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1. Introduction and main results.

In this paper we continue our work on regularity properties of solutions of frac-
tional evolution equations. In particular, we study the equation

D (ug —u1)(t) + Bu(t) = f(t), uw(0) =uy, t>0, (1)

which is of order 1 + .. The function v is the unknown, taking values in a Banach
space X; o € (0,1); ug,ur and f are given, with ug,u; € X and f € C([0,T]; X)
for some T > 0.

In (1), Dy denotes the fractional derivative of order «, i.e.,

. . de 1 t
(Dgv)(t) < %‘7: g1—alt —s)u(s)ds, ¢ >0,
dt Jo
h
' def,. 1 ,
(Dfv)(0) = lim+ [ g1—a(h — s)u(s)ds,
' hio h J,

where

ef 1 5
gﬁ(t) d:f —f‘@tﬁ 17 t>0, /[3 >0,

and where v is (at least) continuous and satisfies v(0) = 0.

The operator B is taken to be a closed (not necessarily densely defined) linear
map of D(B) C X into X. Thus D(B) is a Banach space equipped with the usual
graph norm. We assume B to be positive, i.e., that the resolvent set of —B contains
R =[0,00), and that

s A+ 1A+ B)™! 0.
SB[+ AT+ B) 7| ) < o0

For w € [0, 7), we define

S E (A eC\ {0} ||arg | <w ).

We recall that, if B is positive, then there exists a number 7 € (0,7) such that
p(=B) D X, and

SU_I_)_H(/\ + 1A+ B)‘IHE(X) < o0. (2)
xex,

The spectral angle of B is defined by

bn def inf{w € (0,7) 3 p(—B) D ¥,_, and sup H(A-{—l)(/\I+B)—1H£(X) < 0 }.
DY),

In a previous paper, [1], we examined the equation
Df(u—wu)+Bu=f,  fe(0.1), 3)

under analogous assumptions on B, uy and f, and obtained maximal regularity
results in certain interpolation spaces. As to the assumptions on ug, they were
shown to be both necessary and sufficient.



In this paper, we extend these studies to the case # € (1,2). We mainly consider
sufficient conditions for the solutions of (1) to be smooth and will return to necessary
hypotheses in later work. Only at the end do we here give some brief comments on
the converse analysis of (1). However, in the case where either ug or u; vanishes,
our results are optimal. We write Df = D{Dy, with 8 = a+1, a € (0,1), and
include the initial value of u; in the convolution integral.

The case « = 0, i.e., the differential equation

we+Bu=f, w(0)=uy, t>0,

was considered by Sinestrari [13], and by Da Prato and Sinestrari [5]. Their results
provided partial motivation for [1]. Holder-regularity results for (1) with « € (0,1)
have previously been obtained by Da Prato, Iannelli and Sinestrari [4]. We comment
briefly on their results below, at the end of this Section.

In forthcoming work, we will apply the results given here to fractional partial
differential equations and extend them to cases with nonconstant Holder continuous
coefficients. For (3), and with B a spatial derivative of order < 1, this was done in
[1] and [2].

Our analysis concerns strict solutions of (1). With f € C([0,T]; X); ug,u; € X,
and « € (0,1), these are defined as follows:

Definition 1. A function u : [0,T] = X s said to be a strict solution of (1) on
0.7) i s € C{O.T}X), u € C0,TED(B)), w(0) = g, gre * (1 - 17) &
CH[0,T); X), (x denotes convolution) and (1) holds for all t € [0,T].

We summarize our results in Theorem 2 below. In this Theorem, we formulate
some existence, uniqueness and regularity results on strict solutions of (1).
Concerning the interpolation spaces determined by an operator B, we use the
notation (here v € (0,1] and p € [1, oc])
def
DB(fYap) = (X, D(B))‘/«Jb

Dp(7) € (X, D(B))s.

By [6, Thm. 3.1, p. 159] and [7, p. 314] one has the following characterization of
Dp(7v,00) and Dp(y): If 7 is some number such that 0 < 7 < 7 — ¢, then

Dp(y,00) = {z € X | | Sli& INB(AT + B) 'z||x < 0 },
farg A{<n
A£O

Dp(v) = {z € Dp(y,) | 13&& IN'B(AT + B)™z||x =0 }.

larg A{<n

The Hoélder spaces C7, 0 < v < 1, are defined by

c7(j0,T]; X) < {f € C([0,T); X) | sup 170 = Flllx oo}

0<s<t<T It — sl

with
def

Il sup 7(0)x + sup 1O = IOlx

sup —
t€[0,7T] o<s<t<T |t — ]
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If v € (1,2), then C7 def {1 f eC''}. The little Holder spaces h7, v € (0,1)
are defined by

5

W([0,7]; X) = {f eC([0.T: X)|  limsup Hf(?; J:[(‘j)ux L }
""*GIO)T}(TéiIt—sfgs CT

If v € (1,2), then hY ef {flfren1}.

