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1 Introduction

Locking, or parametric error amplification is a well-known phenomenon that
may arise when solving parametric elliptic problems with the finite element
method. A rather challenging problem of this type is the shell problem
of linear elasticity [6, 4, 7] where the thickness of the shell serves as the
main parameter. Locking usually effectively prohibits the convergence of low-
order finite element schemes when the parameter associated with the problem
approaches an asymptotic value such as zero. There have been numerous
attempts to reduce the effects of locking in order to obtain improved, or even
optimal, convergence rates in various problems of linear elasticity. In fact, in
this home field of FEM even one of the earliest finite elements, the Turner
rectangle [9], may be viewed as such a formulation, see [5].

Perhaps the most popular way to circumvent the problem of locking is to
produce a variational crime of some kind, i.e. the bilinear form A(u, v) asso-
ciated with the problem is substituted by another, usually mesh dependent
form Ap(u,v). The aim of the modification is to generate a weaker norm in
the underlying energy space V so as to “unlock” the problem. However, the
choice of the modification is a delicate matter since introducing a variational
crime entails a consistency error component that must also be treated.

In this paper we consider a simple parametric elliptic model problem,
the problem of highly anisotropic heat conduction, previously studied in [1].
This problem resembles the shell problem in that, depending on the boundary
conditions and on the load, the solution may fall in two different asymptotic
states. In the context of heat conduction these states could be named as
the cool state and the hot state, respectively. In the cool state, the main
heat conduction occurs in the direction of high conductivity (as expected
normally), whereas in the hot state, the conduction in the direction of low
conductivity dominates. In beam theory [5] and in shell theory [7], the cool
state corresponds to a deformation state where stretching dominates, while
the hot state corresponds to a bending-dominated deformation.

In parametric elliptic problems like the ones mentioned, the numeri-
cal locking problem appears in the “hot” or bending-dominated asymptotic
states. In problems where this is the only relevant state, like in the plate-
bending problem [8], various “tricks” or variational crimes have usually been
formulated so as to avoid the locking effect. The real challenge begins, how-
ever, when two (or perhaps more) asymptotic states are possible. One should
then try to find a formulation that not only avoids the locking in the “hot”
state but also maintains the good performance in the “cool” state. The main
problem is that the more the crime helps to avoid the locking effect, the
larger consistency error typically appears in the “cool” state where no lock-
ing occurs.

In general, it is far from obvious that a “dream scheme” good for all
asymptotic states exists in the context of the simple low order FEM. However,
the few successful examples, like the bilinear Turner rectangle for beams [5],
seem to indicate that the problem at least is not hopeless. Here we consider



a simple model problem which aims to model our ultimate target, the shell
problem.

The plan of the paper is as follows. In section 2 we present our model
problem containing positive but arbitrarily small parameter e. We show that
as € — 0, two different asymptotic solution modes are induced by different
boundary conditions. In section 3 we introduce the modified bilinear formu-
lation for the model problem where the main crime is to elementwise average
the heat flux in the direction of high conductivity. The error analysis of
this reduced-flux scheme is carried out in sections 4-6. In section 4 we split
the error into two components, the approximation error which is treated in
section 5, and the consistency error treated in section 6. The results of some
numerical experiments are shown in section 7.

We denote the kth Sobolev norm by || - || and the corresponding semi-
norm by | - |z. The L2-inner product is written as < -,- > and the induced
norm as || - ||zz- V and V° stand for the energy space and its subspace with

proper homogeneous boundary conditions. V, and V) are the finite dimen-
sional counterparts of these two spaces. C' represents an arbitrary but finite
constant, not necessarily always the same, but independent of any parameter
unless noted otherwise. Finally, ) denotes a constant that depends on the
exact solution u but not on the parameter e.

