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1 Introduction

Time-harmonic Maxwell’s equations are fundamental tools in electrical en-
gineering and they have an ample variety of applications, for instance, in
communication technology and geophysical exploration. This work has its
roots in computational electromagnetics and, on the other hand, in a theo-
retical work by Hermann Weyl in the early 1950’s.

We are considering electromagnetic scattering by a bounded obstacle. Field
computation using finite elements gives rise to the problem of mesh termina-
tion with minimal reflections. In 1994 Bérenger (see [1]) introduced a mate-
rial absorbing boundary condition called perfectly matched layer (PML): the
computational domain is surrounded by a layer of imaginary PML material.
Indeed, the PML layer can be regarded as complex stretching of the spa-
tial coordinates in the imaginary direction (see [13]). Technically speaking,
around the computational domain the originally Cartesian metric tensor is
stretched to a complex valued pseudo-Riemannian metric. A sophisticated
analysis of the coordinate stretching is found in [6] for scalar waves.

Another remarkable improvement within computational electromagnetics was
carried out by Bossavit in the late eighties (see [2]). He described the so called
Whitney elements which are vector elements of various dimensions. In fact,
Whitney elements can be thought of as discretized differential forms and as
such they are most applicable when building accurate computational models
for electromagnetic fields.

Summa summarum, there is demand for a differential geometric electromag-
netic scattering theory in a complex geometry. In [7] we develop such a
theory in R?® equipped with a complex metric. This paper is devoted to an
arbitrary dimensional generalization based on Weyl’s research in 1952 (see
[14]) which was continued by Picard in 1985 (see [10]). As Picard writes, the
multidimensional theory “reveals the structural beauty of Maxwell’s equa-
tions”.

2 Maxwell’s Operator in a Complex Geometry

Let M be an n-dimensional real C*°-manifold endowed with a complex tan-
gent bundle T'M and a complex valued pseudo-Riemannian metric gj;. It is
also required that there exists a global relative scalar /g for the determinant
g = det(gj;) (see Appendix).

From now on
p,qg € {0,1,...,n—1},
n o= pt+q+l,

F o= n-r,

() = (.



When we introduce a p-form 7 on M by

1 ) )
T = Ele"'jde;]l A .. Adatr

we implicitly assume that 7;,_; is totally antisymmetric. Hence
T = le...jpdle XR...Q dxjp.

Our purpose is not to plunge into the depths of Sobolev spaces; therefore
every tensor field is presumed to be of class C* unless explicitly stated
otherwise.

We define a covariant p-curl operator by

1
uj1...Jpli-..l
Curly : Xy, = o € P Xy

and seek out its connection with the exterior derivative operator d. Note
that Curl, X is totally antisymmetric for all p-covectors X.

Lemma 2.1 Let A/ir+1 be a totally antisymmetric array, Bl an array
symmetric in the lower indices j, 1, and Cj, . ;, an arbitrary array. Then

AWt ]pZBhr gy = 0. (1)

Proof: The claim is obvious for p = 0 and p = 1. Assume that (1) holds for
some p > 1. Then

p+1
uf1..-Jpip+1 E hy , . =
A B]Tucjl---hr---]p+1 -
r=1
p
UJ1---Jpip+1 E he v . uji--Jpip+1 Rhe+1 .
A BJTUCJI---hT---JpJerI A B]p+1’u0 J1--Jphpt1-
r=1

The former term vanishes according to (1) (consider a fixed j,;1). The latter
term vanishes since

Avd-dpdpts gietl . pdptadnedpu gheit

Jpt1u UJp+1”
O
Corollary 2.2 For a covariant p-tensor X, ;, on M
ug1...gpli...lq — cujigplinidg _ 7
€ XJl Jpiu =€ or XJl Jp- (2)



Proof: By definition the covariant

derivative is

p
le---jpm = J1 Jp T E : { } Jiehedp-
r=1 JT
Choose
Witedy  — ufiegplied
Avidp = guitdphidg
S R
Jru T . )
Jr
Cirhrip = Xjiihpip
n (1) to get

Jr

Y (h
uj1...Jpl1...0 2 : T . -
9 P a { . }le...hr...]p - 0
r=1

Lemma 2.3 For p-forms 7 on M

*GCurl,r = (—)P" Pdr.

Proof: Let

X =X, ;d2" ®...®da".

From the definition of Curl, and (2) we obtain

. 0 0 0
_ujr..gpli..d
Curl,(p!X) = gWr-oh Q%lemjp% R...Q Sl
After lowering indices we have
o 0
GCurlp(p'X) €u]1"'JpllmlqWlemjpdxll XR...Q dxlq
8 1 u, l l
= %X‘h Jpa€ UR ]pll “lqul/\.../\dxq
) . .
= o Xy gpx(dz® Ada?t AL A dar)
= *d(X;,_;,dz/" AL Adal?).
Let 1
T = Ele___jpdle A ANdatr = le__jpdle ®...®dzr

be an arbitrary p-form. As we just saw

) = *d(p!T).

Applying (p!)~'* to both sides we conclude that

GCurl, (plr

*GCurl,r = #xdr = (_)p(nfp)dT_



In the following

J = (jla"'ajp)a 1§J1<<]p§n,

are ordered multi-indices of lengths #.J = p and #K = p + 1. For instance,

6uJ . uj1..-Jp
K T kl...kp+1’
dz® = daz* AL Adahe

Corollary 2.4 For p-forms T on M

d(TJd:I;J) = (—)"*1q!5}‘{JTJ;ude. (4)

Proof: Straightforward from Lemma 2.3. a

Remark 2.5 Corollary 2.4 ensures that dr = 0 for all parallel forms 7.
In classical differential geometry this can be seen by choosing a geodetic
coordinate system at a point . Then the Christoffel symbols all vanish at z.
In the case of a complex valued metric it is usual that there are no geodesics.

The operators *d+d and d+*dx can be expressed by means of second covariant
derivatives:

Lemma 2.6 Let

1 ) )
T = Ele___jpd:c]l A ..o Adatr

be a p-form on M. Then we have

(_)(pfl)(qul)

dxd*T = I 6{;11.1._..]:1;%71thle...jp;rsd-st Adz" AL A dar o (5)
and
(_)pq rj1...Jp st h1 h
xdxdr = ) Oty 19" Tir.gprsda’™ Ao A da?, (6)

Proof: We begin by proving (5). Denote

1
p!(n —p)l(p—

a =

L L 21
Aoy = Tiegp € 7Py



By definitions

1
*x7T = mAll---ln—pdxll VANIAAN d.’l?ln_p,
1 9 r l l
dxr = ﬁaxrAh dopdz” Adz AL A dar,
b
9 el h1 hp_1
xdxr = aWAh...ln_péf hyohp AT A A dETP
0 0
dsdxr = O <WAII...ln_p5rll"'l"_”h1...hp—l> de® Ada™ AL A datr
z z

Corollary 2.2 implies the universal formula

0

eIy 1 Xy = €uj1"'j”ll...lq%le...jp, (7)
from which it follows that
81'l11...17171]h1...h11*1 %Ah...lnp = 8rl1mln7ph1...hp71Al1...ln7p;r = Bh1...hp71
Since
dz* Adz™ AL A deher = 6k1_,kp85h1“'hp”dxk1 ® ... dzkr
we have

0
hi.hy k k
dsd*7 = aegy. 1, P =——Bpy.h, A2V @ ... @ dzP.

oxs

From (7) we get

dxd*1 = askl...kp68h1...hp71Bh1...h dxkl X...0 dxkp-

p—1;8
Here
Bhyhy s = € rn Al s
é‘rll"'l"’phl...hp,l€j1"'j’"11...ln,p7'j1...jp;m
9"ty by 8P
= (_)(pil)(nip)(n p)! Tt‘sgllzl ]pp 1Tt dpsrs-
Hence
(_)( ~Dat) J1.-J shi..hp_1 1 k k
dxdxrT = ————4§7, 7% 0 Mlqrsh © L @ dahe

p|(p_1)| thi...hy— lg T]1 JpirsVE, .. kp

and (5) follows from the definition of exterior product. We continue by
proving (6). By Lemma 2.3

dy = (=)P4x,G,Curl,

d, = (=)™ G,Curl,.



