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Abstract: For a matric A € C"*" suppose the task is to estimate how
iterative methods behave for Az = b with b € C*. If A is normal, then the
behavior of GMRES [20] can be forecasted by considering the spectrum of
A. However, when A is not normal, the spectrum can be a poor indicator of
convergence. In this paper we perturb A with a matriz F of rank k < n so
as to get bounds for minycp, (o) ||[p(A)|| by using the spectrum of the resulting
matric A— F. In fact, if F is such that A — F is similar to a normal matriz
Np with A — F = XpNp X' and 6(Xp) = | Xp||[| X", then

min Al > min ——— |\, N ’ .
P€7’j(0)”p( )” ~ peP;(0) K(XF)| k1+1(p( F))| ( )

where kj is the dimension of the Krylov subspace KC;j(A; F'). Consequently,
our problem becomes: How to form a small rank F such that the spectrum
of A — F 1s, so to speak, “maximized”, and, at the same time the condition
number of X is “reasonable”? In a nutshell, we choose to proceed as follows.
First we “open up” the spectrum of A with a low rank matriz F so that
A—F = XFNFXEI and then we construct a perturbation G of Xp to make
k(XF) smaller, if necessary.
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1 Introduction and notation

Assume we have a large, possibly sparse, invertible matrix A € C*"*" for
which we consider solving iteratively

Az =b> (2)

for a vector b € C". Before executing any particular method (or after an
unsuccessful attempt) it would be nice to have an estimate, or a forecast, of
the convergence behavior of the approximations. It is well-known that the
speed of convergence of iterative methods can be related to approximation
problems on the spectrum o(A) of A as follows (see e.g. [8, 19]). If P;(0)
denotes the set of polynomials of degree at most j > 1, normalized such
that p(0) = 1, then the first analysis of the speed of convergence of iterative
methods is typically based on the classical bound

> 3
i [Ip(A)ll = min masx p(A)] (3)

for the ideal GMRES. We denote by || - || the spectral norm and by o(A)
the spectrum of A. However, this lower bound may yield an over-optimistic
estimate if, for instance, the spectrum of A is small compared with other
spectral sets of A, like the field of values of A. Then, typically, the eigenvalues
of A are ill-conditioned and a small perturbation of A can spread out the
spectrum of A violently. The e-pseudospectrum, see [22] by L. Trefethen, is
based on this idea. Then A is perturbed with a set of small norm matrices
E fulfilling ||E|| < € and the information for the speed of convergence is the
resulting union of the eigenvalues.

In this paper we study bounds for iterative methods when A is perturbed
with a somehow constructed, specific, small rank matrix F. The suggested
approach is based on a generalization of (3) we failed to notice in [14]. In
fact, combining this with the results of [14], our conclusion is that there are
several routes to build lower bounds for min,cp, (o) [|[p(A)|| based on spectra
of matrices constructed in small rank perturbatlons of A. To see this, let
or(A) denote the k" singular value of A and A\y(A) the k" eigenvalue of
A arranged in decreasing order in absolute value. We showed that, if A is
perturbed with F' of small rank, then

> mi : A-F 4
271)11(1)” p(A)]l _pg};?ﬂ)%ﬁl(p( ) (4)

[14]. Here k; denotes the dimension of the Krylov subspace

K;(A; F) = span{F, AF, .., A"7'F} = spanogkgjfl{Akfl, ooy A¥ Frani(m 1
()
where f1, ..., frank(r) € C* span the range of F'. In particular, if A is such

that the perturbed A — F is normal, then the right-hand side of (4) equals
minyep, (o) [ Ar;+1(P(A — F))J, i.e., we have an approximation problem on the
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spectrum of A — F'. This was done in [14] and a related problem was studied
in [13]. A drawback in this approach is that, in general, the rank of k£ can be
large for the difference A — F to be normal. Thus, we relax this assumption
to the other extreme as follows: Let F' be a small rank matrix such that
A — F is (only!) similar to a normal matrix Ny and A — F = XpNpX;'.
Then, by using the techniques of [14], it is straightforward to show that

min A)|| > min ———|; Np))l, 6
pEP;(0) ||p( )” ~ peP;(0) K(XF)| k1+1(p( F))| ( )
where x(Xr) := || XF||||Xz'| is the condition number of the eigenbasis Xp.

Consequently, the quality of this bound depends on three factors: On the
growth of the dimension of the Krylov subspace C;(A; F'), the structure of
the spectrum Ny and the size of the condition number k(Xr).

Based on (6), we analyze how a small rank perturbation F' should be
chosen in order make this bound near optimal as such. This problem of hav-
ing freedom to choose F' and then to form A — F resembles the robust pole
assignment problem in control theory, see e.g. [16, 17, 18]. Of course, our
task now is not to place the eigenvalues to any particular position but to find
a perturbation F' such that the right-hand side of (6) is as large as possible.
Consequently, we have a kind of multiple criteria optimization problem as,
at the same time, with a small rank F' the spectrum of A — F should be
“plentiful” but not so that x(Xz) becomes too large. For this purpose we
suggest the following steps for bounding min,ep, (o) [[p(A)|| from below.

(0.) Perturb A with Fp such that A — Fj is a diagonalizable matrix.

