of regular quadrilateral
meshes on it. Bounding the approximation error (6.11) in this case is easy.
We need only to note that

Vi < ClIVl, Veu, (7.1)

as follows from (6.1), (5.6), (6.2) and the fact that ||Ryol| < ||o||, o € L2(2).
The standard interpolation test in Principle A1 above then gives

ea < CQh. (7.2)

(assuming that A < C). To bound the consistency error (6.12), we proceed
stepwise.

Step 1. Expand the consistency error functional as
(A— AU, V)=F(V)+G(V), Veu, (7.3)
where for V = (7, s),

F(V) = (01 — Ryon, 37") + (02 — Ry, g—Z), (7.4)
G(V) = (7 — Ry, g—; + g—;), (7.5)
where further
7(U) = Mo + 50) +2(1 - ar)iigs,
05(U) = _(g—Z—I—g—Z)—I—?(l—az)ﬂg—Z, (7.6)
7(0) = A5 + o)

This expansion follows easily from (2.1), (5.6), using only the identity (R, f, Rng) =
(Rhfa 9)7 f7 g e L2(Q)

Step 2. Assuming that V € U}, bound F(V) and G(V) in (7.3). First
applying the Cauchy-Schwarz inequality and then Theorem 6.1 (recall also
(6.2)), we obtain

or Js
PV < low = ol G| + low = el | 5

< C(|or = Baon | + ||oa — Raoal?) [ VI (7.7)

This holds in fact for any V € Y. Similarly for any V € U,

or 0s

< _ 2 77

GOV)| < lIr = Rul | 55 + 5
< Ch||lT = Rat ||| Vs, (7.8)
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where C}, is bounded according to (6.4).

Step3. Bound ||o; — Ryo;|| and |7 — Rp7||. Knowing that Rjo is the best
piecewise constant approximation of o in Ly(2), this is classical approxima-
tion theory. In our notation (recall (3.3)), the usual bounds are

||O'z‘ - Rh0i|| S ChL|0'i|1’Q, 1= 1, 2, (79)
|7 — Ru7|| < ChL|T|1 0, (7.10)

where

g = {A[(Z—Zf + (g—‘;)j d:cdy}l/z. (7.11)

Step 4. Bound |o;]1,0 and |7]; 0. By (7.11), (7.6), (2.3) and Hypothesis 2.1
we have (assuming that A < C)

Similarly,

Lithe < CQ|UI. (7.13)

Step 5. Combine the estimates and apply the consistency error principle
C1. Upon inserting (7.7)—(7.10) and (7.12) —(7.13) in (7.3) we have

(A =AU, V)| < ChQR| U Vln, V€U,
so by Principle C1

Estimates (7.2) and (7.14) formally complete our error analysis, but so far
both of these estimates still predict severe error growth when A — oo.
Namely, C ~ (X + @)'/? in (7.2), because we needed estimate (3.8), and
Cp ~ X+ [i in (7.14), because we needed (7.12) where C ~ X + fi in the
first inequality (by (7.6)). Our aim next is to show that the parametric de-
pendence in these estimates is (almost) removable under Hypothesis 2.2. So
let us consider now the parametrized problem where X can vary freely in the
range 1 < \ < 0o. Below we denote by C a constant independent of ).

The improvement of the consistency error bound under Hypothesis 2.2 is
straightforward: We have by assumptions (2.17)—(2.18) and by (7.6),

L|O‘¢|1’Q S C(L(|U(]|2’Q —|— |U]_|2’Q), Z = 1, 2

By (2.17), the triangle inequality, and by assumptions (2.4) and (2.19), the
right side here is bounded as

L(|Ugl2,0 + |Uil2,0) < L(|Ul20 + 2|Ui]2,0) < 3Q[ U], (7.15)
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so it follows that
Lloila < CQ|UJ|, i=1,2.

This removes the parametric dependence from (7.12), so we conclude that
(7.14) holds uniformly with respect to A under Hypothesis 2.2.

To prove that the approximation error is likewise uniformly bounded when
U satisfies Hypothesis 2.2, is much harder. The main difficulty here is to
show that the following constrained approximation problem is solvable.

Problem. Given Ug = (ug, vg) such that (2.18) holds, find Uy = (i, %) €
U}, satisfying

Oy 0T\
Rh<8—x + a_y) —0 (7.16)

and approximating Uy so that
U — Ugli,e < ChL|Ug |z, (7.17)

where |-|; o is defined by (3.9).

Note that when U, satisfies (2.18) and fJ'Q satisfies (7.16), [|[Uq — Ug|ls is
independent of A\ (recall (5.6), (6.1)), so if Ug exists, (7.17) implies that

IUo — Uolln < C|Up — Uolr.0 < ChL|Uglaq- (7.18)

This improves the standard interpolation error bound (3.10) (valid when
A < C) to a uniformly optimal bound with respect to A. Apparently such an
improvement is possible only under constraint (7.16).

Assume now the splitting (2.17), and suppose that U € U, exists such that
(7.16)—(7.17) hold. In addition, assume that UO interpolates the kinematical
constraints on U, at the boundary. Then set U= Uo + A 1U; where Uj is
the standard interpolant of Uy, and apply the triangle inequality, estimate
(7.18), a standard interpolation error bound dampened by factor A~!, and
finally (7.15), to obtain

U - Olln < U0 = olln + A [T = Tala
< ChL(|Ugl20 + |Uil2,0)
< CQh|U].

It follows (Principle A1) that (7.2) holds uniformly with respect to A. Thus
the critical question is, whether the above constrained approximation prob-
lem is solvable.

Let us warn at this point of a possible false conjecture. We see that the
volumetric constraint (2.18) is the limit of the dilatation constraint (4.2) as
A — 00 (y — 1). Then it appears that making a distinction between the
two constraints is irrelevant, and that we could assume (2.17)-(2.19) with
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Figure 5: Restricted quadrilateral mesh (Ref. [21]).

the dilatation constraint replacing (2.18). This actually is correct. But then
it further appears that the volumetric locking problem is simply contained
in the problem of locking at small ¢, so that only the latter problem needs
to be solved. This is false, because when dealing with the beam bending
state where the dilatation and shear constraints appear simultaneously, we
can also utilize the specific asymtotic form (4.1) of the solution in that case.
In the approximation error analysis ahead (section 10), we actually utilize
this information heavily. Then this analysis does not solve the above approx-
imation problem where Uj (the asymptotic solution at large )) is of different
nature.

That U, satisfying (7.16)—(7.17) anyhow exists (on restricted meshes at
least), so that formulation (5.6) does avoid volumetric locking on a fixed
domain, is one of the most curious "miracles" of finite element methodol-
ogy in all times. Here again, practice came first [10, Ch 4]: It was found
empirically that when X is large, the simple averaging in the leading term
of (2.1) (arising originally from a mixed formulation with piecewise constant
pressure), significantly improves the performance of the standard bilinear
quadrilateral. In fact, other modifications in (5.6) are rather irrelevant on a
fixed domain, causing mainly just additional consistency error terms, as in-
dicated by the above analysis. Note also that the constrained approximation
problem above relates to the mentioned single "trick" only.