Since

kgp1kp = (_)P(q-l—l) and spyq %, = (_)q(p—i—l)
it follows that
*dxd = xgpidgxpiad,
= #g41 (=) PV, G Curly 510 ()P V5, G Cul,
= G,Curl,G,Curl,.

For
T = le__jpdle ®...®dz»

we have (omitting the basis vectors in notation)

= arjregpliedg -
Curl,r = pls PTG o
— Tiiedp L
GqcurlpT - p'g l1...lq7—]1...]p;r7
Curl,G.Curl.t = lgsll...lth...hp lgrjl...jp T
q~q P - q' p| l1..dg 1. gpir
: . s
1 o
_ sly...lghy...hp Tj1...7
- p'q'g ! ve pll...qujl...jp;’l‘57
1 o
_ sly..l ri1...J o
GpcurquqCU-rlpT - p'q'g th...hp€ pll...qujl...]p;'rs
_ 1 e rjvedphieds
plql tly...dgh1...hp ' J1---JpiTS

(_)pq L
st cTI1---Jp T
p! thi...hy  J1---JpiTs"

The claim (6) follows from
Oy mda™ @ .. @ dalr = Hé{,ﬁ_.ﬁ; dz" A ... Adat.
O

In the next section we will need a specific expression for the generalized
Laplace operator

dkd* + (—)"xd*d

consisting of second covariant derivatives. For the sake of brevity we employ
the ordered multi-indices H, J and K of lengths #H = #J = p and #K =

p— 1.

Lemma 2.7 Let )
T = Hle"'jpdle A ... Adzdr



be a p-form on M. Then
dxds7 + (=)"*dxdr = (—)P2™" l (ZTMS + ZTJ sr) da’
seJ s¢J (8)

+ g" Z 55 ( Tws — Trisr) AT A dz¥X

Proof: Note that (—)P~1(e+1) — (_)pa+tn By interchanging r and s in (6) we
get from Lemma 2.6

dsdx*1 + (—)"*dxdr =
(—)P1n ) g s gda® A da™ + (= )PS9 g da =
(_)pq+ngrt (Art + Brt) )

where

Ay = 6£IKTJr5d$s/\de,

N H
Brt T 6tHTJsr

Let us fix s for the present. If s € K the exterior product dz® A dz¥ in A,
vanishes. If s ¢ K the corresponding term in A,; is

55‘]K7'J;rsdxs A dzX, s =t,
(SngTJ;rsdﬂjs A dz¥, s #t.

If s € H in B,;, by changing the order to get s as the first index in H, we
see that for a fixed H the corresponding term in B,; is

68 Tr.spda® A da’

The multi-index K consists of the remaining indices of H in an ascending
order. If s ¢ H the index t = s only yields a nonvanishing term

55}JITJ;srdxH
in B,;. Hence for a fixed s the corresponding term is
”55KTJ Azt A def + grtéstKTJ ~dzt A dzX

in g"A,; and
”(StsKTJ odzt A de® 4+ g”(SSHTJ dzt

in g"'B,;. After releasing s and summing we obtain

seJ s¢&J

+ grtZ(SstK Trws — Trisr) dz® A dz’



O

On an n-dimensional manifold the generalized complex electric and magnetic
fields can be regarded as covariant tensors Ej, . ; and Hj,.,,, respectively,
satisfying the generalized time-harmonic Maxwell’s equations*

1 L

E €u]1...]pll...lqulmjp;u — iwunglmlq, (9)
1 S o

= 5ul1mlq]lm]lel...lq;u — (—)pqinOEﬁ“‘]P, (10)
q:

The constants ¢ > 0 and pg > 0 are called the electric permittivity and the
magnetic permeability, respectively. For every pair (p,q) we have different
Maxwell’s equations. From (9) and (10) Ej, ;, and H,, , are seen to be
totally antisymmetric. Hence Lemma 2.3 implies that for

. . 1 . .
E = E'jlmjpdx” ®R...@dxr = _'Ej1~~~jpdx]1 VAP dx”,
p:
l l 1 I l
H = Hll..,lqu1®...®dxq = _'Hll...lqu /\.../\dxq,
q:

remembering the notation 7 := n—r, the equations (9) and (10) are equivalent
to

(—YPAdE = iwpexH, (11)
(—)¥dH = (—)Miweo*E. (12)

These equations are, as appropriately interpreted, consistent with those in
[10] although Picard has order dependent €, and p, instead of €y and py.
Since we have fixed p and ¢ the difference is mainly notational. Applying d
to both sides of (11) and (12) we obtain the generalized divergence equations

d+E = 0, (13)
dxH = 0. (14)

Applying *dx* to (11) and (12) yields

xd+dE + (—)PE*E = 0, (15)
xdxdH + (—)Pk*H = 0. (16)

Conversely, if (15) holds and we define

*d

H:=(—)"!
(=) o

*As far as time-harmonic electromagnetic theory is concerned the field tensors are
complex. Thus it is quite natural to consider the complexified tangent and cotangent
bundles in this connection.

10



the pair (£, H) fulfils (11) and (12). On the other hand, if (16) holds and

E = (—)ﬁq*li*dH

lweg

we get (11) and (12) as well. These facts are readily verified. For divergence-
free fields, i.e. fields that satisfy (13) and (14), the equations (15) and (16)
become

(dxdx + (—)"*d*d) E + (-)PK*E = (17)
(d*dx* + (=)"*dxd) H + (—=)"k*H = 0. (18)

=

The generalized Helmholtz equations (17) and (18) have been built on the
Laplace operator which was introduced previously in this section.

Next we are going to prove a useful formula which we call the Maxwell duality
(cf. [8]). Let R, S, T and U be r-, s-, t- and u-forms, respectively, with
r 4+t = s+ u = n. Define a bilinear product

(5)()), = [mnrssno

Here Q is a regular submanifold of M, that is to say, an open n-dimensional
submanifold of M whose closure ) is a compact oriented submanifold with
boundary 0f2. These assumptions make it possible to use the Stokes formula

(see [12]
/de = /9

for any (n — 1)-form 6 of class C'. We define the Mazwell operator M by

()= (58 = e

and a sort of adjoint M* by

(1) = (1~ e

for p-forms E, E and ¢-forms H, H.

Lemma 2.8 For p-forms E, E and q-forms H, H

(&) (%)), = (G )2 (5)),

whenever v = (—)Pw.

11



Proof: The left hand side equals

/ ((_)pﬁdE AwH —iwpoxH A wH + (—)99dH A vE — (—)Pliwegx E N UE) )
Q

By Stokes theorem

/dE/\ﬁ = /EAFI—/(—)PEAdﬁ,

Q [719) Q
/dHAE = /HAE—/(—)qHAdE.
Q [219) Q

sHANH = (=)9H AxH, *EANE = (=)PE A«E,
and (—)P(—)P? = (—)9(—)% the left hand side of (19) is equal to
/ ((—)pﬁwE AH+ (=)"%vH A E)
o9

)9(=)9wE A dH + (=)P(=)"PvH A dE’)
)

_I_

—)wiwpeH A *H — (—)PPu(—=)Pliwe B A *E) =

i
I8

[(—)q“wEA ()49AH + (= )PuE A (—(—)pqiweo . E)

0

()P H A (< PPAB + (=) H A (—iwpo * ﬁ)]

+/ ((—)pﬁwE AH + (=) H A E) :

If v = (—)P7w then
(P = (PP = (),
(1w = (P = (P,
and (19) has been proved. O

Remark 2.9 It is obvious from the proof that the constants pg and €, can
be replaced by smooth functions p and € in Lemma 2.8.

Proposition 2.10 (Maxwell duality) For p-forms E, E and q-forms H, H
E bH
(i) (32)), -
i )2 (5)), (G )-(5))
SJMEL + N
(i ) (5)). (5 )-(7)),

12



whenever

a=(-)?, b

I
—
L

_Q
\‘»Q

Qt

I
—~
L

3
“Q

S

I

—_

Q

I
—~
3
LS
@

I
—~
L

Q)

Proof: Since (—)PP(—)P1 = (—)? and (—)%%(—)P? = (—)7 the claim follows
from (19) by setting w = 1. O

Remark 2.11 If Ej is a p-form, Hy is a g-form and (Ey, Hy)T satisfies the
homogeneous Maxwell’s equations M (Ey, Hy)T = 0, then by linearity

E+FEy\ E
s{aim )=+ (5)
The conclusion is that adding such a field (Ey, Hy)T to (E, H)T in (19) has
no effect on either side of (19).

