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1 Introduction

Recently a new type of approximation of scalar conservation laws in several
variables has been introduced in [3|. Rather than adding a viscosity term (for
this appproach see, e.g., [8]), the order of derivation with respect to time is
lowered, that is, the derivative is replaced by a fractional derivative of order
€ (0,1). Furthermore, instead of using the Crandall-Liggett theorem as is
done in [4], an abstract result, [10], is employed to establish the existence of
a strong solution. In [3]| the convergence of these strong solutions as a 1 1
to the entropy solution of u; +divg(u) = 0 is proven and some estimates for
the speed of convergence are established.
The aim of this paper is to investigate further these solutions in the one-
dimensional case, i.e., we analyze the regularity of solutions of the nonlinear
fractional conservation law

D (u — ug) + o(u), = f. (1)

Here D{* denotes the fractional derivative of order a € (0, 1), see [14, p. 133],
le.,

(DF0) (1) 2 jt [ oate=sptsas, o0

(D20)(0)  Jim 1 /gla ~ s)o(s)ds,

hio b

where

gs(t) = =—=t"", t>0, >0,

and where v is (at least) continuous and satisfies v(0) = 0.
As an important tool for studying this equation we consider the abstract
fractional nonlinear evolution equation

%Otk(t—s)(“(s)—y)ds+A(u(t))Bf(t), t>0, w0)=y. (2)

In (2), u is the unknown function with range in a Banach space X, y € X and
f:RT — X are given, and k is a locally integrable real-valued function with
a singularity at the origin. The nonlinear operator A may be multivalued and
maps D(A) C X into (subsets of) X. Our primary current interest concerns
the continuity and boundedness of the function A(u(t)).

In [10], the existence of a strong solution u, satisfying A(u) € LL.(R™; X),
was obtained. Conditions implying that the solution w is continuous were
given in [3].

In this paper we demonstrate that under rather weak hypotheses one
has A(u) € C((0,00); X). In addition this function is uniformly bounded on
(0,T] for each T > 0. Subsequently, these facts are applied to examine the
regularity of the solution of (1).



As a first application we get the continuity of the solution of the Riemann
problem for the fractional Burgers equation, i.e., for equation (1) with o(u) =
u® and f = 0. This improves on a result of [11] concerning (1). In this result
it is assumed that o'(u) > ¢y > 0. The special structure of the fractional
Burgers equation implies that the solution vanishes when z > I'(1 — a)t%, in
contrast to the linear case where there is an infinite speed of propagation.
We also establish a result on the continuity of the interface.

Furthermore, in Theorem 3 the results obtained on (2) are combined with
earlier Schauder estimates on linear equations, [2], to establish results on the
smoothness of solutions of (1).

The regularity, both temporal and spatial, of solutions of equations in-
volving fractional derivatives of order @ € (1,2) have been studied in several
papers; [5], [6], and [7]. See also the monograph [12] for further results and
references.

2 Statement of results

Our result on (2) is the following.
Theorem 1. Assume that X is a real Banach space and that

(i) k € L (R*;R) s positive and nonincreasing, lim; o k(t) = +o0, and

loc

log(k(t)) is convez;
(ii) A is an m-accretive operator on X ;
(iii) y € D(A), i.e., y € X and sup,- ol Aryllx < oo;

(iv) f € C(R*; X) is such that fOwa,T(s)|k’(s)|ds < oo for each T > 0
where wyr is the modulus of continuity of f, i.e., wyr(s) oo SUDy, 40,70, t1—ta]<s | f (T1)—

f(ta)llx-

Then there is a unique strong solution u of (2) such that u € C(R™; X),
u(0) = y, and there is a function w € C((0,00); X) such that supy,.r||w(t)||x <
oo for each T > 0, w(t) € A(u(t)) for allt > 0 and
d t
dt Jo
Moreover, if 0 <t <t+ h < 7 then

k(t — s)(u(s) —y) ds + w(t) = f(t), t>0. (3)

[ut +R) —u(t)]x < /Otllf(t +h—s)= f{t—s)lxr(s)ds

+( zup 150l -+ supllAr(w)llx) / s @

T€[0,h

where T satisfies

/[Ot] k(t —s)r(s)ds=1, te(0,7]. (5)



A function u : Rt — X is a strong solution of (2) if there exists a function
w € LL (R"; X) such that w(t) € A(u(t)) a.e. on R* and [ k(t — s)(u(s) —
y)ds = fot(f(s) — w(s))ds for every ¢t > 0.

Our next result concerns the homogeneous version of (1) with, essen-
tially o(r) = er?, v > 1. In particular, this includes the fractional Burgers
equation.

Theorem 2. Assume that

(i) k € LL.(R*;R) is positive and nonincreasing, limy o k(t) = +oo, and
log(k(t)) is convez;

(ii) o € CY(R;R) is strictly increasing on (0,1) and there are constants C
and v > 1 such that

ér” <o(r)<Cr’, rel0,1].

