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1 Statements and results

In this paper we construct examples of a certain type of quasiregular map-
pings. Topologically, quasiregular mappings are branched coverings, that is,
covering mappings without the local injectivity requirement. This is a con-
sequence of the completely analytic definition demanding that the mapping
distorts the metric only by a bounded amount. More precisely:

Definition 1 A continuous mapping f : G — R" of a domain G C R" 1is
quasiregular, if

[ belongs to W, 1,.(G)
and if there exists a number K, 1 < K < oo, such that

[f'(@)]" < K Jg(x)
holds almost ewerywhere in G.

In the above definition W, ,,.(G) is the Sobolev space of mappings with
weak first order partial derivatives which are locally L™ integrable. For the
above mappings the partial derivatives in the ordinary sense exist almost
everywhere. We can thus define the formal derivative of f in terms of partial
derivatives. The Jacobian determinat det f'(z) of f at x is denoted by J¢(z).
By the norm of the linear mapping f'(z) we mean here the operator norm

|f'(z)| = sup | f'(z)h].
|h|=1

The above definition generalizes immediately to Riemannian manifolds. The
branch set By is the set of points for which f is not locally homeomorphic.
For the basic properties and theory of quasiregular mappings see [R].

Definition 2 A mapping g : M™ — M™"™ is uniformly quasiregular if all its
m-fold iterates g™ (compositions with itself) are quasiregular with a uniform
bound on the dilatation.

For the motivation of this terminology coming from groups of quasiconfor-
mal mappings and basic properties see [IM| and [M]. The theory of quasireg-
ular dynamics is further developed in [MM].

Theorem 3 Let M" be a spherical space form. Then M™ admits a branched
uniformly quasiregular mapping.

A spherical space form M" is a smooth complete, connected Riemannian
manifold of constant sectional curvature K > 0. These can be character-
ized as spaces isometric to quotients S™/T", where S™ = S”(\/LE) C R s
equipped with the standard metric and T' C O(n + 1) acts freely and prop-
erly discontinuosly [W]. If we consider M" equipped with this metric giving
positive constant curvature, the corresponding covering map h : S™ — M™"



is an isometry whenever an injection. Any smooth manifold M"™ with S™ as
a universal covering space and fundamental group I' acting properly discon-
tinuously on S™ gives a spherical space form isometric to S™/T". Complete
classification of spherical space forms is given in [W].

It turns out that the metric is not an obstruction here and the situation
is even more general. Namely we have the following.

Theorem 4 Let M™ be a smooth Riemannian manifold with universal cov-
ering space S™. Then M™ admits a branched uniformly quasiregular mapping.

Theorem 5 Let M"™ be as in Theorem 4. Then any quasiregular mapping
f i M™ — S™ composed by the covering mapping S™ — M™ can be deformed
to a uniformly quasireqular mapping M"™ — M™".

In the above theorem by a deformation of a quasiregular mapping M"™ —
M™ we mean a uniformly quasiregular mapping M"™ — M"™ with the same
branch set.

Theorem 6 Theorems 4 and 5 hold if in place of a covering mapping there
18 a branched covering mapping.

Corollary 7 The Poincaré homology sphere and the Lens spaces in dimen-
sion 3 admit uniformly quasireqular mappings.

The proof of the above statements is by construction and essentially a
modification of a trick invented by G. Martin and T. Iwaniec [IM], [M]. We
construct an analogous conformal trap, where a ball is conformally mapped
into itself. The two essential steps in building the trap in [M] are the follow-
ing:

(1) A local modification of the original quasiregular mapping S™ — S™ to
become a translation of the trap outside itself.

(2) Inversion with respect to the boundary of the trap.

Step one generalizes immediately to a quasiregular map M™ — S™. The
only global property needed in the construction is the inversion (2). This
step we can take in a suitably chosen ball which is mapped further onto the
trap by the covering mapping.