3 Fundamental Solutions

We will give expressions for the fields of generalized electric and magnetic
dipoles. For the remainder of this work, the Riemann curvature tensor of M
is assumed to vanish everywhere. As an immediate consequence the higher
covariant derivatives are symmetric in the following sense:

Lemma 3.1 For a tensor lell.'.'.'lir on M we have

1o _ yrdied
Xll...ls;ml...mt - ll'“lﬁma’(l)“'ma(t),
where o is any permutation of {1,... t}.

Proof: In [7] we prove that locally M can be isometrically imbedded in C".
With respect to the standard Z-coordinate system of C" a covariant deriva-
tive Xz?ll.'.'.'zzzc of a holomorphic tensor field X,fll.'_'_'ba; is just the ordinary partial
derivative dX sy /0x¢. Hence the covariant derivatives with respect to dif-
ferent indices commute in C". The claim follows by pointwise approximation
of the imbedding and the tensor by their Taylor polynomials of degree t¢.

Formally, if we denote 6 = o1,

Oxt Oxir 97t Ozt 9z Ozt

;11......l“797;m1...mt = afﬁal e afﬁar 0xl1 e axls 0xm1 e axmt 1(7111.::.11(‘197;61...Ct
Oz 9z 9z 93 9z 0F%w o
- QFwm ozor Qzh Oxls dxm™ Jgme ~ brbsicrcr
L Yo G VL Y AT oo
= o5 Orar Oxrh Ozl Ox™e (1) Oxr™e(t) b1...bs;c1...ct

. J1--Jr
ll...ls;ma(l)...ma(t) :

O

Lemma 3.1 simplifies the expression (8) of the Laplace operator remarkably:

13



Corollary 3.2 Let

1 . .
T = ;!le___jpdx“ A ... Ada?r.
Then __
() - -
didsr + (=)"*drdT = =", jprsda” AL A da?r
p!
Proof: The claim is an immediate implication of Lemma 2.7. a

From now on we assume that there exists a fundamental solution to the scalar
Helmholtz operator

¢ = g+ K.
In other words, there is a smooth scalar ® = ®(z, y) such that for all z, y € M

9 (@)@ (. y) + K*®(z,y) = —6,() (21)
which is, by Corollary 3.2, equivalent to
*dxd®(z,y) + k*®(z,y) = —6, (). (22)

Unless otherwise stated, derivatives are taken with respect to x. Later, when
we introduce the radiation conditions, we will expect some extra features
from the fundamental solution ®.

In addition, assume that the geometry of M admits of a global parallel
nowhere vanishing tensor field of order ¢.f Suppose, without loss of gen-
erality, that 7, ; is a totally antisymmetric parallel tensor:

~

1
o= fyyda ®... ®@dal = aﬁh,,.,quh A ... Adah.

Define

e Y
|
KA
>

Proposition 3.3 The g-form 7 is a fundamental solution to the Helmholtz
equation in the following sense:

(dxds + (=)"*dxd) 7 + (—=)PTk*H = —§,7. (23)

Proof: Since 7 is parallel and ¢ is a fundamental solution
9y dgrs = G Pusttiya, = (K@ —6,) Fiyu, = —k Mgty — 6y,
On the other hand, Corollary 3.2 implies
9"y ayrsde™ @ @ da's = (<)PT (dsdwi) + (=) xd*d7) .

|

tSince the curvature vanishes it is sufficient, but by no means necessary, to the existence
of a parallel field that M is simply connected. See later in this section.

14



Remark 3.4 How should the Dirac measure d,, be interpreted in expressions
like (23)7 According to de Rham (see [11]) differential forms with distribution
coefficients are called currents. If F = F;dz” is a locally integrable p-current
its value for a test p-form (i.e. a compactly supported smooth p-form) ¢ =
@rdz?’ is, departing from [11], defined by

(F, @) = /F/\*go = /FJgo‘]\/gdxl/\.../\dx”. (24)

M M

The right hand side identity comes from

Fidz! Axppdal = Fropelyda? AdzM
= FJQOLé"LM&JM\/gd.CUl A...Ndz"”
= Fyptél/gdat A Ada”
= FJgo‘]\/gd:cl/\.../\dx".

Here \/gdz' A...Adz" is the coordinate invariant volume element (see [9]).
For a scalar test function ¢

{6y, 0) == o(y),

as usual. Formally

(0, ) = /5y/\*<p = /5yg0\/§d:c1/\.../\dx”.
M M

With the aid of the fundamental solution to the Helmholtz equation we are
able to define certain fields that may be regarded as the fields of generalized
electromagnetic dipoles. The parallel form 7 is referred to as a generalized
dipole moment.

Proposition 3.5 Define a g-form E and a p-form H by

g = ((—)"xdxdi) — 6,7)
lweg v
‘H = xdn.
The pair (E, H)T satisfies the Mazwell’s equations

(-)dE = iwuexH,
(=)PPAH = (—)Miwegx E + 0,*7,

for a generalized electric dipole.

Proof: This is a straightforward calculation. Note that

()7 = ()"

15



Proposition 3.6 Define a p-form *E and a q-form *H by

HE = xdn,
1

FH = Y lxdxdh — 6,7) .
iw,ug(() *Axd7) yT)

The pair (ME, *H)T satisfies the Mazwell’s equations

(—)PPAYE = iwpex"H + 0,7,
(—)9d*H = (—)PMiwee* "E,

for a generalized magnetic dipole.

Proof: Straightforward. a

Proposition 3.7 The dipole fields have expressions

E(x,y) = (;j;l (5:1?9“(96)(1);”(96,@/) + 5y(:1:)6f{) 7 (z)dz ™,
Hay) = ()L (@)Bu(x, v)isle)de’,
Blay) = ()" (@) B )i (a)de
Hiz,y) = T (5Eg" @)D (e,) + 6, (@)0F) Ful)da”,

where #J = p, #L = #K = q.

Proof: These formulae are straightforward consequences of Proposition 3.5,
Proposition 3.6, Lemma 2.3, Lemma 2.6 and the parallelism of 7. O

Next we are going to prove analogues to the reciprocity theorems, Stratton-
Chu formulae and the Lippmann-Schwinger equation which is usually called
the volume integral equation. For this purpose we begin with studying the
existence of a global frame in Lemma 3.8, Lemma 3.9 and Proposition 3.10.

Lemma 3.8 The tangent space T, M has an orthonormal basis for every
xr e M.

Proof: Diagonalization of the symmetric matrix (g;;(z)). O

Lemma 3.9 Let Xi,...,X, be (local or global) vector fields on M. Denote

X( lZle/\.../\Xj

jl---jp) P’

(1) If X;,,...,X;, are parallel then Xj, ;) is parallel.

16



(1) If X;,,...,X;, are C-linearly independent then

Xirgyys 1<h<...<jp<n,

are C-linearly independent.
(i) If Xj,,...,X;, are orthonormal in the sense of the complex metric then
X

gy 1< g1 <. <jp<n,

are orthonormal.

Proof:

(i) This is an implication of the Leibniz’s rule for covariant derivatives and
of the fact that the J-tensors are parallel.

(ii) A well known algebraic fact.

(iii) Straightforward.