In the theory, the existence of Uy € U, satisfying (7.16)—(7.17) was shown
first in case of a rectangular mesh [12], then for a mesh composed of 4 by 4
quadrilateral macroelements such that the local mesh in each macroelement
is uniform [21] (Fig. 5). Whether or not U, actually exists on a general
(strongly) regular quadrilateral mesh, is still an open problem. The theory
so far also sets constraints on how to impose the kinematic conditions at the
boundary: On the restricted quadrilateral meshes, the usual interpolation
conditions are allowed at the vertices of the macroelements, whereas at all
the other nodes (including those at the boundary), nonstandard interpolation
conditions must be chosen so as to enforce constraint (7.16) [21].

In practice, the above limitations of the theory are hardly observed (or
Qbeyed), so there remains a slight gap between theory and practice when
A is large. We leave this gap as it is, summarizing the theory so far in

Theorem 7.1 (Convergence theorem on a fixed domain) Assume a fam-
ily of reqular quadrilateral meshes on a polygonal domain Q). Let U be the
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exact solution satisfying Hypothesis 2.1 and let U, € U, be the finite ele-
ment solution defined according to (6.6), where Ay, is defined by (5.6), with
the parameters oy, ay satisfying (6.2). Then the total error (6.5) satisfies
e < CrQh, where Cy is a mesh dependent constant. The constant is bounded
according to (6.4), where My and Ny, are defined by (3.2), (3.4). Under Hy-
pothesis 2.2, this error bound extends further to a uniform bound with respect
to parameter X in the range 1 < X\ < oo, assuming restricted quadrilateral
meshes and modified interpolation constraints on Uy at the boundary.

An obvious corollary of Theorems 7.1 and 3.1 is that in the non-parametric
situation where the domain is fixed, A is uniformly bounded, and the meshes
are strongly regular, the modified FE scheme (6.6), (5.6) performs essen-
tially as well as (or no worse than) the standard bilinear scheme. A similar
result was proved previously in [13], [14], [25] for the nonconforming Wilson
quadrilaterals.

42



8 Consistency error on a rectangular mesh

In this section we raise the question, whether the error bound of Theorem
7.1 is improvable on meshes with large C,. An equivalent question obviously
is, whether the consistency error bound (7.14) is improvable. We give an
affirmative answer to this question in the special case where the mesh is
rectangular and aligned with coordinates z, y (possible on restricted domains,
see Fig. 6). To what extent estimate (7.14) possibly is improvable on general
quadrilateral meshes, is left as an open problem.

On a rectangular mesh one has N, = 1 in (6.4) but M), can still be large.
We show that when M)}, is large, estimate (7.14) is improvable as

ec < C(Q+ Qi M)*nY/?) b, (8.1)

where (), is another dimensionless constant depending on U and finite when
U is smooth enough. (We need slightly enhanced smoothness here as com-
pared with Hypothesis 2.1). The more precise result will be stated in Theo-
rem 8.1 ahead. Note that (8.1) predicts error amplification (from the optimal
rate O(h)) when My, > h~!, whereas from (7.14) we expect it already when
My, > 1. We will show by a counterexample that (8.1) is no more improv-
able, so the mild error amplification predicted here (when M, > h™!) is a
true phenomenon.

Recall that the mesh dependent constant in (7.14) arises form (7.8), where
we needed the third stability estimate of Theorem 6.1. This estimate was
not improvable, and neither is the Cauchy-Schwarz inequality applied in (7.8)
improvable in general. However, when writing

GV IG(V)I [”3—2 + %H]
IT = RarllIVIln L7 — Rurlligy + 5200 L VI Y

it is still possible that when V € U}, weak stability (the second factor large)
is compensated by better consistency (the first factor small). To resolve
such effects, we need to study the functional G(V) in more detail to detect
any possible (global) error cancellation. The vague idea is to find a better
expansion of G(V) where the Cauchy-Schwarz inequality and the stability
estimates can be combined without losing information. Below we show that
in case of an aligned rectangular mesh, G(V) can be expanded in such a
way that the use of the third stability estimate of Theorem 6.1 is actually
avoided. This leads to a sharp consistency error bound, as will be seen.

Suppose the boundary of 2 consists of lines parallel with the coordinate lines
and assume that the finite element mesh on €2 consists of rectangles

Kz’j = {.172;1 <T <y Y1 <Y< yj}, (Z,]) € Ih. (82)

We introduce two anisotropic local averaging operators that will be needed
frequently below when the mesh is rectangular. The operators, denoted by
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Figure 6: A rectangular mesh.

II, and Ay, are defined so that for each K;; C €,

M)y = ——— [ e yde, () ek, — (83)

Ti —Ti-1Jz; 4
1 Yi

(Anf)(z,y) = —— flx,y)dy',  (x,y) € Ky (8.4)
Yi —Yji—1 Jy; 4

We note that if V. = (r,s) € Uy, then R,0r/dy = I1,0r /0y and Ry0s/dx =
Ap0s/0x. Therefore and since (9/9y)II;, = 11,0/0y and (9/0x) A, = Apd/0x,
we may rewrite the error functional (7.5) as

or or 0s 0s
G(V)= (T’a_y_Rha_y)+(T’a_x _R"a_x)
0 0
— (7-, a—y(r — Hhr)) + (7’, 8_:1;(8 — Ahs)).

Integrating by parts, noting that » — II;r is continuous in y and s — Aps is
continuous in z, we further get

87’
(3"

+ / T[ny (r — Hpr) dz + ny(s — Aps) dy]
o0

or

G(V)= [ — Myr) — (8:1;’8 - Ahs)}

= Gi(V)+Ga(V), V=(rs)€ U, (8.5)

where (n,,n,) is the outward unit normal to 9Q2. We use now this expansion
to sharpen estimate (7.8).

To first bound G1(V) in (8.5), note that for (r,s) € Up,

/ (r —Mpr)*dz = 2/ z,
v

1
1_ — i1
Yj ) 1 ¢
/ (s — Aps) dy——2 — Y1) /
1

Yj—1 J—

dy,
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so knowing that z; — x;_1 < hL, y; — y;—1 < hL, we have

hL ||0
e — | < L H—
V12 || 0z

s — Aps|| <—hL H@
h _m

Then by the previous reasoning (Steps 2 and 4 above) we conclude

or

Gu(V)| < H—] Ans|

||7’ — HhTH + ‘

< CQORT[IVIlx, (8.6)

so there arises no error amplification from this term.

To bound the second term in (8.5), consider a rectangle (8.2) with a horizontal
edge T'; on 9. Then since dr/0x is constant on T';, we get integrating by
parts and using the Cauchy-Schwarz inequality

|/ nyT(r — pr) dz | |/ (x — 2 1)(z; — )ngrd |
<g-en'[[ () ] "[[ (G) ]

Here 0r/0z = co+c1(y—y;-1) = p(y) on K;;, where ¢y, ¢; are some constants,
SO

| / (52) da] ™ < (o = )2 max oty o)}

1/2 anf [ ]
< 2(zi — i) (Y5 — yj-1) [ p dy}

Yj—1
=2(y; — yj—1) "/ [/K (%)2 d:cdy} 1/2_

Hence using (z; — z;_1)2(y; — yj—1) /2 < My/>(hL)*?, we have

|/ nyT(r — Ir) dz |
T;

< iMé/z(hL)3/2 [/Fl<g—;)2dx] i [/KU (g—;)zdxdy} 1/2.

