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1 Introduction

Assume A € C" " is a large, possibly sparse matrix and b € C* for which
the linear system

Az =b (1)

is solved by using GMRES. Let P;(0) denote the set of polynomials p of
degree at most j normalized such that p(0) = 1. If A is diagonalizable,
then the most standard bound for the error, already presented in the original
paper by Saad and Schultz [11], is based on the spectrum of A such that

min ()] < #(X) min ()] 4] @)
where A = XAX ! is an eigendecomposition of A. See also the book by
Greenbaum [1] or [9] by Nachtigal, Reddy and Trefethen or the very nice
short presentation by Hochbruck and Lubich [3]. Here x(X) = || X||||X 7!l
denotes the condition number of X and, without any loss of generality, we
have assumed that the initial guess for the solution is zy = 0. Hence, in
the bound (2) the quantity obtained from the minimization problem on the
spectrum of A is scaled by the condition number x(X). For nonnormal A this
scaling can make the bound over-pessimistic which, especially, happens “in
the limit”. That is, when A is not diagonalizable this bound ceases to exist
and then the scaling can be considered to be infinite. Consequently, then the
error bounds for GMRES have to be derived by applying completely different
techniques, see e.g. [1] or [10] by Nevanlinna. As nondiagonalizability is a
rare incidence in practice, the most serious problem with (2) is that just a few
ill-conditioned eigenvalues can completely ruin this estimate. In this paper
we show how to overcome this and derive bounds of type (2) for every linear
system, regardless of A being diagonalizable or not, and, in such a way that
these bounds involve only properties of A with respect to b.

The key to new bounds for solving (1) using GMRES is to apply the
approach initialized in [4, 5] based on small rank perturbations of the original
matrix A. Now the difference is that we consider very carefully chosen small
rank perturbations of A. In the simplest case assume solving, aside from (1),
the linear system

(A+bv*)y =b (3)

for some vector v € C*. That is, from the control theoretic point of view
b is fed back to the system. In many ways, using GMRES with this linear
system is almost equivalent to using GMRES with (1). The first preserved
“invariants” are Krylov subspaces at b. More precisely, for any 5 > 0 holds
IC;(A;b) = IC;(A + bu*; b), where, as usual,

KC;(A;b) := span{b, Ab, ..., A7~ 'b}. (4)

This simple property is very useful for our purposes since it allows to scale
approximative solutions to the linear system (3) to those of Az = b and vice
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versa such that estimates are obtained when using GMRES. Still; even if
Krylov subspaces at b are preserved, the spectra of A and A + bv* can be
very different. In particular, if K, (A;b) = C", then a nondiagonalizable A
can always be made diagonalizable as A + bv* can be assigned any set of
eigenvalues by choosing a vector v € C" appropriately. This is almost an
elementary fact in control theory where it is utilized in the pole assignment
problem, see e.g. the book by Wonham [14]. Thus, picking a v € C" such
that A + bv* is diagonalizable with a well-conditioned eigenbasis we can use
the bound (2) to give error estimates for the approximative solutions to (3).
This can obviously be done regardless of A being diagonalizable or not. Then
what remains is to scale this bound to apply to the original linear system
(1). Consequently, in the obtained bound there appears an additional scaling
factor depending on a moment. This, fortunately, does not lead to circular
reasoning as this moment can also be estimated by using (2), see Theorem 2
for details. In all, we obtain an estimate that is more local than (2) in the
sense that it involves an ideal GMRES problem for A + bv* instead of for A.
In particular, corresponding to different choices of v, we obtain a family of
error bounds for solving (1) using GMRES such that with the choice v = 0
we obtain (2) whenever A is diagonalizable. This family of bounds is readily
available by simply varying v € C". Thus, choosing v € C" to make the
resulting bound optimal as such, leads, in a natural way, to a robust pole
assignment problem.