Theorem 2. Suppose
(i) @ €(0,1);
(i) B is a positive operator in a complex Banach space X with spectral angle
¢pp < m(:—2);
(iii) uo € D(B), w1 € Dp(135):
(iv) feC([0,T); X), where T > 0.
Then the following statements hold:
(a) Lety € (0,1) and f € C7([0,T); X). Then there is a unique strict solution
w of (1) satisfying Bu(t) € CY([0,T); X) if both

gl

Bug — £(0) € Dy ( %), 4
0 = 1(0) € Dy (11—, o0). (4)

and N

a4y
up €D ( oo) 5)
' BA\1 + o’ (5)
hold. Moreover, in this case there is a constant M = M(vy,a, B,T) such
that

1Bu(t) — f(O)lle(jo.17:)

< M(HBUO — FO)llpp (1 00y + H“lllpB(;_;g.g,oc) + 1 (t) - f(O)HC‘f([O,T];X))-

(b) Let v € (1,1 + o] and f € CY([0,T); X). Then there is a unique strict
solution w of (1) satisfying Bu(t) € C7([0,T]; X) if both (4) and

ur — B f(0) € D (-2((—’;%730) (6)

hold. Moreover, in this case there is a constant M = M(vy,a, B,T) such
that

1Bu(t) — £(0) = t£'(0)lle~(o.1y:x) < M(HBUO — HO)lpy (2 00y +

ler = BT (O0) I, (o ey + 11£() = 1(0) — Efl(O)HC‘f({O,T];X)> :

(c) Lety € (14+@,2) and f € CY([0,T); X). Then there exists a unique strict
solution u of (1) satisfying Bu(t) € C7([0,T); X) if both Buy = f(0) and



(6) hold. Morcover, in this case there is a constant M = M (v, «, B ,T) such
that

|Bu(t) — f(0) = tf'(0)lle~(0.17:x)

2(1+a)

< M(Hul - Bulf'(O)HDBQ(A,@M ) HIIf@) = £(0) ‘if/(o)l]Cﬁ*([(),T];X))-

d) Let v € (0,1] and f € B([0,T); Dg(v,)). Then there is a unique strict
v q
def

solution u of (1) satisfying Bu(t) € Z = C([0,T); X) N B([0,T); Dp(y, 00))
if both

Bug — f(0) € Dp(y,0)
and

u; € D(BTH), B, € Dp(y, ), (7)

hold. Moreover, in this case there is a constant M = M(vy,«, B,T) such
that

1Bu(t) = F(O)l3(00. 110 (200y) < M(uBuo O pp
B sl (o) + [ F(E) — f<o>ng([o,mm,oo»)-

(e) Lety € (0,1) and f € hY([0,T]; X). Then there is a unique strict solution
u of (1) satisfying Bu(t) € h7([0,T]; X) if both Buy — f(0) € Dp(y) and
uy € DB(%) hold.

(f) Let v € (1,1 +«) and f € hW([0,T);X). Then there is a unique strict
solution u of (1) satisfying Bu(t) € hY([0,T); X) if both Buy — f(0) €
Dp(1i5) and

—1 g7 a+y

w1 — B711(0) € Dy (m) (8)
hold.

(g) Let v € 1+ «,2) and f € h7([0,T); X). Then there is o unique strict
solution w of (1) satisfying Bu(t) € h7([0,T]; X) if both Buy = f(0) and
(8) hold.

(h) Let v € (0,1) and f € C([0,T];Dp(7y)). Then there is a unique strict
solution w of (1) satisfying Bu(t) € C([0,T]; Dp(y)) if both Buy — f(0) €
Dp(y) and

u, € D(BT#%), BT=u; € Dp(v) (9)

hold.

The conditions (7) and (9) may be written

o+ v+ oy -y 4 oy
u € Dpe (LT oc), e Dy (LIS,
MEEE\ S0 ™ “MEEB\ S0 o)



respectively.

For the definitions and properties of fractional powers of densely defined opera-
tors we refer to [1, Theorem 10], [15, p. 98-103]. For powers of non-densely defined
operators, see [9, p. 54]. Observe that by (ii) of Theorem 2, the operator B is
sectorial in the sense of [9]. Also note that the statements of [1, Theorem 10] can
be applied to the operator B.

To solve (1) we write, in the cases where y € (0,1], i.c., in cases (a), (d), (e), (h),

u(t) = v(t) + w(t) + z(t) + B~ £(0), (10)

where v, w, z solve, respectively,

Dive + Bv=0. v(0) =uy—B71f(0), v:(0)=0, (11)
Di(wy—wu1) +Bw =0, w(0)=0, w(0)=u, (12)

Di'zy + Bz = f(t) — f(0), z(0) = 2z(0) = 0. (13)

(
Then u, defined by (10), solves (1)
If v € (1,2), ie., in cases (b), (c), (f), (g), we write

u(t) = v(t) +w(t) + z(t) + B~1f(0) + tB~1f/(0), (14)

where v, w, z solve, respectively, (11) and
Dy (’wt — [uy — B*lf’(O)]) +Bw=0, w(0)=0, w(0)=u —Bf(0), (15)

Dy a4 Bz = f(t) = f(0) = t£/(0), 2(0) = %(0) = 0. (16)

Then u, defined by (14), solves (1).

First, in Section 2, existence and regularity for solutions of (11) is given. These
results are obtained by the resolvent approach. Lemma 3 gives the required prop-
erties of the resolvent associated with (11). Lemma 4 gives necessary and sufficient
conditions on v(0) for Bu(t) to be either Holder-continuous, or bounded in an in-
terpolation space determined by B.

Next, the resolvent approach is used to analyze solutions of (12) (and (15)).
Lemma 5 gives the properties of the associated resolvent: in Lemma 6 we formulate
necessary and sufficient conditions on w,(0) for Bw to be of a specified type.

The proofs of Lemma 3 and of Lemma 5 are given in Section 4.

