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1 Introduction

The convergence behavior of GMRES [17], with an invertible normal A €
C™™ and b € C", for solving the linear system

Az =b (1)

can be considered to be understood, see e.g. |4, 3, 14|, whereas for a nonnor-
mal A this is quite not so. In the latter case one alternative is to relate A to
the set of normal matrices N in an appropriate way. One could, for instance,
consider the distance of A to A and then take a closest normal matrix to A
and “simulate” A with this normal matrix. This, however, does not seem to
lead to any interesting conclusions. Instead, in a series of papers [13, 10, 12|
different “rankwise” distances of A to N were introduced. A starting point
for this approach was the following folklore among the scientific computing
community: Small rank perturbations of the original matrix do not essen-
tially alter the convergence behavior of GMRES as long as the condition
number of the resulting system does not change significantly. Thus, because
for normal matrices the convergence is understood, it is of interest to find
out how close is A to N/ modulo small rank perturbations.

In this paper we consider a simplifed version of this problem. For that
purpose, denote by F; the set of matrices of rank-k at most, and, by & C
C™™ the set of matrices of the form e H — \I, with § € [0,27), A € C and
where H belongs to the set of Hermitian matrices. With this notation, for a
given A € C"*", we look for

selmin _ [|A =S5 = Fill (2)
for k = 0,1,..n — 1. By || - || we denote the spectral norm throughout this

paper. Obviously & C N holds so that we get, via solving this problem, also
un upper bound to the distance of A to N' modulo F}.

Knowing the behavior of the quantities (2) is not only of use for under-
standing the convergence of GMRES better. Another reason for restricting,
in particular, to S is that as a set it is extremely well-suited for all sorts
of iterative computations. To give an example, for an invertible matrix be-
longing to S the corresponding linear system can be solved using a 3-term
recurrence see [2]| or [4]|[Exer. 6.4 in particular|. Using this, the problem
(2) is decisive whenever one wants to solve (1) with a minimum amount of
inner-outer iterations. For this purpose one needs to have, for as small k
as possible, a given A € C"*" decomposed as A = S + Fj, with S € § and
Fy € Fi,. Namely, having A = S + F;, with an invertible S, i.e., the splitting
is regular, means that (1) is equivalent to solving

(I+ S 'F)x = S""b. (3)

Of course S~! is not computed in practise. Instead, the corresponding linear
systems are solved iteratively which gives rise to the inner-iteration loop. As
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S € S, this can be done with a 3-term recurrence. Since S~!F}, is of rank-k
only, then, taking into account all the inner-outer iterations, only (k+3)-term
recurrence is needed to solve (3).

Before solving (2) we consider the distance of a matrix A € C**" to the
set of Hermitian matrices H modulo Fi, that is,

prenin A = M — Fi||. (4)
To this problem a trivial and not necessarily optimal approximative solution
is to sum the Hermitian part of A with the closest rank-k£ approximation
to the skew-Hermitian part of A. We show that to get an optimal solution,
there is an exact condition on the eigenvalues of the skew-Hermitian part
of A under which, roughly speaking, the approximation is twice better than
the trivial one just described. These solutions are realizable in a numerically
stable way.

Understanding the nearness problem (4) is the key to solving (2). First
we demonstrate, with the help of (4), that any given matrix A € C"*" can
be decomposed as A = S + Fj, with S € S and with Fy, € Fj, for k < [].
We find this a fairly good worst case bound as opposed to the trivial k£ < n.
Second, we show that the decay of numbers (2) depends on a certain kind of
two-sided convergence of the eigenvalues of €A — e~ A* for § € [0, 27), see
Corollary 6 for the exact statement. These solutions are also realizable in a
numerically stable manner yielding, consequently, a decomposition of A as
A =8+ Ay + Fy, with ||Ag|| = pes1(A). Furthermore, sparse methods are
extremely well suited for computing this decomposition. This is of particular
interest since decomposing A in this manner is mainly motivated by large
problems.

