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1 Introduction

In this note we consider the method of sums of operators, devised by DaPrato
and Grisvard. The method of sums gives conditions under which the problem
Ay + By = x can be solved. Here A and B are linear operators mapping,
respectively, D(A) and D(B) into X, where X is a Banach space and z € X
is given. In general, only the existence of a mild solution can be guaranteed,
but if this solution y belongs to either D(A) or D(B), then it is a strong
solution. In particular, if x belongs to a certain interpolation space, then
one has a strong solution y. Moreover, then Ay and By belong to the same
interpolation space, i.e., one has maximal regularity.

Our purpose is twofold. First, the aim is to present a brief but concise
and self-contained proof of several previously known results scattered in the
literature.

Second, our aim is to make explicit the constants occurring in the esti-
mates for the various interpolation norms of Au and Bu. In addition, we
extend the method to give some regularity results for the case where neither
A nor B is invertible, but then the existence of a strong solution is assumed.

We make very little claim as to originality; most of the results that we
present can, in one form or another, be found in [3]-[6]. See also [1] and [2].

We begin by defining the class of operators considered. If X is a Banach
space, then we denote the norm in X by ||-|| (or |||[x) and we let ||-|| denote
the norm of bounded linear operators on X as well.

Definition 1. Let X be a (complex) Banach space. A linear operator L :
D(L) ¢ X — X is nonnegative if (—o0,0) C p(L) (the resolvent set of L)
and

sup|[t(L +tI)™"| < 0.
>0

If L is a nonnegative operator on X, then

def _
6 sup{o € 0,7] | sup [AL+AD| <00}
arg(A)|<
A£0

and

M(L,¢) % sup [IA(L+AD) .
larg(\)|=¢
220
In Definition 1 we, of course, take ||[(L + AI)7!|| = oo if =\ does not
belong to the resolvent set of L, i.e., if L + Al is not invertible. Observe

also that if L is a nonnegative operator, then ¢, > arcsin(1/M(L,0)). One
usually says that @ — ¢, is the spectral angle of L.

Definition 2. Let X be a (complex) Banach space and let L be a nonnegative
operator on X. If v € (0,1) and p € [1, 00|, then

def
Dr(v,p) = {2 € X | [2]py(yp) < 0},



where

1
(2] B (fooo(t7||L(L +t[)’1:1;||)p%)’” , 1< p< oo,
Dr(v,p) —
007 supyeg | L(L + 1) s p = oo.

Moreover,

Di(v,000) © {& € Di(y,00) | lim #7||L(L + )" = 0},

with H’DL(’Y,OOO) = HDL(’Y,OO)‘

It is easy to see that []p,(yp) is (at least) a seminorm. Note that for
notational convenience we write Dr(vy,000) = Dr(y). The interpolation
spaces between X and D(L), defined by, e.g., the K-method, are denoted
by (X,D(L)),, where 0 < v < 1 and p € [1,00] U {oog}, (where again
(X,D(L))y,000 = (X,D(L)),); see |7, Chap. 1.2] or the proof of Proposition
3 below.

For completeness we state (and prove) the following well-known facts:

Proposition 3. Let X be a (complex) Banach space and let L be a non-
negative operator on X with domain D(L). Let the norm in D(L) be either
|z|lpy) = |Lz|| + l|z|| or ||z|lpw) = ||Lz|| (if L is invertible). Suppose that
v € (0,1) and p € [0,00]U{o0e}. Then Dr(v,p) = (X,D(L))y, and for each
x € X,

1
HT(L())[x]DL(v,p) < ||$H(X,D(L))7,p

0, if lzllow) = || Ll],
< 2[*’”]%(7@)"’{ 1—y -1 ‘

M(L,0)" (py(1 =) ?llzll, i llzllpw) = || Lz + [|z]].
Next we state a theorem on the method of sums.

Theorem 4. Let X be a (complex) Banach space and assume that

(i) A and B are two linear operators on X with domains D(A) and D(B),
respectively, and there are numbers a and (3 in the resolvent sets p(A)
and p(B) of A and B, respectively, such that

(A—al) ' (B-BI)'=(B-pI)(A—al)™™.
(ii) A and B are nonnegative operators on X and
$a+op > .

(iii) 0 € p(A)Up(B), i.e., at least one of the operators A and B is invertible.

