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1 Introduction

The set of normal matrices, denoted by N' C C"*"_ is a rich class of matrices
well-suited for numerical computations. To give an example of the compu-
tational well-behavior, extreme sensitivity of eigenvalues and eigenvectors
does not occur among the set of normal matrices. The ways to characterize
normality is a “rich set” as well. So far there exists about ninety equivalent
conditions for a matrix to be normal collected in [9] by Grone, Johnson, Sa
and Wolkowicz and in [4| by Elsner and Ikramov. The most standard defini-
tion of normality for a matrix Z € C**", or condition 0 as taken in [9], deals
with the equation given by the self-commutator [Z,Z*| = ZZ* — Z*Z = 0
for Z. Instead of considering different equivalent definitions of normality, in
this paper we study A as a set. More precisely, we a view the set of normal
matrices as a stratified submanifold of R2"” .

It is not difficult to verify that N is a stratified submanifold of R2"’.
Instead, it is more difficult to construct a stratification of N that would
be structure revealing as well as concrete enough to be useful in practical
problems. Consequently, the purpose of this paper is to try to introduce a
stratification that would, at least to some extent, have these properties. For
this purpose we take as a starting point the Toeplitz decomposition, also
called the Cartesian decomposition,

1 1
Z=H+iK, where H=_(Z+Z") and K = -(Z - "), (1)
1

of a matrix Z € C*"*". Clearly H and K are both Hermitian matrices. As it is
well-known, Z is normal if and only if H and K commute, see e.g. condition
21 in [9]. Thus, normality makes H and K in the Toeplitz decomposition
strongly interdependent. Using this property, a way to achieve a simple
stratification for the set of normal matrices is to let the Hermitian part H
vary first and only thereafter consider all the possible K that commute with
H. This is achieved as follows. For all possible sets of positive integers k; > 1,
for i =1, ..., j, with the property Y 7_, k; < n we constrain H to have exactly
J eigenvalues with multiplicities k1, .., k;. Restricting H in such a way, we
obtain a stratification of N with the strata of dimension n*+n—>37_ (k;—1).
Thus, the maximal dimension n? + n corresponds to the case when this set
of integers is empty and H varies among the set of nondegoratory Hermitian
matrices. The smallest dimension n?+1 occurs when there is just one integer
ki =mn,ie, H=sl for s € R.

What makes the described stratification to be of potential use is the
property that for the stratum of maximal dimension we obtain a very simple
parametrization using the Toeplitz decomposition as follows. Denoting by
Ho the set of nondegoratory Hermitian matrices, the stratum having the
maximal dimension in the constructed stratification is given by the mapping

n—1
(H, 00, s 000-1) = H+14 Y oy H (2)

j=0
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from Hy x R" to N. We will demonstrate that, if the image of this mapping
is denoted by Ny, then N\ N is a closed nowhere dense set in A/ in the norm
topology inherited from R?"”. Thus, a generic normal matrix Z is of the form
Z = H +ip(H) for H € H, and a polynomial p with real coefficients. In
particular, the set of normal matrices can thus be characterized as

clos{H + ip(H) : H € H, pis a polynomial with real coefficients}, (3)

where H denotes the set of Hermitian matrices.

The above parametrization (2) of an open dense subset of A allows to
approach a number of computational problems involving normal matrices in
a new way. Consider, for instance, the problem of finding the spectrum, or a
few eigenvalues of a large, possibly sparse, matrix Z = H+iK = H+ip(H) €
N. This problem can be divided into simpler independent parts. One such
is that of computing the spectrum of H accompanied with finding p. Once
this is accomplished, the spectrum o(Z) of Z is obtained by simply applying
the spectral mapping theorem to the spectrum of H. Obviously here the key
is that for a Hermitian matrix, for solving its eigenvalues, or some of them,
there exists a large variety of techniques and lot of different preconditioning
strategies. To approximate p there, in turn, are several routes. The most
inexpensive ones are simple variations of the Arnoldi method that involve
only matrix-vector products. This approach becomes more attractive the
smaller the degree of the polynomial p, or, the better p can be approximated
by a low degree polynomial over o(H). Namely, then the problem of finding
0(Z) reduces, in essence, to that of computing o(H). Consequently, in this
manner the Kaniel-Paige convergence theory can be applied straightforwardly
to normal matrices of this particular type. Furthermore, in this approach
there is one canonical parameter that can be adjusted and which can chance
the convergence drastically. That is a rotation e®Z of Z with 6 € [0, 27).
Except for a finite number of #, the rotated e* Z has the representation e Z =
Hy + ipe(Hy) for Hy € H and py with real coefficients as well. The degrees
of p and py can, however, be very different. Consequently, the respective
approximation problems for Z and e®Z as just described can be completely
dissimilar.