In addition to the perturbed systems (3) one can consider multiplicative
rank-one modifications of A leading to systems of the form

A(I+bv*)z=b (5)

with a vector v € C*. Obviously this is not of standard feedback type in
the control theoretic sense. Still, we obtain another family error bounds for
GMRES as with (3) but without additional scaling, see Theorem 6 for details.
And, after considering the cases (3) and (5) it is straightforward to generalize
the proposed technique to larger rank perturbations of similar type. That is,
introducing the linear system

(A+ 2,,: AFbvi)w = b (6)

with v, € C*, for 0 < k < p, aside from the original system Az = b yields a
very general family of bounds for GMRES for soving Ax = b, see Theorem
7.

The paper is organized as follows. In Section 2 we derive new error bounds
for GMRES and we illustrate the bounds with several examples. In Section
3 we consider the arisen robust pole assignment problems and discuss how
the algorithms derived by numerical analyst working in control theory apply
to our problems.
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2 Error bounds for GMRES

Let A € C*" be a large, possibly sparse matrix and b € C". The most
standard error bound for solving a diagonalizable linear system

Az = b, (7)
using GMRES with the initial guess zq = 0 is

i [Ip(A)8] < w(X) min fip(A)[[I6]] (8)

where A = XAX ! is an eigendecomposition of A. Here P;(0) denotes the
set of polynomials p of degree at most j normalized such that p(0) = 1. To
simplify the notation, we have taken the initial guess zy = 0 but the changes
are straightforward for nontrivial initial guesses.

The bound (8) is not much of use if the scaling factor, i.e., the condition
number k(X) = || X||||X~!|| is large. In particular, if A is not diagonalizable,
then the scaling can be considered to be infinite and the bound (8) does not
even exist. In what follows we demonstrate how to improve the bound (8)
with large (or infinite) scaling (X)) by using a particular type of small rank
perturbations of A.

A natural rank-one perturbation of A is obtained by using b in the simplest
possible way. That is, consider, aside from Ax = b, the linear system

(A+bv*)y =b (9)

with v € C". From the control theoretic point of view the vector b is just “fed
back” to the original linear system. As to using GMRES the linear systems
(7) and (9) are nearly equivalent. In particular, for Krylov subspaces at b
the following should be obvious.

Lemma 1 Let A€ C*™ and b € C". Then for any vector v € C"* holds
IC;(A;b) = KC;(A + bv™; b)
for all 5 > 0.

Although this lemma is simple, it is the key to the following bound where,
for a diagonalizable A+bv*, we denote by A+bv* = X,A, X, ! its diagonaliza-
tion (some). That is, the following theorem shows that by using completely
different eigenvalues than those of A we can bound the error for GMRES for
the linear system (7).

Theorem 2 Assume A+ bv* is invertible and diagonalizable and, at the

gt step, y; 1is the approxzimation to (9) generated by using GMRES with

x9g = 0. Then

min, [p(AD] < K(CX) min [2(8)] Ll (10)

pEP;(0) pEP;(0) — vyl
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While 5 grows, Ilfiiyl converges to |1 + v*A~'b| with the speed that can be
J

estimated by using
I(A +0v*) b — y5l] < [I(A+bv*) H|w(X,) min [p(Aq)[[]]]]
peP;(0)
Proof. Let (A+bv*)y; = b+¢; with ¢; = (A4 bv*)y; —b. Thus, we have
Ay; = (A+ bv*)y; — bv*y; = b(1 — v*y;) + €; so that
Yj €
A—— =b4+ ———
1 — v*y; N 1—v*y;’
provided that 1 — v*y; # 0. Being not necessarily the norm minimizing

approximative solution to the linear system Az = b, we have by the definition
of GMRES

: Yj _ €
i Ip(A)D] < [[A7— — bl =ll{— v*yjll-
This holds since y; € K;(A4;b) by Lemma 1, that is, at this point the same
Krylov subspaces are necessary for inequality. In particular, applying now
the bound (8) to A + bv* to estimate €; gives the first part of the claim.