To analyze (13) and (16), we use the method of sums (see Lemma 7) of Da
Prato and Grisvard [3]. For the application of this method, we need some results
(formulated in Lemma 8) on fractional derivatives of order between 1 and 2. For
derivatives of order between zero and one, the corresponding results were given in
[1]. The regularity results on (13) and (16) are given in Lemma 9.

Theorem 2 is an immediate consequence of Lemmas 4, 6, and 9.

In the last Section, we comment briefly on the converse analysis. In particular,
a required interpolation statement is formulated.



Regularity results for
up + B(Exu)(t) = f(t), u(0) = uy, (17)

with (typically) k() = ¢t=P, 5 € (0,1), have been obtained in [4]. To compare
results, invert (17) to obtain,

of d
Dfuy + Bu = h def —(—-(7“ " f),
where o = 1 — . To have I Holder-continuous, take f(t) = ct? for some p €
(a,1). Then h € CY([0,T); X), with v = p —a; f(0) = h(0) = u(0) = 0. By
[4, Theorem 4.4], we have that Buy € DB( oo) implies Dyu; € CY([0,T7]; X),
hence Bu € C7([0,T]; X). Our Lemma 4 (a) doeb, however, give the stronger result
that in this case Bug € Dp(175,00) is equivalent to Bu € C7([0,T]; X).
2. Results on homogeneous equations.

We begin by considering (11) and employ the resolvent associated to this equa-

tion. Thus, we set

1

S(t)vy = — NN T £ By Tlygd), ¢ >0,
2mi Jr,, (18)
S(0)vg = vy,
where 5
mTonm— QR
-, i 1
6(2’1-{—04)‘ (19)
and
| P def ¢ pit |t <6} U {peie |r<p<occ}U {pe"ie |r<p<oo}. (20)

Formally, A*(A\'TT + B)~lwy is the Laplace transform of the solution v of (11).
We have the following result on S(t).

Lemma 3. Assume that (i) and (ii) of Theorem 2, and (19) hold. Define S by
(18), let k be a nonnegative integer, and let 1 = 0,1. Then
(a) S(t) € L(X) for eacht >0,
(b) S(e) € C>((0,00); L(X)).
(¢) Fort >0, the 7(1/)JF of S(t) is contained in D(B).
(d) Fort >0, BSW(t) e £(X); BS®)(e) € C>=((0,00); L(X)).
(e) For any fized § € (0, 7’—4’8 — %), there exists an analytic extension of
B'S(*)(e) to the sector la,lg 7[ <4.
(f) SuPt>0Htl(lJraHkBlS(k)(t)HL:(X) <00 .

(g) Forwvy e X, v(t) wf S(t)vo, t > 0, one has that v is a strict solution of
Divi+ Bv =0, v(0)=uwv, (0)=0, tel0,T], (21)

for any T >0, iff vy € D(B) and Bvy € D(B).
(h) If v is a strict solution of (21), then v, vy, Dfvy, Bv € BC(RT; X).

For the proof of Lemma 3, see Section 4.
For the solutions of (11) we have the following regularity results.
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Lemma 4. Let (i) and (i) of Theorem 2 hold. Let vy € D(B) and v(t) f S(t)vg.
Then the following conclusions hold for each T > 0:

(a) Lety € (0,140a], v # 1. Then Bu(t) € CY([0,T); X) iff Buy € Dp(1f5,00).
Moreover, in this case there is a constant M = M (v, o, B), but independent

of T, such that
1Bv@llc(j0.71:) < MIBuollpy (122 00)- (22)

(b) Lety € (1+a,2). Then Bu(t) € CY([0,T); X) iff v(t) = v(0) (iff Buy =0).

(¢) Lety € (0,1]. Then Bu(t) € C([0,T); X) N B([0,T); Dp(v,0)) iff Bu(t) —
Buy € C([0.T]; X) N B([0,T]; Dp(7,c)) iff Bug € Dp(y,00). Moreover, in
this case there is a constant M = M(vy,«, B), but independent of T, such
that

1Bu()] 510,110 (v.00) < M B D (,00)- (23)

(d) Lety € (0,14 ), v# 1. Then Bu(t) € h?([0,T]; X) iff Buy € D)

(e) Lety €[l + «,2). Then Bu(t) € h7([0,T); X) iff v(t) = vy (iff Bug =0).

(f) Let v € (0,1). Then Bu(t) € C([0,T];Dp(y)) iff Bu(t) — Buy €
C([0,T]; Dp(y)) iff Buy € Dp(v).

Observe that in all cases of Lemma 4, the hypotheses made and Lemma 3 give
that v(t) is a strict solution of D{v, + Bv = 0, v(0) = vy, v,(0) = 0.

Except for some technicalities, the proof of Lemma 4 parallels that of 1,
Lemma 12]. Therefore, we omit the proof.

For the analysis of (12) and (15) we need the corresponding resolvent. We set,
forye X,

1

Si(t)y = — MATI (AT L ByTlyd), >0,
1) 211 Jr, ( ) (24)
51(0)y =0,

where the integration path is as in (18). One then has the following result.

Lemma 5. Assume that (i) and (ii) of Theorem 2, and (19) hold. Define Sy by
(24), and let k be a nonnegative integer. Then properties (a)-(e) of Lemma & hold
with S replaced by Sy. Moreover, for | = 0,1,

supl [T BLG ()| x) < oo (25)
t>0

The function w(t) wf S1(t)wy is a strict solution of
D (wy —u1)+Bw =0, w(0)=0, w0)=wy, t>0, (26)
iff w € Dp (1—3—”)
If w s strict solution of (26), then w, w;, Bw € BC(RT; X).