(1.) Divide the eigenvectors of A — Fy into “insensitive” and “sensitive” in
order to locate the nonnormality of A — Fj.

(2.) “Open up” the sensitive eigenvalues of A — Fy corresponding to the sen-
sitive eigenvectors with Fj.

(3.) Improve the condition number of a diagonalization of A — Fy — Fy with
Fs.

After these steps have been completed, the perturbation of A is F' = Fy+
Fy + F5. In particular, since we assume that A can be seriously nonnormal,
we need to take all the steps into account. Step (0.) is needed since we cannot
assume that A is diagonalizable, i.e., similar to a normal matrix. At step (1.)
we cannot assume A to be semi-simple etc.

The paper is organized as follows. In Section 2 we present different ways
to bound ideal GMRES from below. Then in Section 3 we analyze how to
perturb A in order to achieve good bounds with the results of Section 2. In
Subsection 3.1 we cover how to perturb A with Fg so that it becomes a di-
agonalizable matrix. In Subsection 3.2 we locate the cause of nonnormality
for A — Fy and the rank of a matrix needed to open up its spectrum. In
Subsection 3.3 we describe ways to perturb A — Fy with Fj so that its spec-
trum will be “plentiful” but not so that the condition number of an optimal
diagonalization is increased at the same time. In Subsection 3.4 we describe
how to improve the condition number of a diagonalization of A — Fy — F}
with a small rank matrix F5.
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2 Ideal GMRES can be bounded from below
by three factors

A natural problem related to solving a linear system
Az =b (7)
with an iterative method is the characterization of the behavior of

d mi A)b 8
Jmin p(4)] and min [[p(A)], (8)

see, for instance, [8, 19, 11]. These both are difficult problems, but, as to
lower bounds, the former, also called ideal GMRES, can be estimated by
using the classical inequality based on the spectral mapping theorem

min > min max . 9
min p(A)] > min max [p() ©)

There are, however, matrices A for which the right-hand side of (9) fails to
indicate the decay of min,cp,(q) ||[p(A)[| well, that is, the spectrum of A is
somehow “small”. For this to be true A needs to be nonnormal. Indica-
tors predicting the behavior of ideal GMRES in these cases have also been
developed. In particular, it is well-known that for nonnormal matrices the
spectrum of A can be much smaller than F(A), the field of values of A, see
[3] by M. Eiermann, or, the e-pseudospectra of A, see [22] by L. Trefethen.
Consequently, then estimates of how iterative methods behave for the system
(7) are based on these sets. In [14] we took an approach where we linked A
to a normal matrix N close to A in small rank perturbations. More precisely,
we looked for F' of smallest possible rank such that N = A — F' is normal.
Then, using the spectrum of N, we were able to estimate min,cp, (o) ||[p(A)]
from below as follows.

Theorem 1 [1/] Suppose A — F € C*™™ is normal. Then

min > min |\, A—F))|, 10
min [p(A)] = min (oA~ F)) (10

where k; denotes the dimension of K;(A; F) = span{F, AF, ..., A7"'F'}.

One point we did not notice in [14] and want to bring up is the following.
The quantity minyep, (o) [|p(A)|| equals minyep, (o) [[p(A*)[| for the adjoint of A
However, the growth of the dimension of a Krylov subspace (5) can be very
different for the adjoint operator and better bounds can possibly be obtained
with A* — F* while monitoring the growth of the dimension of IC;(A*; F™*)
instead. Let us illustrate this with an example. We denote by dim(V') the
dimension of a subspace V C C".

EXAMPLE 1. Suppose N € C**" is a diagonal (i.e., normal) and cyclic
matrix. Let e, € C" be a standard unit vector and v € C* a cyclic vector
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for N and set A = N + vej. Now dim(K;(N;ve;)) = j where as for the
adjoint dim(/C;(N*; exv*)) =1 for all 1 < j < n. Consequently, the bound of
Theorem 1 is significantly better when applied with A* — ejv* = N* instead.

A variation of Theorem 1 can be obtained by using a Jordan decomposi-
tion A = XJX ! of A. Namely, J is easily perturbed to normal by adding
ones to the lower left-corner of each Jordan block of size larger than one, see
Proposition 5 for the exact statement. Let F' denote the resulting pertur-
bation, that is, the rank of the perturbation is the number of Jordan blocks
of size larger than one. With this construction we were able to show the
following.

Theorem 2 [1/]Let A= XJX™! be a Jordan decomposition of A € C"*"
and F' as described above. Then

min Al > min |\, J+ F))|, 11
pepj(oo)Hp( )= R(X)pGPj(oo)| ky+1(p( )| (11)

where k; = dim(K;(J; F)) <n —1 and s(X) = || X]|||| XY

The idea here was to construct a normal matrix similar to A by manip-
ulating the block-matrix J similar to A in a Jordan canonical form. The
Frobenius canonical form is another decomposition in which the resulting
matrix similar to A is easy to low-rank perturb to a normal matrix. Recall
that every matrix is similar to a Frobenius canonical form, see e.g. [23]. If
A = XBX !issuch aform, then B is block-diagonal with blocks being com-
panion matrices. Like Jordan blocks, it is straightforward to rank-one correct
companion matrices to normal matrices, see Proposition 6. Even more, then
the blocks are unitary.