This paper is organized as follows. In Section 2 we introduce matrix near-
ness problems related to iterative methods. Then we characterize matrices
solving two of them, namely (4) and (2). Also, we consider how the problem
(4) is related to a number of issues in numerical linear algebra. In Section
3 we consider computational aspects related to (2). We end the paper with
numerical examples.

2 A matrix nearness problem related to itera-
tive methods

In the 90’s a lot of work has been done in order to comprehend the con-
vergence of GMRES for nonnormal matrices, see e.g. [4, 14] and references
therein. Since the convergence of GMRES for normal matrices A is under-
stood, a natural approach is to associate a given matrix A € C"*" with N
in some manner. A somewhat naive possibility is to find a closest normal
matrix to A and then use this matrix for analyzing GMRES for A. Note
that this approach is feasible as a closest normal matrix can be computed
by using Ruhe’s algorithm [16]. This approach does not seem to lead to any
interesting conclusions, however.
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In addition to understanding the convergence of GMRES for N, empir-
ically it is known that if A is perturbed by a small rank matrix F', then
the convergence of GMRES for Az = b and (A + F)y = b, with b € C", is
essentially similar provided the condition numbers of A and A + F are close
(i.e. if one system is ill-posed and the other one is not, then the conver-
gence behavior cannot, of course, be the same anymore). Thus, combining
these two phenomena, finding a normal matrix N that is close to A modulo
small perturbations, yields a way to comprehend GMRES for a nonnormal
A. Formulated as such we obtain a nearness problem

prer(A) = min |4 =N - Fi, (5)

for k=0,1,...,n — 1, where F; denotes the matrices of rank-k£ at most.

2.1 Distance of A to the Hermitian matrices modulo F;

Characterizing the matrices that realize the numbers p;(A) seems fairly dif-
ficult. Instead, we start with a nearness problem where NN is constrained to
belong to the set of Hermitian matrices H C C"*". That is, we consider

weiin (4 =M — Fi|| (6)

These quantities are readily approximable by using the Toeplitz decomposi-
tion A = (A + A*) + 3(A — A*) of A. Let o(A) denote the k™ singular
value of A.

Proposition 1 Take M = %(A + A*) and F}, to be the closest rank-k
approzimation to %(A—A*) to have miny ey per, ||[A—M—F|| < Uk—l—l(%(A_
A*)).

Since the closest Hermitian matrix to B € C"*" is its Hermitian part
$(B + B*), see e.g. [5], the nearness problem (6) is equivalent to
in ||[A— A" — (F, — F})|-
min | (Fe - B M)

Considering this formulation allows to demonstrate that taking Fj as Propo-
sition 1 suggests does not need to yield an optimal solution.

Theorem 2 Let M € C**" be skew-Hermitian and of rank-2 with nonzero
eigenvalues Ay and Ay. Then there exists u,v € C" such that uv* —vu* = M

if and only if \qAy > 0.

Proof. Assume first that there exists u,v € C" such that uv* —ovu* = M. As
the rank of M is nonzero, u and v are linearly independent. Since span{u, v}
is an invariant subspace of uv*—wvu*, we consider the restriction of uv*—vu* on
this subspace. Since the range of uv* —vu* belongs span{u, v}, we notice that
this restriction has eigenvalues A; and Ay,. This restriction is represented by
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wz* — zw*, for some w, z € C2, which can be seen by applying an orthogonal
projector onto span{u,v} and the resulting matrix representation. Thus,
with w = [’Ujl 'LDQ]* and z = [21 22]*

* « | W1z — 21wy wi2e — 21Wa
wz* — 2wt = _ _ _ _
Woz1 — 22W1 Wy — W3
In particular, using the spectral projector yielding a diagonalization gives us
the condition wyz; — 20w = 0, or wy = ;—fwl. Here we use the fact that
wy # 0 which must hold since A; and A, are nonzero. After substitution we
obtain

|22|2

’U)QZQ — ZQ’U_)Q = W(Zl’u_)l — lel), (8)
1

so that, after dividing by 4, we have opposite sign for (8) from that of %(wlzl -
Zlﬂjl).

