Helsinki University of Technology Institute of Mathematics Research Reports
Teknillisen korkeakoulun matematiikan laitoksen tutkimusraporttisarja

Espoo 2000 A425

PIECEWISE POLYNOMIAL COLLOCATION METHODS FOR
LINEAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS
WITH WEAKLY SINGULAR KERNELS

Hermann Brunner Arvet Pedas Gennadi Vainikko

o\

TEKNILLINEN KORKEAKOULU

TEKNISKA HOGSKOLAN

HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITAT HELSINKI
UNIVERSITE DE TECHNOLOGIE D'HELSINKI



Hermann Brunner Arvet Pedas Gennadi Vainikko: Piecewise polynomial
collocation methods for linear Volterra integro-differential equations with weakly
singular kernels; Helsinki University of Technology Institute of Mathematics Re-
search Reports A425 (2000).

Abstract: The smoothness of the solution of a linear weakly singular
Volterra integro-differential equation is studied. Two piecewise polynomial
collocation methods are discussed to solve such equations. Global conver-
gence estimates have been derived and the superconvergence effect at colloca-
tion points has been analyzed.

AMS subject classifications: 65R20, 45J05

Keywords: Linear weakly singular Volterra integro-differential equations, piece-
wise polynomial collocation, graded grids, maximal possible order of convergence

Hermann Brunner Department of Mathematics & Statistics, Memorial University
of Newfoundland, St. John’s, Nfld., Canada A1C 557, hbrunner@morgan.ucs.mun.ca

Arvet Pedas Department of Applied Mathematics, University of Tartu, Liivi 2-206,
Tartu 50409, Estonia, Arvet.Pedas@ut.ee

Gennadi Vainikko Institute of Mathematics, Helsinki University of Technology,
P.O.Box 1100, FIN-02015 HUT, Finland, Gennadi.Vainikko@hut.fi

The research of the first author was supported by the Natural Sciences and Engi-
neering Research Council of Canada (Research Grant Nr. OGP0009406) and the
second author acknowledges the partial support of the Estonian Science Foundation
(Research Grant Nr. 4410).

ISBN 951-22-4833-6
ISSN 0784-3143
HUT, Inst. of Math., Jan 2000

Helsinki University of Technology

Department of Engineering Physics and Mathematics
Institute of Mathematics

P.O. Box 1100, 02015 HUT, Finland

email:math@hut.fi  downloadables:http://www.math.hut.fi/



1. INTRODUCTION

We study approximate solution of initial-value problem for a linear integro-
differential equation,

(1.1) y'(t) = a(t)y(t) + b(t) + / K(t,s)y(s)ds, te€0,T], T >0,

(12) y(O) = Yo, Yo € (Da

by piecewise polynomial collocation method. Our aim is to construct approx-
imations which possess a maximal convergence order on the interval [0, T].
We assume that a,b € C™*(0,T], K € W™"(Ar), m € IN, v < 1. Here
C™¥(0,T], m € N, —oo < v < 1 is defined as collection of all m times
continuously differentiable functions z : (0,7] — € such that the estimation

1 if k<1-—u,
(1.3) 2B ()] < cx { 1+|logt| if k=1—u,
vk k>1—v

holds with a constant ¢ = ¢i(z) for all ¢t € (0,7] and k = 0,1,... ,m. The
set W™Y(Ar), m € N, —oo < v < 1, with

Ar={(t,s) eR*: 0<t<T, 0<s<t}

consists of m times continuously differentiable functions K: Ar — € satis-
fying

N/ o\ 1 if v4+1<0,
(1.4) ‘(E) <&+0_> K(t,s)|<c < 1+|log(t—s)| if v+i=0,
5 (t— )7V if v+i>0,

with a constant ¢ = ¢(K) for all (¢,s) € Ar and all non-negative integers ¢
and j such that i + 7 < m.

We remark that the asymmetry of (1.4) with respect ¢ and s is only
apparent. Actually, using the equality 0/ds = (0/0t + 0/0s) — 0/0t we can
deduce from (1.4) the estimations

aNi/o o\’ 1 if v+1<0,
(1.47) ‘<6—> (EJFG_) K(t,s)| <c < 1+|log(t—s)| if v+i=0,
5 5 (t—s) v if v+i>0,

with (¢,s) € A and i+ j < m.

It follows from (1.4) (with i = j = 0, 0 < v < 1) that the kernel K (¢, s)
of equation (1.1) may possess a weak singularity as s — ¢. In the case v < 0,
the kernel K (t,s) is bounded on Az, but its derivatives may be singular as
s — t. Often the kernel K of equation (1.1) has the form

(1.5) K, (t,s) =k(t,s)(t—s)", 0<v<l,



(1.6) Ko(t,s) = k(t, s) log(t — s),

where k € C™(Ar) with A = {(t,s) € R*: 0< s <t <T}. Clearly, K, €
Wm¥(Ar) and Ky € W™(Ar). This remains true even if the derivatives of
k(t, s) have certain singularities at ¢ = s; we do not go into details here.