Then there 1s a solution u of the Riemann problem

% i k(t — s)(u(s,2) — X(—oog)(2)) ds + o(u).(t,z) =0, >0, z€R,
(6)

u(0,7) = X(-000)(z), T €R,

which is continuous for (t,z) € RT x R\ {(0,0)} and is such that for each
t > 0 the function x — u(t,x) is absolutely continuous and nonincreasing,
for each x € R the function t — u(t, x) is nondecreasing (so that the function
t— fot E(t — s)(u(s, ) — X(—o00)(2)) ds is locally absolutely continuous), and
equation (6) holds a.e. on RT x R. Moreover,

1 1 !
u(t,z) = 0 when x > @/0 oir) dr, t>0, (7)

and the function
p(t) Einf{z > 0] ut,z) =0}
18 continuous and strictly increasing.

Let X be a (complex) Banach space and let I be an interval. The Holder
spaces CO)(I; X), v € [0,1], are defined by

dWLXﬂg{ﬁI%X

1£) = f(s)llx _ OO}

fltleli |t — 3|’Y
s#t
with norm
def f 1) — f S
Hf||c(7)(1) = Supr(t)HX + sup H ( ) ( )HX
tel stel |t — 3|’Y

s#£t



If v € (1,2], then COV(I; X) & {f ¢ cl(I-X) | f' e cOY (I-X)} with
norm || lleenry = supyer|lf(®)llx + [|#'lew-n - Observe that C@ # C and
D £Ct.
We consider a function of two variables to be a function of the first variable
with values in a function space, that is, f(¢,z) is the function ¢ — (z +—

f(t,x)).

Theorem 3. Assume that o € (0,1), 7 >0, £ >0, p € (0,a), and that
(i) o € Cl(ozg (R;R) and o'(z) > 0;
(it) uo € CU)([0, €] R) and uo(0) = uy(0) = 0;

(0
) £ € C(0,7], (0, FR)C((0, 71, 1[0, 5 ) whered > 0, and
£(t,0) =0 and £(0,z) € CE)([0, €] R).

Then there is a unique solution u of (1) on (0, 7] x (0,&] with u(t,0) =0 and
u(0, ) = ug(z) such that u, € CW([0,7];C([0,£];R)).

3 Proofs

Proof of Theorem 1. Let {k,}°, be a sequence of functions that satisfy the
assumptlon (1), except that lim; g k,,(t) < 0o, and are such that lim,,_, fot kn(s)ds =
fo s)ds, lim, o kn(t) = k(t), lim, .o k,(t) = K'(t), and |k}, ()] < |K'(2)]

for all t > 0. We let p, be the first kind resolvent associated with k, (cf.

(5)); then p,, has the pointmass 1/k,(0) at 0 and is otherwise induced by an
integrable function, that is

pa([0,1]) = knl(O) +/0_rn(s) ds, t>0,

where r, is nonnegative and nonincreasing, because k, is log-convex, see [9,
Lemma 2.1|. When £ is replaced by k, one can use (ii) and a standard fixed-
point argument to show that there is a unique solution of (2); we denote this
solution by u,. It is a consequence of [3, Thm. 1] that u,, converges uniformly
on compact subsets of R™ to a continuous function u. However, we need to
know more. In particular our next purpose is to show that w € C((0, 00); X)
where w(t) € A(u(t)) is defined by (14).
By [3, formula (24)] we have for 0 <t <t+h

[[un(t + ) — un(t)]|lx < / [f(t+h—5) = f(t—s)llxpa(ds)

[0,¢]
+ (sup IF)lx + 141 koo (9) 1x )
T€[0,h]

(8)
« /M (/[O’h](kn(t —8) ~ ka(t — 5+ h— 0))pa(d0) ) pa(ds).



Now a straightforward calculation using (5) (with £ and r replaced by k,
and py, respectively) shows that

/[O,t] </[0,h} (kn(t —s) — kn(t —s+h — O'))pn(do')> pn(ds)
= pa((t,t+ h]) = /tHh ra(s)ds. (9)

By [3, Thm. 1], (8), (9), and by the fact that lim, o pn([0,t]) = fot r(s)ds,
we get (4).
By a change of variables,

/0h</tt Tn(0) da>|k;|(s) ds = /tth(kn(t —0)— kn(h))rn(o) do, 0<h<t

—S

Since the functions r, are nonincreasing, it follows that

h, ot
. / .
i | (/t_ ra(0) do ) K% (s) ds = 0, (10)
uniformly for n > 1 and uniformly for ¢ in a compact subset of (0, 00). Since
|kl(t)] < |k'(t)| we deduce from (iv) that

h

1’551 wsr($)ky(s)|ds = 0 uniformly in n. (11)
0

Use (9) in (8), replace t + h and ¢ by t and ¢ — s, respectively, multiply by
|kl (s)|, integrate with respect to s over [0, h] and let A | 0. This gives, by
(10) and (11),

15{9/0 [[un(t = 5) — un(t)| x|k (s)| ds = 0, (12)

uniformly for n > 1 and uniformly for ¢ in a compact subset of (0, 00).
Now we can rewrite (2) (with k replaced by k) for each ¢ > 0 as

k) (un(t) =) + | (unlt = ) = ua ()1, (5) s+ ACun(t)) 3 £, (13)

By (12), and as u, converges uniformly on compact subsets of R* to the
continuous function wu, it follows that k,(t)(u.(t) — y) + fot(un(t —5) —

un(t))k,(s) ds converges uniformly on each compact subset of (0, co) to k(t) (u(t)—

y) + fot (u(t —s) —u(t))k'(s) ds which must then be a continuous function on
(0,00). Let



so that (3) holds with w € C((0,00), X). Since A is m-accretive it is also
closed and therefore we have by (13) and by the convergence results that
w(t) € A(u(t)) for all ¢ > 0.