Similarly if K;; has a vertical edge I'; on 9€), we have
JRECIIN
T

< %Mi/?(h[/):*/2 [/F] (%)2dy] i [/K (g—z>2dxdy} 1/2.

2J
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Summing then over all K;; that touch 01, using the Cauchy-Schwarz in-
equality for the sum, assuming that for some finite Q)

22 () det () 0] <@l s

and finally applying Theorem 6.1, we get

6Vl < emp oy on [ [(52)+ (52)) awar)

< CMYPR2Q UV ||a. (8.8)

In view of (8.5), (8.6), (8.8) and the consistency error principle C1, we have
verified (8.1) with @; such that (8.7) holds. Note that @ is not necessarily
finite under Hypothesis 2.1, so (8.7) is an additional regularity assumption.

From the above proof we see that the second term in estimate (8.1) is a
pure edge effect where the interior elements play no role, insofar as these
are all rectangles aligned with the coordinates. As will be shown shortly,
this bound admits no further improvement in general. However, in a given
problem with given mesh and kinematical constraints, slight improvement
may still be possible as follows. Define a function g, on 02 so that g takes
piecewise constant values according to the rule

h71L73/2($i — $i_1)2(y]‘ — yj—1)71/27 if (.CU, y) el; C 8K,J N 09,
an(z,y) =
h_lL_g’/z(yj — yj,l)z(xi — xi,l)_l/z, if (JT, y) € Fj C GKU N 09,
(8.9)

where I'; denotes a horizontal and I'; a vertical edge of K;; as above. Let
further I'y denote the part of 0€2 where the tangential displacement is not re-
stricted by the kinematical constraints, so that for V.= (r,5) € Uy, nyr — ngs
does not vanish on I'y. Then defining a mesh dependent constant @)y, so that

0T\ 2 0T\2 1/2
3/2 2 oT or <
ve{ [ atfiml(G;) e mad(Gp) @]} <@uvl 10
the above analysis implies

Theorem 8.1 (Consistency error on a rectangular mesh) Suppose the
boundary of Q) consists of lines parallel with the coordinate lines and let the
finite element mesh on 1 be rectangular. Let U be a displacement field on )
that satisfies Hypothesis 2.1, assume further that (8.7) holds for some finite
Q1, let g, be defined by (8.9) on 90, and let Qy, be a mesh dependent constant
such that estimate (8.10) holds, where Ty denotes the part of Q2 where the
tangential displacement is not restricted by kinematical constraints. Then the
consistency error of scheme (6.6), (5.6) satisfies

ec < C(Q+Qn)h < C(Q+ QM *h/?) .
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Note that by Theorem 8.1 and by (8.9)—(8.10), error growth due to large @
is actually possible only if the kinematical constraints, the exact solution U,
and the mesh are such that (i) Ty is non-empty, and for some non-empty
subset I'y C Ty, (ii) the integrand in (8.10) is non-vanishing on I'y, and (iii)
the rectangles Kj;; that touch I'; are all thin in the normal direction to I';.
Let us finally show by a counterexample that the consistency error bound of
Theorem 8.1 is sharp. To this end, let (z;,y;) be the nodes of a rectangular
mesh on the reference domain, with 0 = zg < ... < z; =L, —H/2 = yo <
..<y;=H/2, H=1tL, 0 <t <1 Assume that I > 2 is even, and let
z; — ;1 = a = hL when ¢ is even and x; — z; 1 = a/2 when i is odd. Let
further J > 2 andlet y;—y; 1 <awhenj=1...J-landy;—y; 1 =b< a
when j = J. Finally let the exact solution be given by

uw(z,y) =ug(x— L/2)y, v(z,y)=0,

where ug # 0 is a constant. Choosing then V = (r,s) € Uy, so that s = 0
and 7(z;,y;) = (—1)* when j = J and 7(z;,y;) =0 when 0 < j < J — 1, we
find by direct computation that

(A= AU, V) = 6l TNV la,

where

5 (a/b)"/2 12 B3/
" (48 + 160 + 24N/ )2 [1 + (2 + N R)E]2

By Principle C2 of section 6 we have then e > d,. Note also that the total
error is e = ec, since U is bilinear.

In the above case, M}, = a/b and estimate (8.7) holds for @1 no less than
24(ji/t)*/2, so we conclude that second bound in Theorem 8.1 is sharp in this
case. We also see that in the example case, the convergence (in the sense of
error indicator (6.5)) actually fails on a family of extreme meshes such that

b/a < C(a/L)* = Ch® as h — 0.

Let us note finally that the above counterexample does not work if we choose
x; — x;—1 = a for all i, since then §, = 0. This indicates further error
cancellation, which is possible more generally when the (rectangular) mesh
is tangentially uniform on 92 (or on I'y, see Theorem 8.1). To see that there
still remains a mesh effect, let the index I be odd in the above example,
and let ©; — x; 1 = a = hL for ¢ = 1...I. Then choosing V as above
gives 6, ~ (a/b)"/?t71/2h%/2 so the consistency error is at least of order
ec ~ M,1/2h5/2 in that case.
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Figure 7: A consistency error anomaly: Convergence fails if b/a < Ch® as
h =a/L — 0. Exact solution: u = uq (z — L/2)y, v =0.
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9 Thin domains: Consistency error

In the remaining part of the paper, we study the rectangular reference do-
mains with ¢ = H/L as a variable parameter. Our aim is to prove uniform
error bounds with respect to t as ¢ — 0, whenever possible. In this section
we start from the "easy part", the consistency error term.

In the pure stretching state of deformation, the (consistency) error bounds of
sections 7-8 extend immediately to uniform bounds with respect to t. Indeed,
estimate (2.4) holds uniformly in ¢ in the pure stretching state (by Hypothesis
2.1), so the consistency error bound (7.14) is uniform in ¢ as well. The bound
of Theorem 8.1 is likewise uniform in ¢, provided estimate (8.7) holds with
()1 independent of ¢. This is a reasonable (though an additional) assumption
in view of expansion (2.10), so we may consider the case of pure stretching
closed.

The case of pure bending is less straightforward. We proceed again as in
section 7, but now we use expression (5.5) of A, and rewrite o1, 09 in (7.6)
as

-/ Ou Ov _Ou
o1(U) = /\(v—ax + —03/) — 205 o)
A/ Ou 0w _Ov '
(V) =3 (15 + 5,) ~ 2,

(By (2.9) and (5.7), expressions (7.6) and (9.1) are equivalent.) Recalling
(2.7), (2.8) we have here

01 (Upn) + 01(Un) = —2817190'(2) + 01 (Up),  (9.2)
02(Upm) + 02 (U ) = 20620y yb' () + 02(Usy). (9.3)

O'1(U)
o2 (U)

By the reasoning of section 7 (Steps 2-3), the consistency error functional
associated to o; is bounded as

(01~ Bacr, 0)| < ChLjolsl V. (9.4)
By (9.2) and Hypothesis 2.1, we have here
Llo1(Upm) e < C(1+ |81t QU] (9.5)
Lio1(Usr )e < CQ|U, (9-6)
so that combining (9.4)—(9.6)
(01 — Raor, g—;)| < CQU+ Bt HAITIIV . (9.7)

Estimate (9.7) predicts error amplification by factor ¢! unless 3; = 0. In
Appendix B we show that such an "equilibrium locking" is a true effect even
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on a rectangular mesh, so we conclude that choosing B; = 0 is necessary for
uniform convergence with respect to ¢. Note that in view of (5.7), this choice
is legitimate within constraint (6.2).