The paper is organized as follows. In Section 2 we present a stratification
of AV and construct a simple parametrization for an open dense set of A . In
Section 3 we outline examples of computational problems where the presented
parametrization can be of use. We show how for a certain type of normal
matrices the computation of the spectrum reduces essentially to finding the
spectrum of a Hermitian matrix. In particular, with this parametrization
many approximation problems involving normal matrices can be approach
with modifications of the classical Arnoldi iteration.

2 A stratification of the set of normal matrices

So far there exists about ninety equivalent conditions for a matrix to be nor-
mal collected in [9] by Grone, Johnson, Sa and Wolkowicz and in [4] by Elsner
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and Tkramov. The standard definition of normality for Z € C*"*", or the so-
called condition 0, deals with the equation given by the self-commutator

(2,2 = 22* — 7*Z = . (4)

In particular, starting from this, algebraic as well as differential geometric
interpretations come naturally. As to algebraic geometric point of view, ob-
viously the elements of the matrix [Z, Z*] are not, because of the complex
conjugation, polynomials with respect to complex variables {Z; ;}7,_; denot-
ing the elements of Z. However, they are polynomials with respect to real
and imaginary parts of {Z; ;}7,_,, and, consequently, it is useful to regard the

set of all complex n X n matrices as the real vector space R, If Z = X +1Y,
where X,Y € R"*" denote the real and imaginary parts of Z respectively,
then

(2,7 = XXT - X"X+YY" - Y'Y +i(Y X" - XTY +YTX - XYT) (5)

Let fg, fo : R x R™™ — R™ " be the real and imaginary parts of (5),
that is,
RX,Y)=XXT - XTX +vYT - Y'Y (6)

and
f(X,Y)=YX" - XY +YTX - XY, (7)

Requiring [Z, Z*] = 0, the real part gives, because of symmetry, (n? + n)/2
polynomial equations of degree 2. Analogously, the imaginary part gives,
because of skew-symmetry, (n? — n)/2 polynomial equations of degree 2.
These, in all n? homogeneous polynomials, define an affine variety in R2"*.
Obviously H, the set of Hermitian and S, the set of Skew-Hermitian matrices
are both n? dimensional subspaces of R?** contained in N, the set of normal
matrices. These two subspaces are the building blocks of the constructed
stratification of A/ in this paper.

A stratification ¥ of a subset X of a manifold M is a partition of X into
submanifolds of M, called the strata, which satisfies the local finiteness con-
dition. That is to say, every point in X has a neighborhood in M that meets
only finitely many strata. If X C M can be stratified, X is called a strat-
ified submanifold of M. For further definitions and properties of stratified
submanifolds, see e.g. [1] or [7].

Proposition 1 N is a connected star-shaped stratified submanifold of
R

Proof. It is obvious that AV is connected as each of its element is linearly path
connected to zero matrix. By this argument N is obviously star-shaped. The
set of normal matrices is the image of the mapping (U, D) — UDU* (or the
equivalent real mapping constructed in an obvious way). By Stratification
Theorem [10], N is a stratified submanifold of R*"* as this mapping is real
analytic and proper (compact sets have compact preimages). O
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As to how actually construct a stratification of A, there are several
routes. For practical purposes we have chosen to start from the Toeplitz
decomposition since it turns out that in this way we obtain a very simple
parametrization for the stratum having maximal dimension. For that pur-
pose, let Z = H + iK denote the Toeplitz decomposition of a matrix Z as
defined in (1). We call H and K the Hermitian and Skew-Hermitian parts of
Z respectively. Let C(Z) = {B € C**" : BZ = ZB} denote the centralizer
of Z. It is obvious that C(Z) is a subspace of C"*".

Lemma 2 Assume M € H and B = H + iK commutes with M. Then
M + 1K is normal. Conversely, every normal matriz with M € H as its
Hermatian part is of this form for some B commuting with M.