For the proof of Lemma 5, see Section 4.
Concerning the solutions w(t) of (26), we then have the following regularity
statements.
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Lemma 6. Let (i) and (ii) of Theorem 2 hold, let wy € Dp(135) and w(t) et
S1(t)wi. Then the following statements hold for each T > 0:
(a) Lety€(0,2), v # 1. Then Bw(t) € C([0,T]; X) iff wy € DBz(g((;—":fg—), 00).
Moreover, in this case there exists a constant M = M (v, «a, B), independent
of T, such that

[Butlleo.mx) < Mllwillp,, ats o) (27)

(b) Lety € (0,1). Then Bw(t) € C([0.T); X) N B([0,T): Dp(y,c)) iff wy €
D(B '1—1?) and BT w, € Dp(7,00). Moreover, in this case there is a con-
stant M = M (v, o, B), independent of T, such that

1Bw(@)ll5(10.1:05 (vioe)) < MIBT5wi|py (5 ,00)- (28)

(c) Lety € (0,2), v # 1. Then Bw(t) € h¥([0,T); X) iff w; € 'DBz(ﬁ—(%>.
(d) Let v € (0,1). Then Bw(t) € C([0,T}; Dp(v)) iff wy € D(B™=) and
Bitew; € Dp(y).

In all cases of Lemma 6, the assumptions made and Lemma 5 imply that w(t)
is a strict solution of (26). For the proof of Lemma 6, see Section 5.

3. Method of sums and nonhomogeneous results.

To analyze
Dz 4+ Bz=h, z(0)=20)=0, (29)

with h # 0, we use the method of sums of Da Prato and Grisvard [3]. The following
Lemma [1, Theorem 8] reformulates [3, Theorem 3.11].

Lemma 7. Assume that X is a complex Banach space and that A, B are resolvent
commuting positive operators in X with spectral angles ¢ ; and ¢ g, respectively,
such that ¢z + ¢z < m. IfY is one of the spaces Dji(v,p), Di(v), Dgly,p) or
Dg(vy), where v € (0,1] and p € [1,00], and if y € Y, then there is a unique
z € D(A) N D(B) such that Az + Bz = y. Morecover, Az and Bz € Y and there
eists o constant C such that ||Az||y + ||Bz|ls < Cllylly -

To apply this Lemma, we write X Co([0,T]; X) def {ueC([0,T); X)|u(0) =
0} and define B in X by

D(B) = Cy([0.T]: D(B)).  (Bu)(t) = Bu(t), u e D(B).

Then B is a yositive operator in X with s yectral angle &5 = dp. For the interpo-
* B B P
lation spaces of B one has; Y & (0, 1}

Dp(v;00) = X N B([0,T); Dp(7,)), Dy(v) = Co([0,T); Du ().
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We consider the fractional derivative as an operator A, in X by

D(Al-{‘a) = {u €X |us € X:gl—a Uy € Cl([O:T]EX)v (Diut)(0) =0 ’s
(A1pau)(t) et Diui(t), ué€ D(Aiya), «e€(0,1).

The equation (29) can then be written A4,z + Bz = h. In addition, define A, by
D(A) ¥ {ue X|veX});, A=, ueDA),
and A, for o € (0,1) by

( o) = def {ue X | g1—a *u € CH([0,T); X), (Difu)(0) =01},

Aju=D¢u;  ue D(A,).

Concerning the operators A;1,, « € [0,1), one has

Lemma 8.

(a) A1+a 15 a positive, densely defined operator with spectral angle ba,.. =
5(14+ ) and A1+a = (A1)1+O‘

(b) Fm 7 € (0,1) and (1 + «)n € (0,1) one has
D, (n.00) = { fIf € cU+eI([0,T]; X), f(0) = 0}.

Forn e (O 1) and (1 4+ a)n € (1,2) one has

D4, (,00) = { f|f € CF([0,T]; X); £(0) = f'(0) = 0}.

(c) Form e (0,1) and (1+ o)y € (0,1)U(1,2) one has
Dj,,.(n) =Dz, (n,00) 0 KIF “)"([0,T];X).

The corresponding statements for A,, 0 < o < 1, were given in [1, Lemma, 11].

Proof of Lemma 8. (a) By [1, Theorem 10(b) and Lemma 11], Ay = AgA; =
(A))*A; = (A To see that (/)AHG < Z(1 + o) one applies [10, Prop. 4].
Assume that ¢ (/flwa -725(1+a) By [14, Proposition 2.3. 2] and as Ay, = (A7)'+e,
one then has ¢z < 7. By this contradiction, ¢ 5 Lia 514+ ).

(b) and (c¢) follow by [1, Theorem 10(c¢) and Lemma, 11] and by the Reiteration
Theorem.

A combination of Lemma 7 and Lemma 8 immediately implies (b) and (d) of
the following Lemma and also (a), (¢), if v € (0,1 + ), v # 1.