2 The model problem

As a model problem for our analysis of locking in this paper we take the
problem considered already in [1]: The anisotropic heat equation in the unit
square 2 = (0,1) x (0,1) with principal axes that are not aligned with the
coordinate axis, that is

Pu 0%

—6—6_2—6 0—7]2:f1nﬂ
with
¢ =az+fy
n =-fr+ay

where o? + 32 = 1 and «o,3 # 0. From this setting we generate three
different problems where the behavior of the solution is largely dictated by
the boundary conditions:

A. u=won 0N

B. g—z:gwhenleoryzlandu:welsewhereonaﬂ

C. g—Z:gonBQ



Here f,w and g are given functions, assumed chosen so that the exact solution
of the problem is sufficiently smooth, see below. The variational formulation
of these problems is: Find u € V such that

A(u,v) = ¢(v) Yo € )V° (2.1)
where the bilinear form (energy product) is written as

Ou Ov , Ou Ov

A(U,’U) =< 0_5’8_5 > te < a—n,a—n >,

and the linear functional as

o(v) =< f,v > +/ gvdl,
'y

where I'y = () for Problem A, T'y = {(z,y) € 9Q|z = 0ory = 0} for
Problem B, and I'y = 90 for Problem C. In Problem C we assume that
#(1) = 0 and impose the constraint < u,1 >= 0 on V so as to make the
solution unique.

Due to the assumed constraint u = w when x = 0 or y = 0 in Problems
A B, we may assume that heat conduction in the &-direction becomes dom-
inant in these cases as ¢ — 0. This corresponds to the “cool” state where,
neglecting any boundary layer effects, we may assume that

u=u’+ u, (2.2)

where the limiting solution u? satisfies

ou v 0
<0—§,a—€>—¢(v) Yv e V.

In our error analysis we simply assume that u is sufficiently smooth uniformly
with respect to e. More precisely, we assume that

[ulle < Qlf[ul]] for k <5 (2.3)
and
|lullk00 < Q|||ul|| for & =1,2. (2.4)
where () is finite and independent of € and ||| - ||| is the energy norm

[lulll = v/ Alu, ).

In problem C the physical situation is rather different. In this case, due
to the forced heat flux along 0f2, the solution develops in general a “hot”
component that scales like u ~ ¢ 2 and represents heat flux in the n-direction
only. Again neglecting boundary layer effects, we may then assume the formal
expansion

u=¢ 2u’ 4+ u' (2.5)



where u° (the scaled limiting solution) satisfies 83—120 = 0. We assume this

expansion with u® # 0 and u! sufficiently smooth. Noting that then |||u]|| ~

¢ 1 as € — 0 we assume specially that

lu'||x < Qell|ul|] for k < 3. (2.6)
where again () is finite and independent of e.

Remark 1. We note that as as rule, u° in (2.2) or in (2.5) is not continu-
ously differentiable across the lines 1 =const. that pass through a corner of
Qatx=0,y=0o0ratz =1,y =1, soin this sense the regularity assump-
tions (2.8), (2.4) and (2.6) are quite unrealistic. However, we choose not to
discuss problems associated with the reqularity of the exact solution here, but
simply assume these bounds for our analysis. We could formally justify these
assumptions by thinking of Q0 as a fictitious subdomain of a larger domain
where the physical boundary conditions are set so that ujq is smooth.

Remark 2. In order to have u® # 0 in the hot state we must assume that
our boundary data g and load function f are such that there is at least some
v €W for which ¢(v) # 0 where W = {u € V| g—z = 0}. The scaled limiting
solution u® in (2.5) then satisfies (2.1) with W replacing V.

3 Standard FE scheme vs. reduced formulation

Our main concern throughout this paper is the isoparametric bilinear ele-
ment: Let 7 denote the subdivision of €2 into convex disjoint quadrilaterals
K that satisfy the usual shape regularity assumptions (cf. [2]). Then we set
our local finite element space to be

Mg ={v="00Fg" ve Mg}

where My is the reference finite element space associated to the reference
element K = (—1,1) x (—1,1) and Fx : K — K is a bilinear map. For the
reference space we take

Mf(' = {ﬁ(£7 Q) = agp + alo.ff? + a01Q —+ all-/i’Q, aij = R}

and for the degrees of freedom the nodal values as usual. We further denote
by hx the largest side of element K, let h = maxg hx be our mesh parameter,
and denote by V), the piecewise bilinear FE space (a subspace of V) associated
to a given mesh.