A further useful bound we did not notice in [14] can be derived as follows.
Assume we look for F' of smallest (or nearly smallest) rank such that A — F
is only diagonalizable.

Theorem 3 Suppose for A € C**™ F is such that A— F is diagonalizable

min Al > min ———
pEP;(0) Ip(A)] = peP;(0) K(XF)

| Akj+1(p(Ar))l, (12)
where k; = dim(K;(A; F)) < n —1 and x(Xr) = | Xz|[| X5
Proof. Firstofall, A= A—F+F = XpAp X'+ F, so that there holds

min [[p(A)] = min oy (p(A— F)),

p€EP;(0) p€EP;(0)

see Corollary 3.10 in [14]. On the other hand, by using Theorem 3.3.16 [12]
twice we have

ok +1(p(AR)) = ok, 01 (X' Xrp(Ap) X' Xp) <
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01, +1(Xpp(Ap) Xp | XFI|Xp | = 03,41 (p(A = F))IXFIIXF"

and the claim follows as Ar is normal so that oy, 11(p(Ar)) = |A,+1(p(AF))|-
O

Thus, this yields another route to build lower bounds as follows: With
an appropriate small rank perturbation, connect A via a similarity trans-
formation to a normal matrix. Then solve a minimization problem on the
spectrum of this resulting normal matrix. Note that the fenomenon of Ex-
ample 1 applies also in this case, that is, it is possible that the growth of the
Block-Krylov subspace is slower when A* is applied to F*. Thus, working
with A* instead can yield a better bound. The proof of the following is now
straightforward since every normal matrix is unitary similar to a diagonal
matrix.

Corollary 4 Suppose A—F = XFNFXIE1 with Ng € C**™ normal. Then

min A > min ——— |\, Np)), 13
PEP]‘(U)HP( )H_per(O) K(XF)| k1+1(p( F))| (13)

where kj = dim(KC;(4; F)) < n — 1 and x(Xr) = | Xr[||XE"[|

The usability of these theorems for lower bounds is based on the well-
known fact that small rank perturbations can change the eigenvalues of a
matrix A € C" " violently. This property is also widely used in control
theory. For instance, in the pole assignment problem [24]|, with a single
input, the task is to find, for a given u € C", a vector v € C* such that with
F = uv* the matrix A — F' attains some preassigned eigenvalues. All this is
based on the property that the eigenvalues of A can change strongly in small
rank perturbations. This is also a partial reason for why the information
provided by (9) can be misleading as iterative methods typically behave
almost similarly in small rank perturbations, as long as the perturbed matrix
has condition number close to the original matrix. In particular, changing
the eigenvalue structure of A with a small rank F' such that A — F' has “a
rich spectrum” compared with A is the key for better bounds. At this point
let us consider an example.

EXAMPLE 2. This example is from [14]. Suppose A € C**™ is a translated
nilpotent backward shift, i.e., A is invertible,

11 - 0 0 00 00
01 1 -~ 0 00 0 --- 0
A=+ v ¢+ .. | and F= Do oo
00 - 1 1 00 -+ 00
00 -+ 0 1] | -1 0 -+ 0 0]

Thus, with this rank-one matrix A—F becomes even normal, that is, K(Xr) =
1. It is also easy to see that k; = j. Furthermore, the spectrum of A is just
the point 1. However, for A — F' the spectrum is “plentiful”, that is, the set
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1+{ze€C:2"=1}
Essentially the bound (12) is of use in case A is from the set

{A=X(N+F)X' e C™ :k(X) <146, N is normal, rank(F) < k}
(14)

for some moderate § > 0 and k > 0. In particular, to our mind, only very
seriously nonnormal matrices do not belong to (14) and allow to derive useful
bounds. For actual bounds, some factors X, N and F' that yield A need to
be “inverted” based on knowing only A. This is the purpose of the following
section. The corresponding inversion was covered in [14, 13| in case § = 0.

3 How to get good lower bounds for ideal GM-
RES with (12)

As can be seen from the bound (12), the problem is essentially how to make
A more normal with a low rank matrix F' so that the spectrum of A “opens
up” in the perturbation, and, at the same time, to control the size of k(Xr).
In the lack of better expression we use the intuitive description “open up”
the spectrum. In this section we suggest the following steps for bounding
minyep, (o) [|[P(A)| from below.
(0.) Perturb A with Fy such that A — Fj is a diagonalizable matrix.
(1.) Divide the eigenvectors of A — Fy into “insensitive” and “sensitive” in
order to locate the nonnormality of A — Fj.
(2.) “Open up” the sensitive eigenvalues of A — Fj corresponding to the sen-
sitive eigenvectors with Fj.
(3.) Improve the condition number of a diagonalization of A — Fy — F; with
F2.

After these steps have been completed, the perturbation of A is F' =
Fy+ Fy + F.

This section is divided into 4 subsections where we cover each of these
steps separately. Obviously, not all the steps are indispensable in practise.
For instance, in Example 2 we only had to perform the step (0.).