To prove (a), (c), if v € [1+ «.2), apply A, to (29), with € € (vy—1—a,y—1),
use [1, Theorem 10(c)], and thus reduce the problem to a case already known. 0O
Lemma 9. Let (i) and (ii) of Theorem 2 hold. Then the following is true:

(a) Let h € CY([0,T]; X) with v € (0,2), v # 1. Ify € (0,1), assume h(0) = 0.
If v € (1,2), assume 1(0) = h'(0) = 0. Then there exists a unique strict
solution z of (29) such that Bz(t) € CY([0,T); X). Morcover, in this case
there exists a constant M = M(vy,«, B,T) such that

I1Bz()lle- o.11:) < Mhlle~ qo.1,5)-
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(b) Leth € XNB([0,T); Dp(y,0)), with v € (0,1). Then there ewists a unique
strict solution z of (29) such that Bz(t) € X 0 B([0,T); Dp(y,00)). More-
over, in this case there 1s a constant M = M (v, «, B,T) such that

IB2(l(10.11:D8 (v,00)) < MIAB([0,73:D5 (v,00))-

(c) Let h € h7([0,T]; X) with y € (0,2), v # 1. If v € (0,1), assume h(0) = 0.
If v € (1,2), assume h(0) = h'(0) = 0. Then there exists a unique solution
z of (29) such that Bz(t) € L7([0,T]; X).

(d) Let h € Co([0,T]; P (7). with v € (0,1). Then there cxists a unique solu-

tion z of (29) such that Bz(t) € Co([0,T]; Dp(7)).

4. Proofs of Lemmas 3 and 5.

Proof of Lemma 3. Properties (a)-(d) and (h) are obvious consequences of (18)
and of the fact that supyer, ,[|B(ATT 4+ B)7!|z(x) < oc. To obtain (e), use [12,
Theorem 0.1, p.5]. By analyticity, and by an application of Cauchys theorem, one
has (f).

To prove (g), first let v be a strict solution of (21). Then vy € D(B) and
limy_o||Bv(t) — Bug)||x = 0. Therefore, using also (h),

= 0.
X

lim
A=y 00

A / e M{Bu(t) — Bug } dt
JO

By (18), after some computations, for A > 0,
A / e M(Bu(t) — Bug) dt = =B(AI + B)™! Buy.
Jo

Thus,
Jim |B(AI + B)"'Bu||x = 0. (30)
-3 00

Employ [8, Theorem 2.1, p. 289, 291] to conclude that Buvy € D(B).

Conversely, let vy € D(B), Bvy € D(B). By [8, p. 291], (30) follows. Use this
fact, the estimate (2) and the identity (p > 0)

B(pe'T + B)™'Buy = B(pe®T+ B) ™! [pel(pelT + B)~'Buy + B(pe'"I + B) ™! Bug]
to conclude that

Jim [[BOM + B) " 'Bullx =0, MeTy,. (31)
- 00

By a change of variables and by analyticity, we get from (24),

1 ; -
Buy(t) — Byy = —— ess’lB((?)HaI—f— B) 'Buy ds. (32)

271 Jr,,

Combine (31) and (32) to conclude that lim,_,o||Bu(t) — Bug||x = 0. From this last
fact one may easily deduce that v(t) is a strict solution.
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Proof of Lemma 5. The properties (a)-(e) and (25) follow as in the proof of
Lemma 3.

To prove that w is a strict solution iff w; € D B(Ii%a',)> one argues as in the proof
of Lemma 3. First, let w be a strict solution of (26). Then it follows that

:  atp _
Algr;”)\/@ e” " Bw(t) (ltHX = 0.
But B = A*"1B(AT + B)~lw;, and so

IAN*BAMT + B)lwy||x =0,

lim
A—yo0

which gives w; € Dp( 1;3(1)'

Conversely, let wy € Dp(1f5). We have, by analyticity, for t > 0,

2m

1
Buw(t) =— / MBI 4 B) "Ly dA
Jr,

'

1 —1/8\“ S\ 1+a -1
== s (3)B(C B) wids,
27Ti‘r,,(,( S (f) (1‘) I+ wy ds

and so lim;_,¢||Bw(t)||x = 0. Again, this fact allows us to deduce that w is a strict
solution.

5. Proof of Lemma 6.

(a) It is convenient to separate the proof in two parts; for v <1land vy > 1,
respectively.
First, let v € (0,1). Observe that the first part of the claim is then equivalent to

Bu(t) € CU(0.TX) it w € Dy L1 ).

14+a’

Suppose w; € D B(%i'—g, o0). By (24), and by the analyticity of the integrand, there
follows, for r > 0,

1
Bw(t) = — AN 4 Byl d, (33)

211 JT, 4

and so one has, for 0 < s < t, by the dominated convergence theorem and using
the fact that sup,,,\<pll BN T 4+ B) ™| £(x) < o0,

Bw(t) — Bw(s) = % [N — eMINTITVNHY BN 4 By Ly, dA

1, T'o.o

o —_e)Y A f 5 ,)A — _1_7 U 4o ;
= (t—s) 5. (/FM ei=s[e” — 1]A <t-—s> B<(t~—s) I—{—B) wy dA,
(34)
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where the second equality follows by a change of variables. So

|Bw(t) — Bw(s)||x <t — Slﬂ'lH'leDH(f_%,oo)}z‘lg /F 11— eMATIdN. (35)

By Lemma 5, and by the assumption on wi, w is a strict solution. Therefore,
Bw(t) € C([0,T]; X). Hence the inequality (35) holds for s = 0 (with Bw(0) = 0).
Thus Bw(t) € CY([0,T); X).

