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1 Introduction

In its present form, the theory of pseudodifferential operators originates from
the works of Hérmander and others in the 1960’s. These operators form
algebras naturally generalizing the behaviour of linear partial differential
operators on manifolds, and the theory is an indispensable tool in the analysis
of elliptic equations. The starting point in the theory is the Fourier transform
in R", and there is a one-to-one correspondence between the operators and
so called symbol functions, which can be seen as weights for the inverse
Fourier transform; the problems in a non-commutative operator algebra are
transfered to a commutative function algebra. The behaviour of symbols
is restricted by symbol inequalities, imitating essential properties of partial
differential operators.

In this paper, following Agranovich [1|, we examine periodic pseudo-
differential operators, or pseudodifferential operators on the torus T": We
do not appeal to the common analysis on a manifold using the local charts
and Hérmander’s theory on R, but instead we replace the Fourier integrals
by the Fourier series, so that a global analysis is possible. Again, any oper-
ator possesses a unique symbol function, and we have natural global symbol
inequalities.

First, we briefly present some basic background of periodic pseudodiffer-
ential operators. In the second section, we introduce the method of freezing
the symbol of a linear operator on C*°(T"). This procedure realizes the op-
erator as a mapping on T", with the values in translation invariant operators
(convolutions). Then we lift the traditional symbol inequalities to corre-
sponding norm inequalities for the new operator symbols. The motivation
behind this treatment is its applicability in the non-commutative harmonic
analysis (see Coda section). In the third part of the work, various relations
between the Sobolev continuity and the pseudodifferential order of operators
are studied.

Eventually, we briefly present the outlines of the non-commutative symbol
analysis; we will give details in a future paper.

1.1 Pseudodifferential prerequisites

For general calculus of pseudodifferential operators, see e.g. [9] or [16].

Periodic pseudodifferential operators. Let T" be the n-dimensional
torus, i.e. T" = R"/Z™,; it is natural to identify T" with the n-fold Cartesian
product of the interval [0,1) C R. Function o4 : T" x Z" — C is called
a periodic symbol of order m € R, if it is C'*°-smooth and if it satisfies the
periodic symbol inequalities

| Ag00a(2,€)] < Cap(1+ €)™ 1 (1)

here a, 3 are multi-indices in N, Ny = {0,1,2,...}; the common partial
differential operators are 95 = (9/dx1)P - - - (8/9z,)""; likewise, A is the



partial difference operator Ag! - -- Ag", where

A fz) = f(z+65) — flx)

(with §; = (6;1)7_, € Z", ;; being the Kronecker delta). Moreover, [£]? =
€1y &) P = 2052160 ol = l(ar, .-, an)| = Y07, @, and Cop are con-
stants depending on « and (3. The class of such symbols is denoted by
S™(T™). The symbol o4 € S™(T") defines a linear operator A : C*(T") —
C*®(T") by

(Af)(@) = oalz,&)f(€)e™ ™, (2)

Eemm

where z - £ = E}’Zl z;&;, and f : Z™ — C is the Fourier transform of f €
C>(T),

f&= - flz)e™?m¢ d.

Then A is called a periodic pseudodifferential operator of order m € R",
denoted by A € OpS™(T"). Periodic pseudodifferential operators are con-
tinuous in the test function space (which is the set C°°(T") equipped with
the natural Fréchet structure). Note that

oa(z, &) = e T (Aeg) (),

where e¢(z) = 7@€,

Example: Any partial differential operator A on T", given by

(Au)(z) = ) cal®)Bu(2),
laj<m
with smooth coefficient functions c,, is a periodic pseudodifferential operator
of order m. Its symbol is 04(z, &) = >, <pn Cal®) (i27€) .

Pseudodifferential operators on R”. The pseudodifferential operators
on Euclidean spaces are defined analogously: Symbol of order (or degree)
m € R on R" is a C*®-function o4 : R* x R* — C satisfying the symbol
inmequalities

08050 4(z, )| < Cag(1 + €)™ 1. (3)
uniformly in z. The set of these symbols is S™(R"), and o4 defines a pseu-
dodifferential operator A : S(R™) — S(R™) of order m € R by

(AN = [ aale (e de; ()

here S(R") is the space of the Schwartz test functions, and f is the Fourier
transform of f € S(R™). The set of mth order pseudodifferential operators
is now denoted by OpS™(R"), and these operators are continuous in the
Schwartz topology. By duality, pseudodifferential operators on R" extend to
continuous linear operators on the space of tempered distributions; again,
one recovers the symbol from the operator by

oa(z,€) = e ¢ (Aeg) (2).



Pseudodifferential operators on manifolds. On a compact smooth
manifold M, the class OpS™(R") gives naturally rise to a class ¥™ (M) via
charts. Then a pseudodifferential operator A € ¥™ (M) is continuous on the
test function space D(M). In fact, it turns out that OpS™(T") = ¥™(T")
(see [2], [3], [12], [13], [20]). Periodic pseudodifferential operators offer obvi-
ous technical advantages over the differential geometric approach involved in
the direct application of the definition of ¥™(T").