3.1 Perturbing A with Fj such that A — Fj is a diagonal-
izable matrix

In Example 2, the matrix A was not diagonalizable. Still, in rank-one per-
turbation A became even normal. As we do not want to “waste” rank in
perturbations, for us an important factor is the rank of Fy that yields A — Fy
similar to a normal matrix. For that purpose we say that A is k-rank diag-
onalizable, if there exists F' of rank k such that A — F' is diagonalizable and
no G of rank less than k exist such that A — G is diagonalizable. Two simple
ways to make A diagonalizable are based on classical decompositions.
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Proposition 5 Let j be the number of the Jordan blocks of A € C**" of
size larger than one. Then there exists a matriz F' of rank j such that A— F
18 diagonalizable.

Proof. Let A = XJX ' be a Jordan decomposition of A. Let J;(A\;) be
a Jordan block of A of order larger than one related to an eigenvalue \; of
A. Tt is easy to see that adding 1 to the lower left-corner of J;();) gives
a normal matrix. This corresponds to a rank-one perturbation of A. After
making these perturbations to each Jordan blocks of A of size larger than one
we have A — F = X NX~! with N normal and F of rank j. Let N = UAU*
be a diagonalization of N. Then A— F = (XU)AU*X ! is a diagonalization
of A—F. O

The Frobenius canonical form can also be a starting point for a small
rank perturbation. The following can be proved in a similar vain.

Proposition 6 Let j be the number of blocks in a Frobenius form of A €
C**™. Then there exists a matriz F' of rank j such that A — F is similar to
a unitary matrix.

Proof. In the following B, is the Frobenius matrix and F is the perturbation
corresponding to the r** block:

b1 bro b bo b1 brg o b bg—1]
1 o -+ 0 0 0 o --- 0 0
Bp=| 0 1 -+ 0 0| F=|: & =
: : R 0 o -+ 0 0
| 0 o - 1 0 | 0 o -+ 0 0
Consequently, B, — F, is diagonalizable (and even unitary). 0]

In particular, if A is cyclic, then at most rank-one perturbation is needed
to make the companion matrix diagonalizable and thereby A. Obviously
it is difficult to compute these decompositions in finite aritmethics. For
computational aspects of the Jordan decomposition, see [7] by G. Golub
and J. Wilkinson. Since A was perturbed similar to a unitary matrix in
Proposition 6, some excess rank is possibly consumed. This can be avoided
as follows.

Proposition 7 Suppose A € C**" is k-rank diagonalizable. Then k
equals

Ang){#]ordan blocks associated with A of size larger than one}.  (15)
€o

Proof.  Here we use the relation between the Frobenius and the Jordan
canonical forms [23]. Consider the Frobenius canonical form in the form
where the elementary divisors of A are grouped together such that the cor-
responding Jordan submatrices of highest order in each eigenvalue gives the
first block. Then those of next highest order gives the following and so on,
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see e.g. [23][pp. 16-17|. Then, after a block-similarity transformation, we
obtain a Frobenius canonical form. Let p be the number in (15). Because
of the ordering, only p first Frobenius matrices in the decomposition have
multiple eigenvalues. Thus, only F' of rank p corresponding to these blocks
constructed as in the proof of Proposition 6 is needed to make this decom-
position diagonalizable.

To see that p is also a lower-bound for diagonalizability of A in a per-
turbation, take p — 1 vectors by,...,b,_1 € C* and assume F = E‘;’: bic;
with some ¢y, ...,c,_1 € C*. Denote by B = [by, ...,b,_1] € C** and form a
Block-Krylov subspace

K(A;B) = spanjzo{Ajbl, o Alby 1)

and form an orthogonal basis of K(A; B) with the Arnoldi method. This
does not span the whole C* as (A, B) is not controllable (for the definition
of controllability, see [24]). Namely, constructing a SVD decomposition of
A—\;I for an eigenvalue realizing (15) we obtain an eigenvalue that cannot be
Al A2

0 A; |
Since A; is controllable, it has at most p— 1 invariant factors different from 1,
see [24][Theorem 1.2]. Now if a4|...|eyy and 7]...|y, are the invariant factors
of A; and A respectively, then

relocated. Complete K(A; B) to a basis of C" so that A equals

’7i+n—q—r|ai|’7i+n—qa 1 S { S q, (16)

where 7 is the number of invariant factors of A; different from 1, see [1]
by D. Carlson. In particular, 7y,_,|a, so that A; has an invariant factor
corresponding to a Jordan-block of size larger than 1 as » < p — 1. Since in
this representation the sum A + F' does not alter the rows below the size of
Ay, this Jordan-block of A3 remains unaltered for A+ F. But then, applying
a result of I. Zaballa [25] we have, if 41|...|9, denote the invariant factors of
A+ F, that then oy|%, must hold. In particular, A+ F is not diagonalizable.
Since this holds for any F' with rank at most p — 1, the claim follows. O

3.2 Dividing the eigenvectors of A — Fj into “insensitive”
and “sensitive” in order to locate the nonnormality
of A— F()

After having a diagonalizable A— Fj, the next step is to open up the spectrum
of A — Fy with a small rank F;. Before this, we need to know better which
eigenvectors really should be perturbed. In particular, we want to locate the
cause of nonnormality in A — Fy. Second, while opening up the spectrum,
the question arises whether we can move the eigenvalues to any preassigned
point set of C? As to this problem, there is a direct connection to control
theory since in the pole placement problem the task is to move, with a very
low rank matrix, the eigenvalues of A at least to the left half-plane. For this
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purpose, recall that a Block-Krylov subspace of A € C**" at F € C*** is
defined via

K(A; F) := span{F, AF, A*F, ...}, (17)

that is, in (5) the number of steps is n, if necessary. In particular, if
K(A; F) = C", then a system with the generator A and the input matrix
F is said to be controllable, see e.g. [24]. Equipped with this, let us state the
pole assignment theorem as follows.