For the converse, assume M is a skew-Hermitian matrix of rank-2 that has
two eigenvalues that fulfill the condition \; A\ > 0 and consider the problem of
finding two vectors u,v € C" yielding uv* —vu* = M. We solve the 2 x 2 case
first as the general case follows from that immediately after considering the
restriction of M to the corresponding spectral subspace. For that purpose,
with a diagonalization A = WMW™* of M, the governing equations become

A 0 = W*uv*'W — W*ou*W, 9)
0 A

where ’\71 < 0 for instance ( if this is not the case, then multiply both sides

of (9) by P = l (1) (1) ] from the left and right and proceed analogously).

Denoting by

Wou=| " + Tl and Wy = | @ + Z.bl ,
To + 1Yo as + by
we get 4 conditions from (9), namely 2i(y1aq — 21b1) = A1, 2i(z2a9 — Yoby) =
)\2, Y201 + 5172b1 — Q91 — b2y1 =0 and ToQq — bl’yg — bQ.ﬁEl + a1 = 0. These
equations are not uniquely solvable, but, for example, choices

—A A [\
$1:$2:b1:b2:0,y1:1,y2: —2,(11:—1.,(12: L2

yield a solution. Then applying W to W*u and W*v yields u and v.

If M € C"", then all the computations are repeated with a diagonal-
ization A = WMW?* taking W, € C"? in (9) with orthonormal colunms
corresponding to eigenvalues A\; and \,. U
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EXAMPLE 1. For an illustration, consider diagonal M = _é (2 ] . Then
; _1
with the choices (10) we have u = l z ] and v = l ? ] . Thus,
2

w* —vu’t = l

SIS
I IS
—_
| — |
[IEE NI

|-

[IEY TN

Note that the matrix uv* itself is not skew-Hermitian.

REMARK 1. If the skew-Hermitian part of A € C"*" has exactly two
nonzero eigenvalues A; and A, such that ¢A; and i\, have different signs,
then A — wv* is Hermitian with an appropriate choice of vectors u,v € C"
yielding uv* — vu* = A — A*. In particular, setting H = A — uv* € H, we
have A = H + uv*.

REMARK 2. The matrix uv* cannot be skew-Hermitian since uv* — vu*
would then be of rank-one. Consequently, the Hermitian parts of A and
A — uv* will differ. The choice provided by Proposition 1 is skew-Hermitian.

REMARK 3. Note that the proof of Theorem 2 is constructive as well as
amenable for practical computations, that is, it yields a numerically stable
algorithm for finding vectors u,v € C" such that M = uv* — vu*. Note that
the solution is not unique. The actual vectors v and v we provide correspond
to the particular choices made in (10).

Recall that the inertia I(A) of a matrix A € C**™ is a vector with three
components, where the first component equals the number of eigenvalues
with positive real part, the second component equals the number of eigen-
values with negative real part and the third component equals the number
of eigenvalues with zero real part (multiplicities are counted) [9].

Corollary 3 Assume M is skew-Hermitian with I(3M) = [l;,lo,n — 1, —
l), where l; > ly. Then there exists a rank-ly matriz Fy, with I(3(M — (F,, —
F))) = [l = 12,0,n — by + D).

Proof.  Collect pairwise 2l of the eigenvalues of %M with negative and
positive real parts (in any manner). Corresponding to each pair, construct
vectors u; and v;, for 1 < j < [y, as in the proof Theorem 2 and then set
F, =% uvl. O

Obviously the same construction holds if [ > [;. Furthermore, analogous
claims hold for the case M is Hermitian.