The dynamics of these mappings is the same as for maps in [M]. See also
[HM].
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2 Proofs

Proof of Theorem 3 Assume M is a spherical space form of constant
sectional curvature K > 0. Denote by S" = S”(ﬁ) C R™! the sphere
of radius \/1—? centered at the origin of R"™! with the standard metric. We
equip M™ with the natural metric for which h : S® — M™ = S"/T" is a local
isometry. Then we take an Alexander type mapping f : M™ — S™, which
is constructed as follows. Divide the compact manifold into finitely many
simplices and further take a barycentric subdivision by adding a new vertex
into each of the faces. In this situation there is always an even number of
simplices attached to each of the (n — 2)-faces. Consider then the sphere
S™ divided into two by upper and lower hemispheres. The simplices of the
manifold M™ are then mapped pairwise to the two pieces of the sphere re-
spectively. The branch set of the mapping is exactly the (n — 2)-skeleton.
Assume that the degrees of the mappings f and h are p and ¢ respectively.
The construction works as well for any other quasiregular mapping available
from M"™ onto S™ in place of f.

Let 2y € M™ be any point outside the branch set. Denote by y, one of the
points in the set h~!(xq). One can assume that yo # f(zo). We will build a
conformal trap to the neighbourhood of the point 3. By making an inversion
in the neighbourhood of the point y, analogously as in the construction in
[M]. Analogously we need the following properties.

(1) Set f~'(yo) and z¢ do not meet By

(2) There are small, disjoint balls Uy = B(f (), r) and Vo = B(y,, r) about
f(xo) and yo in S™ such that f~!(U,) has a component U; containing
zg and f~!(V,) has components Vj, ..., V, pairwise disjoint and such
that fly, : Uy — Uy, flv, : Vi = Vg and hly, : Vo — h(Vp) are injective.

The above can be organized for almost all pairs of points (zg,vo) [R]-
Denote by {y1,...,9yp} = f *(v0). Let a, b > 0 be so small that 2b < a and
the following conditions are satisfied:

B(zg,a) C Uy, B(y;,a) C Vi,i=1,...,p (1)
B(yo,b) C Mi_1 f(B(yi,a)), B(f(20),b) C f(B(x0,a)) (2)
f(B(z,b)) C B(f(x0),0a), f(B(%i,b)) C B(yo,a),i=1,...,p (3)

Now define an intermediary map ¢; as follows. On
Mn\{U‘leB(yz, a) U B(.’L’(), a)}

we set gy = f. For 1 < i < p we map B(zo,b) onto B(f(x),b) and
B(y;, b) onto B(yo,b) isometrically. On the annular regions gi|p(s,,a)\B(o,)
and ¢1|B(y:,a)\B(y:.b) 15 obtained for each ¢ = 1,...,p by application of Sulli-
van’s version of the Annulus Theorem for quasiconformal mappings (|TV]).



In the above gl|¢9B(wo,a) = f, gl|(’*)B(yi,a) = f and 91|aB(x0,b), gl|¢9B(yi,b) is the
appropriate isometry. The conditions (1)-(3) imply the map g; : M™ — S™
is well defined and quasiregular. Additionally we have by construction B,, =
By.
Next let & : S™ — S™ be a conformal mapping which exchanges B(yo, b)
with its complement and set

g=ho®og : M" — M". (4)

Clearly B, = By. Next we show that g and all its iterates are uniformly
quasiregular. Denote by B = B(zq,b) the conformal trap. Restriction map
g|p is conformal and

9(B) = h(®(B(f(20),b))) C h(B(yo,b)) = B(h(yo),b) = B

by (3) and conformality of h. It follows that ¢™|g = go---og|p is conformal
for all m > 1. Assume next that z € M™\{U_,B(y;,b) U B(zo,b)}. Then
g1(z) € S™\B(yo,b) and hence ®(gi1(z)) € B(yo,b) and finally g(z) € B
since h is an isometry in B(yo,b). It follows that gm|Mn\{ugle(yi,b)UB(mo’b)}
is quasiregular for each m with a uniform bound on the dilatation by our
first observation. Finally if ¢ € B(y;,b), i = 1,...,p, then g is a conformal
isometry followed by a conformal ® and h as above. Thus the iterates stay
conformal at z until it passes into the complement of U?_, B(y;, b) U B(zq, b).
Then it picks up some distortion before passing into B and the iterates again
stay conformal. O