In the above notation, the standard bilinear FE approximation uy € Vj
to the solution of our model problem satisfies

Alup,v) = ¢(v) Yo € V) (3.1)

together with the interpolated constraint u;, = u at those nodal points of the
boundary where the corresponding constraint is imposed in the exact formu-
lation (Problems A,B). Here 1} is the subspace of V;, where homogeneous



constraints are imposed. For this scheme, the standard FE error analysis
together with the assumed regularity assumptions (2.3) (Problems A,B) and
(2.5), (2.6) (Problem C) gives us the following error bound in the energy
norm:

Theorem 1. For the standard bilinear FE scheme (3.1) we have the error
bounds

[[|u — ual] < CQh in Problems A,B
[l min{1,CQ%}  in Problem C

Proof. In Problems A B (cool state) the asserted bound follows from standard
FE approximation theory based on assumption (2.3) with k& = 2, c¢f. [2].
In Problem C (hot state) we have no constraints on the boundary so the
projection principle gives |||u — up||| < |||u|||.- To prove the second bound we
expand uy, in analogy with (2.5) as

Up = e_zug + u,l1
The asserted bound then follows again by standard reasoning based on bounds
(2.6) with £ = 2. Here we also see that the dominant error contribution comes
from

|||u0—u2||| {2 9, 042 9, 4 0 2}1/2
— 1~ =(u —u +||—(u" —u .

Since aa—’? = 0, e-uniform convergence is possible only under constraint % =
0. This, however, implies that u) = ¢; + con for some constants ¢, co, unless
the mesh is carefully aligned with the £-axis. Thus we conclude that the
asserted bound is (essentially) not improvable on a general mesh. This is

also confirmed by numerical experiments, see section 7. 0

In order to circumvent the parametric error amplification in the hot state,
we now commit a variational crime choosing our new mesh dependent for-
mulation to be: Find u; € V), such that

An(up,v) = ¢(v) Yo € V) (3.2)
where
B u  Ov 9 v
Ah(u,v) <Rh0£’Rh85>+€ <0 ' 5
(3.3)
+e<(I-R )0—u ov
‘ " oe e

Here Rj is a numerical flux reduction operator which we choose to be the
orthogonal L2-projection onto elementwise constant functions, i.e.

1
— [ pdud
Fnpix area(K) /KQO ray
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Figure 1: Different mesh types. From left to right: General quadrilateral,
rectangular, piecewise uniform and uniform mesh.

for every element K.

The basic idea in the formulation (3.2)-(3.3) is the hope that weakening
the locking constraint from 33—’? =0 to Rh%ig = 0 retains the approximation
properties of the finite element subspace at the limit ¢ — 0 in the hot state.
However, one must also keep in mind the cool state where the standard
element did not suffer from locking. Thus there is an additional requirement
that in the cool state the performance of the scheme should not deteriorate
due to the flux reduction. The last term in (3.3) is introduced to keep the
formulation at least e-stable, or H'-stable at ¢ = 1. We finally note that
the reduction operator R, could be different, but the chosen one appears a
rather natural “first choice”.

In non-standard FE formulations, the regularity of the mesh may have a
strong impact on the actual performance of the algorithm, cf. [5]. To study
such possible effects in the present context we will distinguish between four

different mesh types as follows:
1. General quadrilateral mesh.
2. Rectangular mesh.

3. Piecewise uniform rectangular mesh: (2 is divided into /N subrectangles
Q;, and each 2; is subdivided by a uniform rectangular mesh.