Then the following statements hold true:



(a) There is a bounded linear operator S : X — X such that
S+ BA 'S =A"1 if Ais invertible,
AB 'S+ S = B! ifB is invertible.
(b) Ify € D(A)ND(B), then S(Ay + By) = y.

(c) If Sz € D(A)UD(B) for some x € X, then Sz € D(A) N D(B) and
ASz + BSz = x.

(d) The operator A+ B with domain D(A) N D(B) is closable in X and if
D(A) + D(B) is dense in X, then S = (A+ B)™".

(e) If x € Du(y,p) for some v € (0,1) and p € [1,00] U {o0g}, then
Sz € D(A)ND(B), ASz € Da(v,p) N Dg(v,p) and BSx € D4(v,p).

Moreover
[ASZ]p,(vp) < 1[Z]D4(r0)s
[Bsx]DA(%p) < (1 + Cl)[fc]DA(%p)’
[AS:U]DB(%I)) < 6 [-’U]DA(%IJ)’
where
1 R
6= ~M(B, 7 — 9)(1 +2sin(2)M(A, 9)) / s,
™ o |s—e
1 0 © g1 (1)
Cy = ;M(B,W—e)(1+281n(§)M(A, 9)) /0 mds,

and 0 € (71' - ¢B,¢A)-

The statements (a)—(c) have, in the form stated here, previously been
formulated in [2, Thm. 3.3 and Prop. 3.4]. Related results can be found in
[4]-[6]. For (d) and for the claims ASxz € Dy(y,p) and BSx € Dy(v,p) in
(e), see [6, Thm. 2.7, p. 315], where however D(A) = D(B) = X is assumed,
and [4, Thm. 3.7, p. 324 and Thm. 3.11, p. 328]. In [3]| a cross-regularity
result (ASz € Dg(y,p)) is proved for the case where both —A and —B
generate bounded semigroups.

In the case where neither A nor B is invertible, we have the following
result:

Corollary 5. Let X be (complex) Banach space and suppose that assump-
tions (i) and (ii) of Theorem 4 hold true. If & € Da(v,p) for somey € (0,1)
and p € [1,00]U{oog} and if y € D(A) ND(B) is a solution to the equation
Ay + By =z, then Ay € Da(v,p) N Dp(7,p) and By € D4(v,p). Moreover

[Ay]DA(%p) <a [x]DA(%p)v
[BY|Da(vp) < (14 c1)[Z]D4(v,)5
[AY]py (vp) < €2 [x]DA(%p)v

where ¢; and co are as in (1).



We shall repeatedly make use of the following lemma, and for complete-
ness we give a proof below.

Lemma 6. Let X be a (complex) Banach space and let assumption (i) of
Theorem 4 hold true. Then

(a) Ifx € D(A)ND(B), Az € D(B) and Bx € D(A), then ABx = BAx.

(b) A™(A — uI)*B"(B —vI)™* = BY(B — vI) *A™(A — pl)™! for all
p € p(A) and v € p(B) and all m, n € {0,1}.

2 Proofs

Proof of Proposition 3. Recall that if X and Y are two Banach spaces with
norms ||-||x and ||-||y, respectively, and if Y C X then one defines K (7,z) =

inf ato=s (Ha||X + T”b”y), where z € X and 7 > 0, and if p € [1, o0], then
aceX,bey
(X, Y)%p EireX| lz||(x,v),, < oo} where

1
||.fl;'||()(’yv)’7 {(f() ( _’YK T x))pdr)p, 1 S P < 0,

Sup,~o 7 "K(1, ), p = 0.
Moreover, (X,Y)y 000 def {z € (X,Y)y0o | lim; o7 7K(r,2) = 0}, with
norm [ (x,v); o = [Ill(x)50c

First suppose that z € (X,D(L)),, and that 7 > 0. If € > 0 there
are a € X and b € D(L) such that x = a+ b, ||a||lx < (1 + €)K(7,z) and
T||Lbl|x < 7|bllpy < (1 + €)K (7, ). If t = £ we get

|L(L 4 tI)~ a||x < [|L(L+tI)" allx + [[(L + tI)~"Lb| x < l|ax
+ ||L(L +tD) 7 a||x + ||t(L + tI) " rLb||x < (14 M(L,0))(1 + €)K (1, z).