Let [r] denote the largest integer less than or equal to r € R. Further,
for k =1,...,n, let \y(M) denote the eigenvalues of a Hermitian matrix M
arranged according to increasing size (counting multiplicities). As long as
k < [3], it is fairly easy to see that the rank of UV* — VU* is generically
2k for a pair of matrices U,V € C"**. In this case the positive-negative
eigenvalue pairing of Theorem 2 continues up to [%] in the following sense.

Theorem 4 Assume U,V € C*, with k < [%], are such that UV* -V U*
has rank 2k. Then I(3+(UV* —=VU*)) = [k, k,0].
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Proof. By Theorem 2 the claim is true for uv* — vu* with u,v € C".
We use this with the inequalities of Weyl [8][Theorem 4.3.7| to proceed by
induction. First we assume that &k = 2 so that by the inequalities of Weyl

& 1 1 1
(> = 7 (505 —vjuf)) < Apa (- (v} — vrug)) + A (- (uavy — v2uy)) = 0
7=1
and
& 1
0= )\2( (uv] — vuy)) + )\2( (ugvy — vous)) < A3 Z ; vju;)).
Thus, this forces A3(35_ 3 (ujv}— v]u])) == Ao (5 (v —vjul)) =

0. As the rank is 2k = 4 the remaining elgenvalues are necessarily nonzero
and the claim follows. Then, if the claim is true for s — 1, we have again by
the inequalities of Weyl

=

s—1 1
An—(s 1)(2 g(uﬂ)g U;)) + A1 (= (ugvl —vgul)) =0

j=1

and

1 . . s—1 1 1
0= )‘Q(Z(usvs - 'Usus)) + )\S(Z g(UjUJ U] < )\S+1 Z ; ]))
Jj=1 j=1

and the claim follows again by exactly similar arguments as in the case k = 2.
O

To sum up, we have a complete solution to (6) as follows.
Algorithm 1. "For solving (6)”.
If k < min{ly,ls}, where I(3(A — A*)) = [ly,lo,n — I — o], choose Fy € F,
in such a way that

I((A— A — (B —F)) =l —kilo—kon— 1 — Iy + 2k, (11)

with the property that the k largest eigenvalues in absolute value from both
of the first two components of the inertia of (A — A*) are removed. The
matrix M is taken to be the Hermitian part of A — Fj.

If £ > min{ly,l5}, for instance if [; > Iy, then take Fj, for A — A* as in (11)
above and take Fj_;, as in Proposition 1 for l(A A* — (Fy_y, — Fi 12))
Then set Fy = Fj, + F}_;,. The matrix M is taken to be the Hermitian part
of A — F.

Let us illustrate the above claims with an example (using Matlab).
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EXAMPLE 2. Take A € C**? to be the nilpotent forward shift. One easily
verifies that I(+(A — A*)) = [4,4,1]. Computing the rank-one corrections
with the choices (10) yields a Hermitian

[ —0.3775  0.5693  0.1706 —0.1115
0.5693  0.5481  0.3191  0.0196
0.1706  0.3191 —0.3579  0.7928

4 —0.1115  0.0196  0.7928  0.3048
A— Z ujv; = 0.1902  0.2235 —0.0727  0.1381
j=1 0.1119 —0.2432 —0.2926  0.1424

—0.0530 —0.1810  0.3130  0.2926
—0.0691  0.1227  0.1810 —0.2432
0.0697  0.0691 —0.0530 -0.1119

0.1902  0.1119 -0.0530 —0.0691  0.0697 ]
0.2235 —0.2432 —-0.1810  0.1227  0.0691
—0.0727 —0.2926  0.3130  0.1810 —0.0530
0.1381  0.1424  0.2926 —-0.2432 —-0.1119
—-0.2351  0.8619 —0.0727 —0.2235  0.1902
0.8619  0.3048  0.2072  0.0196  0.1115
-0.0727  0.2072 -0.3579  0.6809  0.1706
—0.2235 0.0196  0.6809  0.5481  0.4307
0.1902  0.1115 0.1706  0.4307 —0.3775

The quantities (6) are 0.9511, 0.8090, 0.5878, 0.3090 and 0 for k = 0, ..., 4.

