Helsinki University of Technology Institute of Mathematics Research Reports
Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 1999 A4le

ON THE ITERATIVE SOLUTION OF NONNORMAL
PROBLEMS

Saara Hyvonen

Dissertation for the Degree of Doctor of Technology to be presented with due permission for public
examination and debate in Auditorium N at Helsinki University of Technology (Espoo, Finland) on the
27th of August, at 12 o’clock noon.

Helsinki University of Technology
Department of Engineering Physics and Mathematics
Institute of Mathematics



Saara Hyvonen: On the Iterative Solution of Nonnormal Problems; Helsinki
University of Technology Institute of Mathematics Research Reports A416
(1999).

Abstract: Iterative methods are widely used to solve systems of linear equa-
tions. The behavior of Krylov subspace methods is relatively well understood
in the case of normal operators. Here we summarize the results of papers
[L II, III, 1V, V, VI, in which tools to gain information on the convergence
behavior of iterations for nonnormal operators are presented and tested in
practice for a set of examples.

AMS subject classifications: 47A10, 65F10.

Keywords: Krylov methods, meromorphic functions, resolvent operator,
Picard-Lindeldf iteration.

ISBN 951-22-4607-4
ISSN 0784-3143
Libella Painopalvelu Oy, Espoo, 1999

Helsinki University of Technology

Department of Engineering Physics and Mathematics
Institute of Mathematics

P.O. Box 1100, 02015 HUT, Finland

email: math@hut.fi

downloadables: http://www.math.hut.fi/

author’s email: Saara. Hyvonen@hut.fi



Acknowledgements

I wish to thank all people who contributed to the existence of this work.
First of all, I am grateful to Professor Olavi Nevanlinna, who introduced me
to the interesting topic of this thesis and whose advice and support have
been most appreciated. I wish to thank Professor Timo Eirola and Professor
Martin Hanke-Bourgeois for reviewing the manuscript offering their valuable
comments.

This thesis is based on work which has been carried out in a number of places.
Therefore, I wish to thank people at the Institute of Mathematics at Helsinki
University of Technology, the Seminar fiir Angewandte Mathematik at ETH,
Ziirich and the Mittag-Leffler Institute for offering an inspiring atmosphere
for research. Furthermore, I wish to thank the Computer Science Department
at the University of Chicago for providing a place to put the final touches on
this work.

I would also like to thank the Academy of Finland an the Mittag-Leffler
Institute for financial support.

Finally, T would like to thank my family and friends for — just being there.
Special thanks are due to my husband Harri Hakula for his unfaltering sup-
port and encouragement.

Helsinki, July 1999

Saara Hyvonen



This thesis consists of this overview and the following papers.

Publications

[I] S. Hyvonen, Convergence of the Arnoldi method when applied to the
Picard-Lindel6f iteration operator, Journal of computational and ap-
plied mathematics 87 (1997), 303-320.

[II] S. Hyvonen, Polynomial Acceleration of the Picard-Lindelof Iteration,
IMA Journal of Numerical Analysis 18(4) (1998), 519-543.

[III] S. Hyvonen, Numerical computation of the Nevanlinna characteristic
function, Institut Mittag-Leffler, Report 17, 1997/98.

[IV] S. Hyvonen, Case studies on growth properties of meromorphic resol-
vents, Institut Mittag-Leffler, Report 18, 1997/98.

[V] S. Hyvonen, Growth of resolvents of certain infinite matrices, Helsinki
University of Technology, Institute of Mathematics, Research Reports
A402 (1998).

[VI] S. Hyvonen and O. Nevanlinna, Robust bounds for Krylov methods,
Helsinki University of Technology, Institute of Mathematics, Research
Reports A403 (1998).



1 Introduction

In scientific computing one frequently encounters the problem of solving a
linear system of the form
Az =b.