It remains to show that w is bounded on (0,7 for each 7' > 0. Since
u(0) = y we get from (4), when we take ¢t = 0, that

h
lu(h) = yllx < ( sup £(7)llx +sup|4r(v)]lx) / r(s)ds, h>0.
T€[0,h] A>0 0

Because k is nonincreasing there follows by (5) that k(t fo s)ds < 1 so
that

[E(®)(u(t) = y)llx < ( sup [ £(7)]|x +§1ilg||x4x(y)l|x)-

T€[0,t]

Similarly, replace ¢t and t + h in (4) by ¢t — s and ¢, respectively, multiply by
|E'(s)| and integrate over [0,¢] to obtain

|/ (ult - 5) — u()¥(s) ]| < / 0ra(5) / (o) dolH(5)] s

+ (s 15l sl axwlx) [ ([ rlorao)we)las

T€[0,t] s

Moreover, by (5),

[ @0 lds = [ (ke - o) kt)rio)do < 1,

and so by the fact that k and r are nonnegative and by (iii) and (iv) we get
the desired conclusion. O

Proof of Theorem 2. Since we will show that the solution takes its values in
the interval [0, 1] we may without loss of generality assume that o € C*(R; R)
is strictly increasing on R.

We easily see that by taking u(t,z) = 1 for x < 0 and ¢ > 0 we have a
solution in that region and we are left with the equation

0 t
&/ kE(t — s)u(s,z)ds + o(u),(t,z) =0, t>0, x>0,
0
w(t,0)=1, t>0, (15)
uw(0,z) =0, x>0,
In [11, Lemma 3] it is shown that if one lets D(A) = {u € L'(R";R) |

o(u) € AC(R";R),u(0) =1, o(u) € L'(R™;R) }, and defines A(u) = o(u)',
u € D(A), then A is a closed, m-accretive operator in L'(R";R). By [11,
Theorem 5| there exists a solution u of (15), which is nonincreasing in the
x-variable and nondecreasing in the t-variable, such that the function z
o(u(t, z)) is absolutely continuous for almost every ¢ > 0, and such that the



function t — fot k(t — s)u(s,z)ds is locally absolutely continuous for every
z > 0, and (15) holds almost everywhere.

By Theorem 1 we know that the function t — o(u(t,z)), € L*(R™;R) is
continuous on (0,00) and that (15) holds in L'(R™;R) for all ¢+ > 0. Since
o(u(t,0)) = o(1) for all t > 0 and o (u(t,z)) = [} o(u(t,y)). dy+o(u(t,0)) it
follows that o(u) is continuous in (0, 0c0) x R and since o is strictly increasing
the same result holds for u. By Theorem 1 we also know that u(¢,z) — 0
in LY(R";R) as ¢ | 0 and from the monotonicity properties of u we can
therefore conclude that u is continuous in R™ x R™ \ {(0,0)}.

Next we derive an inequality that we will use repeatedly below. Assume

that z, def @(tg) < oo and that zq < 1 < ¢(t1) where t; > tg > 0. From the
proof of Theorem 1 we know that for each ¢ > 0 we have

t
a a.e

ot /. E(t — s)u(s,z)ds =" k(t)u(t, z) +/0 (u(t—s,z) —u(t,z))k'(s)ds, = >0,

(where the derivative with respect to ¢ is a function with values in L'(R™; R)).
Since u(s,z) = 0 when s < ty and x > z( (by the monotonicity properties of
u), we can rewrite this equality for ¢t > ¢ as

%/0 k(t — s)u(s,x)ds

a.c. E(t — to)u(t,z) + /0 h (u(t —s,x) — ult, x))k'(s) ds, x> .

Because k is nonincreasing and u is nondecreasing in its first variable, it
follows from the fact that (1) (or equivalently (3)) holds that for each ¢ > ¢,
we get

k(t — to)u(t, z) + o' (u(t, 2))us(t, z) < 0, > 0.

In particular, if we choose t = ¢;, then we know that u(¢,z) > 0 for zy < z <
x; and it follows by the continuity of u that

u(t1,20)

UIY) dr. (16)

k@-me—@gg/

u(tl,xl)

a'(r)

Since clearly ¢(0) = 0 we may take ¢, = 0. Because the function == is
integrable on [0,1] and k(t) > 0, we see from (16) that we have ¢(t;) < oo
and that (7) holds.

The monotonicity properties of u imply that ¢ is nondecreasing. By the
continuity of the function u it follows that ¢ is continuous from the left, so
in order to establish the claim about continuity we suppose to the contrary
that there is a point ¢y > 0 such that limy 4, p(t) = ¢(to) + ¢ for some 6 > 0.