Proposition 8 [2/] The spectrum of A € C"*™ can be placed to any n
points of C in a k-rank perturbation if and only if K(A;F) = C* for a
F e Crrk,

Thus, the smallest rank matrix F' for which A — F' can have any preas-
signed eigenvalues is determined by a Block-Krylov subspace criterion. In
particular, if A is cyclic, then a rank-one F' will suffice. However, combining
this with Theorem 3, it is apparent that if the eigenvalues of A are transfered
very far with a matrix F', for instance, far outside the numerical range of A,
then the condition number k(X p) must be large to compensate this growth
of the spectrum. This is because the left-hand side of (12) is also an upper
bound for our variables, that is, for the rank of F', the spectrum of A — F
and the condition number x(Xr). Still, for our purposes it is very important
to have no restriction where to exactly place the eigenvalues since then the
problem can, in a sense, be ill-posed, see [17] by V. Mehrmann and H. Xu.
Because of this, exact relocation of the poles has also been relaxed in the
sense the poles are only being placed to a certain region of C, see [18] V.
Mehrmann and H. Xu. This problem is clearly closer to our task.

Obviously the controllability is not that important for us per se. For
instance, we are completely satisfied if our matrix is the identity as it is nor-
mal and the speed of iteration is exactly revealed by the spectrum. Still,
the identity matrix is clearly not controllable unless the rank of the input
matrix is the same as the dimension. To illustrate this with another example,
suppose A is unitary similar to a block-diagonal matrix B & A, where A is a
diagonal matrix and B € C?»=%)*("=k) with k > 0. Then all the eigenvectors
corresponding to A are well-conditioned and obviously F' needs to be con-
structed for B only to make A more normal. In particular, Proposition 8 is
now relevant for B as, being the cause of nonnormality for A, only its eigen-
values need to be relocated. In order to use this type of approach, we thus
need to separate “good” eigenvectors from “bad”. For that purpose, finding a
unitary similarity that block-diagonalizes A in this manner is a too stringent
operation that yields, generically, no A-block. And even if it did, it may
not be readily performed in finite aritmethics. Instead, to really be able to
locate the nonnormality of A, we need not quite so clear cut as follows. The
construction is somewhat tedious and it will take the rest of this subsection
(see Proposition 11 for the exact statement and (30)).
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Recall that if \; € C is a simple eigenvalue of A, then with a pair x;,y; €
C" of right and left eigenvectors of A, that is,

AJTJ' = /\jxj and A*yj = ijjv (18)
the condition number of \; is defined as 1/s;, where

*rs
Sj — |y_7 ]| , (19)
[l 751

see e.g. [23] or [6]. This is the cosine of the angle between the right and
left eigenvectors corresponding to A;. Here we assumed that the eigenvalue
Aj is simple but we need to take into account the more general case when
this does not necessarily hold. To that end we need to consider diagonal-
izations of A — Fy, that is, suppose we have constructed a perturbation Fj
such that A — Fj is diagonalizable. Then, if A — Fj is not semi-simple, the
numbers (19) depend on the constructed similarity transformation X, in the
diagonalization A — Fy = X FoAFoXEOI- For this purpose a scaled similarity
transformation is a good choice. A similarity transformation is said to be
scaled if the eigenvectors corresponding to each spectral subspace are chosen
to be orthonormal. One can, however, do better. For that purpose set

s(X) = Il (20)

for a diagonalizable A € C"*" corresponding to a diagonalization A =
XAX ! Thatis, we have A = Z?Zl zjAjyj, where z; and y; are the columns
of X and X ~* respectively and the numbers s; are defined via (19) with these
vectors corresponding to this particular diagonalization. Let k(A) and kx(A)
denote the condition number of a matrix A in the the spectral norm and the
Frobenius norm respectively.

Proposition 9 Let A € C*" be diagonalizable. Then for an optimal
diagonalization in the Frobenius norm of A= XAX™!

kr(X) =s(X) = A:r}r/l/ixrll/_1 s(Y). (21)

Proof. If all the eigenvalues of A are semi-simple, then this follows from
[21]. Thus, assume there are multiple eigenvalues, say k, and A = YAY !is
a diagonalization of A. Without loss of generality, let

A= diag()\l, vy )\1, )\2, ceey )\2, )\k, ceey )\k, )‘k-l-la )\k+2, vy )\p),

with A\; # A, for £ +1 < 4,5 < p and ¢ # j. Perturb A analytically with
Y D(a)Y 1, where