When the dimension of the problem is small, it is natural to solve this prob-
lem using direct methods, such as Gaussian elimination. As the size of the
problem grows, the computing time and the storage requirements may grow
enough to make this approach unpractical. Now, the problems that arise in
practice may be arbitrarily large. However, they often have special proper-
ties, such as sparseness, that can only partly be exploited by direct methods.
An alternative approach to solve linear systems is to use iterative methods.

Some of the first iterative methods to solve large linear systems were relaxa-
tion-type methods, such as SOR [39], [40]. These methods modify the com-
ponents of a given initial vector one (or a few) at a time according to some
rule, until convergence is reached. One of the main difficulties here is choos-
ing a good relaxation parameter in the general case. Today these methods
are mainly used in some specific applications and in preconditioning [31].

Today most practical methods use matrix-vector multiplication, as this can
be obtained relatively cheaply by taking advantage of sparseness (and other
special properties of the system). Many such iterative methods have been in-
troduced in the past years. The conjugate gradient method (CG), introduced
by Hestens and Stiefel in 1952 [10] can be used to solve Hermitian positive
definite linear systems. Though CG was introduced already in the 1950’s,
it was not properly appreciated until in the 1970’s, when key developements
were made in making preconditioned algorithms practical [29], [2]. For more
information on the history of CG see [5].

A number of CG-type methods have been proposed for solving non-Hermitian
systems, the most widely used one of which is the general minimal residual
method (GMRES), due to Saad and Schultz [33]. GMRES generates the
optimal solution in the sense, that it finds in the Krylov subspace generated
from a given initial vector the approximation for which the 2-norm of the
residual is minimal. However, the computing time and the storage require-
ments grow per iteration step, making this algorithm impractical in the long
run. To avoid this problem we can restart the algorithm regularly, but this
leads to slower convergence. Other non-Hermitian iterative methods have
been introduced, such as BiCG, QMR, CGS, BiCGSTAB etc. These meth-
ods usually generate nearly optimal solutions and have (roughly) constant
work and storage requirements per iteration step. However, they may fail.
This problem can be avoided by look-ahead techniques, but then work and
storage requirements are no longer constant per iteration step.

The behavior of iterative methods in the Hermitian case is relatively well
understood via tools like spectral decomposition. This is not the case for
non-Hermitian problems, especially in the case of nonnormal A. That is, as



long as A is normal, the decay of the error can be related to an approxima-
tion problem on the spectrum, but how to describe the decay of the error
of the iteration per iteration step in terms of properties of A has been an
open question. Understanding this would enable us to design better precon-
ditioners, as we would know exactly what properties of A are desirable to
guarantee fast convergence.

In practice the problems to be solved are always finite dimensional, and most
literature dealing with solving linear systems assume A to be a matrix. How-
ever, the number of iteration steps we can afford to take is small compared
to the dimension of the problem, which may be arbitrarily large. So though
the iteration always terminates in a number of steps less or equal to the di-
mension of the problem, we do not witness this in practice, since we cannot
afford take so many iteration steps (unless the problem is small enough to
be efficiently solved e.g. using direct solvers). Therefore it is reasonable to
discuss the more general case where A is a bounded linear operator in a Ba-
nach (or Hilbert) space. This way we get a better picture of the phenomena
that occur during the iteration process. In particular we get a clear picture
of the asymptotic behavior of the iteration error, as termination at the point
where the iteration step equals the dimension of the problem does not occur.

In this discussion we assume exact arithmetic. For effects of finite precision
arithmetic see e.g. [6] and references therein.

2 Convergence of Krylov methods

Assume A is a bounded linear operator in a Banach space B such that the
spectrum of A has k distinct limit points Aq,...,A\; # 0. Consider the
problem

Define
p() =[N = ) = Aa(\) +e,

i=1

where ¢ = (—1)*[]¥_, A and ¢()\) = $(p(A) — ¢). Then
p(A)z = q(A)Az + cx = q(A)b + cz,

from which we get the fixed point formulation

v = (p(A)x — q(A)) = Az +,

where A = Ip(A) and b= —1g(A)b. Note that the spectrum of A has the
origin as its only limit point. From now on we consider a fixed point problem
of the form

x = Ax + b,



where the spectrum of A has the only limit point at the origin.