2.2 Finding min ||A — S — Fi|| and its applications

With the help of a complete solution to (6) we consider a simplified version
of the nearness problem (5). For that purpose, we denote by & C C"*" the
set of matrices of the form e” H — \I, with 6 € [0,27), A € C and H € H.
Obviously S is a subset of A/. With this notation, for a given A € C"*", set

nen(4) = _min[[A-S -, (12)
for k=0,1,....,n — 1.

As § C N, un upper bound to p(A) is obtained via solving (12). How-
ever, replacing A/ with S is not solely of interest for understanding (5) better
and thereby GMRES for A. Rather, as a set S is extremely well suited for
all kinds of iterative computations. First, a linear systems Sz = b with an
invertible S € S can be solved using a 3-term recurrence [2]. Second, the
Hessenberg matrix resulting from the Arnoldi method for S € § is tridiag-
onal (and thereby can also be computed with a 3-term recurrence). Third,
eigenapproximations with the Arnoldi method for matrices from S are struc-
ture preserving. Namely, truncated Hessenberg matrices also remain in S
with the corresponding, smaller, dimension of course.

With & it is possible to demonstrate that p(A) =0, for & > [5] + 1.



10 M. HUHTANEN

Theorem 5 Assume A € C**"™. Then there exists ' € f[%} and S € S
such that A= S+ F. Or, equivalently, vn)1(A) = 0.

Proof. The parameter 0 is in fact redundant and, consequently, we set § = 0
in our matrix e”” H — I € S that follows.

Assume first that A — A* has n distinct eigenvalues. Choose a purely
imaginary A such that for the inertia 7 (((A— )~ (A= \I)*)) = ([3],[2], a)
holds with

0= { 0 niseven
1 nisodd

Now taking F' = UV™ of rank [%] for (A — AI) — (A — AI)* as in Corollary
3 we have for H = A — A\ — F € H equality A = H + A\ + F with desired
properties.

Assume now that +(A — A*) has less than n distinct eigenvalues, say p.
Order these eigenvalues Ay < Xy < ... < A, and let [y,...,[, denote their
multiplicities. Let s be the largest index for which there still holds

n

Su<ly) (13)

Now choose A such that the eigenvalue A\;;; is translated to zero so that
we have I(+((A — M) — (A= A)*) = [Z5o1 les Shesio by Lpa]. Now, for
J =il — Xh—sio k] eigenvalues of 1((A — AI) — (A — AI)*) with the
same sign, we take F of rank-j for (A — A\I) — (A — AI)* as in Proposition
1 to get rid of those. For the remaining nonzero eigenvalues we choose F, as
in the first part of the proof as follows. Without loss of generality, assume
that Y3 Iy — Xhesiole > 0 (or order the eigenvalues other way around),
so that then l;,; > j, otherwise (13) does not hold. Consequently, we only
need match at most n — 2j eigenvalues with F,. Thus, rank of F; is at most

[”*229'] = [g] — 7 and the claim follows. O

Let o(M) denote the spectrum of a square matrix M.

Corollary 6 For My = (¢ A — e " A*) choose § € [0,2m) such that
the diameter of o(Mg)\{ 1 (Mp), ..., \e(Mpg), An—k+1(Mp), ..., \u(My)} attains
minimum. Then, with \g = 5(Xey1(My) + An—i(Mp)),

il

2

Vk+1(A) = ||A - eiigHg - )\9[ - eiieFkH,

where Fy, € Fy, is taken as in (11) for e®A — e " A* — X\ogI and Hy is the
Hermitian part of €’ A — Fy.