As to the claim concerning the numerator, there holds (A + bv*)y = b at
the limit, so that Ay = b(1—v*y) and y = (1—v*y)A~'b. Thus (A+bv*)~1b =
(1 — v*y)A~'b from which we obtain |1 — v*y| = ||A(A + bv*)_lﬁﬂ. Now
the claim follows after using the Sherman-Morrison-Woodbury formula with
(A+bv*)~! and multiplying with A from the left and then performing obvious
computations.

As to the approximation concerning m, this is readily accomplished
by using (8) with the linear system (A + bv*)y = b. O

First, note that the term “_;7%' can be guaranteed to converge to the

constant |1+v*A~'b| with the bound depending on the minimization problem
on the spectrum of A + bv*. Thus, as soon as minyep,(q) |[p(Ay)|| can be
made small, the convergence of GMRES for solving Ax = b takes place as
m cannot vary any longer. Second, this bound is more local than (8)
where only the norm of b appears on the right-hand side. In the bound (10)
there is now, in addition to the factor |1_”5ij|, an ideal GMRES bound for
A + bv*. This obviously depends strongly on the vector b and, especially,
on the properties of A with respect to b. Third, eigenvalues do matter as
opposed to some negative results by Greenbaum and Strakos [2]. They need
not be the eigenvalues of A that count but those of A+bv* for an appropriate
choice of v. In particular, A and A+bv* do not, in general, generate the same
Krylov residual spaces as defined in [2] so that the analysis of Greenbaum
and Strakos is not applicable in this case. Fourth, this bound generalizes
(8) and reduces to the same bound with the choice v = 0 whenever A is
diagonalizable. Since this really yields, for different choices of v € C*, a
family of bounds for min,cp, (o) [|[p(A)bl], there is no reason to expect (8) to
be optimal. This, especially, happens in the case of nondiagonalizable A. In
addition to the choice v = 0, the numerator disappears also in the following
case.
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Corollary 3 Assume v lies in the orthogonal complement of K;(A,b).
Then

min A)b|| < k(X,) min A)|I|B

per(o)Hp( Joll =< w( )pepj(o)”p( )18l

for g <1L.

Proof. This follows immediately from the fact that y; € K;(A,b) for every
J <l so that v*y; = 0. O
Only very seldom bounds of this type do not exist.

Corollary 4 If K(A;b) = C", then there exists bounds of type (10).

Proof.  This follows from the so-called pole assignment theorem which is
a widely used property in control theory. That is, if I(A4;b) = C", then
any set of eigenvalues can be assigned to A + bv* with an appropriate choice
of v € C, see e.g. [14]. In particular, choosing v such that A + bv* is
semi-simple gives the claim . 0

Thus, if A is cyclic (but not necessarily diagonalizable!) and b is a cyclic
vector for A, i.e., K(A;b) = C", then one can always bound GMRES via
solving a minimization problem on the spectrum of a diagonalizable matrix
A + bv* for a somehow chosen vector v. The scaling is then the condition
number x(X,) multiplied by a number close to reciprocal of “1 plus the mo-
ment v*A~!b". Note that, by Corollary 3, if one had a procedure of choosing
v € C" orthogonal to K;(A,b), where [ is the maximum number of steps to
be performed (bounded by memory requirements), then this constant would
disappear. We illustrate this in Example 1.

If IC(A;b) # C™, then it may not be possible to make A + bv* diagonaliz-
able with a vector v € C*. However, there still exists a bound of type given
in Theorem 2 and, for the sake of completeness, we present it to show that
GMRES can always be bounded by using the spectrum of a diagonalizable
matrix depending on the properties of A and b. Namely, A is unitary similar
to [ Al Ay

0 As
Arnoldi method with b. For the Arnoldi method, see e.g. [1]. In control the-
ory this is a canonical form for A decomposing C" into controllable subspace
plus its orthogonal complement. Let b; denote the vector b in the coordinates
of this basis of K(A;b). We denote by k the dimension of K, (A;b) and by
A +bv* = XUAUX;I a diagonalization of A; + b;v*. Note that A; is cyclic
with cyclic vector by, so that there exists a vector v € C* such that A; + b, v*
is diagonalizable by the pole assignment theorem.