This inequality shows that © € Dr(y,p). Since € > 0 is arbitrary, a change
of variables in the integral shows that [z]p, () < (1+M(L,0))||z]/(2,0(L)),.,

Next suppose that x € Dy (v, p) and first assume that the norm in D(L)
is ||z|py = || Lz If 7 > 0 is given we take t = L, b = t(L + ¢I) 'z and
a=2x —b. Then

1
K(r,z) < ||L(L +tI) ‘2| + ;||t(L +tI)"'Lz|| = 2||L(L + tI) ']

Thus we conclude that z € (X,D(L)),, and that ||z||@=pr)),, < 2[T]Ds(yp)-
Finally we consider the case where the norm in D(L) is | z|lpwy = || Lz|| x+
||z||x. By the same choice of a and b as above we get

K(r,2) < 2|L(L+t) ™ z|| + 7|[t(L + tI) x|
< 2||L(L +tI) ‘x| + 7M(L,0)||z||.

Since K (7,z) < ||z|| we get K(7,z) < 2||L(L+tI)" z||+min{r M (L, 0), 1}||z|.
This shows that 2 € (X,D(L)),, and a calculation gives ||z||(,n(z)),, <

2[2]py (yp) + M(L,0)' 7 (py(1 — 7)) 7| z]]. O



Proof of Lemma 6. (a) First let us assume that A and B are invertible and
A'B™'=B1'A"! Then

AT'B7'(ABz — BAz) = B'A7'ABz — A”'B7'BAz =0,

and we get the claim since A~!B~! is an injection. Since D(A —al) = D(A)
and D(B — I) = D(B) we have

ABz — BAz = (A—al)(B— pI)x — (B — BI)(A— al)z,

and we can use the calculation above with A replaced by A — ol and B
replaced by B — 31 to get the claim.

(b) We use case (a) and we have only to observe that ((A — ul)™! —
ﬁ])’l =—(a—pw?*A—-al)yt'—(a—p) and (B—vI) ' — [%I)*l =
—(B—v)*(B—BI)"'—(B—v)I so that the assumptions of case (a) are satisfied
with A replaced by (A — uI)~! and B replaced by (B — vI)~'. Thus we get
the desired claim when m = n = 0. If m or n = 1 we have only to use the
facts that A(A—pul) ' = I+u(A—pl) " and B(B—vI) ' =I+v(B—vI)!
and the case already proved. O

Proof of Theorem 4. Since ¢4 + ¢p > ™ we can choose a number 0 € (7 —
¢pB,da). Let r > 0 and let 7, be a path in C with range consisting of the rays
pet® with p > r and the part of the circle re'® with |t| < @ if B is invertible
and |7 —¢| < 7m—6if Aisinvertible. We can choose r so small that the range
of 7, lies in the intersection of the resolvent sets of —A and B and we take
the direction of v, to be such that the imaginary part increases on the rays.
Our choice of of § implies that we have the following estimates for |arg(z)| =
0:

I(A+2D) | < |2 ' M(A,0),

(B —20)7Y| < |2 *M (B, 7 — 6). (2)

Since (A + 2I)™' and (B — zI)™" are continuous on the range of v, we see
that if we define the operator S by

1

S=— A+z2I) Y (B —2I)td 3

27_‘_1 ’yr( + z ) ( z ) Z’ ( )

then the integral converges absolutely, and S is a well-defined bounded op-

erator.

Suppose now that A is invertible. Because A *(A+z1) ' =14 1—1(A+
27! we get

1 1 1 1

AlS=A1'"—" [ Y(B-z)'dz—— | =

271 o Z S, 2

(A+20) 4B —2I) "dz.

By “closing” the curve 7, through infinity with increasing argument we see
by Cauchy’s theorem that

1 1
— | “(B—z)"tdz=0.
21 ), 2



Hence we conclude that

1 1
ATIS = ——_/ “(A+ )Y (B —zI)""dz.
271 o ?
Next we note that
1 1 1 1 1
BATS = —— —B(B —zI)7 (A4 zI)7" dz,
271 o ?

where the fact that the integral on the right-hand side converges absolutely
implies that A1S maps X into D(B). Finally, because 2B(B — zI) ™ =
(B —2I)7" + 1 we get

1 1

BAils: —2—/ (B—ZI)il(A_FZI)ile— —/ 1
Yr

z

(A+2I) tdz,

i 271

r

and by Cauchy’s theorem, when we “close” the curve at infinity through
decreasing argument, we have
1 1

2m1 o ?