Proof. Take a B from the centralizer of M. Since M is Hermitian, B*
commutes with M as well and, consequently, M commutes with iK = (B —
B*)/2. Thus M + iK is normal by condition 21 in [9]. The converse holds
trivially by the equivalence of the definition of normality. O

In what follows we will either consider real or complex dimension. This
will be indicated by an inclusion either in R2"* or in C**™ respectively.

Lemma 3 Assume M € H and the dimension of C(M) C C*" is .
Then the dimension of S(C(M) C R* is 1.

Proof. It is obvious that S () C(M) is a subspace of R*** so assume first that
the dimension of C(M) C C**™ is . Then suppose for S; € S(\C(M) C
R?" j =1,..,1+ 1, there do not exist a; € R for j = 1,...,] + 1, of which
at least one is nonzero such that 2?;11 a;5; = 0. Clearly, then there cannot
exist any B; € C, j = 1,...,1 + 1, of which at least one is nonzero such that
22111 B;S; = 0 either. This contradicts the assumption. Thus, the dimension
of SNC(M) C R2"” is at most [. Assume then that Sj,forj=1,..,l-1lisa
basis of S()C(M) C R** and Z = H+iK € C(M) C C™". Then for some
a; € R holds Zé;ll a;S; = 1H and for some §; € R holds Zi_:ll ;S = 1K
as by Lemma 2 both ¢H,iK € C(M). Thus, E;;ll(—z'aj + (;)S; = Z and,
consequently, S;, for j =1,...,1 — 1 is a basis of C'(M) C C**" as well. This,
however, contradicts the assumption that the dimension of C'(M) C C**"
equals [. The converse claim follows by the same reasoning. O

Let H(ki,...,k;) C H denote those Hermitian matrices that have ezactly
J eigenvalues with multiplicities ki, ...., k; all strictly larger that 1. Further,

let Ho denote the set of nondegoratory Hermitian matrices.

Proposition 4 H(ky,...,k;) C R2" s a smooth manifold of dimension
w3 (1— k).

Proof. The dimension of the set of unitary matrices U as a real smooth
manifold is n2. Fix an element U € U and consider those unitary matrices
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V obtained via

i 0 ... 0
0 ... V; 0
0O ... 0 ¢

for V; € C*% for 1 <1 < j, unitary and ® = diag(fy, ...,0,—p), Where
p=>3 ,kand |6 =1for 1 <[ < p. This set is a smooth manifold of
real dimension Y7, k7 + (n — p) since the set of unitary matrices in each
Chi ki is k2-dimensional and the product space of n — p unit circles is (n —p)-
dimensional manifold.

Let X be the open set in R*P*J defined as the complement of the inverse
image of 0 of the function (A1, ..., An—pi;) = [Tj=5 7 (A; — Aj—1) from R P
to R. Identify X with those diagonal matrices D that have the first j blocks
equaling eigenvalues in each block of size k; for 1 < | < j. The remaining
eigenvalues are all different from each as well as from those in the first j
blocks. It should be clear that #H(ky, ..., kj) equals the image of the mapping
(U,D) — UDU* from U x X.

For a fixed D and for arbitrary U,V € U there holds UDU* = VDV* if
and only if U and V are related as in (8). Consequently, the dimension of
the image of the mapping (U, D) — UDU* is

J J
n’ =Y ki-(m-p+(n—-p+j)=n"=> kK +j
=1 =1

and the claim follows as it is obviously smooth as well. O

Proposition 5 If H € H(ky,...,k;), then the dimension of S(\C(H) C
R s n+ Y7 ki(k — 1).

Proof. Let H = UAU* be a diagonalization of H by a unitary similarity.
Then BH = H B is equivalent to U* BUA = AU*BU, that is, we can consider
the centralizer of A and then use this unitary similarity to get the centralizer
of H. A block, say, of size k; has the centralizer of dimension &7 as a subspace
of Ch>* gimply because all the matrices of respective size commute with
this block. The corresponding Skew-Hermitian subspace is k7 dimensional in
2k by Lemma 3. Thus continuing in this manner we obtain a subspace of
dimension Y 7_, k7. Then the remaining eigenvalues are all different, i.e., this
block is nondegoratory. Thus, for this block the dimension of the centralizer
isn— 7 ki [11][p. 275] in C*=P)*("=P) where p = Y"7_, k;. Consequently,
using again Lemma 3 with this block we obtain the claim after an addition.
O

The set of nondegoratory Hermitian matrices g is of interest for the
following reason.