, where A; is the Hessenberg’s matrix constructed by using the

Corollary 5 Assume A; + biv* € C*** s invertible and diagonalizable
and, at the jt" step, y; ts the approximation to (9) generated by using GMRES
with xy = 0 represented in the basis of K(A;b). Then

. SN ; 6]
min Ab|| < k(X,) min A, —.
min (AP < 5(Xe) min Ip(A)l e
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While 5 grows, ﬁ converges to |1 + v*A; by | with the speed that can be
J

estimated by using

[1(Ax +byv*) by — Gyl| < [[(Ar + byo*) H|w(X,) min |[p(A,)][|]1b]].
peP;(0)

Proof.  This follows readily after restricting A to the invariant subspace
Kn(A;b) of A. O

If v is generic, then v* A~1b is likely to be small compared with the norm of
v as long as A is not nearly singular. In particular, if v lies in the orthogonal
complement, or almost, of A~'b, then this constant has practically no effect
on the bounds. Let us demonstrate this with the following example which
also shows that the disappearance of the numerator in Corollary 3 is not an
artificial trick. All the computations are performed with MATLAB.

ExAMPLE 1. Let A € C"" be the standard stumbling block for the
bound (8), that is, let A be the translated nilpotent shift

20 0 0
12 0 --- 0
A= 0 0 (11)
o0 --- 2 0
|00 -+ 1 2

and consider using GMRES for Az = b with b being the first standard basis
vector. The bound (8) is now useless, since A is not even diagonalizable.
Taking v to be the n* basis vector A + bv* becomes even normal, that is,
k(X,) = 1 and the spectrum of A+bv* is equal to the set 2+{z € C: 2" = 1}.
Now v is in the orthogonal complement of &C;(A,b) for 1 < j <n — 1. Also,
|1+v*A1b| converges to 1 very quickly while n grows as shown in Table 2.1.

n=2>5 n =10 n=15 n =20 n =25
14+ v*A~1h | 1.031250 | 0.9990234 | 1.000031 | 0.9999990 | 1.000000

Table 1: The behavior of 1+v*A~1b as a function of dimension n for Example
1.

Thus, in this case the bound is essentially an ideal GMRES bound for
A+ bv*. Note that m can even ameliorate the bounds as the numerator
|1+ v*A~1b| can be larger than 1.

EXAMPLE 2. A € C¥*?5 is as in Example 1 but, to get a more “realistic
example”, b is a random vector. Without any optimality considerations, we
take v also randomly. In Figure 2.1 we have plotted «(X,) for 20 different
choices (in a row). The smallest x(X,) was approximatively 19. This might
give some order of magnitude for “good” choice of v.
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Figure 1: For Example 2 x(X,) for 20 different randomly taken b’'s and v’s.

EXAMPLE 3. A € C!90x190 ¢opsists of 4 Jordan blocks of size 25 each such
that the eigenvalues of A are 2, 5, -2 and 2-4i. Again we take b a random
vector and, as in Example 3, without any optimality considerations, we take
v also randomly. In Figure 2.2 we have plotted x(X,) for 20 different choices
(in a row). The smallest (X, ) was approximatively 45.

EXAMPLE 4. Suppose K, (A;b) = C". As to the minimization problem
on the spectrum, the most optimal choice for v is to make the spectrum of
A+bv* equal a point (different from zero). This choice, however, would make
A + bv* nondiagonalizable since K,(A;b) = C". This nondiagonalizability
must also happen because of the bound (10) as it is a lower bound for this
minimization problem. That is, the condition number must be infinite if v
makes the spectrum equal a point. Thus, using (10) “inversely” shows that
choosing v such that A 4+ bv* has an “unnaturally” concentrated spectrum
forces k(X,) to become large. An opposite of this problem arose in [5].