To see that (27) does hold with M independent of T', observe first that the factor
on the right side of (35) multiplying |t — s|7 is independent of T. Then note that
for ¢ < 1 one has, by (35), ||Bw(t)]] < cH'leDB(%pO) and that for ¢ > 1 there

follows from (33),

1 et

IBuolle s 5o [ 15

A [wrllpp (125 00) < Mllwillp, (e (36)

,00)
&

Conversely, suppose that w; € Dp(1i5), and that Bw(t) € CY([0,T]; X) for
some I' > 0. By Lemma 5, w is a strict solution, hence Bw(0) = 0. Also note that
by (24), sup,~7||Bw(t)||x < oo. There follows, for A > 0 and some constant ¢ > 0,

H/ e M Bw(t) dtHX <c¢ / e MY dt = eI'(1 4 y)A7177,
Jo Jo

and so,
sup|[[A*TYBAMTOT 4+ BY Tl ||x < o0

A>0
thus w; € DB(‘;JF(Z 00).
Next, let 1 < v < 2. The first part of the claim is now equivalent to
-1
Buw(t) € C77H[0,T); X) iff Buw, € ’DB(1 n ,00).
«

First, suppose w; € D(B) and Bw; € DB(QIY—_;—;, 00). Then, for ¢t > 0,

1
Bwi(t) — Buwy = 5 MY T + B) T Bwy — AT By Y d),
1 .. F]y()

where we have used the fact that % fr , eMATLd) = 1, for + > 0. Hence, using
analyticity, for » > 0 and 0 < s < ¢,

Bw(t) — Buwy(s) = 571 / {e* —eMHATIB(ATT + B) )~} Buwy dA,
7i

which gives, upon letting » — 0 and changing variables,

Bw(t) — Buy(s) =

]_ t/:\.sg . )A A — )\ v—1 )\ 14+« 1)\
%‘Pwe [l—e ](t—S) ( ) B((t-—s) I+B) Bwlf

S

(37)



and so,

1Bui(t) = Bu(s)lx < [t = /"1 Buillp, ot vy 5 / |1 — NN ] (38)

To,s

Moreover, by the fact that w is a strict solution, we have w,; € C([0,T]; X), with
w:(0) = wy. But B is closed, therefore (38) holds for s = 0. Hence, for 0 < s < ¢,
and a constant ¢,

|Bwe(t) — Bwi(s)||x < |t — 317—1,!]311)1[[738(:,_;31’%) . (39)

with Bw(0) = Bw;. Thus Bw,(t) € C*~1([0,T]; X).
The first inequality in (36) (where ¢t > 1) remains valid. From (39) and as
Bw(0) = 0, there follows

|Bw(t)||x < CHBU’lHDB(—};—;,x) , t € 0,1]. (40)

Apply (39) for ¢ € [0,1], and the relation

1
Bw; — Bw; = ——— e)‘t/\’lB(AH'O‘I—}— B)~'Buw, dX
2mi I

for t > 1, to obtain, for some constant ¢ and ¢t > 0,

|Bud®llx < cllBunllp, ot (41)

,00)

By (36), (39), (40), (41), the estimate (27) follows.

Conversely, suppose that w; € Dpg( +a),, and that Bw, € C*1([0,T]; X) for
some T' > 0. By Lemma 5, sup,sp||Bw(t)||x < co. Thus, for A > 0 and some
constant ¢ > 0,

II/ “MB(wi(t) — wy) dt

o0
I <c / MYt = (D (y) AT
X Jo

Also,
/ e MB(wy(t) — wy) dt = =N\ B\ 4 BY 'Bwy, A>0. (42)
Jo
Thus,
sup||\Y TP B(AMTT + B) T Buy || x < oo,
A>o
., Bw € DB(1+a 00).

a) 1s proved.
() p

(b) Assume that BT+ w; € Dp(y, o0).
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First, we claim that there exists ¢, such that for \ € Iy, with r > 0,

BT (AT 4+ B) Y| o (x) < (43)

Ca
To see that (43) holds, note that if A is linear, densely defined and closed, with
spectral angle < 7, then (see, e.g., [11, (6.19), p. 73]) with z € D(A4) and g € (0,1),
one has

1472 x < cpllellx ? Az (44)

Let y € X, take A = B™1, 3 = The, T = B(A'**] 4+ B)~ly, and apply (44) and
(2) to get

|BT= (Ao 4 B)~Yy||x = ||B~TE BT 4+ B)~ly||x
<cal| BT 4+ B) NI FT T + B) Ly K
<cal N 7lyllx,

and so (43) follows.
By (24), and after using analyticity to change the integration path,

Bw(t) = 2—1—— e)‘t/\‘1+aB“+a(>\l+aI+ BY !B wydA, t>0,

WI‘FL(;
ol

or

pYB(ul + B) ' Buw(t) =
* .)kt 1 £X
L S e TR\ 4+ By B(ul + B) - BT wy d.
271 Jp A

.6

o

(45)
Hence, by (43) and by the assumption on BT+e w;,

- At
|p? B(pd + B)—le(t)HX < (:QHBT%E'(,UIHDB(%OO)Q—I— / ‘.e___]d])\]
T Jr 1, A
The last integral is bounded, independently of . So Bw(t) € B(R"; D(y, o)), and
(28) holds.
Conversely, let Bw(t) € C([0,T]; X) N B([0,T]; Pp(y,oc)). By Lemma 5, Bw is
Laplace-transformable for A > 0. Moreover,

oG

wy = \? / e Ma(t) dt + N / e MBuw(t)dt, A > 0.
Jo Jo

Thus (recall (ii)), for A, x> 0,

TR B*(puI + B*)7lwy = A2 / fz_’\t/4%+2fliﬂ>l32(;¢]+ B Yw(t) dt

. " (46)