The consistency error term due to o, is similarly bounded as

ds
(02 — Rnoo, 8_y)| < ChL|oz[1,e][ V], (9.8)

where by (9.3) and Hypothesis 2.1,

L|oy(Upm)|1.0 < C(1+ |Byt HQ U, (9.9)
L|oa (U )10 < CQ| U, (9.10)

so that combining (9.8)—(9.10)
0s _
(02 = Baoo, 5)] < CQ(L+ |G|t DRIONIV s (9.11)

This predicts again error amplification unless #5 = 0, or unless it happens
that v = 0. In Appendix B we show that this is again a correct prediction
in general. The problem then is that this time we cannot escape by choosing
Bs = 0, since that would violate stability (see (5.7) and Theorem 6.1).

We are now at the first critical point where restricting the mesh helps to
avoid parametric locking. Namely, it turns out that the error amplification
in (9.11) is a mesh dependent effect, unlike that in (9.7). The most general
mesh where we can easily improve estimate (9.11) is a rectangular mesh. For
some other examples/counterexamples, see Appendix B.

Suppose the mesh on 2 is rectangular with nodes (z;,y;). Then R,0s/0y =
[1,0s/0y for any piecewise bilinear s, where I is defined by (8.3). Using
this and the orthogonal projection property of both Rj and II,, we have

(02 — Ryo9, g—;) = (0’2, Z—Z — th—Z) = (02 — 09, g—;)

Here, since x; — x;_1 < hL, we have by standard 1D approximation theory

hL || 0o
lo2 = Hpoof| < — 8—:1;2 :
This allows us to first improve (9.8) as
Os do
(o - Racu 50) | < oz | 52 1

and then, by (9.3) and Hypothesis 2.1, to improve (9.11) as

Js
(72 Racn. )| < CQUITIIVI, (912)
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so there arises no error amplification on a rectangular mesh.

Combining estimates (9.7) and (9.11) or (9.12) we have a bound for the term
F(V) in (7.3), so it remains to bound the second term G(V) there. This is
more straightforward. We have

T(U) = T(me) + T(Ubr) = _%ﬂ7 y2911(x) + Tor (913)

so estimate (7.13) holds by Hypothesis 2.1. Hence the error contribution
from G(V) in (7.14) is uniform with respect to ¢ on general meshes.

For the improved estimate (8.1) to hold uniformly in case of rectangular
meshes, we again need to assume that (8.7) holds with @; independent of ¢.
Since

L3 /39 [|ny| (g—;)zdx + |ng| (g—;)zdy}

S 2/2272{3%1541/7/0 (9///)2 dr 4 %tBLG[(Q//(O)F + (ell(L))2]}

+2L° /m[|ny|<%)2dx + |nx|<8g;r>2dy]

by (9.13), it is sufficient to assume that the estimate

%#L?/(; (9///)2 d.flf"—étgLﬁ[(eu(O))2+(HII(L))2]

2 [ [l () dves bl () aa] < @i .0

holds with ); independent of ¢. This assumption again slightly enhances the
regularity assumed previously in Hypothesis 2.1. But in view of expansion
(2.11), the assumption is realistic.

Let us finally note that in view of (9.1), estimates (9.6) and (9.10) hold
uniformly with respect to A under Hypothesis 2.2. On the other hand when
U = Uy, or U = Uy, 0,(U) and 05(U) are independent of ), so all the
above bounds are uniform in A under Hypothesis 2.2.

We summarize the results of this section (see also Appendix B) in

Theorem 9.1 (Consistency error on thin domains) Assume that U sat-
isfies Hypothesis 2.1 on a rectangular reference domain with t = H/L vari-
able, and assume a family of rectangular meshes. Assume further that aq =
v+1in (5.6). Then in both the pure stretching and the pure bending state of
deformation, the consistency error of scheme (6.6), (5.6) satisfies estimate
(7.14) uniformly in t when 0 < t < 1. In the former case this holds even
on general meshes. On rectangular meshes, estimate (8.1) likewise holds
uniformly in t, provided the enhanced regularity estimates (8.7) (stretching
state) and (9.14) (bending state) hold with (), independent of t. On more
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general meshes, the consistency error is amplified in general by factor t~! in
the bending state of deformation, except when v = 0. If ay # v+ 1, the
amplification takes place on any mesh and for any v. The stated bounds are
uniform with respect to A under Hypothesis 2.2.

As a final curiosity, let us point out that when 5; = 01in (9.1), U = Uy,,, and
0" = 0 (the simplest bending mode), then o7 = 7 = doy/Jz = 0, so when
the mesh is rectangular, the consistency error vanishes. In the next section
we see that even the approximation error vanishes in this special case.
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10 Thin domains: Approximation error

In this section, we bound the approximation error (6.11) in case of parametrized
rectangular domains. This final step of the error analysis is apparently rather
decisive, as the ultimate motivation of modification (5.1) was to dampen the
large approximation error of the standard bilinear FEM.

As noted above (see section 6), the modified scheme (6.6) still suffers from
trapezoidal locking, so the parametric error growth in e4 can be avoided at
most on parallelogram (or nearly parallelogram) meshes. For simplicity, we
consider here only the case of a rectangular mesh with nodes (z;,y;), 0 =
Ty < T1 <"'<.CUIZL, _H/2:y0<y1<<yJ:H/2

Yj
T
Figure 8: Rectangular mesh on the reference domain.
In addition to restricting the mesh, we will also weaken the seminorm || - ||,

slightly from the previous definition (6.1), (5.6). That this is necessary, is
seen by a simple counterexample. Assume a single-layer rectangular mesh as
in section 4, let again the exact solution be given by (4.1), (4.4), and let Uj, =
(iin, Tn) € Uy be the best approximation to U defined by (6.8). Then U, must
be of the form (4.6), so that 07,/0y = 0. By (4.1), (4.4), (4.5) we have also
IOl = v Y|0v/dy|| in this case, so ||d(v — @)/dy|l/||U|| = 7. However,
by the second estimate in Theorem 6.1 and by (6.2), ||0(v — ¥5)/0y| <
C[|U = Uy|s, so it follows that e4 > ~/C. Hence there is no convergence in
this case unless v = 0.