Using multiplicative perturbations of rank-one A we obtain another fam-
ily of error bounds for GMRES. That is, aside from (7) consider

A(I+bv")z=0b (12)

for a vector v € C". If A(I+bv*) is diagonalizable, we denote by A(I+bv*) =
XA, X, ! its diagonalization.

Theorem 6 Assume A(I+bv*) is invertible and diagonalizable with A(I+
bv*) = X, Ay X, 1. Then

min Al < k(X,) min A0l 13
pepj(o)Hp( Joll = A )pepj(o)Hp( )1l (13)
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Figure 2: For Example 3 x(X,) for 20 different randomly taken b’s and v’s.

Proof. Again we need the invariance of Krylov subspaces in this particular
type of perturbations. That is, since A(I 4 bv*) is invertible, there holds

K5 (Ab) = K5 (AL + bu*);b) (14)

for every j. Namely, for j = 2 we have KCo(A(I + bv*);b) = K2(A;b) as 0 #
A(I+bv*)b = (14+v*b) Ab and for j > 2 we have (A+bv*)’b = ATb+q;_1(A)b
for a polynomial g;_; of degree at most j — 1.

If z; is generated using GMRES for solving (12) with the initial guess
o = 0, then A(] + bv*)z; = b+ ¢;. Now, this ¢; is also the residual for
(7) as x; = (I + bv*)z; is the approximation for (7) while using GMRES.
The reason for this is that (I + bv*)IC;(A;b) = K;(A;b) for every j, i.e., the
subspaces /C;(A; b) are invariant for I + bv* and getting smaller residual for
Az = b than for A(I + bv*)z = b is not possible since a multiplication of z;
by (I +bv*)~! yields the same residual for A(I + bv*)z = b (and vice versa).
Consequently,

min [[p(4)b] = min [p(A(L +bo"))b]

p€EP;(0 pEP;(0

and the claim follows after applying (8) with (12). O
This approach leads to a different family of bounds compared with using
the perturbation A + bv*. To see this, we consider our standard example.
EXAMPLE 5. Consider our model problem Az = b with A from (11) and
with b being the first standard basis vector of C*. Now, by choosing v appro-
priately, A(I4+bv*) can be made diagonalizable although not normal. Namely,
the eigenvalue 2 of A cannot be relocated even though it can be made simple.
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Figure 3: For Example 6 «(X,) for 20 different randomly taken b’'s and v’s.

The following example demonstrates how using (12) can drastically im-
prove the conditioning in the standard bound.
EXAMPLE 6. [2] Let A € C***?° be of the form ZAZ !, where

(1 V1-6 0 -+ 0]
0 V6 0 -0

Z=|0 0 1 0|, d<1, A=diag(20,10,5,...,1).
0 0 0 - 1]

A has two large well-separated eigenvalues, 20 and 10, corresponding to the
first block in Z. The remaining eigenvalues of A are uniformly distributed in
the interval [1,5]. As in [2], with § = 1072 we have k(Z) = 2 * 10* because
of this one ill-conditioned block and therefore the standard bound (8) is not
much of use. Also the pseudospectra [13] are not useful for this problem as
explained in [2]. In Figure 2.3 we have plotted the condition numbers for X,
in A(I +bv*) = X,A, X, " for 20 randomly taken b’s and v’s again without
any optimality considerations. As we see, typically there is a huge drop in
condition number.

At this point it should be clear how to generalize the bounds (10) and
(13) to larger rank perturbations. Namely, one can consider the linear system

(A+ z”: ARbvi)w = b (15)

k=0

with v, € C*, for 0 < k < p, aside from the original system Az = b.
The bounds will then be essentially the same as in the rank-one case except
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that non-preservation of Krylov subspaces causes a “false start”. That is,
because K;(A + > 1_o A*bvi;b) C Kjip-1(4;b), for p > 1, one can derive
bounds with a false start in the number of steps taken using GMRES for the
system Az = b. The reason for this is that then one obtains from (15) an
approximation

p
(A+ Y Abbo)—2— =

1 —viw;
—1 o Wj

P
k—1p, % W €j
A(I+;A bvk)l_vgwj —b+1_vawj, (16)
where w; € K;(A+ > 1_, A*bv}; b) is obtained for (15) using GMRES at the
step j. Thus, the approximation (I + > 7_, Ak_lva)l_Z)fwj € Kjip-1(4;b) is
not better than the GMRES approximant after j+p—1 stoeps for Az = b. This
establishes again the desired inequality. Note that whenever vy = 0 (like in
Theorem 6) there is no additional scaling caused by the numerator 1 — vjw;,.
For simplicity we assume this in the following, where 4 + Y %_ A*bv; =