4. Uniform rectangular mesh: case 3 with N = 1.

The four mesh types are shown in Figure 1. Note that on each of these
meshes, the standard FE scheme fails to converge at ¢ = 0 in Problem C.

4 Error analysis principles

In our error analysis of the reduced-flux scheme (3.2)-(3.3) we follow the ideas
of [5] choosing our error indicator to be

M = unll]n

[l

where v and u, are the exact and finite element solution, respectively, and
[|| - |||n is the (semi) norm generated by the bilinear form Ap(u,v) on V. Our



aim is to divide the total relative error e into two parts and discuss them
separately. To this end, we note that by (3.1), (3.2)

An(un,v) = A(u,v) Vo € V).

Let us then split u, as up = @y + 2z, where 4y, satisfies the same boundary
conditions as wup, and is defined as the best approximation in V, to u with
respect to the norm ||| - |||, so that

An(iin,v) = Ap(u,v) Yo eV,
Since zj, € V), this implies in particular that
Ap(u — tp,2,) =0,
and therefore in fact the orthogonal splitting of the error as
[l = unl|lz = llu = @nll; + Mlzalll7
or
e’ =e%+ 620 ,

where e4, the approximation error, is

e — @]
A= (4.1)
il
and ec, the consistency error, is
s — Uzl
il
We also note that since
An(zn,v) = (A— Ap)(u,v) Vv € V),
the consistency error can be written as
A — Ap)(u, v
ec = Squevg,vyéo( )( , ) (42)

[l Tollln

In order to bound the consistency error we need some stability results for the
reduced-flux scheme (3.2)-(3.3). The following lemma gives us bounds that
will play a crucial role in the analysis of section 6. We denote here by I't the

“outflow” boundary of the primary heat-flow in the &-direction in Problems
A B.

Lemma 1. In Problems A,B,C
lvl; < Ce Y||v|||ln Vv € V. (4.3)
In addition, if the mesh is piecewise uniform, one has
1/2
(o132 + ol3aer) < CNIIlellln Vo € Vi (4.4)

in Problems A, B.



Proof. Estimate (4.3) is a direct consequence of the definition of Ap(u,v).
To prove (4.4), assume first a uniform mesh. Then
0 1

Ry Ly = pid il g il _ i1l
ox 2hx( )

where h, is the mesh spacing in the z-direction and the v*!’s denote the nodal

values of v. Upon expanding Rh surnllarly we see that Rh 9 actually defines

a well-known difference approx1mat10n the box-scheme, for solving the linear
hyperbolic equation g—g = f. Assuming that f is elementwise constant, the
L?-stability of the box-scheme [3] implies (4.4):

2 2 2 v
[Vl + [lollzeeey < ClIfIIz2 = ClliRngz ||L2 < Cll[v]ll.

The piecewise uniform case follows applying the result separately to each
subdomain ;. In this case C = C(N). O
Remark 3. When (4.4) holds, we have

ol < CNRH[[vflla Yo € Vi

by usual inverse inequalities on shape reqular meshes.

5 The approximation error

The approximation error of the reduced-flux scheme (3.2)-(3.3) was defined
by (4.1). The following theorem gives bounds for this error in case of the
three test problems A,B,C and the four mesh types.

Theorem 2. In Problems A and B (the cool state) the approzimation error
obeys the bound

ea < CQh

on every mesh type. In Problem C (the hot state) the approzimation error
obeys the bound

CQ% on a general mesh
eq < CQ% on a rectangular mesh

C(N)Qh  on a piecewise uniform mesh

Proof. The bounds on a general mesh are direct consequences of the inequal-
ities (2.3), (2.6) (with k£ = 2) and standard approximation theory. To obtain
the bound on a rectangular mesh (Problem C) we consider the standard
interpolant j of u. We have

X 9 X
1w — 1[5 —IIRh (u— )|z + 62||3—n(u — )|

9¢
0
+€*[|(I - R”)ag( — )| 22,

10



so by (4.1) and (2.6) the main problem is the first term on the right side.
Here g—z = % +ﬁg—;, so that

0 ) 0 . 0 .
IIRha—g(u = an)llzz < l[Rnp(u = tn)llze + I\Rha—y(u — ) ||z2-
Thus we must find a bound for terms of type
0 . 0 0 .
||Rh£(u — uh)||L2 = ||Rh£’u — Rh%uhﬂp .