Proposition 3.10 If M s simply connected and the Riemannian curvature

tensor vanishes everywhere on M then each orthonormal basis Vi,...,V, of
the tangent space T, M of M at xo € M can be uniquely extended to a parallel
global smooth orthonormal frame Xy, ..., X, such that

Xl(ﬂfg) = ‘/1, .. .,Xn(.’L’()) = Vn

Proof: The existence and uniqueness of a local extension is proved in [7].
The existence and uniqueness of an extension along a path is proved as in
conventional differential geometry (see [3]). Given two paths 71,72 : [0,1] —
M such that ~1(0) = 72(0) and 71(1) = ~9(1) there is a path homotopy
connecting v; and .. The homotopy can be constructed step by step in such
a way that it deforms the path within an arbitrarily small neighbourhood
at a time. This proves the claim since these elementary deformation steps
preserve the orthogonal frame provided that the neighbourhoods are chosen
sufficiently small. O

Since the index lowering operator preserves parallelism, linear independence
and orthonormality the previous results also apply to cotangent vectors.
From now on, let 7Y ... 7(® be a parallel orthonormal basis for the C-
linear space of 1-forms on M. Lemma 3.9 implies that the exterior products

70 = g0 A A g Ue), 1< <...<3 <n,
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form a parallel basis for the C-linear space of p-forms on M. In Proposition
3.7 the fields are of the form

F(z,y) = FLy(z,y)rp(x)dz™ = #g(x)de® | Fry(z,y)da? @ daM.
By change of basis according to
dz® = o p(2)n®) ()
we obtain

Foae(z)da® ©de™ = Fyug (. y)a al@)a s(@)x® () © x5 (z)
= Frs(z,y)n®(z) @ 7 (x).

It is readily seen that Frs(z,y) is a global invariant for any pair of ordered
multi-indices R and S. Choose

ix(z)de® = 7B (2)
to obtain
F(.]?, y) = ﬂ—(B) (x)J FRS(xa y)ﬂ-(R) (x) ® ﬂ-(S) (.’L’) = FBS(xa y)ﬂ-(S) (.77)

Hence the dipole fields have expressions

T2 2 g
eH,]j,y = E-HBJH?,y’]TJ ),
"E(r,y) = *"Eps(z, y)7r(‘]) (x), (25)

MH(z,y) = *“Hpgy(z,y)r®)(z),

where #.J = p and #B = #L = q. Note that E and *H are of the same
order g as the dipole moment form. The Maxwell’s equations become

M( ;E;((ﬁlgé) ) = ( <—>ﬁ‘féy<x(>)*7r<A><x> )
./\/l< FE (z,y )
(z,y

Proposition 3.11 (Stratton-Chu) Assume that E is a p-form and H is a q-
form which satisfy the homogeneous Mazwell’s equations M(E, H)T = 0 in
Q. Then we have the following representation formulae for E(y) and H(y),
y € Q:

Baw) = [ (P Hanlon)r @) A Ban) o)

i 26)

+ Bas(z,y)n)(z) A Hy ()P (@),

Haly) = / (HH 1 (0, )7 D) A By ()7 ()

6 (27)

+ ()P B g (2, y)m) (2) A Hp(z)n P (2)) .
Here #A = #J =p and #B = #L = q.
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< < iﬁ%)(zf_;éizz%)x
= (e ) (560)),
((5ae ) (=0 ),

or equivalently

By the definition of < -, - >

— pqa/EJ z) « 7 ()
Q

/(aE'J ) A H ar (2, 9) 7D ()

+ BHL(x)rP (2) A Bag(z,y)n)(2)).
By orthonormality the first term on the right equals
()P aBy(y)n(y) | 7D (y) = (-)PaBa(y).
Hence

Baly) = ~(-a [ (aBs(@)n o) A Harle,y)n Vo)

+BHL(x)m'P (z) A Eay(z, y)ﬂ(J)(a})) .

The commutativity rule
7 (z) A 7P (z) = (=PI D (z) A 7D ()

implies then

Ealy) = —(—)Wa/(Oz(—)p“HAL(x,y)W(L)(x)AEJ(%)W‘”(%)
+B(= )P Bas(z,y)n"(2) A H(x)n'P ().
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Now (26) follows from —(—)Paa = (=)' and —(—)P?a3 = (—)P?. The proof
of (27) is essentially the same. The field (E, H)T should be replaced by
(“E, *H)T. O

At this stage we are ready to employ appropriate radiation conditions that
have control over the electromagnetic field far away. These conditions are
only relevant for noncompact oriented manifolds M having an exhaustion,
i.e., a one-parameter family of regular submanifolds B,, » > 0, for which the
following hold:

(i) If r < s then B, C B,
(ii) U,.o B, = M.

Definition 3.12 A field (E, H)" satisfies the electric radiation condition if

there exists
() (e

for all y e M. A field (E,

H)
T () (), e

We assume the scalar Helmholtz fundamental solution ® to be chosen such
that (E(-, 2), H(-,2))T and (“E(-, 2), *H(-, 2))T satisfy both of the conditions
(28) and (29) for all z € M in the following strong sense:

satisfies the magnetic radiation condition if

for ally € M.}

For any compact (n — 1)-dimensional submanifold K of M there exists

mme (G ) (e ), |0 @
and
e (G ) Cen) ), =0 o

Remark 3.13 If a locally integrable n-current 6 is not Lebesgue-integrable
in M but there exists a finite

Iim | 6
r—00
By
we still denote
lim | 0 =: / 6.
r—o0
B, M

This is a sort of principal value integral.

INote that the radiation conditions are associated with a fixed exhaustion.
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Proposition 3.14 (Reciprocity) Dipole fields obey the following reciprocity

rules:
6E'BA(yv‘z) = CEAB(Zay)’ (32)
NHBA(yaz) = NHAB(zay)7 (33)
"Epa(y,2) = (=" Hap(z,y). (34)

Proof: All of the three equations are proved from the Maxwell duality in a
similar manner. We restrict ourselves to the proof of (34). Let E, “E be
p-forms and ‘H, "H ¢-forms. Then we have the duality

(O Een ) (B5e3)).

(G )2 (el ),
or equivalently

<< (—)’7‘75?/(1;()) * w4 (2) ) ’ < gl;gﬁg:gﬁgg; >>M
aFas(z,y)mD(z
(st ) ( cmaerow ),

with #A4 = #J = p and #B = #L = q. From the definition of < -,- > it is
obtained

()75 / 5,(2) % 7D (@) A "By (2, )7 (x)
= (_)qu/ H ar(z, y)W(L)(x) A d,(z) * 7I'(B)($).

Since

+1 (2) A D (2) = (—)PPr) (2) A %7 (2)

it follows that

(—)?a / 5,(2) "By (2, 27 (2) A xr ) (z)

= b/éz(:p) Har(z,y)mD(z) A xxB)(z).

which is equivalent to
()P E s (y, 270 (y) | 7D(y) = b Haz (2, 9)7 P (2) | 7P ().
As a consequence of the orthonormality

(—)Pa"Epa(y,z) = bHap(z,y).
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In Proposition 2.10 we denoted @ = (—)P?7 and b = (—)%. Hence (—)PPa =
(—)?. Multiplying both sides by (—)? and noting that (—)?b = (—)P?*1 we
finally get (34). The proof of (32) is based on the duality

o) (iste)),
- (o )7 (203)),
and (33) follows from
M ) (o),
= (oo ) (563)),
Corollary 3.15 Assume that E is a p-form and H is a q-form which satisfy

the homogeneous Mazwell’s equations M(E,H)" = 0 in Q. Then we have
the following representation formulae for E(y) and H(y), y € Q:

Ealy) = / (HE L a(y, ) () A By (2)7) (2)

O

o (35)
+ Fialy, z)n D (z) A Hy(z)m®D (:13)) ,
Hgp(y) = 64 (“HLB(y,:I:)W(L)(:I;) A Ej(z)r)(z) (36)

+ Hyp(y,o)n)(z) A Hp(z)nP(z)) .
Here #A = #J =p and #B = #L =q.

Proof: This is an obvious implication of Proposition 3.11 and Proposition
3.14. O

Corollary 3.16 Assume that E is a p-form and H is a q-form both of which
satisfy the radiation conditions (28), (29) and the homogeneous Mazwell’s
equations M(E, H)T = 0 in R® \ Q. Then we have the following representa-
tion formulae for E(y) and H(y), vy € R®\ Q:

Ealy) = / (HE L a(y, )7 (z) A By (2)7) (z)

) o)
+ Ealy, 2)rV) () A H(z)r") (z)),
Hgp(y) = 64 (“HLB(y,:I;)W(L)(:I;) A Ey(z)r)(z) (38)

+ Hyp(y,z)n)(z) A H(z)n D (z)) .
Here #A = #J =p and #B = #L = q.
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Proof: The claim follows immediately from Proposition 3.11 and Proposition
3.14 when  is replaced by B, \ Q with » > 0 large enough so that Q C B,.
Finally, let r tend to infinity. O

Remark 3.17 The signs of the integrals in (37) and (38) compared with
those in (35) and (36) do not differ from each other since the orientation of
0f1 is reversed.