The simplest iterative scheme to solve this is the method of successive ap-
proximations

"= Az" +b, n=12,.. (1)

Given a vector 2™ € B we denote by d" the associated residual

d" .= Az" — 2" +b.
In the method of successive approximations the residual satisfies d® = z"*! —
x". The error e" := x — 2™ and the residual are related:

(1- A)e" = d".

So (if (1 — A) has a bounded inverse) controlling the residual controls the
error up to an unknown constant ||(1— A)~'||. It is easy to see that the error
on the n* iteration step is

"=z —a2"=Alx—2" ) = A" = ... = A"

It is reasonable to ask whether one can find a better candidate for a solution
in the affine space generated by the iterates x™. This approach leads to
Krylov subspace methods. Assume a given initial vector z°, compute the
initial residual d° and from that the Krylov sequence {A7d°}?~;. Now search

a solution candidate from the affine space z° + span{A’d° ;?;01:

n—1
" =2 + nyjnAde.

Jj=0

Define the polynomials g,_;()\) = Z;:Ol Yin N and pp(A) = 1= (1=X)gn_1(N).
Now

d* = pp(A)d°,
xn = pn(A)xO + qnfl(A)b;
noo_ pn(A)eO

The method of successive approximations can be thought of as a special of
the above, with p,(A\) = A™.

The norm of the error satisfies

le™]l = llpa(A)e’ll < Ipa(A)l[l€]]

so studying the convergence of Krylov methods leads to the following ques-
tion: given a sequence of polynomials {p,}, with degp, = n and p,(1) = 1,
how does ||p,(A)| decay?



In particular, the GMRES algorithm minimizes the norm of the residual on
each step. In other words, the residual d" satisfies

ni| _ : 0
ld*]] = min |[pn(A)d7])

where P, is the set of all polynomials p, such that degp, = n and p,(1) = 1.
The worst-case behavior of GMRES is given by

n|| . 0 :
"] = max min [lpu(A)d"]| < min [lpa(A)].

The problems of minimizing ||p,(A4)d°|| and minimizing ||p,(A)|| over P,
have been studied e.g. in [9], [22]. For normal matrices these are equal and
numerical experiments have shown that they are equal for a wide variety
of matrices and values of n [6, p. 58|. Recently it has been shown that
Max||go||—1 Miny, cp, |[Pn(A)d°|| and min,, cp, [|p,(A)|| may differ [36], [3], so
the bound given by min, cp, ||pn(A)|| is not always sharp. In any case, know-
ing how min,, cp, ||pn(A)|| decays gives us an upper limit for the convergence
of the residual (an therefore the error) of GMRES.

If p,(A) satisfies
Tew

Ipnsn(4)] < (2

for n > 0, we say that p,(A) admits a superlinear bound of order w and
type 7 with delay N and constant C. If a Krylov method generates the
polynomials p,, which admit a superlinear bound of order w and type 7, we
say that the error of the method decays with at most order w and type .

The smaller the order and type with which the error decays are, the faster
the iteration converges. Decreasing the order will lead to a more significant
speedup than decreasing the type.