However, since

) X
Rha_:l?(u — uh)‘K = 0

whenever u is a quadratic polynomial on K, it follows by standard reasoning
that || Ry 2 (u —n)|r2(x) < Ch*|uls k. Thus the asserted first bound follows
using (2.5), (2.6) (with k£ = 3).

In order to prove the error bound on a piecewise uniform mesh we first
consider the case N = 1. Here we make use of the decomposition (2.5),
choosing our approximation 4, ~ u as

1
N |
uh—e—zuh—kuh,

where 49 satisfies the constraint

0 .o
Rha—é_uh = 0, (51)

and 4}, is the standard interpolant of u'. Again, (5.1) defines the box-scheme,
now for solving 83—“; = 0. The box-scheme is second order accurate, so select-
ing proper inflow boundary-conditions on 9Q we have the bound [3]

lu® — a2 < CR* w5 .

From this we obtain by standard inverse inequalities the bounds
0~ )1 < ORI, (|- (u — )]z < Chlla?]
o€ Lz = 35 an Lz < 3.

Using these bounds together with (%uo = Ry, (%ﬁg = 0 and standard interpo-

11



lation error bounds for u' — u}, we can now bound e4 as

(11 Buge (u® — a)lle + llgg (u! — @3)|l12)”

2
“a = EIE
12w — )2 + (T — Ra) & (u — in)]2
Tl
et = Al + @ b — o) + &t — )
: Tl
| CIERG =)+ 0 — ),

Mz
2 2
O[3 + Sl + ep?ul [} + & |ulllf + €h%[u’ )
N 1

SCQ2h2

where we needed estimates (2.6) with k& = 2,3. The bound for the piecewise
uniform mesh (N > 1) is finally obtained by iterating the finite difference
error bound (cf. [3])

u® = s + llu® = alla, < C(h2[u0lls, + [0 — @)1 )

over every subdomain Q; C Q. Here I'; and I';" are the “inflow” and “outflow”
boundaries of €);. O

Remark 4. Wheter the bound e4 < C% 1 1mprovable or not on a general
mesh remains an open question. Our experiments indicate that the reduced-
flux scheme behaves at least adequately on a general mesh.

6 The consistency error

The following theorem establishes bounds for the consistency error compo-
nent (4.2).

Theorem 3. In case of a general quadrilateral mesh the consistency error
obeys the bounds

o < C’Q% in Problems A and B
¢ = CQh  wn problem C.

In case of a rectangular mesh, we have the improved bounds

C’Qh?2 in Problem A
ec < C’Q%/2 wn Problem B
CQh? wn problem C.

12



Finally, in case of a piecewise uniform mesh, the bounds are still improvable
for Problems A and B as

o < CQh? + C(N)Qh3/? in Problem A
=\ Cc(N)Qmin {r/2, 22Y  in Problem B
with C(1) = 0 in Problem A.

Proof. To have the bound ec < §, we need to bound the consistency error
functional

(A = Ap)(u,v) =(1 =€) < (I - Rh>§Z gg
=(1-¢) < gg (I - Rh)g_g>

as
(A= An)(u,v)| < 8[l[ull[ [[v]ln Vv € V.

The asserted bounds in case of a general mesh then follow immediately from
simple approximation theory, estimates (2.3), (2.6) with £ = 2, and the
stability estimate (4.3). Note that in Problem C, the leading term in (2.5)
does not contribute to the consistency error.