If we choose z, def ©(ty) and z1 = xg+ 0, then z; < p(t1) for each t; > ¢y and



we get a contradiction from (16) if we let ¢; | to. Thus we have established
the continuity of .

It remains to prove that ¢ is strictly increasing. Suppose that this is not
the case but that there are two points t; < ¢y such that p(t;) = ¢(t2). By
the continuity of u we know that ¢; > 0 and that we can choose t; such that
o(t) < o(t1) when 0 < ¢t < t;. We define 21 = ¢(t1).

We shall derive a contradiction and first we show that

o

lim o (u(t1, z)) (21 —z) 71 = oo. (17)
iz
Write @ = o %(U(: ), use the inequalities in (ii), and the facts that

v > 1 and o(u (tl,xl) 0, to conclude from (16) that when 0 < ¢q < ¢; and
zo = p(to) we have

27—1 -1

k(tl - tg)([l?l — x()) S ,y’yTlC v O'(U(tl,x()))T.
Since ¢(t) < ¢(t;) when 0 < t < t; it follows that ¢y 1 ¢;, and hence
k(t; — tg) T oo, when zo T x1. By the above inequality we therefore obtain
(17).

Next, let y be some small positive number and integrate both sides of
equation (15) over (z; — y,z1). Then we get, because u(t,z;) = 0 for all
te (Oa t2]7

d

a ), k(t —s) /:lyu(s,v) dvds =o(u(t,z; —y)), te€(0,t]. (18)

We let r be the resolvent of first kind of k, that is, r satisfies (5). Our
assumptions on k guarantee that such a resolvent exists and that it is positive
and nonincreasing, see [9, Lemma 2.1]. Take the convolution (with respect

to t) of both sides of (18) with the function p(¢ fo r(t — s)s“ds where
a > 1. By (5),

/0t2 (ta — s)” /:y u(s,v)dvds = /0t2 p(ts — s)o(u(s,z1 — y))ds.  (19)

Using Hoélder’s inequality twice to estimate the left hand side of (19), we
obtain

to T1
/ (ts — s)"/ u(s,v)dvds
0 T1—Y
to 1 1 1
< / (ta — 5)° (/ u(s,v)? dv) dsy™ 7
0 T1—Y

y—1
oy

< < /0 " oty — $) / flyu(s,v)v dv ds>7y”f ( /0 § p(ss)__ ds>7. (20)

10

[




Since r is nonincreasing and not identically zero there exists a constant c;
such that p(t) > ¢t*™! when ¢ € [0,t,] and therefore it follows from our
choice of o that

to o
/ i 11 ds < o0. (21)
0 p(s)rt

If we now let

12 1

w(y) d:ef/ p(ta — s)/ U(u(s, v)) dvds,
0 r1—Y

then the right hand side of (19) equals w'(y), and so by (ii),(20), and by (21)

there is a constant ¢y such that

w'(y) < ey’ w(y).

Since w(0) = 0 and w(y) > 0 for y > 0 we get

1\ 7T et
w(y) < (02277—_1) yrt,
and we conclude that there is a constant c3 such that
w'(y) < csy7r. (22)

But from the definition of w, from the fact that u is nondecreasing in its first
variable, and by the monotonicity of o it follows that

w'(y) > /0 i 1p(s) dsa(u(tl,xl — y))

When this inequality is combined with (17) (where we take z = x; — y) and
(22), a contradiction follows. This completes the proof. O

Proof of Theorem 3. The idea of the proof is roughly as follows: First we
show that if one has a solution for ¢ on some interval [0,7'] (one clearly
has such a solution when 7' = 0), then it can be extended to a slightly
larger interval. From the proof of this fact one sees that if this extension
procedure does not give a solution on the entire interval [0, 7] then there
is some maximal interval [0,7) on which there is a solution and which is
such that supp_;|lo’(u)cw (jo,m1,c(0,¢7) = 00+ In order to show that this last
fact leads to a contradiction we then apply the same argument as when
establishing the existence of a local solution, but we derive estimates for
|zl cwn o,77:22(jo,x7)) instead of estimating ||luzlca (jo,r1,c(0,x7))- It 1 of crucial
importance for this part of the proof that we derive these estimates for all
X € [0,&]. In this connection, the use of Theorem 1 is essential.

First we show that we may, without loss of generality, assume that there
are positive constants cq, ¢, and cs such that

/ o
0<co<0o'(r)<c <ooand supM
rés T — 8]

<ey<oo.  (23)

11



By (i) it is sufficient to show that there is an apriori bound for the solution.
In analogy with the proof of Theorem 2 we let

D(A) ={ve L'([0,&;R) | o(v) € AC([0,&];R), v(0) =0}, (24)
and
A(v) = o(v), wveDA). (25)

Then one can easily show (cf. the proof of [11, Lemma 3]) that A is a
closed, m-accretive operator in L' ([0, £]; R) and that ||[(I+AA) ™ ]| e (o,¢)) <
|v]| Loo(o,¢y) for all v € L([0,&];R) when A > 0. Then it follows from [3,
Thm. 4.(a), Prop. 5] that if we find a solution u of (1), then it must satisfy
SUD, 0 (1, )] <SP, o () |+ Jf 9t — ) sup,cpo £ (5, 2)| ds and this
is the desired apriori bound. Thus we shall for the rest of the proof assume
that (23) holds.