Remark 3.18 Assume that F is a p-form, H is a g-form and M(E, H)T =0
in R® \ Q. Then (E,H)T satisfies the electric radiation condition (28) if
and only if E has the representation (37). Likewise, (E, H)T satisfies the
magnetic radiation condition (29) if and only if H has the representation
(38). From the homogeneous Maxwell’s equations it is clear that E has the
representation (37) if and only if H has the representation (38).

Proposition 3.19 Let ;7)) be a p-form and nym®) a q-form on 9. Define

Ba) = [ (Fraly, n(e) Aol o) -
B a2 (@) A () (@)
) = [ (Husly, @) Aol @ o

+ Hyp(y, 2)7) (2) A ()7 (2)) .
Then (E,H)" = (BEqn™, Hgr®)T satisfies the homogeneous Mazwell’s
equations (11), (12) in Q and in M \ Q as well as the radiation conditions

(28), (29).

Proof: The Maxwell’s equations follow from

dy/ :/ d, and *y/ :/ *y,
0(x) 00 (z) 00 (z) 00 (z)

(EEJA(-,x)W(A),EHJB(-,:I;)W(B))T and (“ELA(-,x)W(A),“HLB(-,x)W(B))T

since

satisfy (11), (12) for all z € 9Q. The radiation conditions follow from

/r(y) /6‘9(90) /(99(w)/r(y)

(%‘() Z)v EI_I(? z))T and (HE('v z)a HH(_, Z))T
satisfy the strong radiation conditions (30), (31) for all z € M. O

since
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In order to prove the Lippmann-Schwinger equation we assume that the
submanifold Q contains a scatterer, i.e., ¢ = €(z) and p = p(z) are not
constant in 2. To be exact, we assume that

supp (e — €o) Usupp(p — po) C Q.

Let E, E be p-forms and H, H g-forms. A Maxwell operator for the non-
constant € and p is

() (e~ )
(-) (-)

Given a dipole moment 7(4)| suppose that there are solutions (E'*, H'"*)
and (“E™*, *H'") to the equations

Mo iz ) - <(—)’f‘f5y(x?*7r(*“)(x)>’ .
sy ) = (M) e

in M and that these solutions satisfy the radiation conditions. For the sake
of consistence we introduce an alternative notation for the fields in (25) with

74 ag a dipole moment:

(E™, H™) = (E,H),
(FE™, "H™) = ("B, "H).

Then we have the Maxwell’s equations

B (z,y) 0
M (g ) = (e v ) 43)
R (yy) N ()P (2) x mA)(2)
M (i) = ( 0 W
in M. Define
(eEsc’ G_HSC) — (eEtot i eEin’ e}[tot . eHin),
(pEsc, HHSC) = (pEtot . uEin, thot . “Hin).

By subtracting (43) from (41) and (44) from (42) we see that

m( Emy)y iw(p(x) — po) ¥ H™ (z,y)
H*(z,y) (—)Pliw(e(x) — €) * E* (z,y) )’
m [ By iw(p(x) — po) * H™ (z,y)
HH* (2, y) (—)Pliw(e(x) — €) * *E*(z,y) )’
in M. Thus we have defined the total field of an electric dipole
B(z,y) = ERp(e,y)nP(@),
H(2,y) = Hiy(z,y)n (@),
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the total field of a magnetic dipole

MEYN(zy) = MBS (z,y)nY)(2),
MYz, y) = HH (2 y)7 P (@),

the incident field of an electric dipole
E(2,y) = Eiyle,y)nP (@),

Win(ajay) = ng(xay)ﬂ—(J)(x)a
the incident field of a magnetic dipole
BN a,y) = B (ey)n (@),

"H™(z,y) = "Hip(e,y)nP(),
the scattered field of an electric dipole
B (2,y) = Eiyle,y)n (@),

H*(2,y) = His(e,y)n(2),
and the scattered field of a magnetic dipole
B (e,y) = B (e y)n (@),

HHSC(xa y) = uHifL(xa y)ﬂ—(L) (ﬂ?)

In Proposition 3.20 we write the total field as a sum of the incident field and
a volume integral which stands for the scattered field.

Proposition 3.20 (Lippmann-Schwinger) The field of an electric dipole is

EBH(z,y) =

Boo(y) ()i / (e(2) — e0) B™ (2, 2) A + B2, y)

J (45)
b [ (1) — o) B (2,2) A5 H (z),
HEa(z,y) '
Hiawy) o+ (e [(6(e) - ) B () A B e) )
+ (e (1(5) o) () 3 5.5,
The field of a magnetic dipole is i
"ER (2, y) =
Eawn) 4 () [ (6l) - ) Bz 0) A+ ) n
b [ (uz) = o) E ) (),
:
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ML (2,y) =
HTp(ey) () ! (o) ) (e, ) B e)
(0 [ () = o) MR (2, 3) A 5 )
Q
Here #A=#C =#J =p, #B=#D =H#L =q, 2,y € M\ Q and = # y.
Proof: Let us first prove (47). From Maxwell duality we obtain
“Ei.n(z,y) 6H‘n(z ) HES(z,y) BSH?n(z,x)
Moy ) Gy ), + (e Gl ) (iinC) ),
_ [ a"E*(z,y) o H™(z72)
() )2 (n) ),

or equivalently

Here
stB () ATD () = (2) 7B (2) A xrB)(2),
*HHtOt(z,y) A inn(z,:L“) - (_)q(jﬁ]_]in(z,x) /\*HHtOt(z7y))
*HEtOt(z,y) A eEin(Z,fL') = (_)pﬁfEin(z’x) A\ *HEtOt(Z,y).
and by (34) _ .
Hiy(y, 2) = ()P R (2, 0).
Hence

(=B (@.9)
= B B (o)

+ (—)pq(—)ppdiw/(e(z) — &) E™(2,x) A% "B (2,7)

()i / (u(z) — o) H™ (2, 2) A 5 HH (2, )

M
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which is equivalent to (47). The identity (45) follows from the duality
fEi.n(z,y) bH™ (2, z) E%(z,y) bH™ (2, z)
<M< H™(z,y) )’( aE™(z,x) u + M H(z,y) )\ aE™(z,x) u
L (9E ) | e ( H)
= bthOt(z’ y) ’ CEln(Z, x) u )
in the same manner, (46) follows from the duality
B (2, y) bHH™ (2, ) E*(2,9) bHH™ (2, )
<M< H™(z,y) )’( arE™ (2, x) u + M H(z,y) )\ artE™(z,x) u
(A | g R G)
- bGHtOt(z, y) ) “Em(z, x) u ’
and (48) follows from the duality
B (zy) \ (R N\ (R G) ) (BERG)
FH® (2, y) )7\ aME™(z,x u FHE(z,y) )7\ GaME™(z,z) u

M
)
atE"(z,y) M “Hm(z,x)
bHH® (2, y) HE® (2, x) M.

4 The Scattering Problem

We are going to prove our main result which is the metric independence of
the existence and uniqueness of a solution to an exterior boundary value
problem. We review the assumptions that we have made up till now:

(i) M is an n-dimensional real oriented C*°-manifold equipped with a com-
plexified tangent bundle TM and an exhaustion (B, ),~¢.

(ii) M has a complex pseudo-Riemannian metric g;; such that there exists
a global /g and the Riemann curvature tensor vanishes everywhere.

(iii) Each orthonormal basis Vi, ..., V, of the tangent space T, M of M at
an arbitrary point x € M can be uniquely extended to a parallel global
smooth orthonormal frame X, ..., X,, such that

Xi(z) =Vi,..., Xp(z) = V,.
(iv) There exists a fundamental solution ® of the scalar Helmholtz operator
o= glpq+ ke
for which (E(, z), H(-,2))T and (HE(-, 2), “H (-, 2))T satisfy both of the

strong radiation conditions (30) and (31) for all z € M.