Normal operators. Let A be a bounded, normal operator in a Hilbert
space H and let p, be a polynomial. Then

lpn(A)] = sup |pn(A)].
A€o (A)

This follows from the Spectral theorem for normal operators, see e.g. [30, re-
mark 12.24; pp. 309-310|. For matrices this follows easily from the fact that
all normal matrices are unitarily similar to a diagonal matrix, the diagonal
elements of which are the eigenvalues. Thus, for normal operators the con-
vergence rate of GMRES is reduced to a problem in approximation theory,
namely that of approximating zero on the spectrum with a polynomial. This
problem is far from simple and no easy solutions to it exist. However, an intu-
itive idea on ’good’ and 'bad’ eigenvalue distributions still holds: eigenvalues
clustered around a single point far from 1 are good, whereas eigenvalues
scattered around 1 are bad, as by the maximum principle it is not possible
to have a polynomial satisfying p,(1) = 1 and p,(z) < 1 for all z on some
closed curve around 1 [6, pp. 51, 55|. For some results on the convergence



of GMRES for diagonalizable matrices see [31, pp. 194-197|. The conver-
gence estimate given is valid not only for normal matrices, but as it involves
the condition number of the transformation matrix, the bound is good only
when this is of moderate size, which means that the matrix is not too far
from being normal. Note that to get estimates for the convergence of GM-
RES for normal operators we need to know the spectrum. The problem of
determining the spectrum is discussed shortly in Section 4.

Quasinilpotent operators. A class of operators very different from normal
operators discussed above, the behavior of which nevertheless is also quite
well understood, is provided by quasinilpotent operators, that is operators for
which the spectral radius vanishes: p(A) = 0. For a quasinilpotent operator
the resolvent (1 — 2A)~! is always an entire function in z. If the maximum
modulus of the resolvent

My (r, (1 — 2zA) 1) :=sup||(1 — zA) !

z=r

satisfies for some 0 < w < o0 and 0 < 7 < 0
Moo (r, (1 — zA)_l) < Ce™,

then [22] for n > 1

. n Tew
min |p,(4)]| < [|A™] < C(

Pn€Pn n

)= (2)

This in fact gives a bound for the error of the method of successive approxi-
mations, an therefore one also for GMRES, though naturally this bound for
the error of GMRES is not sharp. Just how large a gap is there between the
decay of min, cp, ||pn(A)|| and that of ||A"| is investigated for the Picard-
Lindelof iteration operator (see Section 3) in [II] and for the integral operator
and its powers (again see Section 3) in [IV].

Note that we frequently write the resolvent as (1—2A4) ! instead of (A—A) L.
We do this to avoid the inconvenience of having to deal with functions of %
instead of z. Actually,

G- A =ta-tay o a e
A A
where z = % Here and later we use tools from function theory to ana-
lyze the growth of the resolvent. As entire (or later meromorphic) functions
2(1—2zA) !t and (1 — 2A4)! grow with the same speed, it suffices to look at
the latter, which we call here the resolvent, though strictly speaking we are
missing a 2.

Thus, when A is normal or quasinilpotent, the behavior of GMRES is rel-
atively well understood. But what about nonnormal operators in general?
What is known is that the spectrum is not the answer in this case. It has been
demonstrated [7] that any nonincreasing curve represents a plot of residual



norm versus iteration step for the GMRES method applied to some prob-
lem; moreover, the problem can be chosen to have any eigenvalues. One
approach to estimating ||p,(A)||, suggested by Trefethen [34], [35], is using
the pseudospectrum. Let v be a curve enclosing the spectrum of A. Then

1
27

pa(A4) / pa() () — A)-1d

Ion(A)] < 52 sup ()3 = )71

where [(7) is the length of the curve . Consider the curve 7, on which

(A=A ="

Then 1)

Ve
n(A)] < n(A)]. 3
lpn (A < 5= sup ey (3)

This implies that the error of GMRES satisfies for any ¢
1(ve) .
el < 0 it sup fp (W) e
TE Pn AEve

Here 7, is the boundary of the e-pseudospectrum of A:
_ 1
A=A IO- 4z 23

Note that the bound (3) is not sharp, for replacing || [, pn(A)(A — A)7'dA|

by 1(7:) supye, [|Pn(A)(A — A)7'|| may lead to a significant overestimation.
For some problems a careful choice of € yields a good estimate of the actual
error of GMRES, while for others no choice of ¢ leads to a realistic error
estimate [8].