Suppose next that there is a number T € [0,7) such that there is a
solution w € C([0,T] x [0,&];R) of (1) on (0,T] x (0,&] such that u, €
CW([0,T]; C([0,€];R)), u(0, z) = up(z) and u(t, 0) = 0; if T = 0 this solution
is taken to be u(0,z) = uo(g) (so that this hypothesis holds at least with
T =0).

We intend to show that this solution can be continued to [0,7] x [0, £]
where T'> T and T — T is sufficiently small. We do this in two steps. In the
first step we solve (27) with ¢ given; in the second step we find a fixed-point
for the map ¢ +— o'(v) (where v is the solution of (27) obtained in the first
step). This continuation procedure is concluded by formula (41).

Thus we first show (using the same argument as in the proof of [2,
Thm. 1]) that there are constants § and M; depending on «, u, 7, &, co,
and ¢, such that if T € (T, 7] and ¢ € C® ([0, T7;C([0,£]; R)) satisfy

co < c(t,z) < e,
c(t,z) =o'(u(t,x)), (t,z)€[0,T]x[0,£], (26)
(T =T) llellcwnqozreqo < &

then there exists a unique solution v of the equation
(Df (v — o)) (¢, ) + c(t, @)va(t, @) = f(t,2), (t,2) € (0,T] x (0,

v(0,z) = uo(z), x€][0,£], (27)
v(t,0)=0, tel0,T],

such that (clearly v(t, ) = u(t, z) for (¢,z) € [0,T] x [0,&])
||Uw||C(u)([0,T};C([0,x])) < Ml||ux||c(m([o,T];C([o,§]))

+ M|l fllcwn(o,reo,qy + Mallo! (uo(z))ug(z) — FQ0, )l ety .61

(28)
+ Ml||Ux||c(u)([0,T];C([0,g]))||C||c(u)([o,T“];c([o,xD), X €10,¢].

12



Observe that the first and last term of this inequality are written in terms of
the space variable X € [0,&]. The proof of the existence of v satisfying (27)
will be completed by the paragraph containing formula (39).

To solve (27), we begin by studying the following equation:

(D?(v — ug))(t,x) + b(z)v,(t,x) = g(t,z), te€(0,7], x€(0,&, (29)

with boundary condition v(¢,0) = 0 and initial condition v(0,z) = ug(z)
under the following assumption on the function b:

beC(RT;R) and 0 < ¢g < b(z) < ¢; < 0. (30)

We denote by By, the linear operator in Cy,0([0, £]; C) & {q € C(]0,¢];C) |
¢(0) = 0} with domain

D(By) = {q€C([0,&;C) | q(0)=4'(0)=0}
and defined by
(Bpa)(z) = b(z)q'(z), x€[0,€], q€D(By).

We denote by B the corresponding operator with b(z) = 1 and £ replaced by

o = &/co.
Thus (29) can be written as

D (v — ug) + Byv = g. (31)

Next, perform a change of variable y = fom ﬁ ds, so that equation (31) is
replaced by

D2 (v® — uf) + Bv® = ¢°, (32)
where
9t y) = g(t, p(y)),
b = walpl), L
and
g'(ty) = 9(t,¢), v e (66l

0(€) + b(§)uo(§)(y — &),

<
oo
S

I

2

Here &, = f(f Tls) ds and p is the inverse of the function z — [ b(l—s) ds. By
[1, Thm. 6.(a)] equation (32) has a unique solution v* which satisfies the
bound

1Bv*(®) = 6" (0)llcw to.riconsnlio o))

< M (HBug o gb(O)HC(%)([O,gOD + ||gb(£) - gb(o)||C(“)([0,7’};00»—)0([0,50}))) )
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where M, depends on «, u, 7 and &. Now we change variables back again,
that is, we define

v(t,z) = 1° <§, /m ﬁ ds> , forz €|[0,¢]. (33)
0

We can therefore conclude that there is a unique solution v of (29) such that

||Ux||c(u>([0,r};0([0,g];©)) < M3<||b(£)uﬁ(£) - g(oaﬁ)”C(g)([oﬂ)

+lglleworeqey). (34

where (with some crude estimates) M; = %(Mz max{2, le} +1).

Our next claim is that (34) holds with 7 replaced by an arbitrary T €
(0, 7], & replaced by an arbitrary X € [0, ], and with M3 unchanged. To see
this, choose 7' € (0,7], X € [0,€], and redefine b, u and g as b(z) = b(%X),
uo(z) = uo(X) + up(X)(x — X), and g(¢t,x) = g(¢,X) for z € (X,£] and
t € [0,T] and g(t,z) = g(T,x) for z € [0,€] and t € (T, 7]. Then we can
use the uniqueness of the solution and the definition of the Hoélder norms to
conclude that we in fact have our claim, i.e.,

102 lleon o, 7100, 2350)) < MB(HM@%(@ =900, 2)ll ) o 20
+ lglleworeqoay ) T €07, Xe[o.€. (35)

Choose

1

and T € (T, 7] such that the last part of (26) holds. Having a solution of
(29) satisfying (35) and having chosen T, we proceed to find a solution of
(27).