Pseudodifferential operators form an involutive algebra. More precisely,
if A; € U™ (M) (j =1,2), A € C, then A; + Ay € Wmax{muma}(N[) XA, €
U™ (M), Ay € U™ (M) and A; Ay € ™F™2(M). An interesting nuance of
the theory is that the operators satisfy a kind of generalized Leibniz property
for commutators: that is,

[Al, AQ] - A1A2 - A2A1 € \Ifmlerzil(M). (5)

1.2 Continuity of pseudodifferential operators

Any A € OpS™(R") extends to a bounded linear operator between the
Sobolev spaces H*(R") and H* ™(R") for every s € R. On a compact
manifold M, Sobolev spaces H*(M) can be defined via charts, as usual. A
linear operator A defined on D(M) is said to be of Sobolev order m € R,
if it extends to a continuous operator between H*(M) and H* ™(M) for
any s € R; pseudodifferential operators in U™(M) are an example of this.
The infimum of the Sobolev orders (possibly —oco) of A is said to be the true
Sobolev order of A [23]. The collection { H*(M)}scr is called the Sobolev scale
on M. If s < t, then the inclusion H*(M) C H*(M) is compact. Moreover,
NserH* (M) = C*(M), and User H*(M) = D'(M) = L(D(M), C).

Sobolev spaces on T" admit a particularly simple description: the Hilbert
space H*(T") is the completion of the test function space C*°(T") in the
Sobolev norm || - || g+(T=) given by the Sobolev inner product

(f, 9)msrmy = D _ (L +[€)* £(€)3().

gezn

Using this definition and the periodic symbol inequalities, one can directly
prove the Sobolev continuity of periodic pseudodifferential operators (see [18]
or [20]; for another proof, see [22]).

Example: The canonical Sobolev space isomorphism ¢, : H*(T") —
Hé+™(T") given by

(pmu)(2) =) (1 +[€)ma(E)e ™ (6)

cezn

belongs to U™ (T").



Commutator characterization. Actually, the Sobolev continuity of the
commutators with differential operators characterizes the pseudodifferential
operators completely; see [4], [7], [5], [6], [20] (see also [17]. More precisely, a
linear operator Ag on C*(M) is a pseudodifferential operator of order m € R,
if and only if Ay € L(H*(M),H*"™(M)) (s € R) and

Ak+1 — [Akka—I—l] c L (HS(M),Hs—m+k—Z;'€:1 deg(Dj)(M))

for every sequence of differential operators (Dy)2,, each Dy being of order
deg(Dy,) € Ny with smooth coefficients; multiplication operators are consid-
ered as differential operators of order 0.

2 Operator symbols

Freezing symbols. When examining a non-translation-invariant elliptic
partial differential equation on a domain in a Euclidean space, the method
of freezing coefficients provides us with the techniques of constant coefhi-
cient case. This means that we study the set of translation invariant (that
is, constant coefficient) partial differential operators obtained by fixing a
point in the domain and evaluating the coefficient functions there; the set is
parametrized by the points of the domain. More precisely, the operator A
given by
(Au)(2) = ) cal)(05u)(x)

o<k

gives rise to an operator-valued mapping ¥4 defined on the domain by

(Salzo)u)(x) = Y calwo)(5u)();

la|<k

here ¥ 4(z¢) is a translation-invariant operator approximating A near x.
Accordingly, we define the freezing of an operator A € L(D(T")) at a
point £y € T" to be the formal convolution operator ¥ 4(zo) with the symbol

O-EA(xo)(x) g) — O-A(x(]y g)
Provided that ¥ 4(z) € L(D(T")) for every x € T", we call the mapping
Ya: T — L(D(T))

the operator symbol of A; there should be no chance of confusing this with
the symbol function o4 : T" x Z™ — C.

The idea of the freezing is to study the family {3 4(z)}zern of convolution
operators (parametrized by the points of the manifold T") instead of a com-
plicated operator A. A natural question arises: as the function o4 gives rise
to the mapping ¥4, does there exist an analogue of the traditional symbol
inequalities (1) in the realm of operator symbols? Now we pursue this end.



Operations on operator symbols. If A € L(D(T")), its symbol function
oa: Tt x Z™ — C is trivially C*-smooth, and a simple calculation yields

O'[azj 7A}(x, g) = 03;].0'A(x, g)
Hence if A has the operator symbol ¥ 4, we define its partial derivative 0,3 4
™ — L(D(T")) by
(02,4) (2) = Zpa, 41 (). (7)
Let X be a Banach space and f : T" — X. If the limit
£6)(2) = lim f(z + héj) — f(z)

h—0 h

exists for exist in X, we call it the jth partial differential of f at x € T", and
the definitions of f(%)(z) (8 € N#') and C*=(T", X) become evident. If X is a
space of bounded linear operators between two suitable Sobolev spaces and
f =S4 and if the difference quotient limit exists, then f)(z) = (8,, f)(=).

Just as the commutators with partial derivatives inspired the differentia-
tion of the operator symbol, similarly the commutators with multiplications
give rise to operations on operator symbol. Namely,

U[A7e£k](x’ é‘) = € (JZ')AgkUA(J?, 5)1
hence we define operators Q* (o € Ny) acting on L(D(T")) by

O'QO‘A(J:’ 5) - A?UA(J:’ 5)

Convention. In order to make things clearer in the sequel, without losing
generality, we prove some of the results on T' instead of T"; the generaliza-
tions are, however, straightforward.