R S / e—)\tﬂ?+2“10)B2(uI+ B Bu(t) dt.
Jo
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Let 11 > 0 be arbitrary and fix A = 70+, We split the integrands on the right in
parts; over [0,T] and [T, o), respectively. For the first part of the first integral we
have

T
“)\2 / @“’\t;ﬁ+2(&0>B2(;LI+ Bl (t) dt lX
J O

<

T :
“/\2 / {Z—At/1/2(1+“)_%/1,"3—{—%32(/1,[+ B~ Yw(t) dt
J 0

N
eAp T w10, 19D s (244 .00)) < BB B(0.71:D5 (v,00)) 5

by the choice of A and the mapping properties of B. For the first part of the second
integral there follows

T o
”Al—-a / o MuTES % B (ul + B*) T Bu(t) dt“x =
Jo

T
(Al—a /0 (}_)\t/*”z([;m) dt)HBw(E)HB([O,T];DBQ(%,oo)) <
AT || Bw (b)) 5(10,71D5 (v.00)) = 1 Bw ()50, 71D (+.00))

by the choice of A.
For the second part of the first integral one obtains

oo N .
H/\Z / e Myt _5;1,%]:3’2(;1,] + B*)"tw(t) dt“
Jr X
]
< C(Ae—ATM’é"*' Q(Hw)“%)[[B/u”(é)”B(R*‘;X) = (j'u,’z"e—Tn,zil-\tai HBw(E)HB(R'*'X) ]

For the second part of the second integral one gets
o0 s fs
H)\l‘o‘ / e Mu2tEoEs B2 (ul 4+ B?) " Bu(t) dt“X
JT

e
<A pF T M| Bu() || prex) = ep?e T But)|sme )

, ave nsed s 2 2y—1
where we ha:vc used sup”?OHB (ud + B*) |z (x) < o0,
Collecting the four estimates, we conclude that

supl|p?® F T B2(ul + B lwy||x < .
pn>>0

Thus w; € Dp=(F + Ta) o0) and so BT w; € Dp(vy,x0).

{1+
(b) is proved.

(¢) First, let v € (0,1).
Suppose wy € D B(%E%), and let € > 0 be arbitrary. Then choose A\, > 0 such
that )

— I1—e*
27 JTy oAl

NIV AN < e, (47)
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and h. > 0 such that

22 2(G2 e m) ",

t— 35 t— s

< €, (48)

uniformly for A € I'g g, with [A] > A, 0 < t — s < he. Then, by (34), (35), (47),
(48),

|Bw(t) — Bw(s)||x <€t — sl’*][uq]]DB(%g) + €|t — 5}7—2}7; /1“ 11— M7 dlN.

Finally recall the continuity of Bw(s) at s = 0. Thus Bw(t) € hY([0,T]; X), for
T > 0 arbitrary.

Conversely, suppose Bw(t) € h7([0,T]; X) for some T > 0. By Lemma 5,
Bw(t) € B(RT; X). Then, for A\ > 0,

H/ e~ MBuw(t) dt
JO

ge el o0 S
I < / c(t)e ™Y dt = A1 / c(<)e%s7 ds,
X Jo J0 A
where ¢(t) is bounded and continuous on R™, with ¢(0) = 0. Consequently,
X0 Sl
lim c(=)e *s7Tds =0
A—roo /0 ( A ) ’

and so, recall that Bw = A*" !B\ + B)~lw,,

/\lim IA“TYBAY T + BY lw||x = 0,
—00

which implies that w; € D B(?—:YZ)
Next, let 1 < v < 2, and assume that w; € Dy (2—(‘%"_%5) or, equivalently, that

Bw, €D B(%:Egl*)- Then recall (37), fix € > 0, take A, > 0 such that

1

— 1 — e)‘ll)\[‘7 d|/\] < €, (49)
27 ToeNIA<A,

and h, > 0 such that

H( A )W—IB<( A )1+“I+B>~IB~1111

t— s t— 8

< g, ‘
S €, (50)

uniformly for A € T’y p with [A| > A, 0 <t — s < h.. Upon combining (37), (49),
(50), one then obtains Bw;(t) € h*~1([0,T); X) for any T > 0.
Conversely, let Buw,(t) € h7~1([0,T]; X) for some T > 0. Then, for A > 0,

H /00 (’:‘z\t[B<wt(t) — wy)]dt

40

e o0 s
l < / c(t)e MY dt = AT / c(=)e 57 tds |
D S Jo A
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where ¢(t) is bounded, continuous on R¥, with ¢(0) = 0. Therefore,
limaseo fy c($)e™s7 "1 ds = 0. So, recall (42),

MBI + B) T Bu || =0,

lim
Ay 00

and Bw, € D 3(%) follows. Equivalently, one has wy € Dy (5%3;—7&)—)

Thus (¢) is proved.

(d) Let
BT w, € Dp(y). (51)

By the proof of (b),
Buw(t) € C(RT; X) N B(RY; Dp(y, ).