27



For a simply connected M there always is a global /g and (iii) is automat-
ically satisfied. From now on {2 and D are supposed to be regular subman-
ifolds of M such that Q C D and §; is another metric tensor for which the
assumptions (ii)-(iv) hold. Moreover, it is assumed that

gitlp = il p- (49)

We are considering the following scattering problem or exterior Maxwell bound-
ary value problem as it is called in [4]:

Find a p-form E and a g-form H both of which are of class C* in M such
that

(SC1) E and H satisfy the homogeneous Maxwell’s equations (11), (12) in
M\ Q,

(SC2) E and H satisfy both the electric and magnetic radiation conditions
(28), (29) and

(SC3) E|,q = n for a given p-form n of class C*° on 092.

Here E|,q := ¢*E is the pull-back of E with respect to the inclusion i : 9 —
M.

Theorem 4.1 The problem (SC1)-(SC3) for g;i has a unique solution if and
only if (SC1)-(SC3) for Gji has a unique solution.

Proof: Assume that (SC1)-(SC3) for g;; has a unique solution (E, H). Ac-
cording to Corollary 3.16 we have the representations (37), (38) for E(y) and
H(y), y € B3\ Q. By extending the orthogonal bases (7(/)|) and (75)|,)
to (#)) and (#%)) in M (see Lemma 3.10) and replacing g;; by g; in the
expressions for (E, H), (“E, *H) we get the fields
Es)i) = [ (Brals.0)rD @) A Esfe)at (o)
o9 (50)
+ Byaly, 27 (@) A Hy(2)rP)(2)) #0(y),

B () = [ (a0 P(0) A Es()n)(a) o
a0 51
+ Hpy, o) (@) A HL(x)W(L)(:L“)> #B)(y).

The conditions (SC1) and (SC2) for (E, H)T follow from Proposition 3.19.
Since Fa|, = Ealp and Hg|, = Hg|, (SC3) is satisfied. Hence (E, H)T is
a solution.

In order to show the uniqueness we assume that (E, IjI)T is a solution. Just
as above we find a solution (£, H) for gj; the uniqueness of which determines
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the boundary value H|, = ]:I|D uniquely. The uniqueness of (E,ﬁ)T is
obtained from the representation (50), (51). O

Our goal is to apply Theorem 4.1 in M = R" with g;; the standard Carte-
sian metric and g;; a PML-metric arising from a special kind of a smooth
stretching function Fy : R* — R”,

seC*={a+ibeCla,b>0},

for which Fy|, =idp. Actually, we have a one-parameter family of stretching
functions such that
z := Fy(x)

is C* in z € R (|6] assumes C?) and analytic in s € C**. Details are found
in [6]. For clarity, we assume that |Fs(z)| < p(|z|) for some polynomial p
([6] considers more general stretching functions). The metric is defined as in
Appendix by

~ 0" OF"
£~ O Ozt

gji(x; s) =

Hence we can choose -
= %
VG = det( 5 ).
Since Fy is a C-imbedding g;(-, s) is a complex valued pseudo-Riemannian
metric. The metric turns out to be analytic in s and thus is the curvature
tensor. For s > 0 the curvature vanishes which implies that it vanishes
for all s € C** by analytic continuation. Since R" is simply connected an

orthonormal frame at x € R" has a unique parallel extension by Proposition
3.10. Moreover, if we choose

B, ={zeR"||z| <r}, r>0,

the conditions (i)-(iii) are fulfilled for both g;; and gj;.

It has been proven in [6] that the standard fundamental solution
. n/2—1
4 k (1)
P A e — H k|lx —
e =1 () Halkle =)
of the scalar Helmholtz operator
o g0+ ke

can be analytically continued to a fundamental solution ® of the Bérenger
operator ‘
o Plog+

by simply replacing (z,y) by (, J):

v

i n/2—1 )
bz,y) = b (ﬁ) HY), | (ko — 5)).
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The “complex distance” p has the property that

n

(p(& - §))* =D (@ — ).

=1

In order to use Theorem 4.1 in R" the following Proposition for g; and its
counterpart for g; have to be proved.

Proposition 4.2 Assume thatIm s > 0. The dipole fields (E(-,z), H(-, 2))"
and (ME(-, z), "H (-, 2))T corresponding §;; satisfy both of the strong radiation
conditions (30) and (31) for all z € M.

Proof: From [6] (Lemma 3.2) we see that for all compact subsets K C R"
there exist constants C' > 0 and R > 0 such that Imp(Z —g) > C|z| whenever
r € R*, |z > Rand y € K. Here & = Fy(z) and § = F,(y). Hence
the Hankel function Hle/)zq (kp(Z — 7)) decays exponentially as |z| — oo,
uniformly with respect to y € K. Since the stretching and thus also the
metric have at most a polynomial growth it follows that the dipole fields
decay exponentially in the above mentioned sense. Here we used the fact
that the derivatives of Hankel functions are linear combinations of Hankel
functions. In addition to that the measure of 9B, only increases polynomially.
|

The case of g;; is much more complicated since the fields (E(-, z), H(:,2))"
and (“E(-, z), *H (-, 2))T do not decay exponentially.

Lemma 4.3 For a p-form 7 = 7;dz”, a g-form n and 1-forms v = ~;da?
and

Ty = myided, (52)

«(TAY) = (=) |, (53)

«(1[7) = (=)= A7, (54)

(y[O)r = (TAY) L6+ (T8 A, (55)

«T [ (nAy) = y] = (T An). (56)

Proof: The first three formulae are readily proved from top to bottom. The
last two ones are straightforward. a

The expression (56) can be considered as the scalar triple product. If v = §
and v | v = 1 then (55) becomes

T=(TAY)|y+ (Y)Y (57)

In [14] this is called the Pythagorean theorem. If v = fi is a unit normal 1-
form of a hypersurface then 7, := (7An) | 72 is called the tangential component
of 7 and 7, := (7 | n) A 7 is the normal component of 7.
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Lemma 4.4 (Stokes theorem) Let Q be a regular domain in the standard R™.
If 7 is the exterior unit normal 1-form of Q on 9Q and T is an (n — 1)-form

then
/*T[ﬁ:/dr

1219 Q

Proof: Choose a tangent-normal coordinate system and use the standard
Stokes theorem of differential geometry. O

Proposition 4.5 In the standard R" outside the source point y dipole fields
have the following expressions:

Blo,y) = () iwn®(z,y)((7 |w) Aw—7) + 0 (|Ja] "72),

H(z,y) = k®(z,y)*x7|w+O (|x| (n+1) /2)

HE(J?,y) = lk(I)(x y) * T Lw +0 (|x| (n+1) /2)

HH(:U,y) = ( )quweoq)(x y) (( /\w ) +0 <|x|—(n+1)/2) .
Here . .

= vy da’.
|z —y|
Proof: Let z,v € C and denote
42—1242—2...42_2 _12
(v,m) := [4v J[4v° —3°] - [4 — (2m )]’ m=1,2,3,...,

22mm)

(v,0) = 1.

If —7m < argz < 2m, |z| >> |v| and |z| >> 1 we have the expansion (see [5])

Hﬁl)(z) = \/g ei(zf%r*%) (1:2;1 7((_1/2’17:3)171 + 0 (|Z|M)> .

Furthermore 0
diy’(2) 1 /(.. (1)
== =2 (H# ) - L)
Hence
(klz —yl)
ik|z—y|
_ i e i7(2v+1) —|—O(|.’L’| 3/2)
|z —y| V 7k
0
(O (K — 9))
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ko ix, eflz=l _
= (i4+1)y/= e YL 0 (e ) |

m Viz =yl |x—y|

02
R (HD (k|z — y]))
T gikleyl ga_ _
= (i—1)ky/= e i3 oyt Y O (|2 ).

m Ve —y| 1z = Ix—yl

For the fundamental solution ® we have then

®(z,y) = O (||~ ”/2), (58)
0 -y
z, = 1k®(z, + O (Ja|~+D/2) | 59
o B(z.) (2, 0) Tl + O (a7 (59)
02 % _ya xb_yb
7@ - _ 2@ —(n+1)/2 )
T (T Y) k@ (x,y) PR r— + O (|z| ). (60)

After replacement in the formulae for dipole fields in Proposition 3.7 we
obtain the desired expansions by the aid of Lemma 4.3. O

Let us introduce the Silver-Muller radiation conditions:

«B(z) + (—)"mH(z) Ad = o|lz] ™ 1V2), (61)
«H(z) + (=PI E(x) Ai = o (o]~ (62)

Here 79 := +/110/€o is the wave impedance and & := 27 /|z|dz?.
Proposition 4.6 In the standard R" the dipole fields (E, H)T and (*E, *H)T

satisfy the following strong Silver-Miiller radiation conditions: for every com-
pact K C R?

sup [B(z,y) + (=)"mH(z,y) A& = o(la|""772),(63)
ye
sup [xH (2,y) + ()P ' E(z,y) N &| = o(|lz[7"7D72). (64)
ye
Proof: The claim follows from Proposition 4.5. O

Corollary 4.7 Let (E, H)T satisfy the homogeneous Mazwell’s equations far
from the origin in the standard R*. If (E, H)T satisfies either the electric ra-
diation condition (28) or the magnetic radiation condition (29) then (E, H)T
satisfies both of the Silver-Miller conditions (61) and (62).