As the example shows, the second stability estimate of Theorem 6.1 is critical.
If this holds for all V € U, then it is not possible to bound the approximation
error uniformly optimally with respect to ¢. Thus we should modify the
seminorm || - ||, in such a way that this critical estimate only remains valid
for V € Uy. We do this by rewriting the second functional in (5.4) in terms
of the horizontal averaging operator Il (see (8.3)) as

B,(U, U) = 2@@/9[(2—;)2 - (th—Z)z] dzdy (10.1)

and by modifying the last terms in (5.5), (5.6) accordingly. Then since
I, fl| > ||Rufll, f € L2(R2), and since I1,0v/90y = R,0v/dy when v is
piecewise bilinear, the effect of the modification is to weaken || - ||; as a semi-
norm of U while leaving it unchanged as a norm of U;,. Below we assume this
new definition of A in (6.1) when bounding the approximation error (6.11).
The consistency error bounds above remain valid, since ec only depends on

how || - ||» is defined in U}, (see (6.12)).
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The approximation errors from U = Uy in (2.5) and from U = Uy, in (2.7)
are easily bounded. In both cases the uniformly optimal approximability (in
the sense of estimate (7.2)) is immediate from (7.1) and from Hypothesis
2.1 when A < C, and the extension to uniform bounds with respect to \
follows the reasoning of section 7. So we may concentrate on estimating the
approximation error of the asymptotic bending mode U = Uy,,. We rewrite
this now as

u = yb(z),
10.2
v = w0(z) + p)). 1o
where p(y) = y*/2, so that (recall (2.8))
y—p =0, v+ =0, 6+uw =0. (10.3)

When bounding e4, we apply Principle Al of section 6, looking for U =
(ii,7) € Uy, that "simulates" Uy, i. e. , approximately minimizes [|U — Ul
Guided by (10.2), we assume that such a U can be found in the form

b(2) (10.4)
W(z) + py)Y(z), '

I3
Il

SH
I

where é, w, 1/;, p are continuous piecewise linear functions on the one-dimensional
grids induced by the rectangular mesh. — Note that we could not try (10.4)
on a general mesh.

We start by choosing § and 4 to be standard interpolants, so that

py;) = ply;), 7=0...7 (10.5)

Interpolation conditions would also be natural for defining # and @ in (10.4).
However, it turns out that this choice would not lead to an optimal bound
of es (see below), so we impose the interpolation conditions only at the
endpoints, where they may be forced by the kinematical constraints:

0(z) = 0(z), (z)=w(z), z=0,L (10.7)

Together with (10.2) and (10.4)—(10.6), (10.7) assures that U(z;, y;) = U(x, v;)
fort=0,7 and 5 =0...J, so any possible constraints at x = 0, L are taken
care of.

Assuming constraints (10.5) - (10.7) in (10.4), it remains to set 0(z;), w(x;),
i = 1...1—1,s0that |[U-TU|? =A4,(U-U,U-T)is approximately
mlmmlzed In What follows, we use expression (5. 5) of A,(U-U,U~-TU) and
consider each of the five terms there separately. Our aim is to show that with
a proper definition of U, each term can be bounded by CQ*h?||U|2, where
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Q is the constant in Hypothesis 2.1. Then it follows that |[U — UJ|, < CQh,
hence ey < CQh by Principle Al.

We need the pointwise bounds

1A(y)] ZH2 = Zt2L2’
5 (y)| < '(y)| = tL,
7' (y)| < %rrgiglp (y)] (108)
[(p—p)(y)| < 7hL pnax /()] = Jth L%,
and the L, bounds
L ~ L
/ (Y —)dr < 7r2h2L2/ (¢')? dx, (10.9)
0 0
L ~ L
/ (¥ =) de < 7r4h4L4/ (") dz, (10.10)
0 0
L _ L
/ ('l,bl . 'l,bl)z dr S 7T2h2L2/ (¢II)2 dzr. (1011)
0 0

These are classical bounds derivable from the interpolation conditions (10.5)—
(10.6) when z; — z;_1 < hL and y; — y;—1 < hL. We note that the constants
in these estimates are optimal and that the interpolant actually is the best
approximation in (10.11). So far we have not defined 6, but we assume the
definition to be such that an estimate analogous to (10.11) holds, viz.

L L
/ (0" — 6" dx < 0h2L2/ (0")? dx. (10.12)
0 0
We now start estimating A, (U — U, U — U) from (5.5). First, by (10.2),
(10.4), (10.12) and Hypothesis 2.1,

0 -
0—x(u—u)

2

L
D’ = %Dt3L3/O (0" — 02 dx

L
< Ch*tLP / (6" dx < CQ*R*|U|?, (10.13)
0

so the first term in (5.5) is clarified (so far as (10.12) holds).
The second term in (5.5) we first expand as

Rafrgolu =)+ 5 (0= 0)

95



Here we used y = p/, ¥ = —~6' from (10.3) and applied the identity

Ri(p' = 7)(y) 8'(2)] = An(p' = F') () €' () = 0,

where the first part follows since 0' is piecewise constant and the second part
is due to the interpolation conditions (10.5). (Here and below, I, and Ap, are
understood as the 1D equivalents of operators (8.3)—(8.4).) From (10.14) we
can now proceed using estimates (10.8), (10.12) and (10.9). Recalling once
more that ¢ = —y6' and applying Hypothesis 2.1 we have

Jufg |

L
9 < ,‘\h2t3L5/ 0")2 d
Y os < CMly 0( ) dx

(u—a)+a%(v—a)}

< CQ*1*||U|”. (10.15)

(assuming A < C). Thus the second term in (5.5) is clarified. Note also that
in case of a single-layer mesh the error term (10.14) actually vanishes, since
then p' = 0.

The third term in (5.5) is expanded as

0 ~ a ~ 0 ! ~ !
rlgy( — B+ g (v~ 9] = (6 = O)(x) + (v — @) ()

+ Ral(p — )W)/ (2) + py)(W — §)(@)]. (10.16)

R

To proceed, we define now 6, so that the first term on the right side of
(10.16) vanishes. Since 6 + w' = 0 by (10.3), this is achievable by defining

f, so that
(0 + ') = T,0 + @' = 0. (10.17)

To impose this constraint in practice, assume that 6 is defined first and let
then @ be defined in terms of € as

w(z) = w(0) — /:(Hhé)(x') dx'. (10.18)

Then @ is continuous and piecewise linear as required, (10.17) holds, and
w(0) = w(0) as required by (10.7). Finally since

(w—w)(x,'):/Omi(Hhé—Q)dx:/Owi(é—O)dx, i=0...I, (10.19)

by (10.3) and (10.18), we see that the remaining kinematical constraint on
w can be imposed by assuming

/L(e — ) dz =0. (10.20)

Tt then remains to specify @ so that the three constraints in (10.7), (10.20)
are satisfied. This is apparently possible whenever I > 2. Assuming this,
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let us define § by minimizing the left side of (10.12) under the mentioned
constraints. By treating (10.20) with a Lagrange multiplier, the solution of
this constrained minimization problem is found to be

v

0=10+¢, (10.21)
where 6 is the standard interpolant of 8, and 5 interpolates
€ =&ua(L —x), (10.22)

where the coeflicient & is defined so that (10.20) holds, i. e., so that
L L 5
/ Edr = / (60— 0)dz. (10.23)
0 0

It remains to check that (10.12) holds. Here we have to first exclude anoma-
lous meshes where constant C' in (10.12) can actually grow without limit.
Namely, this happens if one of the mesh intervals [z; 1, ;] covers nearly the
whole interval [0, L] (so that h ~ 1). For example, let § = fyz(L — x) and
choose #; = 6L, 25 = (1 — 0)L for I = 3, where § < 1. Then 6 ~ §6,L?
is nearly zero, so by constraint (10.23) and by symmetry, &(z1) = &(z2) &
$60L?. 1t follows that 1€(x)| ~ £67166|L on intervals [zq, z1] and [z, 23], s
estimate (10.12) can only hold with C proportional to ! in this case. Below
we simply exclude situations like this by imposing the specific coarse-mesh
condition

',rlni}l . [z:(L — z;)]"' < CL™2, (10.24)

where C is a fixed constant. Note that this only rules out some unusual
coarse meshes.