(A+20)7tdz=—-A""

Thus we have obtained the formula
S+ BA'S = Ail, (4)

which is what we wanted to prove. In order to treat the case where B is
invertible it suffices to observe that interchanging A and B is equivalent to
changing the variable in the integral defining S.

We proceed to the proof of (b). Because

(A+20)7t = 1(I —A(A+ zI)_1>,
: =€ p(~4) Np(B).
(B—2D)" = (B(B )t - 1),

we have by Lemma 6,

(A+21)"Y(B — 21)""(Ay + By)
=(B—zI) YA+ 2I) " Ay + (A+2I) (B —2I) 'By
= lB(B —zI)TTA(A+ 2Dy — 1A(A + 207y
z z
+ 1B(B —zI) ty — 1A(A +2I) 'B(B—zI) 'y
z z

1 1
= ;B(B — 2Dty — ;A(A +21)1y.



By the definition of S we therefore get that

1

s o= - [ Yp e mae L)
- 271 o

z
T

(A+ 21) ' Ayd-=.

271 z

If, for example A is invertible, then we can complete the path 7, at infin-
ity with increasing argument and the first integral becomes 0 by Cauchy’s
theorem. In the second integral we complete the path ~, at infinity with
decreasing argument and the integral is seen to be —y by Cauchy’s formula.
Thus we get S(Ay + By) = y as claimed.

Next we prove claim (c¢) and again we may without loss of generality
assume that A is invertible. First suppose that Sz € D(A). We have by (4)
and Lemma 6

(B+I1)'BA'Se=(B+I)'A ' —(B+1) A 'ASx
= A B+1I) " (z— ASz).
On the other hand we have, again by Lemma 6,
(B+I)'BA'Se=(I—-(B+I) " )A'Se=A""(I—- (B+I)™")Sz.
Combining the two previous results, we see because A~! is an injection, that
Sz =(B+I1)""(Sz+z— ASz).
It follows that Sz € D(B).
Next suppose that Sz € D(B). Since (A™' + )™ = AA+1)! =
I—(A+ 1), we see that the assumptions of Lemma 6 are satisfied with A

replaced by A~!. Since D(A™') = X and Sz € D(B) we therefore conclude
that

BA7'Sz = A™'BSz,
and by (4) we then have
Sz =A"'z — A 'BSuz,
and it follows that Sz € D(A) and in addition that
ASz + BSz = x.

For the proof of claim (e) we no longer make the assumption that A is
invertible, only that A or B is invertible. Since z € D (v, p) we know that
x € D4(7y,00) which implies that

sup ) AA+tD) 7 2| = [2]p s (y,00) < 00 (5)
t>



Because
A(A+ 507 — A(A+sI)7H = (T — 1)se® (A + se™T) T A(A + sI)7,
we have

IA(A + D)7 < (1+ 2sin(§)M(A,6) ) [A(A + |211) 2], |arg(2)| = 6.

(6)
An immediate consequence is that Sz € D(A) with
1
ASz = o A(A+ 2N (B —zI) 'z dz (7)
mi

Ir

because the integral converges absolutely by Lemma 6, (5) and (6). By claim
(c) we know that Sz € D(B) as well.
Now let ¢ > r be arbitrary. Because

A(A+ ) A4+ 21) ! = L A4+ -

-z t— 2z

A(A+ D)7 ()

we have by (7)

1 t
A(A+tI) "ASz = A(A+ tf)l—/ (B—2I) 'zdz
YTr

2mi t—2z
L : A(A+ 2" (B - zI) 'z dz2
2mi ), t—2 '

When we “close” the path +, at infinity by increasing argument, we see that
the first integral is 0 by Cauchy’s theorem and we get from Lemma 6 that

1 1
A(A+tI)"ASz = ——

271 %t—z

2(B—2I) TA(A+ 2I) 'z dz. (9)

In this integral we may let r | 0 without changing the value of the integral,
because the function we integrate is analytic and the integral over a part of
the circle with radius r goes to 0 by the assumption that 7 — ¢p < 0 < ¢4,
the definition of v, and by the assumption that A or B is invertible.