Proof: According to Remark 3.18 there are the Stratton-Chu representations
(37) and (38) for (E, H)T. 1t is then straightforward to see that Proposition
4.6 implies the claim. O
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Proposition 4.8 In the standard R™ the field of an electric dipole satisfies
the strong electric radiation condition (30) and the field of a magnetic dipole
satisfies the strong magnetic radiation condition (31) for all n.

Proof: Let K be a compact subset of R* and z € R*. We have to show that

sup | [ (@Ba2) A Hizw) + BH ) A Bw) [0 (09
syt

and

sup| [ (@"B(e.2) n #H(o,5) + ¥ (22) A B 0) [0 (60
yeK
sp—t

as r — oo. Let us prove (66). Let the magnetic dipole moment be the g-form
7 = #rdz’. Denote

¢, :=®(-,y) and P, :=P(-,2).

Denote the integrand in (66) by X. After straightforward calculations we
obtain from Proposition 3.7

()" aiwpeX =
(_)ﬁqflétMgrLJ 0(1)2 02(1)9 . a(I)y 02(1)2
sk Oz Ox30xt  Ox" Oxs0xt

> rayda’ A deX.

Replacement of the derivatives by the expressions (59), (60) yields

0%, 0*®, 0%, 0%,

Y = — =

(2,9,2) Ozx" dxs0xt  Ox" Ozs0xt
T T S 8 b St T AT 8 S et ot

ik?’(I)y(I)z(x A y>+0(|x|”).
[z =yl |z =2l |z -2 |z—2z]|z—yl|z—yl

It is clear that

Sup Y (2,y,2)| = O (|2z]"™") o(1) = o (|2""")

and the claim is proved.

The proof of (65) goes in the same manner. O

Proposition 4.9 In the standard R™ the field of an electric dipole satisfies
the strong magnetic radiation condition (31) and the field of a magnetic dipole
satisfies the strong electric radiation condition (30) provided that n is odd.
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Proof: Let K be a compact subset of R” and z € R*. We have to show that

sup
yeK

‘ / (@"B(z,2) A H(z,y) + 8'H(z, 2) A Blz,y)) ‘ =0 (67)

and
(68)

sup
yeK

‘ / A PH(z,y) + BH(z,2) A "E(z,9)) ‘ )

as r — o0o. Let us prove (67). We will imitate the proof of Stratton-Chu
formula for exterior domains in [4]. Let K C R" be a compact set. As in [4]

we first prove that
[ 1B = o)
Sn 1

This is a consequence of the radiation condition (61) which holds for (£, H)
(E(-,z), *H(-,2)T. Then we represent the integral in (67) as

/ hg | ((—)Pﬁa*(*d(cpfr) AE) — (= )PBxdx(®R) A & + (—)Pqﬁlkqm)

~(-yBion [ #) (% (HA) - (<) 1E)a.

sn—1!

Sy

We apply Schwarz inequality to the first integral. Denote
o — g

and ’U)] : H

Since a = (—)*? and = (—)7? the right hand side factor of the scalar product

is

+(xd(DF) A ) + *d*(®F) A & — (= )Pikdr
0P

0%
= ()95 — o twide’ + (=)18)" =

—(—)PPik®ryda’.

Z =
wJu]de A da™

The formula (59) yields
Z = (-)Yik® (5{fujwlﬁjdxH + 5§Nujwlﬁjdxj AdzN + (=)"7yda )

+O (|a|~tr+1/2)
= (—)qqikq)(Z(Uj’U)j + (—)n)’iAl'Jd.’L’J + Z(wjul — ujwl)frjjd:c J)
J J#l
O (|x|f(n+1)/2) )
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If n is odd u;w; + (—)" = o(1). Since always wju; — u;w; = o(1) we conclude
from (58) that
Z=o0 (|x|_("_1)/2) .

Hence by Schwarz inequality the first integral tends to 0 as r — oo provided
that n is odd. The second integral tends to 0 for all n because of the radiation
condition (63). From the proof it is obvious that the limits are strong with
respect to y € K.

The proof of (68) goes in the same manner. O

According to Propositions 4.2, 4.8 and 4.9 we are able to use Theorem 4.1 in
R™ provided that n is odd.

Finally, we want to present some relations between various radiation condi-
tions.

Proposition 4.10 Let (E, H)T satisfy the homogeneous Mazwell’s equations
far from the origin in the standard R™. If n is odd the radiation conditions
(28), (29), (61), (62) are equivalent.

Proof: From the proof of Proposition 4.9 we see that (61) implies the electric
radiation condition (28) and (62) implies the magnetic radiation condition
(29). The claim is then a consequence of Remark 3.18 and Corollary 4.7. O

The Weyl radiation conditions (see [14]; note that Weyl has a reversed time
dependence compared with ours) for a p-form F are defined by

(—)PP((xdsF) A &) | & —ikF |2 = o(|a|~®D/2), (69)
(=)PdF & —ik(FAZ) |2 = o|a| ("1, (70)

Lemma 4.11 Let (E, H)T satisfy the homogeneous Mazwell’s equations far
from the origin in the standard R™.

(i) The Silver-Miiller condition (61) for (E, H)T implies the Weyl radiation
conditions (69), (70) for E.

(ii) The Silver-Miiller condition (62) for (E, H)T implies the Weyl radiation
conditions (69), (70) for H.

Proof: The proofs of (i) and (ii) are essentially the same. Let us prove (i).
Application of Hodge duality, (53) and (11) to (61) yields

ikE + (—)PdE | & = o (o]~ /). (71)
The identity (7 [ 7y) |y = 0 implies then

ikE | & =1kE |3+ (—)P(dE | )| & = o (Jz| ™ V/2).
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From (13) it follows that in (69) for F' = E the divergence d«E = 0; hence
we have proved (69) in the form

Elz=o0 (|x|_("_1)/2) :
According to (57) we obtain from (71)

= k(E|&)Ad+o(lz~™D2) =

(=)¥dE | & — ik(E A x) | &
1)/2 ) — 0(|x|f(n71)/2)‘

(|x| " 1)/2) —|—0(|:1;

If nis odd (—)? = (—)P. O
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Appendix. Some Tensor Calculus

In order to fix the notation we briefly refresh the basic concepts of tensor
calculus. As in the body of this paper M is an n-dimensional real C°°-
manifold with a complex tangent bundle 7'M and a complex valued pseudo-
Riemannian metric g;;. Thus at every point x € M the tangent space T, M
consists of sums U + iV where U and V are real tangent vectors at x. The
cotangent space Ty M is the complex dual of T, M (see [9], CC. 7,8).

In a coordinate neighbourhood 7, M and T, M have the coordinate bases

0 0

1 n
20l B and dz,...,dz",

respectively. A generic element of T, M is a C-linear combination of the form®

axﬂ‘ ZXJ B:L“J X'(z) € C.

It is called a wector, a tangent vector or a contravariant vector. Elements
of Ty M are called covectors, cotangent vectors or covariant vectors. They
appear as

X;(z)da? := ZXj(x)dxj, X;(z) € C.
j=1

§We are following the Einstein’s summation convention for repeated indices.

36



A tensor of type (p, q) is a C-linear combination

0 0
®R..0 —di"® ... ®dzh.

X J1-dp T)—r .
l1...lq( )0x]1 0.%']?