Assuming (10.24) we can now prove estimate (10.12). Note first that if the
minimum in (10.24) is achieved at index i, then by (10.24) and (10.22) and
since ¢ interpolates &,

L L
|/ £dx|z%|5<:c,-)|Lz%0—1|50|L3=30—1|/ £ dal.
0 0

(where C'is as in (10.24)). Using this and (10.23) we have now

/(]L(g')"’dx < /OL(§')2dx — 121,73 [/(]Lgdxr <CL [/OLgdx]Z
— CL [/L(e .y dxr < L™ /L(e — §)2dz,
0 0

so that by an interpolation error bound similar to (10.10)

L . L
/ () dx < Ch4L2/ (8")* d. (10.25)
0 0
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Recall finally that when § = 6, the bound (10.12) holds with C' = 72
(optimal constant). Then if 6 is defined by (10.21), it follows from estimate
(10.25) and from the triangle inequality that (10.12) holds with C' = 7 2(1+
O(h?)), i. e., nearly optimally. Thus we have finished the construction of U,
and the assumptions made above have been verified under the mild additional
condition (10.24) on the meshes.

To finish bounding the third term in (5.5), we now apply (10.8) and (10.11)
together with Hypothesis 2.1 to bound the non-vanishing terms in (10.16).
We get

2

0

- 0 ~ 2 g 315712 517 (nl\2
—(u — — < L L
,uHRh[ay(u @)+ (v v)} < Ch /0 [BL5(0")2 + L7 (0")?) da

< CR*R?| U3, (10.26)
so this term is clarified.

The fourth term in (5.5) is of the same order as the leading term, so the
bound (10.13) applies to this term as well when |5;| < C. Thus choosing
B1 # 0 does not cause “interpolation locking” (compare with Theorem 8.1).

Finally we come to the last term in (5.5), which now is rewritten according
0 (10.1). Here we apply first the identity

/9[02 — (TI40)?*] dedy = /9(02 — I0)? dzdy, (10.27)

valid because IIj, is an Ly projection. Upon expanding here o = d(v — 9)/dy
as

o=pW(z)— 7 y)(x)
=0 =)W v(z)+ 7 (y) (W —9¥)(z),

we conclude

o—1Iho = (o' = 7)(y) (¥ — Muy)(2)
+ 7 (W) — 9)(2) = M(y — P) (). (10.28)

Note that replacing here Il by Rj on the left side would produce an extra
term (II, — Rp)o = (p' — App')(y)Hptp(z) on the right. This could not be
bounded in the desired way, so here is the (only) point where the modified
definition (10.1) is needed.

Combining now (10.27), (10.28), using estimates (10.8) and (10.9) together
with

L L
| -t < w2 [ wyan,
0 0
inserting v = —v#', and finally applying Hypothesis 2.1, we get
d 2 ]
265t -] -
817 | 50 = )

2
nr4ww>)sc¢mmw, (10.29)
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so the final term of A,(U — U, U — U) is clarified.

Upon summing up estimates (10.13), (10.15), (10.26), the mentioned bound
for the fourth term in (5.5), and (10.29), we get |U — U||, < CQA|U]|, so
es < CQh by Principle Al.

Let us point out that we actually only needed estimates (2.14) from Hypoth-
esis 2.1 in the above analysis. It follows in particular that e4 = 0 when
6" = 0 (the simplest bending mode), since (2.14) then holds with @ = 0.
In this case one has also § = 6, so w0 interpolates w by (10.19), and hence
the above generalized interpolation reduces to standard interpolation. We
conclude that U, = U = standard interpolant, and e4 = 0, when 6" = 0.

In Appendix C we extend the above construction to cover the doubly para-
metric situation where A can be arbitrarily large and t arbitrarily small si-
multaneously. The above analysis fails in that case (except when §" = 0),
since constant C' in estimate (10.15) is proportional to A. However, we can
find a better approximation of Uj, when ) is large, by constructing U in such
a way that the whole term (10.14) vanishes, while the other estimates above
are still preserved. The key of this alternative construction is the constraint
I1,4+~6' = 0, which can be imposed simultaneously with (10.17) when I > 3
(see Appendix C). With such a definition of U, the error bound e4 < CQh
holds uniformly with respect to ), showing that volumetric locking is avoided
as well.

Before summarizing these results, let us go through briefly also the standard
"interpolation test" for bounding e4. So let U be the standard interpolant
of U, as defined by (10.4) where now p, 0,1, v are all set by interpolation
conditions. Then IT,(#' — §') = 0 and Hh(w —@') = 0, so (10.14) and
the leading term in (10.16) are simplified. Upon bounding these terms by
estimates (10.9)—(10.10) and proceeding otherwise as above, we get

|U -~ Ul

o] < CPyh + Cmin{ Py, Psh}\Y2h 4+ C' Pyt h?, (10.30)

where C is an absolute constant and Py are defined by (compare with as-
sumption (2.14))
~1/2

P, = L} {/OL(9<k>)2da;}1/2 {/OL(Q’)zd:c} k=23 (10.31)

In the special case where § = 6yz(L — x)(xz — L/2), 6y # 0, and the mesh
is a uniform double-layer mesh with yo = —H/2, y; = 0, y» = H/2, and
x; =4hL, i=0...I, we have P, = /60, P; = 124/5, and

U - Ul;

o2 = 3(y/D)AR* + 6(7i/ D)t 2" + O(h> + £2 + t~2h*),

so the leading error terms are as predicted by (10.30).
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The conclusion from estimate (10.30) is that the standard interpolant as
U leads to the best possible bound for e, if (and in general, only if) ei-
ther #” = 0 or if the parameters h,t, X are restricted so that h/t < C and
min{1, Psh/P,}\/2 < C for some fixed C. Beyond these constraints, the
generalized interpolants constructed above and in Appendix C are needed.
These constructions may then be viewed as simulating the actual mechanism
by which the modified FE scheme avoids parametric error growth when ¢ — 0
or A — o0,

We summarize the analysis of this section & Appendix C in

Theorem 10.1 (The main approximation theorem) Assume a rectan-
gular reference domain and a rectangular mesh with nodes (z;,y;), 1 =
0...1 >2,j=0...J, where x; are chosen so that condition (10.24) holds
with some given constant C. Let then Uy, be defined according to (6.8), where
Ay, is defined by (5.5) /(5.6) with 0 < ay, as < C and where the exact solution
U is the asymptotic bending mode (10.2) satisfying (10.3) and Hypothesis 2.1.
Let further U € Uy, be defined by (10.4), where 5, satisfy (10.5), (10.6), w
is defined by (10.18), and 6 is defined by (10.21)~(10.23) where 6 — 6 de-
notes piecewise linear interpolation. Assume finally that when defining the
seminorm || - |5 in (6.11) according to (6.1), the last term of Ay, is redefined
according to (10.1). Then the approzimation error (6.11) satisfies

U - Ul

< CQh.
0]

€A >

With an alternative definition of U given in Appendiz C, constant C in this
estimate is independent of A, assuming I > 3 and excluding anomalous coarse
meshes. Moreover, in case of the simplest bending mode (6" = 0) one has

U, = U = standard interpolant, and e4 = 0. More generally, the standard
interpolation error is bounded according to (10.30)—(10.31).