XyAy X, is a diagonalization of A + Y %_, A¥bv;.

Theorem 7 If A+ > %_, A*bv; is invertible and diagonalizable, then

min [|p(A)b]| < k(Xy) min |[lp(Av)]|[[5]l- (17)
) pEP;(0)

PEPjtp—1

If A is cyclic and b is a cyclic vector for A, then one extreme is to content
with A and the other is to take A+ 7—) A*bv; which can be any matrix with
an appropriate choice of vy’s. Thus, it is possible to change A radically (i.e.
to make x(Xy ) very reasonable!) with perturbations of the form Y 1_, A*bvj.
Of course in practice p should be small.

Finally we want to state a result we did not notice while prepairing [5]
where we used arbitrary small rank perturbations of A for lower bounds
for ideal GMRES for A. The key here is that using pertubations of type
(15) means that the dimension of a certain auxiliary Block-Krylov subspace
achieves a very mild growth [5]. As a consequence, essentially the spectrum
of Ay (scaled again by the condition number of Xy ) bounds from below the
behavior of ideal GMRES for A. Here \;j(M) denotes the eigenvalues of a
matrix M arranged in decreasing order in modulus.

Theorem 8 If A+ > P_ A*bv; is invertible and diagonalizable, then

p€eP; (0 peP;(0) K

. . 1
min, [p(A)] > min o pea(p(Av)] (18)

Proof. The advantage of using perturbations of type (15) of A is that the
difference of A and its perturbation is Y 5_, A*bv;. The range of this matrix
obviously belongs to span{b, Ab, ..., APb}. In particular, then the dimension of
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the Block-Krylov subspace generated from span{b, Ab, ..., APb} with A grows
as fast as the number of steps taken and the claim follows from [5]. O

As to a block equation AX = B with B € C*** with some k < n, the
used techniques can be generalized in an obvious way. Then, for instance,
for (7) the analogous perturbation of A will be of the form A + BV* with
V € C™* and the multiplicative perturbation (12) of the form A(I + BV™*).

3 Pole assignment problems for GMRES

As the bound (10) shows (or (13) which is also a pole assignment problem but
of the form A + Abv*), v should be chosen in such a way that the spectrum
of A + bv* becomes small, and, at the same time, A + bv* ought to have a
well-conditioned eigendecomposition. But, as described in Example 4, these
are mutually competing goals. Still, the problem of choosing v € C" to make
A+bv* to have a well-conditioned eigendecomposition is actually close to the
robust pole assignment problem in control theory. See e.g. [6] by Kautsky,
Nichols and Van Dooren and [7] by Mehrmann and Xu and references therein
for this extensively studied problem. In [7] the authors consider the problem
of finding poles that belong to a subset of C such that A + bv* has a well-
conditioned eigendecomposition. This formulation is closer to our task in the
sense that in our problem, instead having to match some strictly preassigned
set of eigenvalues in the left half-plane, the restriction is by far more modest.
That is, assuming A can be made diagonalizable with a rank-one perturbation
of the form bv*, the spectrum has to avoid just one point as A + bv* needs to
remain invertible. This means that we have more degrees of freedom to choose
v in such a way that the resulting A + b*v has a well-conditioned eigenbasis.
In particular, we do not need to relocate well-conditioned eigenvalues at all
which is obviously a huge advantage. Thus, although the dimension n is
very large, the point is that the bound (8) can be improved significantly with
a rank-one correction bv* of A if the amount of ill-conditioned eigenvalues
is not large. It is obviously a serious disadvantage of (8) that just one ill-
conditioned eigenvalue can ruin this estimate. If the number of ill-conditioned
eigenvalues is very large, then one can derive approximations starting from
(15). This, in turn, leads in a natural way to a multi-input pole assignment
problem. For the multi-input pole assignment problem, see [8].