A different approach to estimating ||p,(A)||, which is also based on looking
at the size of the resolvent, is provided by viewing the resolvent as a mero-
morphic function, and applying tools from function theory to measure the
size of the resolvent. Remember, that an operator valued function F'(z) is
called meromorphic for |z| < R, where 0 < R < oo is fixed, if around each
2o in |2z9| < R it has a representation of the form

F(z)= ) Fi(z—2)". (4)

k=—nh

Here F} is a bounded linear operator in H and F_j is nontrivial. If —h < 0,
then F' has a pole at zy of order h, otherwise F' is analytic at z,. Here
F(z) = (1 — 2A)71, so the poles of F are the eigenvalues of A. Note that
bounded linear operators with resolvents meromorphic for |z| < oo include,
but are not restricted to, compact operators.

10



Rolf Nevanlinna [27], [28], introduced in 1925 a characteristic function T'(r, f)
to measure the growth of meromorphic functions. This can be generalized to
operator valued functions. The obvious way is to replace the absolute value

by the norm of the operator valued function. This leads to a generalization
denoted here by T (r, F) [19], [20], [23], [VI], defined as follows:

Definition 1. Let F(z) be a meromorphic operator valued function as above.

Denote h(zy) := max{h,0} and define
Neo(r, F) 1= _ h(b).

o] <r

Thus ne counts the poles in {z | |z| < r} together with their orders. Fur-
thermore define
"Noo(t, F) — neo (0, F)

Neo(r, F) := / " dt + ne(0, F)logr
0

and . .
Moo (7, F) := 2—/ log™ || F(re™)|de.
T

Finally define
Too(r, F) = Meo(r, F) + Noo(r, F).

We have the following result, which follows from Theorem 17 in [VI] with a
suitable choice of constants. Let A be a bounded linear operator such that
(1 — 2zA)™! is meromorphic in the whole complex plane and for all r > 1

Too(r, (1 — 2A)7Y) < 7%, (5)
Then there exists a sequence of polynomials p; € P; such that for j > we(w)r
|1 - Al Tew,
bj A S n . I wa 6
lp; (Al 0 |1_/\k|( ) (6)

k=1 J

where )\, are the eigenvalues of A ordered decreasingly,

n = ne(2,(1—zA)"),

7 = 2c(w)T(1+€™), (7)

21 +w+v1+w?)(1+V1+w?)
(1-w+vV1I+w)w '

Of course (6) also gives a bound for the decay of the error of GMRES. This
bound is not sharp. First of all, for the sequence p; for which the bound (6)
holds, need not be the sequence of polynomials GMRES generates. Secondly,
the choice of constants in Theorem 17 in [VI] which yields the bound (6) need
not be optimal. Thirdly, though in general it is true for entire operators that
for 6 > 1

clw) =

Too(r, F) < log" M(r, F) < fﬁ—ino(er, F), (8)

11



for some entire operators in fact
Too(r, F) = logt My (r, F),
in which case if
My (r,F) <e™, (9)
then
Too(r, F) < 11%. (10)

(This is in fact true for F' such that F(z) = G(|z|) for some G, see Lemma 1
in [V].) An example of an operator for which (9) and (10) hold is provided
by the resolvent of the weighted shift operator W discussed in [V]. From (2)
we see that in this case

Tew
: Al < o= njw
i ()] < Oy
while (6) gives a much worse estimate
. Tew -
min llpn(A)]] < C’(T)"/‘”, 7 =2c(w)T(1+e™).

This overestimation is due to the fact that the upper limit in (8), which is
used in the proof of Theorem 17 in [VI], is not necessarily sharp. A similar
overestimation occurs whenever the types with which M (r, (1 —24)"!) and
Too(r, (1 — 2zA)™") grow are close.