Let us finally recall the remark made at the end of section 9: When approx-
imating the simplest bending mode on a rectangular mesh, the consistency
error likewise vanishes, provided oy = 4 + 1 in (5.6). Thus under such
assumptions, the modified FE approximation according to (6.6) reduces to
standard interpolation, i.e., the FE solution is exact at the nodal points. As
expected from Theorem 5.1, the Turner rectangle shares this same property,
and indeed, that was the very idea of the pioneering formulation in [30].

Our mathematical story of the first locking-free plane-elastic finite element
ends here.

60



A  Proof of Theorem 6.1

Let us first show that the estimates stated in Theorem 6.1 cannot be im-
proved. To this end, assume a rectangular domain aligned with coordi-
nates z,y and a uniform rectangular mesh with nodes (z;,y;), ; — ;-1 =
a, ¥y — yYj—1 = b. Let then V = (r,s) € U, be such that r(z;,y;) =
c1(—1)" ) s(zj,y;) = c2(—1)" for some constants ¢, ca. Then the aver-
aged strains all vanish, so by (5.6)
2 2
An(V, V) =2a1[a Hg—; + 20500 Hg—z .

Choosing ¢s = 0, resp. ¢; = 0, we conclude: (1) The first two inequalities
in Theorem 6.1 reduce to equalities for the assumed V when aq,ay < 1.
(2) If assumption (5.8) is violated, we find a spurious mode of the assumed
form such that A,(V,V) < 0. Thus the first two estimates are essentially
optimal, and condition (5.8) is necessary for stability.

Next let oy = ay = a > 0 and choose ¢ = 0ifa >borc; =0if a < b. Then

2

or Os 1 a?c + b?c3 1 a\?2 /b\2
o, g V,V) = 1705 AN
’03/ "o [An(V, V) 2ap b*c +a’cd 2ap max{<b> ’ (a) }
R
- 204[& h»

so the third inequality in Theorem 6.1 is optimal on a rectangular mesh.

Consider finally a quadrilateral mesh obtained by subdividing each rectangle
in the above mesh into two quadrilaterals of equal shape, with a line that
passes through the vertical sides of the rectangle. Assume that a > b, and
let the vertical sides of the quadrilaterals be of length ¢ and b — ¢, where
0 <c¢<b/2. Then My ~ a/b and N ~ b/c. Further let V = (r,s) € Uy, be
such that s = 0 and 7(z;,y;) = (—1)" at the nodes of the original mesh and
r = —(—1)" at the new nodes at = x;. Then the averaged strains again
vanish and we get for ay = as =a >0

o os |
Jdy Oz

so the third inequality of Theorem 6.1 is not improvable on this mesh.

JAR(V, V) ~ aiﬂ(%)z<1 +log g) ~ aiﬂM,‘f(l +log Na),

It remains to prove that the asserted inequalities actually hold. The first two
estimates are easy: Since 0 < ||Ryo|| < ||o||, we have

|Rho|* + a(lloll* = [|Raoll*) > min{a, 1}o]f*.
Applying this in (5.6), we conclude that for any V € U
2

An(V, V) > 26,1 @2+26‘ 9s
'V, Z 4014 or o2 ay
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where ¢; = min{a, 1}. The first two inequalities follow.

The proof of the third inequality is more technical. The core is the following
lemma.

Lemma A.1 Let K be a convex quadrilateral satisfying the angle condition
(3.1) and let = = E(z,y) be the isoparametric bilinear function on K that
vanishes at the midpoint of every edge of K and attains the value +1 at the
vertices. Then for any c;,co € R

/K(ag—? + ng—i)zdxdy < CK/K[C%<3_3)2 + c%(é;—?)z} dzdy,

where Ck s a finite constant depending on the shape of K. The constant can
be further bounded as Cx < Cm% (1 + lognk), where my,ng are the geo-
metric shape factors of K as defined in (3.2), and C is an absolute constant.

Proof. We need to bound the largest eigenvalue Ay, of B~1A, where A =
(a;j) and B = (b;;) are symmetric 2 by 2 matrices defined by

allz/K<g—§)2dxdy, azgz/K<g—i>2d:pdy,
0= 0=
~ oz oy

b1 = A22, by = aii, bi2 = by = 0.

a12 dzdy = as,

The claim is that Ay < Cx = Cm3% (1 + logng).

Without loss of generality, we may assume that K has one vertex at the
origin. Then A\, depends on the six coordinates z;, y; of the remaining three
vertices. Since the asserted inequality is invariant under scaling (i. €., Apax
depends only on the shape of K'), we may assume that, say, |z;| < 1, |y;| < 1.
The assumed angle conditions impose further restrictions on z;, y;. Obviously,
Amax 18 @ continuous function of z;, y; on the resulting (compact) set, except at
points where matrix B becomes singular. This can only happen at degenerate
shapes of K with mg = 0o or ng = 00, so if we asssume that mx < M and
ng < N for some given M, N, then A,y is uniformly bounded by a constant
depending on M, N and (. The first conclusion is then that on strongly
regular meshes, constant C'x is uniformly bounded.

The second conclusion concerns aligned rectangular meshes. Let K = {(z,y) |
—a < ¢ < a, —=b < y < b}, so that mg = max{a/b,b/a} and =Z(z,y) =
(z/a)(y/b). Then Apax = m%, so the assertion of the lemma holds (and is
not improvable) in this case.