Proof. Since there holds

min _ [[A— S — F| = min €A — H — X\ — F.
SES, FreFy, 0€[0,27),HEH NeC,Fy, € Fy, (14)

the claim follows. O
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REMARK 4. Although the parameter § was redundant for the proof of
Theorem 5, it is indispensable in Corollary 6 for getting optimal approxima-
tions to A from S.

REMARK 5. The matrices e? A — e % A* arise when the field of values
of A is being approximated (or, in fact, the field of values of iA which is,
of course, equivalent). Namely then, for a finite number of different 6, one
needs only the largest eigenvalue of € A — e~ A* in order to intersect certain
half-planes defined on the basis of these eigenvalues, see e.g. [9][Thm 1.5.12,
1.5.14]. Thus in a sense, for v (A), more “structure” of the field of values is
needed. The field of values has also been used to analyze iterative methods
[1].

REMARK 6. The eigenvalues of A give absolutely no clue of the behavior
of the numbers v (A). That is, even in the simplest case when B € C**" is
Hermitian and u € C" is such that K(B;u) = span{u, Bu, ..., B" lu} = C",
then, with an appropriate choice of v € C", the spectrum of A = B 4+ uv*
can consist of any n complex numbers (multiplicities counted), see e.g. [18].
Of course already 15(A) = 0.

REMARK 7. As a byproduct, we obtain an upper bound for the smallest
rank F yielding a decomposition A = N + F while N varies among N. Since
N is a stratified submanifold of (real) dimension n* + n [11] and F; can be
shown to have (real) dimension 2k(2n — k), then solving somewhat naively
n? +n+ 2k(2n — k) = 2n?, gives k ~ 0.3n for the smaller value of k. We
do not know if this value of k£ really sufficies to yield any matrix A € C"*"
decomposed as A =N + F.

ExaMPLE 3. The nilpotent froward shift A of Example 2 is our standard
example of a matrix that is close to N/ modulo only F; [13, 10]. Namely, it is
rank-one far from a unitary matrix which can be seen by replacing the zero
element in the righ upper-corner of A by 1. Thus, S can be a poor substitute
for AV in this respect as a corrrection having rank [%] is needed then instead.

Although there are examples in which S can be a poor subsitute for NV,
there is a warning signal for that. More precisely, whenever A is a small

rank perturbation of a normal matrix, it is revealed by the self-commutator
[A, A*] = AA* — A*A of A as follows.

Proposition 7 Suppose A= N + F with N € C**™ normal. Then
rank([A, A*]) < 4 rank(F). (15)
Proof. A simple computation yields, since /N is normal,
[A,A*] = FA*— A"F + NF* — F*N = [F, A*] + [N, F"], (16)

so that rank([A, A*]) < rank([F, A*]) + rank([V, F*]). Since rank([F, A*]) <
2rank(F') and rank([N, F*]) < 2rank(F'), the claim follows. O

Extracting as much information as possible from Corollary 6 yields the
following improved normal approximant based on the fact that p(H) is nor-
mal for H € H and p € P. By P we denote the set of polynomials.
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Proposition 8 Let Hy and Fy be as in Corollary 6. Then

i+ (A) < minle”A = Fy — p(Ho)l| < viya(A).

Proof. The first inequality follows from noticing that p(Hy) is normal for
any polynomial p. The second inequality is obvious. ]

The behavior of approximation numbers v (A) is of interest for the fol-
lowing reason. Recall that a splitting A = M + N of A is said to be regular
whenever M is invertible.

Theorem 9 Assume A € C™*" and vg1(A) =0 for a k > 0 such that the
corresponding splitting A = S+ Fy, is reqular. Then there ezists a (k+3)-term
recurrence for solving Ax = b for any b € C".