Next, assume a rectangular mesh. In this Case, since

ov 81;
bt 5_
85 Yo
we need only to treat expressions of type < 3—2“1, (I — R;,)(;"—Z”2 > where z;

denotes either x or y. Without loss of generality, let us consider the case
z1 = y and 2o = x. Noting that g—;’; depends only on y on a rectangular mesh,
we can write

ov ov
Ox = -A )095’

where A, is the orthogonal projection onto piecewise constant functions with
respect to the y-coordinate, i.e.

1 Yi
Ayw), = —— / w(z,y') dy’

for every element K. Then we obtain by partial integration

(I — Rp) =

6 O ou v ou Ov

ay (I — R”)ax >=< o (I Ah)6_> <(I- A)(9 o
/0 -1 (@) oz, ) dady
- / (- Ay>gy< W)o(L,y) dy 61)

_/0 [(J—Ay)g—Z(O,y)]v(O,y) dy

1 1 02’(,6
- [ [wr=anggtvdedy,

13



where we used also the fact that A, and % commute.
In Problem A we have v = 0 on 02, so the boundary terms in (6.1) vanish
and we get

8 v Lot 0*u
, (I — — >= I—A)—— (T —-A

<Ch2|u|4|v|1
B2

<CQ [ulal[|v][]n

applying Lemma 1. Together with (2.3) (k = 4) this proves the assertion for
Problem A.

Still considering Problem A, let us now assume a uniform mesh so that
writing
0*u 5 Pu

(I =4y )8:1;031 “(y) 0x0y>

- C(-CU,:U)

where w(y) is the piecewise linear “sawtooth” function jumping from +1/2
to —1/2 at y; we obtain

< (I—A))=—— away L~ MV >

03u v
Y il
()ay>+

< {(w,y), ho(y) = > (6.2)

0u 0_1}
0xdy?’ dy

o
< C(x,y),hw(y)a—z > .

=— < hFw(y)

>+

Noting that w?(y) = 62(y) + 1/3 where 65(y) is the piecewise Legendre poly-
nomial of order two we get

0*u ) Pu v
’v>|§|<h92(y)W’0_y
bl < 1h2 Pu v >
3" dzdy? dy
Ov
+| < C(x,y),hW(y)a—y > |
Pu v
y)w,a—y>|

| < (I =4y

Y 0z 0y > |

= 1?| < a(y)(I —
84
883’

0
%+<«awmww£

+ - h2| v > |

> |

14



where II, is the orthogonal projection to elementwise linear functions in the
y-direction. Here for the last term we can apply Lemma 2 ahead, writing
this term as a sum over K and denoting ¢ = aigy’ Q= Z Together with
the Cauchy-Schwartz inequality and the stability estimate (4.4) this Lemma

gives

ov
| < C(«’B,y),hw(y)a—y > | < CR[uls|[[v][|n - (6.3)

By standard approximation theory and by (6.3), (4.4) we have then also

0*u Pu
I—A)=—— <Ch*
84
+ ghzllvllellmlle + CR° [uls|[v] ||

<CR*([uls + |ula)|[|v][|4,

Using finally the estimate (2.3) (with k = 4,5), it follows that the asserted
improved bound for Problem A holds in case of a uniform mesh.

At this point it is tempting to ask if the procedure above could be con-
tinued to produce even higher order terms in h. However this is not possible

as can be verified from the expression < ,(y)(I — )avaQ, 3y > by taking
8%y

oty = y? and choosing v such that g—z = ﬁ when h < ¢z < 1 — h and
0<y<1—hwith v=0on 0.