So far the proof is incomplete, but we already covered the most important
cases: On strongly regular meshes C is uniformly bounded, and on aligned
rectangular meshes Cx = m?% for each K (optimal value). We stop here and
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skip the general case, where the details of the proof get more technical and
less interesting. [

Accepting Lemma A.1, we can now finish the proof of Theorem 6.1. Let r, s be
any isoparametric bilinear functions on a given (convex and nondegenerate)
quadrilateral K. Then we may split r, s as

where ¢y, co are constants and rg, sg are polynomials of degree 1. Since = is
linear along each edge of K and vanishes at the midpoints of the edges, it

follows that
o=
/ —dxdy—/ — dzdy = 0.
x Oy

Hence the strains related to ri, s; have zero averages. On the other hand,
the strains related to rg, sq are constant, so the assumed splitting is Lo -
orthogonal on straints. In particular,

/(g;—l—g—;) dxdy:/l((%—?+%)2dxdy+/(aa—2+%) dxdy
I ) [ (G

where the second identity follows since 9rq/dy + Jso/0x is constant and
Or1/0y + 0s1/0x has zero average. Here we can now use Lemma A.1 to
bound the second term on the right, thus obtaining

[y 5) dev = [ [ma(Gy + 5]y
o [ [+ (22t
Finally, by the strain orthogonality,
LG+ () Taeto= [ [(55)
Combining the last inequalities and using C < CMZ(1 + log Ny), we get
[5G+ ) v [ [ma(G + 57)] o

+0M5(1+10gNh)/K[(g_;)2+

+ (g;) ] dzdy.
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Upon summing this inequality over K and using (5.6) and (A.1), we finally

get
}

2

or 0s|? or 0s
T | P Dy Z 27
H8y+ _Ch,g,ﬂ{u"Rh( + )

Jdy O

2 Js
20 .
ox 200 H@y

|l ar

where § = min{d;,d2} and
Chop=H "+ CM; (1+1ogNy) (200)~" < CM; (14 log Ny) (i)™,

This proves the third inequality in Theorem 6.1 and hence the whole theorem.
O

Let us finally note that unlike the first two inequalities in Theorem 6.1, which
hold in the entire energy space U, the third inequality does not admit any
meaningful extension beyond the finite element space. Assume, for example,
a rectangular domain and rectangular mesh with nodes (z;, y;), and set

r(z,y) = 2y —y; — yj-1)°/(y; —yj—1), (2,9 €Q, yj-1 <y <y,

s(x,y) = (295 — T — 96171)2/(5132' - 961'71)2, (x,y) €N, x4 <z <y

Then V = (r,s) € U and 0r/0y + 0s/0x # 0, but |V||r =0, so || - ||» is just

a seminorm of U.
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B Equilibrium locking

We complete here the proof of Theorem 9.1, by showing that the asserted
consistency error amplification does occur in general, when either 3; # 0 in
(5.5) or when the mesh is not restricted.

Assume first that the mesh is rectangular but 5; # 0. Consider again the ex-
ample case of section 4 where U = Uy,,, given by (4.1), (4.4), is approximated
on a single-layer rectangular mesh. Assuming no kinematical constraints at
z =0, L, we can choose in this case V = (r,s) € U} so that

r(z,y) = —sgn(B1) yb(z), s(z,y) =sgn(6) /Om(HhG)(x') dz',

where ITj, is defined by (8.3). Then 9s/dy = 0, Rydr /dz = 0, and Ry, (dr/dy+
Js/0x) =0, so

IVIla = (1 +26:2/D)2|U].
Moreover
(A~ A)(U, V) =2|6[(7/D)| U,
so by Principle C2 of section 6

ec 2 2|6:| (/D) (1 + 261/ D) 2.

Thus choosing #; # 0 causes the consitency error to be of order ec ~ 1 (at
least) in general. When h ~ t, this means error amplification by factor ~ ¢~
from the uniformly optimal rate.

In the second counterexample we consider the case of a single-layer trape-
zoidal mesh, again as in section 4. So let €2 be subdivided into quadrilaterals
K;, i =1...1, as defined by (4.15) with z; = ai, and let the exact solution
U be as above, so that 02(U) = 26270y y. Then if V = (r,s) € U, we find
by direct computation that

0
(09 — Rp09, _s) =

oy

I
= 1B206H Y _[(pi1—pis) (57 —s7) — (H/a) (s =205 +9} 1) (57 +57)],

1=0

where s = s(x; = p;H/2,+H/2) are the nodal values of s, and we set p; = 0
for i < 0 or ¢ > I. Choosing then V so that r = 0 and assuming that either
a~ H ora> H, we have

)

< CH™|s| < C(a/H) Z[(s;)"’ + ()],

)

ds || Js
V|? < — —
viz<e(|5] + |5

65



hence choosing s;° = 0 for i = 0, T and

S;F — S8 =DPi-1— Di+1, S; + S;F = —(H/a) (p?& - 217@2 +P?+1)

fori=1...1—1, we get

A= AU V) _ (02— Raon )
T v, =

where

1/2

I-1
§ = 0_175217(@[4)_1/2{2[ (pim1 — pis1)® + (H/a)*(p} 4 — 20} + piy1)? ]}
=1

On an unrestricted mesh, we can have 6 ~ 1. For example, if p; = 0 when
i is even and p; = a/H when i is odd, this is the case. We have then again
ec > 6 ~ 1 by Principle C2.

The above example also indicates, how to construct sepcific meshes so that
equilibrium locking can possibly be avoided: Choose either p; = p or p; =
(—=1)%p, fori = 1...1 — 1, or for all but a fixed number of indices 7. Then
most of the terms in the above sum disappear. It seems that on such meshes,
or even on horizontally multi-layered meshes of this type, equilibrium locking
is actually avoided. (But this would require some further analysis.)
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C Extension of Theorem 10.1

We complete here the analysis of section 10 by an alternative construction
of U € U, in such a way that volumetric locking is avoided as well. We
assume again Ansatz (10.4), with 7 still defined by (10.5) but with 6, @, v
now defined differently.

Assume that 1 < /_\~< oo (so that 7 is bounded away from zero), let 6 be
defined in terms of ¢ by

f(z) = 0(0) — /Om(HhJ))(x') dx’, (C.1)

and @ again in terms of 8 by (10.18). Then II,(y8' + ) = 0 by (C.1), so the
whole term (10.14) vanishes.

By (C.1), (10.18) and (10.3), the kinematical constraints (10.7) hold if

| w=dd=o (©2)

and in addition, constraint (10.20) is satisified. The latter constraint can also
be expressed in terms of ¢. Namely, using (C.1) and (10.3), integrating by
parts and using the L, -projection property of II, together with (C.2), one
has

L L T
_ 8 — A1 T ! !
/0(9 6)dr =~ /0/0(th ) (2') dz'dx

L L

oL [ -t [ e - v e
L

= — -1 H ~_ d

v [ e - o)

so constraint (10.20) is imposed by the condition

L 3 L
/ Iy de = / z) dx. (C.3)
0 0

Thus we can define v, e. g. by minimizing the left side of (10.11) under
conditions (C.2) and (C.3) together with the kinematical constraints ¥ () =
Y(z) at = 0, L. The solution to this constrained minimization problem
exists if I > 3 and is then given by

V=19 +1,
where 1/3 is the standard interpolant of v, and 7 interpolates

n==z(L — x)(no +mz),

where 79, 7y are coefficients determined so that conditions (C.2), (C.3) hold.
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With 6, @, ¢ defined in the above manner, approximation error bounds simi-
lar to (10.9)—(10.12) hold with nearly optimal constants, except on anomalous
coarse meshes where two mesh intervals [z;_, x;] nearly cover the whole in-
terval [0, L] (so that h & 1 or h > 1). Upon excluding such meshes with the
condition

) PV . »
1§z’r<r}c1£171[x’(xk i) (L —a)] " < CL ™,

estimates (10.13), (10.26) and (10.29) then remain valid, and since the er-
ror contribution from the second term in (5.5) now vanishes, the bound of
Theorem 10.1 holds uniformly with respect to A.
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