It is usual to omit the basis vectors in notation and say, e.g., that X717, is
a (p, q)-tensor. In this Appendix, contrary to what was said in the beginning
of the section 2, p and ¢ may be arbitrary nonnegative integers. A special
kind of a (p, p)-tensor is the d-tensor

5j1---jp — { 07 #{.71 . ]p} 7£ b or {.71 . ]P} 7& {ll s lp}a

..y (—)?, otherwise,

where (—)7 is the sign of the permutation o for which o(j,) =1,, v =1,...,p.
For an even permutation the sign is 1 and for an odd permutation it is -1.
If S is a finite set #S stands for the cardinality of S. By means of -tensors
we define the e-symbols

€lhdn = 5111',','3",

ehin = gt

They are not tensors, i.e., they do not transform like tensors in coordinate
changes. Note that

Jevdpdpriedn Ny s
(& o el1...lp]p+1---]n - (n p)' 511...lp .

If ¢ < p we define an inner product of a covariant and a contravariant basis
tensor by

0 0 0 0
I Ig
(dz" ®...®@dz )(ale®“‘®ax1‘p ®"'®8xip’
0
(

9 Iy l I lg 3, lg41 l
8x11®"'®%)(dx ®...®@dz?) = §;...0dd"" ®... ®dr7,

_ I lq
) = s

0 0
(d,]jll X... dxlp)(—ale X... aqu) — 6;P*q+1 o (S;dell R...Q dxlp*q’
0 a l lq . ll lq 8 8
(ale ®...®%)(dxl®...®dx ) = 6jp7q+1...5jpale R .

The inner product extends for all tensors of the same types by linearity.
If ¢ < p and either X is a (p,0)-tensor and Y is a (0, ¢)-tensor or X is a
(0, p)-tensor and Y is a (g, 0)-tensor we denote

1 1

X|Y:=—-XY and Y|X:=-YX.
q! q!

Covariant tensors can be transformed into contravariant ones and vice versa
by means of the metric tensor g;dz’ ® dz!. We define a C-linear map

0 )
G=G,:T,M — T*M, — gjldxj,
7 o!
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so that (g;;) is the matrix of G with respect to the coordinate basis. By
definition the tensor g;; is said to be a pseudo-Riemannian metric if it is
symmetric and G, is an isomorphism for all x € M. If we denote by (g!)
the matrix of G~! and define for a vector X and a covector Y’

X, = glel and Y7 := ¢y

then we have

0 ; o
G(Xlﬁ) = X;dz’ and G '(Yda') = Yida?,
T
G is called the index lowering or flat operator (X' becomes X;) and its
inverse G is the index raising or sharp operator (Y; becomes Y7). They are
generalized for tensors of types (p,0) and (0, p) by

0 0 0 0
%(8...@%) G(%)®®G(%)

= Gty - G da”t @ .. @ da?,
Gl @ . @d) = GT(dM)®... @G (dab)

G

) . 0 0
l l
= ¢gM. gt —®...Q —.
oxo oxI»
Moreover,
X L ) ) Xll...lp
Jiedp = Gl - - Giplp ’
Jiedp . g1l Jpl
Xt = gll...gprll___lp,
ll...l — llsl lgs r1...T
le...jp ¢ = Gjiry + - - Gjprp 9 .9 1X psl...sqa
aln so on.

Let ¢ < p. If X is a (p,0)-tensor and Y is a (g, 0)-tensor we define the scalar
product of X and Y by

1 1
X|Y = aXG(Y) or Y|X:= aG(Y)X.

If X is a (0,p)-tensor and Y is a (0, g)-tensor the scalar product is defined
by

1 1
XY :=5XGH(Y) o Y]X:=-G (V)X
q: q:
For two (0, p)-tensors
de' ® ... ® dzr

X=X, ,dr"®...®de"» and Y =Y;

Loy 1w
we have
1. . 1 o
XY = X|Y = Y|X = Y|X = SXPdY, ;= —X,, Yo,
q! ? q! ?
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By definition an array Aj _;, is said to be symmetric if for any permutation
o of the set {1,...,p}

A A

Jo(1)dop)  LiJ1--dp*

An array Aj, ., is called totally antisymmetric if for any permutation o

Ajg(l)"'ja(p) - (_)(TA]IJP

A covariant tensor . '
X=X, .drf"®...0dxr

Ji--Jp

is symmetric or totally antisymmetric if X ; is symmetric or totally an-
tisymmetric, respectively. The total antisymmetry of an array A7tJ» or a
contravariant tensor is defined in the same way. Usual examples of totally
antisymmetric tensors are

9 o sl 9 9
0x]1 /\ e /\ 0x]p o ]1]p 0xll ® .. ® m-—lp’
dz?* A .. Adair = 5{11.'.'.'f:dxll ®...®dz".
If Xj, . j, is totally antisymmetric then
1 . ) ) .
—'le__.jpd.%’]l A...ANdalr = lel_.jpdajjl ®K...Q dz’?.
p!

Ordered multi-indices are often handy tools when manipulating totally an-
tisymmetric tensors. A sequence J = (ji,...,jp) is an ordered multi-index if
1 <1 <...<jp <n. When an index appears as a capital letter it is by de-
fault an ordered multi-index. For example, if X; _; is totally antisymmetric

1 ) )
X,dz? = Z X,dz’ = Ele___jpdx“ A ... Ada?r.
. !

The sum is taken over all ordered multi-indices J of length p. The scalar
product of two totally antisymmetric tensors X and Y; (or X7J1-r
and Y7t as well) is

1.-Jp 1.dp

Xy = X, = X'y
If the metric is Riemannian and X has real coefficients the length of X is
| X|:=vX | X.

Totally antisymmetric (0, p)-tensors are called p-forms or differential forms
of order p and denoted by Greek letters 7,  and so on.

Let us define
g = det(G).

In this work we assume that there exists a global relative scalar h for which
h? = g and denote h =: v/g- In a simply connected neighbourhood the
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existence of /g is always guaranteed. On the other hand, suppose there are

tensors Rl(j) and T(lj), j=1,...,n, such that

If we define
gj1 = ZR;“)RZ(U) and ¢’ = ZT(J;)T(IU)
u=1 u=1

then gj; is a pseudo-Riemannian metric, g/ is the inverse metric and we can
choose /g = det(Rl(])). If F:R* - C", z — Z, is a C-immersion, i.e., the

velocity vectors 0% /dx', ..., 0% /0z™ are C-linearly independent then we can
define . 2!
G) ._ 9F L. 97

Of course the latter derivative is %ust a formal notation for the matrix element
of the inverse of the matrix (RI(J ) unless F' is real-analytic.

After defining the e-tensors by

gltdn . — 1 ejl---jn’
V9
Ejredn = VG i1

we have enough machinery to define the Hodge star (%) operator. Let 7 be a
p-form. We define 7 as an (n — p)-form such that for all p-forms 7

nA*t=(n|t)/gdz' A... Adz".

Here \/gdz' A ... Adz" is the coordinate invariant volume element (see [9]).
It is clear that

nAst = 7 A = (=P Papnr = (=P Plyr A,
There also is an explicit expression for *7:
*(Tde‘]) = TJ&‘JdeL

or equivalently

1 j j 1 1.0 ! In
*(Hle"'jpdxh VANPIRVAN dxjp) = mleu.jI]é‘]l ]plp_i_lml"dx rHL AL A dem.
By straightforward calculations we see that for p-forms 7 and 7

x7 = 7|\/gdz' A... Ada",

*kT — (_)p(n—p)T,

*xT | *n = T|n.
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For a (p, q)-tensor X ljll.'.'_'li’” we define the covariant derivative with respect to
an index r by

q
Jiedp ]1 Jp Jv j1 ...... hy...gp h, J1--dp
X = X+ E { } Iyl - E :{l , X by

v=1 v

Here

{fﬂ} = g’* [hr, K]

is a Christoffel symbol of the second kind written by means of the Christoffel
symbols of the first kind

1 (Ogkn 09k Ognr
hr k| := - — .
[or, k] 2 <6:13T dzh  Ozk
It is quite easy to verify that
Gitr = 0, €j1"'jplp+1...ln;r = 0, and 51111 lme = 0.
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