The above reasoning anyhow extends to a piecewise uniform mesh as
follows. Suppose that € is divided into two subdomains §2; and €25 with mesh
parameters h; and ho, respectively, by a horizontal line (N=2). Denoting this
line by I and performing the partial integration in

< —hi( )278% NG ; Ou_ O >
3"\ Bray By T T 3 L ozay? oy ™
1., 0u (%
< —hi —
T 3Maa oy
we obtain
<1 y Ou_ dv >q, + < 1h2783u .
371 920y2" gy ~ ™ 32920y2’ gy ~
- 2 &u_ >0, — < lthLlu %
371 950y3 9y ~ ™ 3720103 Oy ~ ™
1 Au
— h2 h2
<3 —h)g gy

where now the additional line integral term is bounded as

3
u
[ 508~ 1) pzvdel < Ol 2 el

15



The asserted bound then follows from the inverse estimate ||v||z2r) < Ch~ 12)|0|| g2
and and stability estimate (4.4). The extension of this argument to an arbi-
trary piecewise uniform mesh is obvious.

Let us now consider Problem B. In case of a rectangular or a piecewise
uniform mesh the non-vanishing boundary term in (6.1) is bounded as

| <I—Ay>a—“<0,y>v<o,y>dy|

|/ (I = 4) 500, = A,)o(0,3) dy

ov
< Chzl\a—yz(O, ')||L2(0,1)||a_y(0a Mz,

h3/2
< Clulzallv]lln——

on a rectangular mesh and as

) h3/2
|||h min {h1/2’ T}

| / <I—Ay>g—g<o,y>v<o,y>dmgcw»u |

on a piecewise uniform mesh, by an inverse estimate and by the stability
estimates (4.3), (4.4). The asserted bounds follow using estimate (2.4) with
k=2.

The case of Problem C is finally easily covered with the help of the de-

composition (2.5). Since 2% = 0 we have that
ou? av
— =(1- I-R
(A — Ap)(u, ) =(1 —€) < ( n) e o6 o
out v
=1—-€) < =, (I —Rp)= >.
and the same analysis as above can be carried out with u! replacing u, except
that a factor € is introduced canceling the error growth as ¢ — 0. U

Remark 5. Again, experiments show that the reduced formulation behaves
fairly well on a general quadrilateral mesh, although this was not proved.

Lemma 2. Let K;; = {(z,y) |zj-1 < < 2j, yi1 < y < y;} where h; =
Yi — Vi1 < h, and let y;_1/2 = 5(yi_1 + ;). Further let Y = ¢(z,y) be a given
smooth function on K;; and let ¢ € L*(x;_1,x;) be such that ¢ is independent
of y. Then

1 Yi P
| /K] [v — ™ /y“ Y(z,y')dy' — (y — yi1/2)%](y — Yi1/2)p dxdyl|

83
< on)? ‘/’HL

) ‘90HL2(K1']')'

Kij
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Proof. Using Taylor’s theorem we can write

0
V(z,y) =(z, yic12) + a—;f(xa Yie1/2)(Y — Yi—1/2)
192
+ 56—15(1;’ Yi1/2) (Y = Yi 172)°

1 /Y 0% )
+ = —(x,t)(y — t)°dt
/ —-1/2 0 3

and
o o &2
B—y(x’y) :a—y(l’ayz’—l/z) Y 2(3c Yi— 1/2)(y—yz'—1/2)
Yy 831/}
+/ o ——5 (@, 1)(y — t)dt.
Yi—1/2
Then
1 Yi , , a
| / v [ vy ~ 0= 1) G~ v z)odady)
- / [ / 5,00y = Yeya)y — vi-s2 — ) dedyda]
Tj-1 y1/2
/ / ol / TV (0, 1)]
Tj—1 Y Yi— Yi—
|(y Yi— 1/2 || 1/2 —t)|dtdydx
-/ / ol 155 1)
Tj—1 Yi—
= v 1)y — Ol (s 1j2 — )] dtda)dy
Yi 3¢ T Yi )
< " 15w e[ [ 1o
(y — vi—12) | (y —t)|2|(yz'—1/2—t)|2dtd$)1/2dy
3 Tj
1/} 7
<15 @l ([ o do?
vi vi 2 ;_1 2 1/2
/ </ 15— w12 Pl — DN 1o — 1) dt) dy
Yi—1 Yi—1
and since
Yi Yi 9 3/2
[ =Pl = 0Pl — 0P a2y = () i
Yi—1 Yi—1

the claim follows.
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7 Numerical experiments