Let P denote the set

P {pe (0. TLC([0,€);C) | plt 2) = ualt,z), 0<t<T}.
For each p € P we have to find a solution w of the equation

Dy (w —uo)(t, z) + o(T, z)wy(t, z) = f(t,2) + (¢(T, z) — c(t, z))p(t, z),
(37)

on [0, 7] x [0,&] with boundary condition w(¢,0) = 0 (and initial condition

w(0,2) = up(z)) and ¢ as in (26). Note that this equation is of type (29).
Observe also that the right-hand side of (37) evaluated at t = 0 is

£(0,2) + (e(T, @) — (0, 7)) ug(z),
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and therefore the term b(x)ug(z) — g(0,z) appearing in (35) is now , when
b(z) = ¢(T,z), equal to ¢(0,z)ug(z) — f(0,z). Thus we conclude from (ii)
and from the results above on (29) that we can find a solution w of (37) such
that w, € C%W([0,77;C([0,€]; C)). Moreover, the uniqueness guarantees that
we have w, € P.

Let us denote the mapping p — w, by w, = G(p). Using the linearity of
equation (37), and (35) with b(z) = ¢(T, z) once more, we conclude that

[(G(p1) — G(p2))(E: @)l cw o 21.0000,2))
< Ms||(e(T, z) — c(t, 2))(p1 — p2) (& D)l cw o, a1c(o.27)), X € [0:€]. (38)

Let po = p1 — po and ca(t,z) = ¢(T,z) — ¢(t,z). Since p; and py € P it
follows that pa(t,z) = 0 for ¢ € [0, T] and therefore we can, when analyzing
the term (¢(T,z) — ¢(t,z))(p1 — p2)(t, x), assume that c(t,z) = ¢(T,z) for
t € [0,T]. Thus we conclude from the last part of (26) and from (36) that

1
sup |CA(t7$)pA(t7$)| < W sup |pA(tax)|7 X e [0,&]

te[o,7] 4 M3 te[0, 7]

z€[0,x] z€[0,%]
Furthermore, if we write ca (¢, 2)pa(t, z)—ca(s, 2)pa(s, x) = ca(t, z)(pa(t, z)—
pa(s,z))+(calt,z)—ca(s, z))(pa(s, z)—pa(T, z)) using the fact that pa(T, z) =
0, and use (26) once again, then we conclude that

[(ce(T, ) — e(t, 7)) (p1 — pz)(t )| e (o, 21:¢(0.27))

< WH(M p2)(tax)”C(M)([O,T];C([O,x}))’ X €10,¢].

Hence we have, using (38), for every X € [0,£],

(G (p1) — G(p2))(t, @)l cw (o 21.c000,2))
1
< §||(p1 = p2)(t, @)l cw o 1100, (39)

and we see that the mapping G is a contraction and that there is a unique
fixed-point, i.e., a function v such that v, = G(v,). Thus we get a solution
of (27) on the interval [0, T].

If we take po € P to be such that po(t,2) = ug(T, z) for t € [T,T] then
l1Pollcw o, 710,27y = 1tallcw o,rc(0,27))- Using inequality (35) to estimate

||G(P0)Hc(u)([o,ﬂ;c([o,x])) and then (39) to estimate HG(Ux)_G(pU)||C(u)([0,T];C([0,xD)a
we conclude that (28) holds with

My = max{1+ 4Ms|lcllcw o rrcqo.e) 2Ms § -

With ¢ fixed, the solution v of (27) can of course be continued to [0, 7] X
0,&]. However, our goal is to solve (1), i.e., (27) with ¢(¢,z) = o'(v(¢t, z)).
For this purpose we apply another fixed-point argument on [0, T] with T —T
sufficiently small (and recall that we have a solution of (1) on [0, 7).
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We let M, be the constant

def
My = ¢ + camax{1, E} M|zl e (o.1c(0,]))

+ €ea M| fllew qo,m1ico,eny T §c2Mallo’ (wo(z))ug(z) — f(0, )|l cx )([0,€])

and choose T € (T, 7] such that

- J
— ©
(T T) S M4eM4§ )

(40)
For our fixed-point argument we let

V= {c € C(“)([O,T];C([O,f];R)) c(t,z) =o' (u(t,z)), te€[0,T], =ze€]l0,£],
co <c(t,x) <e, te€ [T,T], z € [0,&],
lellco ooy < Mae™*, X €0,¢] }

Note that V' is convex and not empty. Now we define the function F(c) for
ceV by

F(e)(t,z) ¥ o' (v(t, x)),

where v is the solution of (27). (By the definition of V' and by (40) condition
(26) is satisfied and hence such a (unique) solution exists.)