D(a) = diag(a, 2a, 3av..., (n — p)a, 0,0, ..., 0), (22)
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so that A(a) :== A+Y D(a)Y ™! has just simple eigenvalues for small |a| > 0.
Clearly, by construction, the eigenvectors of A(a) are also eigenvectors of
A. Now, [21] gives an optimal diagonalization Y,,: for A(a), that is, for
this diagonalization it holds s(Y) = kz(Yop) < k#(Y). In particular, this
diagonalization is independent on a as long as A(a) remains semi-simple.
Obviously Y, yields a diagonalization of A as well since its columns equal
the columns of Y, except that they are optimally scaled [21]. Since this holds
for any Y yielding a diagonalization of A, choosing an X that minimizes (20),
gives an optimal. 0

According to the proof of the previous proposition, for any diagonalization
A = XAX™! of A, it is arguable to scale each column z; of X to have
length 1/\/@, for 1 < j < n, as the condition number will decrease in
the Frobenius norm. Further, for picking z;; and computing sy,, it is not
necessary to invert X. Instead, it is possible just consider angles between
subspaces, see [2][page 601|, where J. Demmel considers the problem of how
to diagonalize after fixing the invariant subspaces. Here our problem is, after
computing the spectral subspaces corresponding to each eigenvalue of A,
how to choose “insensitive” vectors from each subspace, in particular, from
those having dimension larger than 1. This is obviously an interdependent
problem.

The numbers (19) provide a criterion for picking up insensitive eigenvec-
tors for a not necessarily semi-simple matrix A. Thus, let A = XAX~! =
Z;’:l zjAjy; be a diagonalization of A and let zy, be chosen, for 1 < j <k,
to be the insensitive eigenvectors of A corresponding to this diagonalization.
Let us put

m(X) = 3 s, | (23)

to measure the insensitiveness of the chosen eigenvectors. The sensitiveness
needs to be measured in this manner since a spectral projector belonging to
a cluster of eigenvalues can have moderate norm while spectral projectors
belonging to a sub-cluster of a cluster can have very large norms. This is
well described by W. Kahan in [15]. Furthermore, put

Pu(X) = Z Lk; Yk, (24)

*
=1 Ik Thy

to be the generalized spectral projector corresponding to the chosen eigenvec-
tors in (23) of the diagonalization A = XAX . The following lemma gives
reasons for this expression.

Lemma 10 Let A= XAX™! be a diagonalization of A € C**" and P(X)
defined via (24). Then Py,(X) is a projector and it commutes with A.

Proof. First of all, P,(X) is a projector, since it is the spectral projec-
tor of A(a) defined in (22) corresponding to this diagonalization for |a| > 0
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small. This can be seen by performing the path-integration such that each
eigenvalue is surrounded separately with a path of integration and then sum-

ming the result. In particular, P,(X) is independent on «. Furthermore,
since P,(X)A(a) = A(a)P(X), there holds

[AP(X) = P(X)A| < [[AP(X) — A(a) B (X) || + |12 (X) A(er) = Pe(X) Al
< 2[|B(X)[[[A = Aa)]]

which converges to zero while @ — 0 and the claim follows since || Px(X)]|| is
uniformly bounded in a. ]

We need the commutativity of the projector Py(X) in the proof of the fol-
lowing proposition yielding a block-diagonalization that separates the insen-
sitive and sensitive eigenvectors. Because we use just block-diagonalization,
the condition number of a similarity transformation yielding such a diagonal-
ization can obviously be much lower than the condition number of a similarity
transformation that actually diagonalizes A. Note that because P (X) is not
a spectral projector for A, the spectra of C; and Cs can overlap.

Proposition 11 Let A = XAX™! be a diagonalization of A € C*"
and Py(X) be defined via (24). Then there exists a corresponding block-
diagonalization

O TAQ = [ 001 OO } with Cy € Cn=kx(=k) 4nd C, e Ch*k (25)
2

such that k(Q) < 4||P(X)|| < 4my(X). Further, if the columns of X; €
C™*k consist of the chosen k insensitive eigenvectors of A, then the columns
of Xy € C*** are the eigenvectors of Ca, where [0 X3]* = Q1 X}.

Proof. Let us form a Schur decomposition of A such that

(26)

U AU — [Zl ZlR—RZz},

0 Zy

where the block Z; R — RZ, written in this form reveals the correlation with
the generalized spectral projector

P’“(X):{g _IR]

in this co-ordinate system. Moreover, if we use the co-ordinate system where

P(X) appears as [ 0

0 I } , then we have the relation

Zy ZitR—RZy, | | I —R Zy 0 I R
0 Zy 10 T 0 Z 0 I |-

(Note that since Z; and Z, may have overlapping spectra, we have the prob-
lem which eigenvalues to choose if we actually want to construct the Schur
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decomposition (26) such that Z, corresponds to chosen insensitive eigen-
vectors. One way to achieve this is to carry out algorithmically the Schur
decomposition as follows: Assume that the eigenvectors are already ordered
in X so that z,_g, ..., z, are the chosen insensitive ones. Then after Gram-
Schmidt process we have a unitary U = XT with an upper-triangular matrix
T. Thus if A = XAX™! then A = UT-'ATU* gives a prescribed Schur
decomposition. A further note: this Schur decomposition is smooth for A(«)
in variable «, since U and T are constant matrices then.)