2.1 Minor observations

Lemma 2.1 Let A € L(D(T")) be a convolution operator f — kx f (that is
oa(z, &) = k(£)) such that A € L(H*(T"), H*"™(T")). Then

|| All 2 (a2 (), 1 -m(r1y) = sup(1+ €)™ [&(€)].
ez
c 1

The proof of this auxiliary result is simple and thus omitted. But does
it even follow from AH*(T*) C H* ™(T') that A € L(H*(T"), H*"™(T"))?
Indeed, Corollary 2.2 yields the affirmative answer.

The proof of the next well-known theorem can be found in [10, p. 290—
291].

Theorem 2.1 (Abel-Dini) Let d; be positive numbers and Dy = Z;VZI d;.
Assume that (Dn)%—, is divergent. Then Y 2, d;/ DT diverges exactly when

m<1.

Corollary 2.1 If (p;)32, is a monotone sequence of positive real numbers
diverging to infinity, then there is a non-negative sequence (cj);?';l such that
the series 33" c;j converges, but 3 °° | pjc; diverges.



Proof. (A modification of [10, p. 302].) Define d; = p; and d; 11 = pj+1—p;-
Then, in the notation of Abel-Dini theorem, Dy = Z;VZI dj = pn — o0,
and 3772, d;/Dj = 1+ 372 (pjr1 — pj)/pj1 diverges. Let us define ¢; =
(pj+1 = pj)/(pj+1 ;). Then 77, ¢; converges, because 1/p; — 0:

R

=1 \Pi  Pj+1

Clearly, 7 pjc; = > 51 (pjr1 — pj)/pjr1 diverges O
Hence, the following result concerning convolutions can be said:

Lemma 2.2 If A € L(D(T")) is a convolution operator f — k x f, and if
VC e R I € Z: k(&) > C(1+ [€])™, then AHS(T') ¢ H* ™(T") (s € R).

Proof. IfVC >03¢cZ': k(&) > C(1+ |€])™, there is a subsequence of
(14 [€])72P|k(€)]?)eezr that converges to oo as |£| — oo. Corollary 2.1 then
provides the existence of a sequence (i(¢))¢ezr for which Y. (1+[€])*|a(§)[?

converges, but > (1 + 1€)26=m)| k(&) a(€)|? diverges. Thus u € H*(T"), and
it is mapped to Au ¢ H*~™(T") O

Corollary 2.2 Let A be a convolution operator with o(x,&) = I%(ﬁ) Then
the following conditions are equivalent:

(1) k(€)= O((1 +[€)™);
(2) Ae L(H(TY), H*™(T));
(3) AH*(T) C H* ™(T").

Proof. Implications (1) = (2) and (2) = (3) are trivial. And if A maps
H$(T') into H*~™(T"), we obtain condition (1) by Lemma 2.2 O

2.2 Operator symbol inequalities

Next we present a novel characterization of periodic pseudodifferential oper-
ators.

Theorem 2.2 Let A € L(D(T)) with 4(x) € L(D(T)) for every z € T'.
Then A € V™(T") if and only if

Q855 a(x) | o s (1), ro—tmtan (1)) < Cagy (8)

where Cop (a, 3 € Ny ) are the same constants as in the traditional symbol
inequalities (1). In fact, A € ¥™(T") is equivalent even to that

QT4 € C=(T', L(H*(T), H*~(m=lel(T")))

for every a € N}.



Proof. Let A € ¥™(T'), o,3 € N} and u € H*(T'). Let z,zo € T', and
let |z — x¢| denote their distance. Using the Lagrange Mean Value Theorem
and applying the symbol inequality A o4 (x, €)] < Coo(1+[E))™ 1, we
obtain

”QaagZA(x)u - Qaang(-To)u||Hs—(m—|a\)(1r1)

1/2
= [ Do+ gl AZA o u (e, ) — A?afaA(xo,g)|2|a(g)|2)
4

1/2
= | Do+ (gl (@ — 20) AZDT T g a(ae, £)|2|@(£)|2)
4

1/2

< DD @ [P e — PO g (14 €)X Va(€)?
gl>N

= |:c — $0| Ca(ﬂ+1) ”u”Hs(Tl)‘

In the same way we see that

1Q35E 4() || o #12 (v1), z15- G lay (1)) < Clag,

and
QT4 € C=(T', L(H*(T'), H*~ " e(Th))).

Now assume that QX4 € C®(T, L(H*(T?), H*~(m=leD(T))). Then the
compact space T' is mapped via the continuous mapping to a compact set
Q>sV(TY) = Q98T 4(T') C L(H*(T), Hs~(m~la)(T!)), so that this set is
also operator norm bounded, i.e.

1QLE 4 ()|l 2 (b (71), s - (m-ta (r1)) < Cag (9)

for every x € T!.
Assuming the inequality (9), due to Lemma 2.1, we have

[Ag070a(,6)] < cap (14 [E)™

the proof is thus completed O

3 On Sobolev and pseudodifferential orders

In the sequel, we tackle some problems concerning the determination of
Sobolev and pseudodifferential orders of operators. For general information
on Sobolev orders, see [23].

3.1 Sobolev orders

Lemma 3.1 Let X,Y,Z be Banach spaces, Y C Z so that the relative topol-
ogy of Y inherited from Z 1s coarser than the original topology of Y. If
AeL(X,Z) maps X intoY, then A € L(X,Y).