Proposition 6 Assume H € Hq and p is a polynomial with real coeffi-
cients. Then H + ip(H) is normal. Conversely, every normal matriz with
H € Hy as its Hermitian part is of this form for a polynomial p with real
coefficients.
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Proof. The first claim is obvious. For the converse, let K be Hermitian.
By condition 21 in [9] H + ¢K is normal if and only if K € C(H). Since H
is nondegoratory, K = p(H) for a polynomial p, see e.g. [11][p. 275]. If p is
not real, then taking the real part pg of p (i.e., p = pp + ipg where both pg
and pg are polynomials with real coefficients) gives the claim. O

Let Ny denote the set of normal matrices having nondegoratory Hermitian
part.

Theorem 7 N\MNj is a closed nowhere dense set in N in the norm topol-
ogy inherited from R

Proof.  Let A;(A) denote the eigenvalues of a A € C"*", counting
multiplicities, arranged in decreasing order. The function A = H + 1K —
H?;ll()\j(H) — Aj+1(H)) is continuous from C**" to R. Thereby the inverse
image of 0 for this function is a closed set in C"*". Since we use the inherited
topology, its intersection with N, which obviously equals N\, is a closed
set in V.

Assume Z € N\N,. We need to show that there is Z, € N arbitrarily
close to Z. Let H be the Hermitian part of Z. Assume Z has j eigenval-
ues Aq, ..., A; with multiplicities strictly larger than one. Let A denote the
remaining eigenvalues. Let U be a unitary matrix diagonalizing H such that
the diagonal blocks corresponding to Ay, ..., A; come first. As reasoned in the
proof of Proposition 5, then all normal matrices with H as their Hermitian
part are of the form

Ay 0 ... 0 Si 0 ... 0

vl o S rrar | | U,
0 ... Aj O 0 ... S 0
0 ... 0 A 0 ... 0 p(A)

where Si, ...,.S; are Hermitian matrices and p is a polynomial with real coef-
ficients. Assume Z is put in this form and diagonalize, for 1 <[ < j, each
S; (block-wise) using a unitary transformation U; to get

Ay 0 ... 0 S, 0 ... 0

o o | T o, (9
0 ... A 0 0 ... 8 0 ®)
0 0 0 A 0 0 0 p)

where 51, ..., S’j are diagonal matrices and where U = Ublockdiag(Uy, ..., U;, I)
is unitary. Then perturb each diagonal element in each A4, ..., A; slightly to
get a nondegoratory Hermitian matrix U(A + e)U* This resulting perturbed
matrix Z, of Z remains also normal since its Hermitian part commutes with
its Skew-Hermitian part and the claim follows as the perturbation can be
made arbitrarily small. The polynomial p, in Z, = H, + ip.(H,) is found via
interpolation. O

In particular, the set of normal matrices can be characterized as follows.
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Corollary 8 closNy = N and, in particular,

clos{H + ip(H) : H € H, p is a polynomial with real coefficients} = N
(10)
and {p(H) : H € H, p is a polynomial} = N .

Proof. Only {p(H) : H € H, p is a polynomial} = A needs to be shown.
This follows from Proposition 12. O

An immediate question is, how about L(H), the set of bounded linear
operators on a separable Hilbert space H? Considering a normal operator
Z with a hole in its spectrum it can be seen that (10) cannot not hold.
The reason is that the spectrum function is uniformly continuous on the
set of normal elements (and thus it is not possible to interpolate with a
polynomial “over a hole”), see e.g. [3]. This is possibly the reason why
we have not encountered this way of viewing normal matrices as almost all
concepts for normality stem from operator theory for £(H). The closure is
however needed and, in fact, clos{p(H) : H € H, p is a polynomial} = N
can be shown to be true. To not to get distracted we do not include a proof
here.

For Ny we obtain a smooth structure in simple manner from Proposition
6 and Theorem 7.

Corollary 9 Ny C R2 is a smooth connected manifold of dimension
2
n° +n.