Proof of Theorem 4 If the manifold M™ is equipped with an arbitrary
Riemannian metric, it would be tempting to take the induced metric by the
covering mapping on the sphere, making the covering h : S™ — M™ confor-
mal. However, in this situation the inversion ® need not be conformal. This
was pointed out by V. Mayer. We equip the sphere with the standard spheri-
cal metric and modify the covering mapping, which is locally quasiconformal,
as we modified the mapping f in the proof of Theorem 3. We proceed exactly
as in the proof of Theorem 3 and use the same notation. The modification for
h needs to be done in small neighbourhoods of yo and h='(y;), i = 1,...,p.
We do the following additions. Denote by {2},..., 2!} =h ' (y;),i=1,...,p.
We choose 7 > 0 here so small that in addition to the conditions in the proof
of Theorem 3, also sets {W}',..., W} = h"'B(y;,r), i =1,...,p, and V; are
pairwise disjoint and hly,; : W} — h(W}), hly, : Vo — h(V}) are injective for
alle =1,...,p, 7 =1,. .1.,q. Further we let a, b > 0 be so small that also
the following conditions are satisfied:

B( (5)
B(y: b (6)
B(2],b)) C B(yi,a),j=1,...,q,i=1,...,p (7)

(8)

yi,b) C N_ h(B(z],a)),i=1,...,p, B(z,b) C h(B(yo,a))

i

da)cWij=1,....,qi=1,...,p



We define an intermediary map hy on S"\{Uﬁ’f:lB(zf, a)UB(yo, a)} by setting
hi = h. For j = 1,...,q we map B(zf,b) onto B(y;,b) and B(yo,b) onto
B(zg,b) isometrically for each i = 1,...,p and extend to annular regions as
in Theorem 3. We claim now that the mapping g = hy o ® 0 gy is uqr. The
conformal trap and points in M™\{UY_, B(y;,b) U B(xq,b)} behave as in the

proof of Theorem 3. If
v € g (2 (hy ' (B(yi,))) € Uy B(yi,b),
then g(x) ends up to the set U?_; B(y;, b) under conformal steps. If

z € B(yi, b)\g (27" (hy" (B(y:,1)))),

then
®(g1(z)) € S"\{B(yo, b) Uf_; hy ' (B(vi,b))}

and g(x) ends up to M"\ W_, B(y;,b) picking up some dilatation under
hy. After that g; can pick up some dilatation again but then g¢;(g(z)) €
S™\ B(yo,b) and ¢g*(z) € B(xg,b) ending to the trap. O

Proof of Theorem 5 The statement follows immediately since our con-
struction does not make any explicit use of the Alexander mapping M" —
S O

Proof of Theorem 6 The similar construction for the branched covering
mapping h : S* — M™" is possible by choosing the relevant points outside
the branch set of the corresponding mappings. It is enouogh to choose zg
outside the set By U hBj, U hfhB), and such that f(z,) is outside By. The
set of such points is dense in M™. In this situation none of the points o,
h='(y;),i=1,...,p, belongs to By and h can be modified to be an isometry
in small neighbourhoods of those points. UJ

Proof of Corollary 7 The statement is evident. The Poincaré homol-
ogy sphere and Lens spaces are interesting 3-dimensional examples of mani-
folds whose universal covering space is the 3-sphere. The Poincaré homology
sphere has fundamental group of order 120. For its several descriptions see
[KS] and a detailed dodecahedral construction see [P]|. It is an example of
a homogeneous spherical space form. Lens space L(p,q) = S3®/(Z/p) has
fundamental group of order p. For these and more examples in dimension 3
see [Mo| and also in higher dimensions see [W]. O
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