Proof. Suppose |[u—u,||x — 0 and ||v — Au,|ly — 0. Since the imbedding
of Y into Z is continuous, we have ||v — Auy,||z — 0; thereby v = Au, since
A€ L(X,Z). The claim follows now by the Closed Graph Theorem O

Recall that A € ¥™(T") belongs to L(H*(T"), H*~™(T")) for every s € R.
By the previous lemma, we know even that if A € ¥™(T") maps H?(T") into
H?"(T") for some fixed ¢,r € R, then A € L(H(T"), H? "(T")) (See also
Corollary 2.2 about convolutions).

Theorem 3.1 If A € L(D(T")) is an operator of a finite Sobolev order and
if A maps some H(T") into some HI~"(T"), then A has a Sobolev order
r+¢e for every ¢ > 0. Furthermore, if A € ¥™(T") and r > m — 1, then r is
a Sobolev order of A.

Proof. Fix ¢ > 0, and assume that s < ¢ (the case s > ¢ is totally sym-
metric). Then, by choosing p < s small enough, the interpolation theorems

L(qu,qu) N L(le,Hm) C L([qu,le]g, [H@’Hm]o)

and
[HY%, HPi]y = 095 +(1-0)p;

(here 0 < 6 < 1; see [11, Theorems 5.1 and 7.7]) imply that
Ae L(H (T, H"5(T")).

Now suppose » > m—1. With the aid of the canonical Sobolev isomorphisms
¢¢ (see (6)),and recalling the generalized Leibniz property of commutators
(5), we get

Qos—qA(Pq—s —A= Qos—q[Aa Qoq—s] € \Ilm_l(r]rn)-

On the other hand,
0s—qApg—s H*(T") = @s_AHIT") C @s_(H"(T") = H*"(T").
Thus AH*(T") C H* "(T"). This completes the proof O

3.2 Pseudodifferential orders
Theorem 3.2 If A is a pseudodifferential operator on T*, ¢ > 0 and
|00 a(z,€)| < Cp(1 +[€[)
(where the constants Cg depend on 3 € N ), then
[A80704(2,€)] < Capa(1+ €)1/ 1

(where the constants Cyg, depend on o, 8 € Ny and x € T'). In particular,
if A is a convolution pseudodifferential operator f — k x f with

k(&) < C(1+|enme,
then A € ™ H(T!).

10



Proof. Let A € ¥"(T") for some unknown r € R. Let us define functions
Py TH—=C (B €N, z€T) by

Po(y) =) (020 .4)(w, €)™ (1 + |¢[)™™ .
€

Then

5l rsorsiey = DA+ [ED 1000, )P (L + )Y

3
_ —(1+e) |550A(«’13,§)|>2 o
i () <

i.e. pf belongs to H¥)/2(T'), hence being continuous, as we notice that
H)/2(TY) € C(T). Then define functions pf,, : T* — C by

pgbxa(y) = (eiizﬂy - l)apgbx(y)'

Thereby pf,,, has exactly the same local Sobolev smoothness than pj,, when
y # 0 T At y = 0, the zero of the function y — (e 2™ — 1)* has the
multiplicity of order |a|; this should affect the local Sobolev smoothness at
that point. Indeed, since A € ¥"(T"), we have

(P (€) = g8 [oalz, €)(1+ [¢]) ™ 1] = O(le]" =)

for every a € Ny, so that it follows p,, € C*°(T" \ {0}). Furthermore, the
singularity of pf,,, at y = 0 is less severe as |a| grows; by the Leibniz formula,

o belongs to Clol(T'), because pff, € C°(T'). Since Cl°I(T') C HIel(T?),
we have () (€) = o([€[ 1) as |£] — oo, so that

|[Ag070a(2,6)] < Capa(L + [€))mHH1

O

Integral operators. Hence for a convolution-type pseudodifferential op-
erator we got an estimate for the pseudodifferential order by looking just at
first symbol inequality (with & = 0 = (3). But there are more complicated
operators that allow such an order estimation. For instance, consider integral
operator A given by

(Au)(z) = Alu(y)a(x,y)k(x —y) dy,

where a € C®(T! x T') and k is a distribution on T!; i.e. A is some kind
of a distorted convolution. Such operators arise e.g. from boundary value
problems, and it turns out that A € OpS™(T"), when k € S™(T") (see [19]).

11



But the pseudodifferential order may be lower than that: The symbol o4 has
an asymptotic expansion ([19])

7a(5,6) ~ 3 (@ ala, )= ATR(E),

a>0

where 8y = I and 8\ = (8, — a)d® (Note that the main part of the
expansion is a(z, z)k(€)). The more derivatives of a vanish on the diagonal
of T! x T, the more smoothing A is; in an extreme case, if a vanishes in a
neighbourhood on the diagonal, then A is infinitely smoothing (AD'(T") C

D(TL), or A € Nper T™(TL)).

We gave a rather simple proof for Theorem 3.2; one might hope that un-
der the given assumptions using more sophisticated approach we could verify
that o4 € S™(T!). For a convolution operator, we obtained o4 € S™"!(T?),
but can we get rid of the “additional pseudodifferential order” +1 here? In
the proof presented above this oddity was perhaps caused by the naive ex-
ploitation of the facts C*(T') C H*(T") and H**+'/2*¢(T") ¢ C*(T"). More-
over, in the general case there were z-dependent coefficients Cog,. Could
we eliminate this dependence somehow? Essentially the problem is the fol-
lowing: if f € H*(R') is a distribution with the support in some fixed
bounded subset of R', and if f € C®°(R \ {0}), does it then follow that
|lpflar @) < Crsl| fllasrr), where p(z) = x and 7 = s + 17 At least the role
of € > 0 in Theorem 3.2 is justified by the following example.