By the uniqueness we know that we have F(c)(t,z) = o'(u(t,z)) for
t € [0,T] and = € [0,£] and by (23) we also have ¢y < F(c)(t,z) < ¢1.
Finally we note that since v(¢,0) = 0 we have

PO = ( [“utenar),

and it follows that

X
1F ()l cwn ooy < €1+ 2 / [zl e o, r1:e 10,41 47
0
X
< My + M4/ llellen qo.me oy A7 < My, X €[0,¢],
0

where the second inequality is a consequence of (28) and the definition of
My, and where the last inequality follows because ¢ € V. This shows that
F(c)e V.

Finally we observe that by [2, Thm. 1 and (4)] the set of solutions of (2 )
one gets when ¢ € V is contained in a bounded subset of C{(#+2)/2) ([0, T1; (/2 ([0, £];
(for example) and therefore this set of solutions, and hence also F(c¢) = o'(v)
for ¢ € V is contained in a compact subset of C% ([0, 77;C([0,£];R)). (Note
in particular that since our boundary condition is now v(¢,0) = 0 we do not
need the assumption that the function = + ¢(¢, x) is a continuous function
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with values in C® ([0, 7]; R). Therefore the constant M appearing in [2, for-
mula (4)] depends on ||c|[¢w (o 71,c(0,)» €0 and c1, but not otherwise on c.)
Thus we know by the Schauder fixed-point theorem that there is a function
¢ € V such that F(c) = ¢ and the corresponding solution of (27) is then the
unique solution of (1) on [0,7] x [0, &].

If the claim of the theorem does not hold there is, by the continuation
argument above, a maximal number 7 € (0, 7] such that there is a solution
of (1) on (0,7) x (0,&], and such that u, € C* ([0, T); C([0,&];R)) for all T €
(0,7). If supp ||uallcu jomc(0,e)) < 00, then this solution can be continued
by the argument used above, and we get a contradiction. Furthermore, it also
follows from the argument in the above that if supy_: (/0" (w)l|cw o, 71:c(j0,)) <
00, then supy_;||uzlcw o,mc(0,e)) < 00- Thus we assume that

supl|o’ (u)lcw jo.7c(0.6)) = O©s (41)
T<#
and we will derive a contradiction from this.

We want to apply Theorem 1 and therefore we define the operator A by
(24) and (25). It is straightforward to check that by (ii) y = wg belongs
to D(A) C D(A) and that by (iii) the function t — f(t,z) € L*([0,£];R)
satisfies the assumption (iv) of Theorem 1. Thus Theorem 1 may be applied
to (1) and so we obtain the existence of a unique (strong) solution u €
C([0,7]; L*(]0,€]; R)). By uniqueness, this solution coincides with the one
constructed above on [0,7) x [0, &].

It follows from Theorem 1, together with the results on the local solution
that we already have established, that the function

t = o(u).(t,z) € L*(]0,&]; R) is uniformly continuous on [0, 7).

An immediate consequence of this result, of (23), and of the fact that u(¢,0) =
0, is that

u is uniformly continuous on [0, 7) x [0,&], (42)
and hence we also conclude that
t = ug(t,z) € L*([0,&]; R) is uniformly continuous on [0, 7). (43)

In the above, the results of [1] were applied to the operator u — u, in
the space of continuous functions. Now we shall do the same thing but with
integrable functions instead. We let & = £/cy and denote by B the linear
operator in L'(]0, &]; C) with domain

D(B) = {v € AC([0.&};C) | v(0) = 0}
and

(Bv)(z) =4'(z), z€]0,&], veDB).
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As the norm in D(B) we can take ||w|ps) = ||w'||1(j0,¢))-

If b € C(R";R) satisfies ¢y < b(z) < ¢, then we can use an argument
similar to the one employed when deriving (35) to conclude that it follows
from [1, Thm. 6| that there is a constant M5 (which depends on «, p, 7, &,
co and ¢;) and a unique solution v of (29) such that

||UacHcm)([o,T“};Ll([o,x])) < M5(me,x](p(g))ho(p(g))HDB(g,OO)
+ ||g||c<m([o,T”];L1([0,x]))), (44)

for all T € [0,7] and X € [0,€] where ho(z ) = b(z)uh(z) — g(0,z),
is the inverse of the function z — y = [ 5oy ds, and where Dp(t) =

(L'([0,&0); C), D(B))# oo - In this argument one extends the functions as
constants in the ¢-direction and as 0 in the z-direction (but wg is extended
as a constant) and changes the z-variable to the new variable y = [* 1 ds

Having (44), our next goal is to estimate the first term on the rlght hand
side. We claim that if A is an arbitrary function in C(%)([0, £]; R), which is

n
extended as zero to (£, 00), then there is a constant Mg of 2¢7 & + 4, such
that

HX[O,%](p(g))h(p(g))HDB(g < MGHhHC( ) ([0,¢])° X e [0,6] (45)