Unfortunately the robust pole assignment problem is difficult. The ex-
isting algorithms for the single-input case (which A + bv* is) are not quite
applicable to our problem because the first starting point is that A is di-
agonalizable. Also, the bounds for a very ill-conditioned but diagonalizable
case are practically vacuous [7]. Basically the problem is simple to formulate.
Namely, if A — bv* = X,A, X, !, then multiplying by X, from the right we
have, after rearranging, AX, — X,A, = bv*X,. Thus, if z,,; denotes the ith
column of X,, then writing this componentvise we obtain

Axv,i - )\v,ixv,i - Cv,ib (19)
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for some ¢,; € C. On the other hand, if there exists linearly independent
vectors z,; for which (19) is true, then obviously a vector v can be found
such that AX, — X,A, = bv*X,, holds. For more general statements, see [8§].
Thus, (19) could be a starting point for a nonlinear optimization problem
minimizing the “energy” x(X,). This problem, however, seems very difficult.

Next we describe a coarse way of constructing a perturbation of A. What
we propose can be applied to the multi-input case (15) with obvious changes.
Namely there holds, as shown by R. Smith [12], whenever M € C"*" is
diagonalizable

I[M, M| 7
2| M| 7

Here [M,M*] := MM* — M*M is the self-commutator of M and M =
VAV~ is a diagonalization of M. Thus, (20) yields a necessary condition for
smallness of £(V') (but of course always not less than 1), that is, ||[M, M*]|| =
should be small. However, this is not a sufficient condition and it is easy to
construct examples for which the right-hand side of (20) is arbitrarily close
to 1 while the left-hand side is arbitrarily large. A sufficient condition is the
following, where kx(V') denotes the condition number of V' in the Frobenius
norm.

K(V) = (1+ ). (20)

Proposition 9 [5] Suppose M is diagonalizable and let {)\;}7_, denote
the eigenvalues of M and §; := min{|\; — ;| : i # j}. Then for an optimal
diagonalization M = VAV ! holds

n

muwszxyugﬁj%ymmggwqmnp

j=1
Hence, a way to pick v € C" is to first use the criterion

min [+ bo*, (A -+ bu*)"]|+ (21)

by applying, for instance, the method of steepest descend. After this has
been accomplished, one has A + bv*. However, at this point there is no
guarantee that A + bv* is not nearly singular. Thus, another step may be
needed to move away those eigenvalues of A+ bv* that are close to zero. But,
since now A + bv* ought to have a well-conditioned eigendecomposition, this
can be done by using the algorithms in [7]. Assuming w is obtained in such
a way, then, combining this with v from (21), we finally have A + b(v + w)*.
Obviously this two-step approach could also be applied to the robust pole
assignment problem.

4 Conclusions

In this paper we have considered error bounds for GMRES for solving Az = b.
We have shown that, by considering very particular type of small rank per-
turbations of A, it is possible to generalize the most classical bound also to



POLE ASSIGNMENT PROBLEMS FOR ERROR BOUNDS FOR GMRES 15

nondiagonalizable matrices. The estimates involve properties of A with re-
spect to b in the sense that the used perturbations are of the form y ;_, AFbu;
for vectors vy, ...,v, € C*. To our mind, the main contribution of the paper
is that also for nonnormal A eigenvalues are the most important indicator of
convergence of GMRES. The main point is that they need not be the eigen-
values of A that count but the eigenvalues of an appropriately perturbed
A. As a result, there arises pole assignment problems that can, however, be
very difficult to solve optimally. We have shortly discussed their relation to
existing pole assignment algorithms and briefly outlined a possible way of
constructing perturbations of A.
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