Pathological example (by Gennadi Vainikko): Let o(x,£) = sin([In |¢]}?)
(when €| > 1, € € R; the definition of ¢ for |{] < 1 is not interesting). Notice
that we can give the symbol inequalities (1) on torus also for “interpolated
periodic symbols” o4 : R* x R! — C, by replacing the partial difference
operators A¢ by the common partial differential operators 9g (see [19] or
[22]). Now o is independent of z, and it is bounded, resulting in that the
corresponding operator maps H*(T!) into itself for every s € R. On the
other hand, o defines a periodic pseudodifferential operator of degree & for
any € > 0, as it is easily verified — however, o & S°(T"), because

Beo (. £) = 2m£ﬂcos<un P, (el > ).

This example above displays essentially “the worst kind” phenomenon
known to us. So let us finally guess:

Conjecture. If A is a periodic pseudodifferential operator on T", ¢ > 0
and
joa(z, &) < C(A+[E)™,

then o4 € S™(T").

12



4 Coda

We have examined various questions swirling around continuity and orders of
pseudodifferential operators. Undoubtedly, the central theme is the represen-
tation of a pseudodifferential operator on a group as a smooth convolution-
operator-valued mapping defined on the group. We have successfully trans-
lated the traditional symbol (function) inequalities to the corresponding sym-
bol (operator) norm inequalities between Sobolev spaces.

Why we have introduced operator symbols, which at the first sight seem
to be just as useful as the traditional symbol functions? What is the new
catch? The groups in our study have been commutative (tori T"); But there
is no essential restriction in generalizing and altering these operator symbol
methods to the setting of non-commutative harmonic analysis on groups and
homogeneous spaces, while attempts to introduce global symbol functions
are usually prevented by the lack of commutativity. Indeed, these matters
are studied in the sequel.

Another topic in this paper has been the problems about Sobolev and
pseudodifferential orders. >From the computation point of view, not to
speak of pure theoretical interest, effective methods for recognizing pseudod-
ifferential operators and determining their orders would be nice. Possible
ramifications of Theorem 3.2 would be important.

5 Non-commutative Fourier transform

For a general treatment on harmonic analysis, see [8]. Let 7z, and 7 be the
left and right regular representations of a compact Lie group, respectively.
Let D(G) be the set C*°(G) equipped with the standard test function Fréchet
space topology. We call w1, (f) and wg(f) the left and right Fourier transforms
of a test function f € D(G), respectively; these operators are defined by
7(f)g = f x g and 7r(f)g = g * f, and they both belong to L(L?(G)) and
L(D(G)). In general, if 7 : G — L(D(G)) (with some necessary additional
assumptions), we formally define

r(f) = / f(2)7(z) dp(z) (10)

(ie. (7(f)g)(y) = [, f(@)(n(x)g)(y) duc(z)); this is interpreted as a vector-
valued integral (in appropriate spaces, depending on 7). We call 7.(f) the

Fourier transform of f (see [15]). Recall that w,(f *x g) = 7 (f)7L(9).
The Fourier transform is an injective mapping, and its inverse transform

is defined by

f(x) =Tr (Wz(x)WL(f)WG(P)) ; (11)
where 7} () = 71 (x)* and Wg(p) is the Plancherel weight of the group (and
Tr can be considered as some kind of an integral over the group dual). >From

now on, let us use the standard decomposition of 7y into a direct sum of
irreducible unitary representations e (§ € G) of dimension d(§), so that
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{piLei; | € € G, 1 < i,j < d(€)} is an orthogonal basis of L2(G); in this
basis, We(p) is a diagonal operator, more precisely We(p)mreij = d(§)Tress
Let us define the space ‘D(G’) of test operators by

D(G) = {m.(f) | f € D(&)};

this set is given the Fréchet topology induced from the test functions by the
Fourier transform.

Let D'(G) = L(D(G),C) be the distribution space, equipped with the
weak*-topology; we denote (f, u)g = u(f), when f is a test function and u is
a distribution. Then D(G) is considered as a subspace of D'(G), embedded
by

fgc—/f v) dyg(z).

Notice that (f,g)¢ = (f % g)(e), where f = f o, o(x) = 2. Similarly, for
operators A, B € D(G) we define

<A, B>G == TI‘(ABWG(p)),
so that we obtain the Parseval formula

(f9)a = (mp(f);72(9)) ¢

This allows us to extend the dual brackets (:,:)s and the Fourier transform
by the generalized Parseval formula

(mp(f)sme(w))e = (frwe (12)

(also mp(u)f = u * f; in the chosen coordinates, 7z (u) (u € D'(G)) is of the
same block diagonal form as the representation 7rL) we denote the set of the
“non-commutative distributions” by

D'(G) = m(D'(G)).