Now we use a trick from [15] by W. Kahan: with any invertible T' € CF*k
and S € C"#)*x(n=k) we obtain a similarity transformation

[ S —RT L[St SR
Q‘[o T }andQ _[ 0o T }
S1Z,S 0
—177% _ 1
so that we have Q— U*AUQ = [ 0 T 17,7 } . Clearly
S 0 0 —R 0 0
Q‘{o 0}*{0 IHO T] (27)
and
St 0 I R 0 O
-1 _
@ _{o OHO 0}+[0 T—l}' (28)
In particular, choosing S and T such that S*S = ¢? and T*T = 72 for
constants o and 7 satisfying ¢ = || P,(X)|| we obtain

£(Q) =lRIIQTHI < (IS + IP(XNT AT + 1S~ Hl Pk (3O1)

= (o + TP + - IB(X)]) = 4 A(X)]|

The latter inequality follows immediately after using triangle inequality with
(24).

For the latter part of the claim, let us consider a perturbation A(«)
defined in (22). Then the above proved claims hold for A(a) as well with the
same bounds since the projector Pj(X) does not change in this particular
perturbation. Now, for any eigenvector x corresponding to an eigenvalue A
of CQ(CK)

s[4 ]3] ]

) )\.’L’z

where z is partitioned conformly. Since A(«) is semi-simple, A is not an
eigenvalue of C1(«a) and, consequently, z; = 0. Thus, we have necessarily

Xo
transformations had norms that were uniformly bounded in a. 0

QU*X, = [ 0 } and the claim follows by taking the limit as the similarity
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Note that a near optimal block-diagonalization in Proposition 11 can also
be computed in practise, after having chosen the subspace spanned by the
vectors in (23), by using orthonormal scaled diagonalization Q. Namely, if
Qopt is optimal, then K(Q) < V26(Qopt), see [2]. This is clearly almost op-
timal. As the norm of P,(X) bounds from above the condition number of
Q, the similarity transformation @) is well-conditioned since the eigenvec-
tors were chosen to be insensitive. Consequently, C; essentially causes the
nonnormality. To state this rigorously, we need the following.

Corollary 12 Let s; denote the condition numbers (19) of A in a diag-
onalization of A and 3; the corresponding condition numbers for Cy. Then
§j Z ﬁsj.

Proof. Since (lower blocks of) Q@ 'xy; and Q*yy, are left and right eigenvec-
tors of Cy, we have

o |y, QR | o1 Yk, Ty |
Qg 1Q k| — Q) Nl Il

and the claim follows. O
In particular, by this and Proposition 20 and Proposition 9, we can diag-
onalize C5 with Y € C*** such that

I 0 1 I 0 ci 0
where the condition number satisfies kx(Y) < k(Q)my(X).

To sum up, in order to locate the nonnormality of A, we approached
the problem by finding a relaxed version of the case in which A is unitary
similar with B @ A with A being a diagonal matrix. Here we constructed
a similarity transformation, that was “almost unitary” (condition number
close to 1) block-diagonalizing A such that C; & A, with A, being a diagonal
matrix. Consequently, for our purposes it is arguable to low rank perturb
just C7 so as to open up its spectrum. To that end, Proposition 8 can
be stated more appropriately for bounding min,cp, (o) [|p(A)]|| from below as
follows: The eigenvalues of C; can be placed freely with F' € C(»~k)x(n=k) if
the dimension of K(Cy; F') equals n — k.

(29)

3.3 Opening up the sensitive eigenvalues of A — F{, cor-
responding to the sensitive eigenvectors with F}

Assume that have a diagonalizable A — Fj. As analyzed in the previous sub-
section, the next step is to open up that part spectrum which is related to
nonnormality caused by C4, that is, we need a perturbation F; to open up
the spectrum of €. This should not, however, be done at the expense of
increasing the condition number in the resulting eigenbasis. Consequently,
a straightforward control theoretic approach based on pole placement algo-
rithms is not applicable. But, on the other hand, how and where to place the
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eigenvalues then? And, in particular, how to perform this inexpensively? A
way to proceed is to use the self-commutator as a criterion in the construction
of a perturbation. Namely, there holds, whenever A — F' is diagonalizable,

A= F (A= F)llz
2/(A = F)*|l#

K(Xp) > (1+ ), (31)
see [21]. Here [ A— F,(A—F)"| = (A-F)A-F)*—(A-F)(A—-F) is
the self-commutator of A — F and A — F = XFAFXl;1 is a diagonalization
of A— F. Thus, (31) yields a necessary condition for x(Xp) to remain small
(but of course always not less than 1), that is, ||[A— F, (A— F)*]|| 7 should be
small. However, this is not a sufficient condition and it is easy to construct
examples for which the right-hand side of (31) is arbitrarily close to 1 while
the left-hand side is arbitrarily large. Still, if we construct perturbations
from

{F € C"" : all the eigenvalues of A — F' are simple}, (32)
then we obtain a reversed inequality.