Even though the bound given by (6) is not sharp, it does show that for
meromorphic resolvents by looking at the growth of resolvent we obtain a
bound for the rate of convergence of GMRES:

Theorem 1. Let A be a bounded linear operator such that (1 — zA)™! is
meromorphic in the whole complex plane and for all r > 1 (5) holds. Then
the error of GMRES decays with at most order w and with at most type T,
where T is as in (7).

In practice Teo(r, F') can be calculated analytically only for fairly simple
problems. A numerical tool for computing T\ (r, F') is introduced in [III].

3 Examples of nonnormal operators

The Picard-Lindelof iteration operator. The Picard-Lindel6f iteration
was originally known as a method for proving the existence and uniqueness of
the solution of an initial value problem satisfying certain continuity assump-
tions. It was rediscovered in the early 1980s for the simulation of electrical
networks [13]. Today the Picard-Lindelf iteration is often referred to as the
waveform relaxation method, and it is used to solve large, stiff systems of
initial value problems. Let A be a d x d-matrix. We want to solve

i+ Ar = f(t), t€[0,T], =(0)+2a°

12



using the iteration scheme based on the splitting A = M — N:
"+ Mz" = Nz" '+ f, 2"(0) = 2°. (11)

Introducing the linear convolution operator
t
Kz(t) = / e MEI Ng(s)ds
0

we can write the iteration (11) in the fixed point form
" = Kz" ! + g, (12)

where g = e Mgl + ["e M(74) f(5)ds. For finite time intervals the iteration
operator IC is quasinilpotent. For infinite time intervals K has a nontriv-
ial spectrum and is therefore no longer quasinilpotent, but it is still non-
selfadjoint. So in both cases K provides a good example of a highly nonnor-
mal operator encountered in practice. The convergence of the iteration (12)
on a finite time interval has been studied in e.g. [17], [18]. Convergence on an
infinite time interval has been studied in [24], [16] with the motivation that
this way we gain information on the rate of convergence which is relevant
also on finite but relatively large time windows. See also [25].

The iteration (11) is in fact of the form (1), so from (2) we know that if

Moo (r, (1= 2K)7") < Ce™, (13)
then ew
1| < C(T)n/w,

which determines the rate of decay of the error of the iteration. In [18] it is
shown that the smallest w and 7 for which (13) holds can be determined from
the graph properties of the decomposition matrices M and N. The question
of polynomial acceleration has been discussed in [II], where we show the
following. Assume w and 7 are the smallest constants for which a bound of
the form (13) holds. Furthermore assume that the decomposition matrices
M and N commute. Then

. Tew ., /q
min |[pa (K)|| < C(—=) /o

o n
where @ = w and if w > 0 then

7—<A<
- <7<
R

So the rates with which ||K"|| and min,, ||p,(KC)|| decay do not differ greatly

in this case. A more promising approach to speeding up the Picard-Lindelof
iteration is convolution based acceleration, see e.g. [14], [15], [38].

13



The Volterra operator V2 and related operators. Another interesting
example of the behavior of nonnormal operators is given by looking at the
integration operator Vz(t) = fot z(s)ds and related operators V¢,

t (t _ S)a—l
Vex(t :/ ——x(s)ds, a >0,
0= [ )
on the interval ¢t € [0,7]. These are quasinilpotent operators. In [IV] we
show that

Myo(r, (1 =2V~ < Ce™

where w = % and 7 = T, while

: a Tew n/w
min [|p, (V)| < C(—)"%,
Pn n

where © = w and if 7 = 4%7'.

In particular V2 is the iteration operator associated with the initial value
problem

u'=u+f, t€][0,T], u(0)=a, u'(0)=0.

Consider the related boundary value problem
u'=u+f, t€[0,T], u(0)=u(T)=0.