Proof. Form a mapping

n—1
(H, 00,y an1) = H+1 Y oy H (11)
§=0

from Hy x R* to Ny. This is bijective, since H is nondegoratory and the
polynomial is of degree n — 1 at most. Also it is clearly smooth. As to
the connectedness, suppose Ny, Ny € Ny. Thus, Ny = UAU* + iUp(A,)U*
and Ny = VA V* 4+ iVq(Ay)V* for some U,V € U and some polynomials
p and ¢ with real coefficients. Since U is path-connected (every unitary
Q is of the form Q = e for a Hermitian matrix E. Thus Q; = e, for
0 <t <1, connects @ to the identity matrix.), V' can be connected with a
path to U. Since A; and A, are both sets with n distinct elements, they can
be transformed smoothly to one another such that the amount of distinct
points remains equal to n during the process. And finally, the coefficients of
p and ¢ can be smoothly transformed to one another. O

Considering Nj as the stratum of maximal dimension, let N (ki, ..., k;) C
N denote those normal matrices N = H + iK that have H € H(ky, ..., k;)
as their Hermitian part. The union of these sets with N; gives the set of

normal matrices. The following shows that they provide a stratification of
N as well.
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Theorem 10 The set N (ky,...,k;) C R2" s a smooth manifold of di-
mension n* +n — Y 7_ (k — 1).

Proof. H(ki, ..., k;) is a smooth manifold of dimension n2 + 37, (1 — k})
by Proposition 4 and in Proposition 5 we demonstrated that for a fixed
H € H(ky, ..., k;) the dimension of SO\C(H) C R is n+ >20_ ky(k; — 1).
If H=UAU* € H(ki,...,k;), then in the proof of Proposition 5 we showed
that the centralizer of H was the direct sum of full matrix algebras

UMp & - eM,,eCa---aCU". (12)

In particular, C(H) is independent on the numerical values of the eigenvalues
of A as long as they are constrained to have fixed multiplicities in this order
such that A € H(ky, ..., k;). Further, the computation of the Skew-Hermitian
part from (12) is a smooth operation. Thus, when U and A vary smoothly,
the smoothness of the structure follows. O

In particular, N (n) is connected and consists of matrices sI+iH for s € R
and H € H and is the stratum of the least dimension n? + 1. A manifold
N (k1, ..., k;) is not connected unless ky = ky =---=k; and > ;_, k;=n. In
case there are varying multiplicities, individual components of N (k1, ..., k;)
differ only in the ordering of the eigenvalues of the Hermitian part with
multiplicities. The reason for that they cannot be connected to one another
is that when trying to move from one component to another, i.e., when
trying to change the ordering of the multiplicities of the eigenvalues of H €
H(ki, ..., k;) on R, some eigenvalues of will coalesce. This in turn means that
the matrix has entered into another manifold N (py, ..., p;) with the indices
p1, ..., p; corresponding to the arisen coalescence. While closAy = N, the
other strata have the following property when taking the closure.

Proposition 11 Let {p,, },{ps,},....{ps,} be a partition of {p1, ..., pi} such
that Y ps,, < km, for 1 <m < j. Then N (kq, ..., k;) C closN (p1,...,p).

Proof. Take Z € N(ki, ..., k;) and assume Z has been decomposed as in
(9). It should be obvious how an element of N (py, ..., p;) close to Z is now
constructed: Slightly vary each block Ay, ..., A; appropriately so as to get the
right amount of eigenvalues with multiplicities p, ...p;. O

Thus, generically one can view a normal matrix Z to be of the form
H + ip(H) for a Hermitian matrix H and a polynomial p with real coef-
ficients. As to applications, the degree of p becomes an important factor.
Somewhat overstating, one could say that the smaller the degree of p, the
more Hermitian Z is, as far as Krylov methods are concerned. In the follow-
ing section we describe problems where this approach can be useful.

3 Applications to problems involving normal
matrices

With a simple parametrization for an open dense set of A it is possible to
solve approximation problems involving normal matrices in a new way. To
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demonstrate this we outline an approach for two well-known examples: The
eigenvalue problem and the problem of finding a closest normal approximant
to a matrix A € C**",

Instead of starting from the Hermitian part of Z € N, the computations
can, of course, be performed with the Skew-Hermitian part of Z. That is,
a generic Z = H +iK € N can be presented either as Z = H + ip(H) or
as Z = q(K) + iK for polynomials p and ¢ with real coefficients. And more
generally, for the rotated ¢ Z with a § € [0,27), this type of representation
does exist except in very exceptional cases. To illustrate this, let us denote
by Hy the Hermitian part of e Z.

Proposition 12 Assume Z is normal. Then for 6 belonging to an open
dense subset of |0,2m) holds €Z = Hy + ipg(Hyg) a polynomial py with real
coefficients.