To see this we argue as follows: Let w(y) = xjo,x(0(y))h(p(y)) and extend
this function as 0 on ( 00, 0) and let t E (0,1) be arbitrary. Now write
w = wy +wy where w(y fo Lemi( —w(y—r))dr and where ws(y) =
0* leTtw(y—r)dr. We note that w(y ) = 0 when y < 0 and when y > X, &
fo 5s) ds Because p is Lipschitz continuous with constant ¢; we know that
lw(y ) —w(y—r)| < c1 ro ”h”c(’é)([o &) when 0 < r <y < X,. Furthermore,
lw(y) — w(y —r)| < ||h||c(§>([o,§]) when 0 <y <ror X, <y<X,+r
(because then either w(y) or w(y — r) vanishes) and |w(y) —w(y —r)| =0
otherwise. It follows from these inequalities that ||wy ||z1(o¢)) < (tocf &I (1+
) 20)[ Ml gy Fosthesmore, walos) = [l a0n = 4l acnen
because wh(y) = 2w;(y). Thus we see that t ™« ||wi|p1(o.c) +1' = [[walps) <
M|, ) (0.6]) and by the definition of the interpolation space Dp (%, 0o ) =

(L'([0,&0); C), D(B)) s o (see e.g., [13, Def. 1.2.2]), this is exactly what we
need in order to get (45).

Using (45) we see that (44) implies that the function v that solves (29)
satisfies

”vw||C(u)([0,T};L1([0,x])) < M;s (M6||h||c(g)([0’§]) + ||g||c(u)([o,T];L1([o,x})))a (46)

for all T € [0, 7] and all X € [0, £].
Let c(t, z) Lo (u(t,z)). By (42) we can choose T € (0,7) such that

sup  sup |c(t,x) — (s, z)| < 2M5 (47)

ts€[0‘r) xe[(] ]
[t—s|<
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Let 7' be some arbitrary number in (T, 7).
Now we rewrite (1) in the form

(D (u —uo)) (t, 2) + o(T, x)us(t, 2) = f(t,2) + (¢(T, x) — c(t, ) ua(t, )
“y(t,z), te[0,T], =<0,

Note that this equation is of type (29); hence the estimate (46) may be applied
to u with b(z) = ¢(T,z) (and b extended as a constant for z > ). Also
observe that ¢(T, z)ug(z)—g(0,z) = ¢(0, z)uy(z) — (0, z) = o' (uo(z))ugy(z) —
f(0,z). Thus we see by (46) that

HUch(u)([o L (j0,x)) = My
+ M5HX[TT t)(c(T, z) — c(t, z))ua(t,z Hc(u) ([0,7;L1(]0,X]))’ (48)
where M is some constant such that
M5||f||c(u) [0,77;L([0,X])) + M5 Ms||o' (uo(z))u 6( ) = f(0, 3/’)”0( ) ([0,€])
+ Ms||xpo,1) (1) (e(T, 2) — e(t, z))ua(t, z HC(H)([O,T];Ll([O,%})) < My,
for all X € [0,£] and for all T € (T,7). Now a simple calculation shows that

HXTT )( (T,z) - (ivﬁ))“w L,z HC(M) ([0,71;21([0,X]))
< sup sup |¢(T,z)—c (tvx)|Huw”C(H)([O,T];Ll([ﬂ,x]))

te[T,T] ©€[0,€]
Tle(t, z) — (s, 2)]
+ su ) ) u(s. 2 da.
t,se?[gfiﬂ]/o' |t — S|p | ac( ) )|
t#s

Invoking this inequality together with (47) in (48) we get

[l e o221 0.2y < 2M7

x
t _
+2Ms sup / |c(,9|c) c(s’x)||um(s,x)|dx
1J0

t,s€[0,T" t— 3|“
t#s
< 9M; + 2M; sup / lellow o100 a5 @) . (49)

s€l0 T
Since c(t,z) = o' (f; us(t,7)dr) it follows from (23) that

”c”C(u)([O,T];C([O,mD) <o+ 02””&0||C(u)([0,T};L1([0,a:D)7 z € [0,£]. (50)

From (49) and (50) it follows that for each X € [0, ] there exists a number
s(X) € ]0,7) such that

||Uw||c(m (0,72 (o.x))) = 1+ 2My7 + 2¢1 M Sl[lp)Huw(S ) || 1 (jo.87)
s€[0,7

X
+ 2M5Cz A Hux||C(N)([0,T];L1([0,x])) |ux(8(:{)), .'L')| dx (51)
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By (43) there is a finite set of points {t;}7_, C [0, 7) such that if s € [0, 7)
then there is an index j(s) € {1,... ,n} such that

1
4M502 ‘

[ua(s, 2) = ualtj(s), 2)l L (0 < (52)

Let Mg = max{4Mscs, 2 + 4 M7 + 4er Ms supepo 7| (s, )l 1 o,en ) (by (43)
Mg < 00). Then we conclude from (51) and (52) that we in fact have

X
[ lleon oty o,y < Ms + M8/0 [l oty .01 [t (ticstan, )] dz
X
< Ms + M8/0 Hux||c(u)([U,T];Ll([o,x]))p(x) de,

where p(z) = max;<j<n|us(t;, z)| so that we have p € L'([0,£]; R). But now
it follows from Gronwall’s inequality that

Ms [Xp(s)d M
”uw”C(M)([O,T];Ll([o,x])) < Mge s [y p(s)ds < Mge 8||pHL1([O,§])_

This inequality combined with (50) contradicts (41) and the proof is com-
plete. O
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