Again, the Fourier transform is injective bringing in the canonical topology
from the space D'(G). Notice that usually 75 (f) # m.(f)* (unless f is real-
valued), but 77 (f) = m.(f)" always. In fact, 77 (f) = mr(f) and 7 (f)* =
7o), where £(z) = F(a1).

The Fourier transform induces operators: Let A € L(D(G)). Then the
adjoint A’ € L(D'(QG)) is defined by

<Af, U>G = <f, AIU>G.

Similarly B € L(D'(G)) defines B' € L(D(G)), and A” = A, B" = B. We
define the operators 7, (A), 7} (A) € L(D(G)) by

mp(A)r(u) = mp(Au), wp(A)rg(u) = 71 (Au)

sothat 7 (A) = w3 (A"), 71 (A) = m(A") € L(D'(G)). Notice, that n(A)rr(B) =
71(B)mr(A), it AB = BA.
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We denote L*(G) = n(L*(G)) with the obvious Hilbert space structure.
Recall that 7 (f)mr(g) = 7 (f * g).

Thus we have "Fourier transforms" (related to the symmetries) on three
levels: First, the regular representation 7y : G — L(L*(G)) embeds the
group into an operator algebra; Second, the regular representation induces a

N

transform of functions, 7y : D(G) — D(G); Third, this induces the transform
of operators acting on functions, 7, : L(D(G)) — L(D(G)). These induced
Fourier transforms were also extended by duality.

The Laplacian A of G is an unbounded diagonal (translation invariant)
operator with respect to the regular representation; the positive diagonal

operator Wg s defined by

Was)(mr(2)) = (I = 8)?mp)(x)

(alternatively o(;_ayi/2(2) = Wes); see below) is called the Sobolev weight
of the group. Then a Sobolev space H*(G) is the completion of the test
functions with respect to the inner product

(f, 9)ms@) = T (Waieymo(f)me(9) Wap)) -

Then L*(G) = H*(G), D(G) = Nyer H*(G) and D'(G) = User H*(G) (as sets
without topology). This definition of the Sobolev spaces coincides with the
common (local) differential geometric definition.

5.1 Generalized Taylor polynomials

Remark. Notice that a left (right) convolution f +— g* f (f — f *g) is
a right- (left-) translation invariant operator. Contradicting the traditions,
we shall define the Lie algebra of a Lie group to be the set of right-invariant
vector fields (instead left-invariant ones; this is just a matter of convenience).

We identify the Lie algebra of G also with the set of the right-invariant
differential operators on GG, and also with R" and its canonical inner product
space structure. Let U be a neighbourhood of e € G such that U still belongs
to a chart neighbourhood and so that the exponential mapping has an inverse
function on U. Let {0; = &;}}_; be such a basis of the Lie algebra that the
functions py € C*(G) given on U by pi(exp(§)) = &-& satisfy (O;px)(e) =
(a complex alternative for p;, could be given by pi(exp(§)) = i mei¢ % — 1).
We define ¢, € C®(G) (a € Nj) by

da(x) = p1()®* -+ pp(z)n,

and accordingly
D, =0M"---0;"

Then, as an asymptotic expansion (Taylor-Lie series [14])

F@) ~ 3 —aa(@) (Daf)(e)
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for f € C*°(G), when z is near e. Notice the geometry involved in the defini-
tion of g,. Via non-commutative Fourier transform we define “quasidifference
operators” Q% by

Q%(mr(u)) = mr(My,u),

where M, stands for the multiplication operator u — ¢u; that is, Q¢ =
ﬂ—L(MQQ)'

Remark. Notice the distinction between the quasidifferences Q¢ and the
operators Q° (inspired by commutators) presented in the commutative anal-
ysis part of this paper.

6 Pseudodifferential operators

Symbol. If A€ L(D(G)), we can define 04(z) = mp(x)(An})(z), where A
operates on the canonical coordinate functions mp¢;i(x) of 77, i.e. (An})(x) =
((ATLgji)(x))gij, where w1 (x) = (mLeij(7))eij- Then

(Af)(z) = Tr ((Amp) ()7L () Wop)) = Tr (1 (2)oa(z)mL(F)Wer)) - (13)

This o4 is called the symbol of A. The operator ¥ 4(z) with the symbol
05 4(2)(y) = oa(x) is then right-invariant, obtained from A by “freezing co-
efficients”; we call ¥4 the operator symbol of A (we also denote Y 4(z) =
Op(ca(x)) (z € G fixed), whereas A = Op(c,4)).

Remark. Notice that the traditional symbol of a pseudodifferential oper-
ator on R® or T™ is just a “1 x 1-dimensional Jordan block” of the symbol
just defined.

Remark. In the sequel (contrary to the commutative harmonic analysis
in the beginning of this paper), we define partial differential operators 92
acting on the operator-valued functions by Banach space limits of difference
quotients (see Appendix) instead of definition by commutators.

Amplitudes and symbol classes. We say that a symbol o4 : G — D(G)
is of order m € R, if the symbol inequalities

| Amagtell < Cap (14)
hold uniformly in z € G, where
O A pgna (Y) = ngngaafadUajl °...0ads, oa(z);
here 1 < jy,...,Jr < nand adxY = [X,Y]. The class of such operators A is

denoted by OpX™(G), and the corresponding class of symbols is denoted by
S(G).
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If merely
[[Amagoz|| < Cago (15)

(i.e. the inequalities (14) with k = 0 fixed) hold, we write o4 € ¥™(G) and
A€ Opi”ﬁ(G). (Apparently ¥™(G) C £™(G). Notice that if G = T", then
Ym(G) =X™(G).)