By (43), (45), one has Bw(t) € Dp(y) for each t > 0 and limy_,oo||A\YB(M +
B)~'Bw(7)||x = 0, uniformly in 7. To get continuity, write (A\g to be chosen)

|Bw(t) — Bw(s)||p, () = sup||A"B(A + B) ™" (Bw(t) — Bw(s))|lx <
A>0

2sup||[\YB(AI + B) "' Bw(7)||x + sup
0<A<

AL

INYB(A + B) Y Bw(t) — Bw(s))||x,

where the second sup is taken over 0 < Ay < A,7 € RT. Fix € > 0. Then choose
Ao large enough so that for any 7 > 0,

2 sup ||\"B(M + B) "' Bu(7)||x <27t
Ao<A

Let T > 0 be arbitrary, and choose ¢, s € [0, T] such that |t — s| is small enough, to
get (by the fact that Bw(t) € C(RT; X)),

sup [|AYB(A + B) "} (Bw(t) — Bw(s))||x <
0<A< Ao

X} supl| BOM + B) ™) Bu(t) = Bu(s)llx < .
A>0
Thus
Bu(t) € ¢((0,T); Dp (7)), (52)

for any T > 0.
Conversely, assume (52). We claim that (51) follows. For this it suffices to show
that if € > 0 is arbitrary, then there exists u. such that if © > p., then

[];L%“L?(&“)Bz(ul + B tuy||x < e

By (52), and by the mapping properties of B,

wit) € ¢(10.7) Das (] + ),
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Buw(t) € C’([O, T); Dge (%))

Thus there exists ji. such that if > p., then

sup [|u"3 B (ul + B*) " w(t)l|x < 7 .
0<t<T 4
sup (|n? BX(ul + B But)||x < <.
0<tLT 4

Then, c.f. the proof of (b), if 11 > p.,

T
”)\2/0 e MpE tats B2 (ul 4+ B?) ! w( dt” < )\/1,_2“]%‘“5:-46-? (53)

€
4
provided A is chosen so that /\/1,”2(1:“%) = 1.

Analogously,

T
H)\l“{” / e~ M%) 17 B2 (il + B?) " Bu(t )(12‘ < (54)
J0

F
4°
by the same choice of A.

Finally, observe that without loss of generality we may take p large enough so
that (c.f. the proof of (b))

o [ e B 1 B ) ] <
JT

»&t’n

“/\1_“’ / SR ey B*(ul + B>) ' Buw(t deX < Z (56)
JT

Upon combining (53), (54), (55), (56) with (46) we obtain w; € Dp:2(3 + ey )
hence (51).
This completes the proof of Lemma 6.

6. An interpolation Lemma.

For the analysis of necessary conditions for solutions of (1) to exhibit a specific be-
havior one needs the following version of earlier interpolation results [2, Lemma 3],
[9, Prop. 2.2.12].

Below, C}(I, X)) denotes Lipschitz-continuous functions defined on I with values
in X and C? denotes functions having the first derivative in C!.
Lemma 10. Let X and Y be Banach spaces that are continuously injected in
a Hausdorff locally convex topological vector space. Let I be a closed, bounded
interval and let f € C*(I,X) N CP(LY), where &, € (0,2]. Then f €
CA=0&+98(T (XY ) oo) for cach § € (0,1) and

“f”c(l—mawf (XY )6.00) = (HfIfCG(I x) T+ Hf”cf I Y))

2511 sup,e | (Dllx.  ifa>1,F<1
+4
1P supye 17 ()lly, i F>1 &<

sz
IN

(57)
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Moreover, if & # 3, and (1 —0)a+ 08 =1, then f' € B(I,(X,Y)g.o0) and (57)
holds with || f'||ar.(x. Y)oe) O the left side ()f the inequality.

If f € h&(I.X) N KP(L,Y), then f € h(1=0)a+08(], (X,Y)g) for each 6 € (0,1).
Moreover, if 8 is such that (1 —0)a+ 600 =1, and & # (3, then f' € C(I,(X,Y)g).

Proof of Lemma 10. For the relation (57), see [2, Lemma 3]. The fact that (57)
holds with [|f'||(1,(x.v)s..) o1 the left side (under the stated assumptions on &,

) is contained in the proof of [2, Lemma 3].

Let f € R¥(I,X) N hfé(I,Y). Then choose f, € C*(I,X NY) such that f, —
Fin C*(I,X) N CPIY). By (57), fn — f in CO=053([ (X V) ), and if
a# p, (1—60)a+ 06 = 1, then f, — f'in B(I,{(X,Y)p.00). Moreover, f, €
R(1=0a+63(1 (X, Y)g) and f, € C(I,(X,Y)s). But these last spaces are closed in
ct- 9)“+9[3(I (X,Y)p.00) and C(I,(X,Y )g.o0), respectively, and so the last part of
the Lemma follows. [

Let us briefly indicate an immediate use of the above Lemma for the first step
of the converse analysis. We only consider case (a), and take f = 0.

By (1), and assuming Bu € C7([0,T];X), v € (0,1), one has Df(u; — u1) €
C7([0,T]; X). Then v € C**([0,T]; X). Apply Lemma 10 with & =1 + ¢, g =

0=1ra= € (0,1), Y = D(B) and f = u. This gives u; = «/(0) € DB(1+<w 7,00)

Then, by (a) of Lemma 6, Bw € C a7, By the relation Bu = Bv + Bw one has
Buv € CTFa=5 . Thus, by (a) of Lemma 4, we arrive at Buy € D B(m%fff&j’ 00).
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