The iteration operator H related to this problem is a self-adjoint Fredholm
operator. Moreover, it is a rank-one modification of V2. The operator A4, =
pwH + (1 — pu)V? varies thus from a quasinilpotent operator to a self-adjoint
one as p is varied. Interestingly enough the growth of the resolvent of A, as
a meromorphic function is essentially independent of u [IV].

Other examples of nonnormal operators in separable Hilbert spaces are
discussed in [V].

4 Approximation of the spectrum

We shall now briefly address the question of approximating the spectrum
of a bounded linear operator in a Hilbert space H. General methods for
approximation the spectrum by looking at a sequence of finite dimensional
matrix approximations have been recently considered in a number of papers,
see e.g. [1], [26]. The approach suggested in [26] is based on producing a
basis for a subspace of H by iterating with a fixed vector b € H. More
precisely, one uses the Arnoldi process to generate an orthonormal basis for
the Krylov subspace

K(A,b) = cl span{b, Ab, A%, ...}.

If the subdiagonal of the Hessenberg matrices created by the Arnoldi pro-
cess has a subsequence which tends to zero, then the spectrum of the local

14



operator of A at b is obtained by looking at the resolvents of the Hessenberg
matrices. The local operator of A at b is by definition the restriction of A to
K(A,Db).

In [I] we have asked whether this approach could be used to find the spectrum
of the Picard-Lindel6f iteration operator on an infinite time interval, see
Section 3. From Theorem 1 in [16] we already know that the spectrum of K
is

0(KC) = clUge,>0 0(K(2)),

where

K(2):=(z+ M) 'N.
So our goal is not to find the spectrum of the Picard-Lindel6f iteration oper-
ator, as this is already known. Instead, the Picard-Lindel6f iteration opera-
tor provides once again an interesting example of a non-selfadjoint operator
which we use to examine the approach explained above. The result of [I] is

negative: assumptions under which this approach is guaranteed to work in
[26] do not hold.

For more information on numerical linear algebra techniques for spectral
approximation see [11]| and references therein. The question discussed here is
of course related to eigenvalue problems for matrices. A nice review on this
topic is given in [37]. See also e.g. [32].

5 Summary

The generalization Ty (r, F') of the Nevanlinna characteristic function mea-
sures the growth of the operator valued meromorphic function F'. In partic-
ular it can be used to measure the size of the resolvent operator of a bounded
linear operator A provided that the resolvent is meromorphic. Knowing the
rate of growth of the resolvent gives a bound for the decay of the error of
GMRES as stated in Theorem 1, which follows directly from results given
in [VI]. Examples discussed in [II] and [IV] show that though looking at
the growth of the resolvent may lead to a bound which may be slightly pes-
simistic as far as the type with which the error decays is concerned, the order
with which the error decays can in these examples be read from the growth
of the resolvent. We remind the reader of the fact that the order with which
the error decays tells more about the rate of convergence of the method than
the type, and decreasing the order will lead to more significant speedup than
decreasing the type.

Estimating the growth of the resolvent is therefore an interesting task. This
has been done for a number of examples in [IV] and [V]. In practice comput-
ing Too(r, (1 — 24)7!) analytically is only possible for fairly simple A. A tool
for the numerical computation of Tw(r, (1 — 2A)™') is introduced in [III].

The examples discussed in [IV] and [V] show that even in the case of non-
normal operators finding the spectrum is often of interest when determining

15



the growth of the resolvent. This problem is addressed in [I] for the Picard-
Lindelof iteration operator.
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Remarks and corrections to papers [I]-[VI]

Paper 1

p. 303,

row 4 from the bottom: "by looking at those of" should read "by looking
at the resolvents of"

p. 307, row 8 from the bottom: "is obtained from those of" should read "is
obtained by looking at the norms of the resolvents of"

p. 307, row 6 from the bottom: "Arnoldi process a simple" should read "Arnoldi
process in a simple"

p- 309, row 3-5 should read: "at the resolvents of the Hessenberg matrices, as
the assumptions of Theorem 4 do not hold. We have o(h,) = {—1}
while X((hn))nen) = o(K) = {A: |[A+1] <1}, as is demonstrated in
the next section."

p- 309, Proposition 2 : "the Laguerre functions are dense in L;" should read
"the span of the Laguerre functions is dense in L;".

p. 310, row 12: "it is sufficient" should read "it was sufficient".

p- 311, Prop. 4 : The assumptions in Proposition 4 should be v # 0, Re u > 0.