Proof. Draw lines through each pair of eigenvalues of Z. Each rotation for
which there are no vertical lines one can construct a polynomial pg such that
e®®Z = Hy + ipg(Hy) by interpolation as in the proof of Theorem 7. O

Recall that Hy appears while approximating the field of values of a (not
necessarily normal) matrix Z. Namely then, for a finite number of different
0, one computes the largest eigenvalue of Hy and intersects certain half-
planes defined on the basis of these eigenvalues, see e.g. [11][Thm 1.5.12,
1.5.14]. For a normal Z the rotation obviously affects the degree of pg in
the representation eZ = Hy + ipy(Hp). Let us illustrate this with a simple
example.

EXAMPLE 1. Assume Z = H+iK isnormal and o(Z) lies on the parabola
z = y? such that o(K) in indefinite. If Z can be presented as H+ip(H) with a
polynomial with real coefficients, then the degree of p can be quite high, even
n. Whereas for e'2 Z the representation exists and e'2Z = Hz + ipz (Hz) is
obtained for polynomial p= of degree 2.

Definition 13 Let Z € C™" and 6 € [0,27). Then Z = e Hy+ie K,
18 the rotated Toeplitz decomposition of Z by the angle 6.

Obviously the self-adjointness of the parts are lost in this decomposition.

3.1 Spectral approximation

Consider the problem of computing an approximation to the eigenvalues, or
some, of a normal matrix Z. Assuming Z to be generic there holds Z =
H+i{K = H+ip(H) for H € H and for a polynomial p with real coefficients.
Or, based on some a priori information, a rotated Toeplitz decomposition of
Z can be used so as to have this type of representation. Below we will show
how to pick a rotation for this purpose.

Having Z = H+ip(H), it is apparent that H is readily computed whereas
p is not available. Proceeding with H and finding an eigenvector, say z, of
H yields an eigenvalue of Z after evaluating Zx. This is clearly not very
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practical approach as it gives eigenvalues of Z almost randomly. To avoid
this, some information about p is needed and, consequently, p has to be
approximated in some manner. This can be obtained from a straightforward
modification of the Arnoldi method [2| for H without any additional cost
when the spectrum of H is approximated with the same method.

The well-known classical Arnoldi method for the eigenvalue approxima-
tion starts from the construction of a Krylov subspace with A € C"*" and a
vector b € C". Then a monic polynomial g of degree k is computed with the
property that ||gx(A)b|| is minimized over all monic polynomials of degree k,
that is,

ai,..., o €C

lgx(A)b]| = min ||(Ak—za¢A'“’i)bll- (13)

The roots of the polynomial g, are then taken as an approximate eigenval-
ues of A. For more information of the Arnoldi method for the eigenvalue
problems,; see e.g. [14]. An eigenvalue approximation for Z = H + ip(H)
involving the Hermitian part H of Z can be obtained as follows. Compute
polynomials g, and p; via

k
law(F)Oll = min_[|(H* =D e (14)
Pt
and
k
Kb — pp(H)b|| = i K — L HE ). 15
I~ pu(H)bl = | min N = 3 G0 (15)

That is, gx and p; are constructed to approximate the eigenvalues of H
and the polynomial p respectively. Then an eigenvalue approximation for
Z is obtained by applying the spectral mapping theorem with polynomial
z + ipg(z) to the eigenvalue approximation obtained with g for H in (14).
Obviously (15) can be replaced with the approximation

k
. . k—i
120 = oM = i _I1Z = 32 G| (16)
instead. The spectral mapping theorem is then applied with p; to the com-
puted approximation of o(H). Altogether, a single Krylov subspace with H
applied to b is generated. Then, from this Krylov subspace, two approxima-
tions are constructed, that is, for H*b as well as Kb (or for Zb).