In the similar manner one defines the orders of amplitudes a : G x G —
L(D'(G)) and the spaces A™(G) and A™(G); i.e. a € A™(G), if it is of the
block diagonal form (see the remark above) and if the amplitude inequalities

| Amasykeyllez2(c) < Capyks (16)
hold uniformly in z,y € G, where

ga

megaay (2) = W'Gogngaafa;ad% 0...0 ad,,ajk a(z,y)

uniformly in x,y € G. Then

(Op(a)u)(z) = Tr (wz@) [ e i@ duc;(y)WG(P)) (17)

defines formally a linear operator on D(G). Then the symbol oop(a) of Op(a)
is an amplitude of order m (see below). (Notice that the symbol of an
operator is unique).

How does one practically calculate the norm of the convolution opera-
tor Amapke in the symbol inequalities? Just like in the commutative case!
This time, however, we take the supremum of the norms of the (finite-
dimensional!) blocks of the symbol (just as we evaluated the supremum
of the absolute values of k(¢) in the torus case above).

Differential operators. Of course, partial differential operators of order
m belong to OpX™(G). But there are others, as we shall see...

Remark: Taylor [17] studies a related operator-valued function y — A(y) =
T (y) AT (y)); then 04(,)(2) = oa(y™'2).

Schwartz kernel. Let a be an amplitude. Then the Schwartz kernel Kop(,)
of Op(a) is formally the distribution

Kop(a)(2,y) = Tr (77 (x)a(z, y)7L(y)Wep)) ,
as one easily calculates. Then Kiaa,)(7,y) = (6(y) — ¢(x))Ka(z,y) and

Kix, a(z,y) = (Xo — Xy)Ka(z,y), where ¢ € C*(G) and X is a vector
field.

Commutators. Some useful commutator formulae are [A, BC] = B[A, C|+
[A, B]C and [A*, B] = —[A, B*]*.
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Quasidifferences. Let a be an amplitude. Then

a(w.y) ~ 3 ~aalyr oja(e, )l (18)

a>0

formally. Let b be an amplitude and let ¢ € C*°(G). Suppose that b(z,y) =
7} (Yzy), where ¢,, € H*(G) with s > n/2 for every z,y € G. By a
"generalized integration by parts", we obtain formally

(Op(p(yz~H)b) f)(z) = /f ,Y)B(ye N (y)my () Wep)) dpa(y)

= [ @000 7 ) @) dcly)

= [ @00 0w ) dialy)

- / f 'l)ba: ya5 ac—1>G d,uG(y)

- / F ) ey Mybyas) dn(v)

— | FO M bin o) dicls)

= /Gf(y)<7TZ(M¢)(b(x,y)),WL(yx1)>é duc(y)

= [ 10T (R0 Ol )0 @) W) dua(s)
(Above 6y,-1 € H™*(G) (—s < —n/2) denotes the Dirac delta distribution
at the point yz=!' € G.) Hence the amplitudes (z,y) — ¢(y~'z)b(z,y)
and (z,y) — 7} (My)b(z,y) define the same operator. Notice that 7 (My)
belongs to L(D(G)), since My € L(D(G)). Furthermore, the restriction

s > n/2 above can be removed.

Asymptotic expansion for amplitudes. Let us define Q* = 7 (M,,).
Then formally

~ 30 @ (Oa(e,)l-s). (19)

a>0

Notice that this expansion has no longer dependence on the variable y; hence
it is a formal asymptotic expansion of the symbol & — gop)(2).
Asymptotic expansion for adjoint. Using the formula

[ AN@3E) dueta) = [ £ duoo)

we formally obtain A* = Op(b), b(z,y) = a(y, z)*, when A = Op(a). Espe-
cially, b(z,y) = oa(y)* is an amplitude of A*. A question arises: is this an
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amplitude of order m € R, if o4 € £™(G)? Indeed, it is: there is no doubt
about the behaviour under differentiations, and the only problems might
occur with quasidifferences. But if we define

Q" = n(Mg,),

we get .
Q*(0a(y)") = (@°(04v)))

In the amplitude inequalities it clearly makes no difference if we replace Q*
by Q% (recall that §(z) = ¢g(z~1)). Hence b € A™(G). Using the asymptotic
expansion formula we thus obtain

oae(x) ~ 3 1@ (@oale)). (20)

a>0

Asymptotic expansion for composition. Since

(A7) ()1 (y) = (me () (AT ())" = (mW) (A7) (Y)" = oa- ()",

we obtain
BAN@) = T (xi@eon(e) [ (ANWm) duc) W
= T (n@onte) [ ST diclv)Woin))
- T (wz<x>oB<x> / aA*(y)*f(y)m(y)czmwwa(p));

hence we have BA = Op(c) with ¢(z,y) = op(x)oa+(y)*, so that combining
this with the previous asymptotic expansions we get an asymptotic expan-
sion for opa(z), provided that a pointwise product of amplitudes of orders
my, my € R is an amplitude of order m; + m,. Since traditional derivatives
obey the familiar Leibniz formula, this problem amounts to whether there is
a Leibniz-like property for quasidifferences:

Generalized Leibniz formula for quasidifferences. On Z = T the
generalized Leibniz formula for the forward difference operator is

A

(A(F9)(€) = (AF)(©)a(€) + FE(AG)(E) + (AF)(E)(AG)(E),

and this is the Fourier transform of the function xz +— (e_;(z) — 1)(f * g)(z),
where e_;(z) = e "*™. For a non-commutative group, it would be nice to
find analogous functions e € C*(G) for which e(y)e(y 'z) = e(z) globally
(i.e. a one-dimensional representation of the group). However, it is enough
to require the Leibniz formula to be only approximative: Indeed, let |a| =1
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and e, = Go = ga 0t € C®(G). Let a(z,y) = mr(aszy) and b(z,y) = 71 (bay)
With agy, by € D'(G) N C(G \ {e}). Then (Notice that w7 (M) = mr(Mj))

Q%(a(z,y)b(x, y)) = mr(€a(aay * buy)).

Furthermore,

€a(2)(aay * bzy)(2) = ((€alay) * byy)(2) + (azy * (€abay))(2)
+ /G (ea(z) — ea(zw™) — ea(w)) azy (2w )byy(w) dpc(w);

here we have to study the integral operator R,, (“remainder”) given by

(Ruy )2 / £ ()20 (2 W)asy (20 ducw),

where a,(z, w) = e4(2) — ea(zw ™) — ex(w), a4 € C®(G x G), a4(2,2) =0
(vanishing on the diagonal) (we shall encounter this type of operators in the
sequel, too). Now

R, (2) ~ ) ﬂ,(aﬂaa(z w)lw—:Qa(, y),

B>0

so that

(Raybay)(z) ~ Tr (W*( ) ﬂ,(aﬁaa(z w))w=:(Q"a(z, y))b(x,y)WG(p)> :

B8>0

Let us define ca5(2) = (0224 (2, w))|w=z. Then

Q%(a(z,y)b(z,y)) ~ (Q% ( )) (z,9) + a(z,y)(Q%b(z,y))
+ Z ﬂ' Ca,g Qﬂa(x’y))b(x’y))

B8>0

We call this the Leibniz formula for the quasidifference Q* (|a| = 1).

Sobolev continuity. If o4 € £~™(G) with “m € R small enough”, then
K4 € C(G x G). Then it follows that both A and A* are compact operators
on L*(G). This would yield inductively the L*(G)-continuity (and compact-
ness) of any A € OpX °(G), ¢ > 0: Indeed, then 04,04 € ¥ °(G), so
that A*A € OpX~2%(G). Noticing that ||Af||%3( = (A*Af, e < ||A*
Allz(z2(@ 1 f172(c) we reach a conclusion: OpX~¢(G) C L(H*(G )) (and the
operators here are compact). More generally, OpE™¢(G) C L(H*(G), H*~™(Q))
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Subalgebra. Notice that if

(Afxx%=/£funa@awk@w'5duG@%

where a € C*°(G x G) and k € D'(G) (with sing supp(k) C {e}), then

7a(x) ~ 3 - (Oa(z, )= Qs (k).

a>0

Let A € UperOpE™(G) (or UperOpE™(G)) have the symbol of the form

oa(@) ~ Y da(x)ka

a>0

where ¢, € C*(G), and Op(k,) is a convolution operator (for every a € Ny ).
This kind of operators form an involutive subalgebra Op™ of UpmcrOpE™(G)
(or subalgebra Op"" of Umer OpX™(G), respectively), as it is easily verified.

If A is elliptic and belongs to Op™ (Opm), then its parametrix belongs to
Op™ (Op™). Furthermore, Op™ C L(H*(G), H*=™(G)).

Ellipticity. A symbol o4 € Y™(G) (¥™(G)) is called an elliptic sym-
bol of order m, if z + o4,p(x) ! is a symbol of order —m for some in-
finitely smoothing operator P. Then there exists o5 € % ™(G) such that
opa(x) ~ I ~ oup(z), and from this (using the asymptotic expansion for
operator composition) we obtain an asymptotic expansion for op; B is called
a parametrix of A.

Pseudolocality. Operators in OpX™(G) are pseudolocal. This can be
proved just like the corresponding theorem in the commutative case (see

[18]).

Pseudodifferential operators. Now if ¢ € C*(G) and |3]| = 1, we have
[My,OpE™(G)] € OpEZ™ (@) and [92,0pE™(G)] C OpE™(G). By the
Sobolev continuity result above, we get OpX™(G) C ¥™*¢(G) for every ¢ > 0.
Moreover, we get Op™ C ¥™(G).

7 Appendix:
Operator-valued calculus on groups

Let X be a topological vector space. Mapping F' : R — X is said to be
differentiable at the point 0 € R, if the limit

dF 1
= (0) = F'(0) = lim o~ (F(h) — F(0))
x
exists. If such a limit exists in every point x € R and F’ : R — X so defined
is a continuous function, we call F' to be continuously differentiable, F' €
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C'(R, X). In the apparent manner one defines partial differential operators
92 and classes C*(M, X) (k € Ny U{co}), where M is a C*®-manifold.

Theorem 7.1 (Leibniz formula for operator-valued functions) Let X
be a Banach space and let F,G € C*(R,L(X)). Then

d(FQG)
dx

(x) = F(2)G'(z) + F'(z)G(x).
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