Proof. This involves an inner-outer iteration. That is, Ax = b is equivalent
to solving (I + S™'Fy)z = S~'b. The vector S™'b can be solved using a
3-term recurrence [2] and thereafter b can be replaced with S~'b. Since the
rank of ST1F} is at most k, the Krylov subspace K, (I + S 1Fy;S1b) is at
most k + 1 dimensional. Thus for solving (I + S~ !Fy)y = ¢, for any ¢ € C",
at most k + 1 vectors are needed to be restored. For computing the (k+ 1)
vector the recursion involves 3 vectors in the inner loop and k vectors in the
outer loop. This is the maximum number of vectors that one has since once
the (k + 1)™ vector in outer iteration is obtained, no 3-term inner iterations
are needed. O

Of course a 3-term recurrence is always obtained by considering the nor-
mal equations instead [4]. But, as it is well-known, this may not be a good
alternative as the resulting system can become very ill-conditioned. As such
the problem does not exist with a splitting A = S + F} of A since, at any
stage, no multiplications of A by A* are performed. That is, S and F}, are
computed, in essence, by summing A and A*. Clearly it is possible, as always
with splitting methods, that the computed splitting is not regular or nearly
not so. But the worst case behavior of the normal equations cannot happen
with A = S + F}, because of the fundamental difference between sum and
multiplication.

A general form of the problem for mimimal term recurrence (with inner-
outer iterations) is obtained from the result of Faber and Manteuffel [2].

PRrROBLEM. For a given k > 0, find q of least degree such that

WA-F)=A"—F (17)

holds for a F}, € F;.
Of course, for small £ > 0, it may not be possible to fing any polynomial
g fulfilling (17). Namely, if (17) holds, then A — F}, is normal. Consequently,
the behavior of the quantities py(A) is decisive for the problem (17).
Finally a word about when, for some small k, the approximation number
(12) is small but not necessarilly zero. In other words, we have A = S +
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Ay + Fy, with ||Ag|| = pes1(A) small. As long as pg1(A) > 0, a (k + 3)-
term recurrence is not of use for solving Az = b. However, since pi41(A)
is small for a small k£, a Hermitian matrix can be regarded as a governing
component of A in the sense that S, + A}, is close to a matrix e’ H +\ € S
which is computable in practise. As a consequence, it is possible to utilize
several preconditioning strategies, like polynomial preconditioning, for linear
systems involving Hermitian matrices by adjusting them to apply to e’ H-+\I
in an obvious way. Since these approaches posess some sort of continuity
(depending on the method, of course), it is very reasonable to use these
methods with a “nearly” shifted and translated Hermitian matrix S + A,.
For the original system (S + Ay + Fy)x = b such a preconditioner is a good
alternative as well, as long as k is small.

3 Computational aspects for min||A — S — Fj||

The above described nearness problems have several features in common with
the singular values and SVD of A € C"*". That is, the singular values are also
obtained from a nearness problem where there is just one component, namely
F, from which approximants to A are constructed. Also, the process yields a
decomposition of A where the second part is from F; and the first part is the
remainder. In practise the reminder is typically discarded. Furthermore, the
behavior of singular values of A is equivalent to the decay of the eigenvalues
of AA*. As the eigenvalues of AA* are all positive, the decay takes place
from the right towards the origin in the complex plane.

As opposed to singular values, the decay of numbers v(A) depends on
the “two-sided” convergence of the eigenvalues of €A — e= A* with 6 €
[0,27). More precisely, according to Corollary 6, for a given k£ > 0, we
need a value of § € [0,27) that makes the spectrum of ¢ A — e~ A* as
concentrated as possible after removing k eigenvalues away from both ends
(on the imaginary axis). The resulting composition has two parts where the
first part is (hopefully) close to S and the second part is from Fj. In this
decomposition the first part is, by no means, meant to be discarded but to
be used in various possible ways!

In what follows we use a straightforward approach to compute vgq(A).
First, for finding a good value for § € [0,27), we compute the spectra of
e A — e i A* with some 6;, with j = 1,..., K. Then, once a value for 6; is
chosen, according to Corollary 6, we use Algorithm 1 to compute Hy,.