Thus we have by (5), (6), and (9)

0 — se!
t

& (;)7 1 dS
:c3/0 AU ) S ()

s

where

¢y = “M(B, 7 — ) (1 +2sin(2) M(A, 9)). (11)

™

10



Let f(r) = e™||A(A+e'T) ™z, g(r) € e™|| A(A+e"T)~ ASz|, and h(7) =
e™/le” — €| where 7 € R. By changing variables (s = e°) in the integral in
(10) we conclude that

o)< [ hir—a)f(o)do (12)
Since convolution with an integrable function is a bounded mapping from
LP(R), 1 < p < o0, into itself and because a change of variable shows that
| flle) = [@]Da(r,p) a0d [|g]| o) = [AST]p,(yp), We conclude after another
change of variables that

s11

[ASsT,00) < s [
0

m ds[z]p,(1,p)-
Because convolution with an integrable function is a bounded mapping from
the space of bounded functions converging to 0 at 4+oo into itself, the claim
for the case p = ooq follows as well.
Since & € Da(7,p) and BSx = & — ASz we see that BSxz € D4(v, p).
Finally we observe that if we instead of (8) use the equation

BB+t Y(B—2I) ' = (B+tl)" (B — 2I)1,
z 2
in (7), then we get
B(B+tl) 'ASz = (B +tI)* A(A+z2I) T2 dz

271

A(A+2I) Y(B - zI) 'z dz.

l
Al
2 r
When we “close” the path at infinity with decreasing argument and use the

fact that ¢ > r, we see that the first integral is 0 and we conclude that we
have instead of (9)

B(B +tl) " ASz = i !

B —2I)7YA(A+ 2Dtz de.
5 %t+zz( 2I) (A+zI)"zdz

We see that the right-hand side of this equation only differs from the right-
hand side of (9) by two minus signs and it follows that we get

i)v

S
el

* d
t"||B(B +tI) *ASz|| < 03/ sT|A(A + sI) 'z ?S
0

Proceeding in the same way as above we conclude that

71

[Asx]DB(%p) < 03/0 ds[x]DA(%P)'

|s + €l

It is also clear that if © € D4(7y, 000) then ASz € Dg(vy, o).

11



Finally we prove (d). First suppose that {y,}>°; C D(A) N D(B) is such
that lim, .0y = y and lim, .o (Ay, + By,) = z. Then it follows from
(b) and the continuity of S that Sz = y. If y = 0 it follows from (c) that
x = ASx + BSx = 0 and we conclude that A + B is closable. The general
case (where we do not assume that y = 0) implies that S(A + B)y = y for
y € D(A+ B).

If D(A) + D(B) is dense in X and z € X then there are sequences
{an}2; C D(A) and {b,}3>, C D(B) such that lim, ,(a, + b,) = z.
Because clearly D(A) C D4(%,00) and D(B) C Dg(3,00) we know by (c)
and (e) (where we also interchange A and B) that Sa, and Sb, € D(A+ B)
and (A + B)S(a, + b,) = a, + b, — x as n — co. Because S is continuous
we have lim, ., S(a, +b,) = Sz, and so (A + B)Sz = x. O

Proof of Corollary 5. Let € > 0 be arbitrary and define B, = B + €l. Since
B is invertible, we can apply Theorem 4, (and we can choose 6 independent
of €). Let S be the operator that exists according to Theorem 4.(a). Since
Ay+ By+ ey = =+ ey we see from Theorem 4.(b) that y = S.(z + ey). Thus
we conclude by Theorem 4.(e) that Ay € D(v,p) with

1 .
[Ayloaye) < ca—M(Beym—0)(1+ 2sin(§)M(4,6)) [0 + €y, )

where ¢4 = [J7 % ds. Since y € D(A) we have y € Dy(v,p) and
[€y]Da(y,p) — O when e | 0. It is also clear that lim, g M (B., 7—0) = M (B, n—
¢) and we get the desired inequality for [Ay|p,(yp). Since By = z — Ay we
get the claim about By as well.

By Theorem 4 we also know that Ay € Dg_(0,p) and
1 .
[AY]o, () < e5—M(Beyw = 0)(1++ 25in(§) M(4,6) )& + elprr),

where 5 = [ - ds. Since D(B) = D(B,) we have Dg(6,p) = Dg_(9,p)

[s+e]
by Proposition 3 (since the interpolation space does not depend on the choice
of norms), and because B.(B.+tI)"'—B(B+tI) ! = et(B+(t+¢)I) *(B+
tI)~! we get

‘[x]DBe(%p) — []ps ()| < € M(B, 0)2[33]@1(%1))’
and we see that lime|o[AY]p,_ (1.p) = [AY]Ds(yp)- This completes the proof.
U
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