In order to test our reduced formulation we have conducted numerical exper-
iments comparing the performance of this formulation to the classical one. In
all cases we have assumed homogeneous boundary conditions, i.e. w = g = 0.
For the load function f we have chosen f = sin (27z) = sin (27(a — (7).
Note that f satisfies the condition fQ fdx = 0 as required. We have also set

a = 8 = 1/+/2 for simplicity.

7.1 The cool state

In the cool state we consider only Problem A where the asymptotic solution
u® satisfies 2 352 = f. It is then easy to compute the exact asymptotic solution

for 0 < n<1/4/2as

€sin (27 (v/2n — 1))

0—isin m(& — —
w0 =g in (Var(g — ) — =L

272
4 Msin (2m(1 — V2n))
V2 -2

On the second half of  u° is obtained via a reflection through the center of
as shown in Figure 2. Experimenting with a few small values of epsilon and a
few different mesh parameters we see that our reduced formulation performs
very well as compared to the classical one on a uniform mesh, as expected
by the error analysis. A typical behavior is shown in Figure 3. On a more
general mesh, the reduced-flux formulation produces a somewhat wrinkled
surface, but still reproduces the global shape and amplitude of the solution
fairly well, see Figure 4.

).

7.2 The hot state

In the hot state we have the boundary conditions 2 = 0 on 9Q. The

on
asymptotic solution u0 satisfies the condition 2% = 0, the equation QM +

o¢
(2n — \/’)32 w — 5 €OS (2m(1 \/_77)) —W in the region 0 <n< l/f
and the equation 2%“ +(2n— \/_)‘9 ul — 5 €S (2mv/2n) — A — in the region

—1/v/2 < n < 0. Furthermore, uo is contmuously dlfferentlable on €2 and
satisfies the symmetry condition %M:O = 0. From these properties the
asymptotic solution is found to be

0 87T2 fzﬂ' sint dt + 2\[71- — 81? 0271-(\/51771) SITnt dt, 0< n < 1/\/51
f27f sin ¢ dt—|— 2\/_ n— 871.‘-2 027r(\/§n+1) Sltitdt’ —1/\/§ < n <0

871'2

where the normalization is chosen such that uong = 0. Again, experi-
ments with a few small values of epsilon and a few mesh parameters in-
dicate severe locking in the classical formulation whereas the reduced-flux

18



exact asymptotic solution for dirichletl-boundary conditions
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-0.08 .-
60

y-axis x—axis
Figure 2: The exact asymptotic solution in the membrane mode with the
load function f = sin (27x).

£=0.01,h=0.0625,reducedscheme,regulargrid,dirichletlboundary
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Figure 3: The finite element solution obtained by the reduced-flux formu-
lation in the cool state with e = 0,01, h = % and the load function
f =sin (27z).
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€=0.01,h=0.0625,reducedscheme,perturbedgrid,dirichletlboundary
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Figure 4: The finite element solution obtained by the reduced-flux formula-
tion with general quadrilateral mesh in the cool state with e = 0,01, h = L

16
and the load function f = sin (27z).

formulation performs very well on a uniform mesh as predicted. Examples
can be seen in Figures 5 and 6. Note that the standard FE solution at
¢ = 0 is actually the projection of u® onto the one-dimensional function
space Wy, = {v =v(&,n) =cn,c € R}.

On a more general mesh the results with the reduced-flux formulation
are still encouraging, giving a much better solution than with the classical
formulation as can be seen in Figure 7. In view of the above error analysis
this indicates that the generalized box-scheme (5.1) may work even in the
case of a general mesh, although no error bound for this case is known.
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mulation in the hot state with ¢ = 0,01, A = % and the load function

f = sin (27z).
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