This approach may sound very expensive, in particular for large systems.
And, it would be absurd to consider this approach in practise, for instance,
for solving a linear system, if the complexity of finding a decomposition
A = S + Fj, assuming it exists for some small k, drastically exceeded the
complexity of solving Az = b. However, for the only expensive step it is
very natural to use sparse techniques. That is, as only the k£ rightmost and
leftmost eigenvalues (i.e. extreme eigenvalues) of 1 (¢ A — e~ A*) are being
monitored for v(A), sparse techniques are perfectly suited for finding a ;.



14 M. HUHTANEN

And, as each (e A — e7"% A*) is Hermitian, this computational task is
obviously much “easier” than dealing with the non-Hermitian A.

We consider a well-known example arising from a second order ODE. In
this case the loss of normality is caused by the way the boundary conditions
are set. This is not at all unusual, the same can happen also in very realistic
PDE approximations, see for instance [6, 7|. The dimension and chosen
discretization can play a crucial role then.

ExXAMPLE 4. We consider a completely tractable integral equation

(I = AV?)u = u(t) — A /Ut(t _ S)u(s)ds, (18)

with a nonzero A € C, on L?([0, 7]). To V? there corresponds an initial value
problem, see [15]|p.130]. As V? is nilpotent, I — AV? is invertible. We dis-
cretize (18) using a projection method with the (computationally convenient)

orthonormal basis {\/gsin nt}2, of L*([0,7]). We have [} (t—s)sin(ks)ds =

t 1 A _ —mcos(kw) . . .
TR 81.n(kt) and [¢ ssin(ks)ds = ===, These computations yield a dis-
cretization
1 2 2 2 7
12 1x2 1s3 Tek
-2 3 =2 —2
3l P 23 2k
2 o £ e = < kxk
V=1 30 32 3 % | €C
L kxl k%2 k3 k2

corresponding to the projector of rank k. Now, the rank of (V?), — (V?);
is 2, regardless of the value of £k > 4. Computing u and v using the con-
struction of Theorem 2 results in a Hermitian (V?); — uv*. In fact, V2 is
a rank-one correction of an operator that is Hermitian and has, in the ba-
sis {\/gsin nt}% ,, a diagonal matrix representation [15]. Still, (V?); — uv*
is not diagonal as the rank-one correction uv* of Theorem 2 is not unique.
Thus, there is a rank-one correction that would make (V)7 also diagonal, but
that would correspond to different choices from those made in (10).

Now, to see how the spectra of e’? A —e % A* behave while 6 varies, assume
that our original integral operator is I — e™/*V2 To get an illustration, we

take £ = 200 and 6; = ﬁ%% for j = 1,...,4 so that 6, = —%% is the farest
16

from and 64 = —=7% is the closest to the “correct” value —%. The resulting
spectra are depicted in Figure 3.1. The computations were performed with
Matlab. As we see, already for #; the spectrum is very well concentrated
except for those two eigenvalues that would eventually be corrected with

*

uv-.

4 Conclusions

In this paper we have considered matrix nearness problems related to itera-
tive methods. In all cases nearness is measured from a given set modulo small
rank matrices. We have provided a complete solution to mingegs per, ||[A —
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2 2
x x
1 1
0
0
-1
1 § "
-2
-2
-3

-3 4 .

_4 L 2 n _5 " n n
-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1
2 2

x X
1 1
0 0

-1 X -1 %

-2 -2

-3 -3
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-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1

Figure 1: For Example 3 the spectra of e A — e~ A* for j =1, ..., 4.

S — F}|| which is of particular interest from several points of views as to itera-
tive computations. We have shown that the decay of these numbers, while k
grows, depends on two-sided convergence of the eigenvalues of e 4 — e~ A*
with 6 € [0,27), attaining zero for k£ < [3]. The solutions are computation-
ally feasible and we have demonstrated the results with simple but illustrative
numerical examples.
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