Note that all the above minimization problems involve commuting nor-
mal matrices so that max-min property holds [8]. Thus, in this respect the
approximation problems (14) and (16) are equivalent. As opposed to power
method, for obvious reasons we are tempted to call this method a fractional
power Krylov subspace method for Z. Namely, if Z = H + ip(H) for a poly-
nomial p of degree [ > 1, then the fractional power can be considered to be

1/1.
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The outlined approach to the computation of an approximation to the
spectrum depends strongly on the polynomial p in Z = H + ip(H). If p is
of low degree, then the computation of o(Z) reduces essentially to that of
finding o(H). For instance, if the degree of p is one, then the eigenvalues lie
on a line and only two dimensional Krylov subspace is needed for finding p.
Or, if o(Z) lies on a parabola y = ax?+bx+c with a, b, ¢ € R, then the needed
dimension is 3. Or, more generally, if p can be approximated well with a low
degree polynomial over an interval containing o (H ), then the computation of
0(Z) reduces essentially to finding the eigenvalues of H. In particular, finding
a good rotation parameter § € [0,27) for a rotated Toeplitz decomposition
can make a big difference as demonstrated in Example 1. A way to find
one is to test with a few rotations, with a small k£, how the corresponding
minimization problem (15) (or (16)) does behave. Based on this, the rotation
giving the smallest value will then be chosen.

If only certain, like interior, eigenvalues of Z are being computed, then
the computation should be divided into two parts. First, one needs to find
an approximation to p. This happens as just described above. When an ap-
proximative p is computed, then with H it is possible to use preconditioning
techniques in order to locate interior eigenvalues. Clearly these tasks can be
performed completely independently and parallel. It is also apparent that
for finding a good “local” approximation to p, that is, an approximation that
is good over a certain part of o(H), it is possible to use preconditioning.
The most elementary approach is to use inverse iteration type of algorithms
with a translated Z. Then, obviously, a priori knowledge of the location of
searched eigenvalues must be available.

Another way of computing an approximation to o(Z) can be based on
finding an approximation to the eigenvalues of H and K separately. Then
computing p will reveal how o(H) and o(K) are connected. This is based
on the fact that if o(H) = {ay, ...,y } and o(K) = {f4, ..., Bn}, then there
exists a permutation o € S, such that 0(Z) = {a1 + i3,y : j = 1,...,n},
see condition 34 in [9]. A possible advantage of this approach is that if the
eigenvalues of Z are well separated, then the accuracy requirement for an
approximation to p need not be high.

Finally, a related problem to finding the spectrum is that of finding an
appropriate polynomial preconditioner for a linear system involving Z =
H + ip(H). If p is well-approximated by a low degree polynomial over the
spectrum of H, then with a very small amount of work based on using (14)
or (15) one obtains a good overview of the spectrum of Z. Namely knowing
that o(Z) lies almost on a curve defined by a computed polynomial, it is
straightforward to construct a polynomial preconditioner for Z.

3.2 Closeness problems

Inexpensive approximative solutions to departure from normality in the sense
of Henrici have been derived by S. Lee [12]. Another way to measure of nor-
mality is to find a closest normal matrix to A € C**". In the Frobenius
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norm this was solved by R. Gabriel [6] and A. Ruhe [13]. Though, a com-
putation of an approximation is fairly expensive. As we have demonstrated,
this problem can be stated as

n—1
. o -

HeH,aol,I}fanfleR”A H 2Za]H H}' (17)

7=0

or as
n—1
| A=) oH’ 1

nenapmec 14 T 2 e (13)

instead of introducing a minimization problem with constraints. In particu-
lar, approaching the problem with the parametrization (11) allows to derive
inexpensive approximative solutions to the problem of finding a closest nor-
mal matrix to A. One such is obtained by making an “initial guess” H € ‘H
and then applying an Arnoldi type of iteration, that is, using matrix-vector
products only. More precisely, one looks for

k
min_[[(A=) " aH* )| (19)
i=1

ai,...,ap€C

with a vector b € C. Thus, generated approximations are of the form p(H) for
polynomials p of degree k at most. An interesting problem is, how to choose
an H to start with. After choosing an H the computation of a normal
approximant with (19) is relatively inexpensive and, consequently, testing
with a number of different initial guesses becomes feasible. Again, “natural”
choices are, perhaps, Hy from rotated Toeplitz decompositions for A with a
few values of 6 € [0, 27).

4 Conclusions

In this paper we have presented a stratification of the set of normal matrices.
The stratification is constructed in such way that the parametrization for the
stratum having maximal dimension is readily available. The parametrization
is simple enough to be of interest also in computational problems involving
normal matrices. In particular, we have described how it is possible to ap-
proximate eigenvalues of a generic normal matrix Z by solving two approx-
imation problems in a Krylov subspace for the Hermitian part of Z. This
and other problems involving approximations with normal matrices lead to
different kind of iterations of the Arnoldi type.
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