Paper 11

p. 530, Lemma 9: this holds for h sufficiently small, e.g. A < 1.
pp. 534-535, In fact the amount of work done by one step of the polynomially ac-

celerated iteration grows with the iteration step, i.e. a grows with the
iteration step. So we reach the point where x > a, i.e. using polynomial
acceleration is no longer justified, even sooner.

Paper III

p. 9, The upper right hand corner of the matrix H should be 0.

Paper IV

p. 5, Lemma 3: f(z) = g(|z|) should be |f(z)| = g(|z]).

p- 5, Section 3, first paragraph:

p. 7,

Here the resolvent of A is defined as (I — zA)™!.

Lemma 4 should be omitted.



p- 9-10,

p- 11,

p. 11,
p- 11,

p- 13,

Lemma 6, from row 2 onwards: "Then there exists for every ¢ a constant
C. such that for sufficiently large &
e(l+4¢e)\ak
ak ) '
Moreover, there is a subsequence of {a;} which grows with the same
order and type as the upper limit." In the proof, in formulas (15) and

(16) the notation is slightly vague. For 0 < a < 2 see [6]. A relatively
simple calculation shows that for « > 2 and R > 1

0 < lax| < Co

2 2 1/a 1/a
M(Ea oV, R) = Es(R+2n+ %) < e(Brt ) o 0 o(1te)RY (%)

which yields the rest of the calculations on page 9, only C should be
C., e®’ should be e(o)E* and e should be etk — ((14&')e)o*.
To finish the proof note that by (*) M(E, o ¥,r) grows with at most
order w = < and type 7 = 1. But since E,(r +2n+ "T—z) > E,(r), which
we know to grow with order w = é and type 7 = 1, we know that
M(E, 0¥, r) grows with the same speed as M (E,, ). Finally, Lemma
6 is used to prove Theorem 9, where also "Then for some constant Cy"
should read "Then there exists for every ¢ a constant C, such that"
and in formulas (17) and (18) Cy and C3 should be C. and 71 should be
n(l+¢).

insert "sup|,.—;" in the beginning of the inequalities on rows 15 and

17.
In formula (21) the z(¢) in the middle expression should be omitted.

without Lemma 4 we have row & from the bottom onwards: Moreover

1 T Te 17 Te

M(r, RO V) < sup (57 + o Bal(5r)) = -+ —M(r Ba(50))
= VAL [A IA| roor A

so we know that the growth parameters of the resolvent are bounded

from above by those of Ea(¥) (a8 Wmer = w and Ty, < 7 for entire

functions).

row 8: "where he" should read "where the"

Paper V

.12,

o)

p- 12,

p. 13,

row 9 from the bottom: e "¢(75)1/% should read e " cos¢(F@)"*

row 3 from the bottom: "denominator" should read "numerator" and
"nominator" should read "denominator".

row 6 : "But this means that the norm of the resolvent of J is not
bounded outside ..." should read "But this means that the resolvent of
J is not a bounded operator outside ..."

rows 11 and 12: 7(1+ £) should be 7(1 + 1)



Paper VI

p. 22, formula (24): II(z) should x4(z) and n(t) should be ny (¢, xa).

p. 22, Example 4: )\, = % should be A\, = —%.

p. 25, row 8 from the bottom: < Tl(fg"gw afﬁ)‘;ﬁj should be < Tl(fg’%w = ajﬁ:’gﬂ j
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