Proposition 13 Suppose F' € C**™ belongs to (82) and let {)\;}7_, denote
the eigenvalues of A—F and 6; := min{|\;— ;| : i # j}. Then for an optimal
diagonalization A — F = XFAFXEI holds

kr(Xrp) < Z: (1 + (1?12((?;t11)) )1/2 lA - F, (:;; _ F)*]”f)(n—l)/z,

Proof. Combining theorems 3 and 5 of R. A. Smith in [21] yields

min{|[ Xl £l| X5 5 : A = XpArXp'} < 301+ (n— 1) %6, 2D3)" V72,

j=1

where Dy denotes the departure from normality of A — F' of P. Henrici, and,
for Dp P. Henrici has shown that D% < /(n® —n)/12|[[A — F, (A — F)*]||»
[10]. Combining these yields the claimed bound for the optimal condition
number. O

Since this bound is in the Frobenius norm, n < kz(Xp) holds, which
explains the growth n at least. Even though this can give a severely large
overestimate, combining this with (31) provides a criterion for opening up the
spectrum of Cy. Namely, using the self-commutator, we choose to minimize,
for some small &

min_ |[[A— Fy - F,(A— Fy — F)']|%. (33)

rank(F)<k
Or, alternatively, minimizing (33) sequentially means finding, at step one,

min ||[A — Fy — wv*, (A — Fy — uwv*)*]||%. (34)

u,veCn
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Then, repeating this sequentially as long as the self-commutator of the per-
turbation is reasonable, the resulting sum yields an F;. A problem related
to this, see [13]. Further, recall that the self-commutator is a measure of
nonnormality. For other measures of nonnormality, see [9, 5, 4]. As to using
other measures of nonnormality, rankwise they can be very misleading. For
instance, the upper-triangular part of a Schur decomposition, which can be
used to measure nonnormality, can have very large rank even though the ma-
trix itself is a small perturbation of a normal matrix. This is what happens
in Example 2.

Let us describe other possible approaches for opening up the spectrum of
A — F, (or Cy) in some arguable manner. One possibility is to use the Ritz
values that result from the Arnoldi iteration and combine this with the pole
placement algorithms. Namely, when A — Fj is nonnormal and the spectrum
of A — Fy is small compared with the field of values of A, then the Ritz
values of A tend to “spend time” at the early stage of iteration in a larger
set (but inside the field of values) than the spectrum of A — Fy. Obviously,
the scheme does not need be the Arnoldi iteration method, as long as the
actual eigenvalue approximation, because of nonnormality, is, so to speak,
bad. Then Fj is chosen such that A — Fy — F has eigenvalues in those areas
where the Ritz values were located. In particular, at this point techniques of
V. Mehrmann and H. Xu [18] can possibly be exploited.

And of course, one possibility is to make a small rank random perturba-
tion. As a result the spectrum will open up, but obviously not in an optimal
manner. A simple test can be performed with the matrix of Example 2.

3.4 Improving the condition number of a diagonaliza-
tion of A — F(] — Fl

At this final step the spectrum of the perturbed A — Fy — F; does not change,
only the condition number of the matrix Xg p yielding a diagonalization
of A — Fy — Fy is being controlled. Obviously, the construction of Fj in
the previous section was designed so that it should also decrease the condi-
tion number simply because the self-commutator was made smaller while the
spectrum was opened up. These both are necessary conditions for small con-
dition number when A — Fj stays semi-simple in the perturbation. Still, in
case the condition number is too high for good bounds, we need the following.

Proposition 14 Let A = XAX™! be a diagonalization of A € C**" and
G such that X + G is invertible. Then

rank(A — (X + G)A(X + G) 1) < 2rank(G). (35)

Proof. By the Sherman-Morrison-Woodbury formula [6] we have (X +
G)™' = X~! — S with S of rank equaling rank(G). Consequently,

(X+OAX+G) ' =XAX+G) 1 +GAX +G)?
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= XAX '-XAS+GAX +G)!

and the claim follows. O
Thus, for A — Fy — Fy, after improving the condition number of a diago-
nalization A — Fy — F; = XAX ! with G, we obtain

A-F-F-E=X+0AX+6)! (36)

with rank(Fy) < 2rank(G). Consequently, improving the condition number of
X is, in general, twice as expensive in rank as perturbing A directly. Second,
the spectrum of A — Fy — F equals the spectrum of A — Fy — F; — F3, that
is, at this step only the condition number of the eigenbasis and the rank of
perturbation are altered. Note that the improvement of the condition number
is, in fact, the easy part of the construction of a perturbation. Namely,
picking a G is straightforward since it is obtained from a singular value
decomposition of X. More precisely, as

R(X) = (37)

then it is easy to decrease x(X) by rank-one updating the singular vectors
that cause the ill-condition.

4 Conclusions

In this paper have considered lower bounds for ideal GMRES. The bounds
depend on three factors as follows. First, on the growth of the dimension of
the Krylov subspace that result from a small rank perturbation of A. Second,
on the condition number that yields a diagonalization of A — F'. And third,
on a minimization problem on the spectrum of A — F.

In the latter part of the paper we analyzed how to construct a perturba-
tion F' such that the bounds will be good. This can be accomplished in 4
steps as follows.

(0.) Perturb A with Fp such that A — Fj is a diagonalizable matrix.

(1.) Divide the eigenvectors of A — Fj into “insensitive” and “sensitive”.

(2.) “Open up” the sensitive eigenvalues corresponding to the sensitive eigen-
vectors with Fj.

(3.) Improve the condition number of a diagonalization of A — Fy — Fy with
Fs.

After these steps have been completed, the perturbation of A is F' =
Fo+ F1 + F,.
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