In sequel we consider two equivalent reformulations of problem {(1.1), (1.2)}.
The first one is based on the change of unknown function,

(1.7) y =z

Using (1.2), equation (1.1) may be rewritten as a linear Volterra integral
equation of the second kind with respect to z:

z(t) = b(t) + yoal(t) ftz )ds+
(1.8) . 0
+ [K(t,s) [y0+f (1)dr]ds, t€[0,T),

or, due to Dirichlet formula

t o7 t ot
(1.9) //(I)(T, s)dsdr = //<I>(T, s)drds, 0 < s <71 <t,
0 0 0 s

in the form

t

(1.10) 2(t) = fi(t) + /Kl(t, s)z(s)ds, te€0,T],
where

(L11)  Ault) = b(t) + voalt) + vo / K(t,s)ds, tel[0,T],
(1.12) Ki(t, s) = alt) +/K(t,7)dr, 0<s<t<T

The second reformulation is based on the integration both sides of (1.1)
over (0,t). Using (1.2) and the Dirichlet formula (1.9), equation (1.1) may
be rewritten as a linear Volterra integral equation of the second kind with
respect to y:

(1.13) y(t) = folt) + / Kot s)y(s)ds, t€[0,T)



where

t

(1.14) fa(t) = vo +/b(s)d5, t €[0,T],
(1.15) Ks(t,s) = a(s) +/K(T, sydr, 0<s<t<T.

Piecewise polynomial collocation methods for Fredholm and Volterra in-
tegral equations have been extensively examined by many authors. We refer
here to monographs [1, 2, 8, 11, 13, 26, 28] and the literature given there;
see also [9, 19, 23|. In this paper, we apply results of [9] to integral equations
(1.8) and (1.13) obtained from the Cauchy problem {(1.1),(1.2)}. Using
special graded grids, we derive global convergence estimates and analyze a
superconvergence effect at the collocation points. The main results of the
paper extend known ones (see [3-8, 14, 15, 24, 29] and references in these
works) and are formulated in Theorems 2.1 and 4.1-4.6. Of course, our
analysis needs a smoothness result for the solution of the Cauchy problem
{(1.1),(1.2)}. This is given in Theorem 2.1 which is based on [25] and the
integral equation reformulation of {(1.1),(1.2)} proving the compactness of
the underlying integral operator in C™¥(0,T]. Similar results for integral
equations see also in [25-28, 8-12, 16, 18, 20-22].

2. SMOOTHNESS OF THE SOLUTION

In order to study regularity properties of the solution of problem {(1,1), (1,2)}
we first establish some auxiliary results.
For A € IR introduce the weight functions wy(t), t € (0,T], by

1 if A<0,
(2.1) ) = (1+|logt])™" if A=0,
t if A>0.

We redefine the space C™*(0,T], m € IN, —oo < v < 1 as the collection of
all m times continuously differentiable functions z: (0,7] — € such that

m

(2.2) l|Z||my = Z sup (wk,(l,u)(t)‘x(k)(t)‘) < 0.

g 0<t<T

In other words, an m times continuously differentiable function z on (0, T
belongs to C™(0,T] if the growth of its derivatives can be estimated by
(1.3). Actually, for z € C™"(0, T, we have

m

_§ : 0
m,y — ck;a

k=0

(2.3) ||




where ¢} (k=0,...,m) is the smallest value of ¢ for which (1.3) yet holds.
Equipped with the norm ||+ ||m, C™"(0,T] is complete (is a Banach space).
Notice also that C™[0,T] C C™¥(0,T]. On the other hand, a function
x € C™¥(0,T] can be extended up to a continuous function on [0, T].
Lemma 2.1. If 1,29 € C™¥(0,T], m € IN, v < 1, then xixzs €
Cc™¥(0,T], and

m,v S C||x1||m,u||x2| m,v

with a constant ¢ which is independent of x1 and x,.

Proof. Let k be a non-negative integer not exceeding m. Since x1,zs €
C™"(0,T], we have for all t € (0,7] and j =0,1,...,k that

_ 1 if j<l-uv,
296 < |Je1|lmp { 1+ |logt] if j=1-v,
tt-v=i if j>1—v,

1 if k—j<1-—u,

|28 (@)] < [@a|lmy § 1+ |logt| if k—j=1-uv,
tov=Gd) if E—j>1 -

Combining these estimates we obtain

_ _ 1 if k<1-—u,
2.5) |2V (028 @) < eipllzallmullz2]lmy { 1+ |logt| if k=1-uv,
vk if E>1—v,

with some positive constants c;i, independent of ¢ € (0,7]. Using (2.5) and
the Leibnitz rule

we obtain that the estimate

1 if k<1-uv,
‘(xlxg)(k)(t)‘ < eillza|lmul|z2|lmy ¢ 1+ |logt| if kE=1-v,
vk i k>1—u,

holds for & = 0,1,... ,m with some constant ¢; for all ¢ € (0,7]. Thus,
z122 € C™%(0,T] and the estimation (2.4) holds. O

Lemma 2.2. Let K € W™¥(Ar), m € IN, v < 1. Then the operator S
defined by

(2.6) (Sz)(t) = / K(t, s)a(s)ds, te[0,T),



is compact as an operator from L*°(0,T) to C[0,T]. Moreover, S is compact
as an operator from C™"(0,T] to C™*(0,T].

Proof. Since K € W™"(Ar) is at most weakly singular (see (1.4) with
i =7 = 0), the first statement is well known. The second statement follows
from a similar assertion for Fredholm integral operators. A function x €
C™"(0,T] can be extended up to a function £ € C™*(0,2T], cf. formula
(4.1) in [9]. Analogously, the kernel K (¢, s) can be extended up to a kernel

K(t,s) (cf. formula (4.4) in [9]) which is m times continuously differentiable
with respect to t,s € [0,27T], t # s, and satisfies

. . 1 if v+i1<0

o\i/ 0 0 ~ )

(2.7) ‘(%) (aqta—)]K(t,s)‘gc 1+ |loglt —s|| if v+i=0,
5 It —s| v if v+i>0,

with a constant ¢ = ¢(K) for all ¢,s € [0,277, t # s, and all non-negative
integers ¢ and j such that ¢ + j < m. Then (see [25]) operator S, defined by

(2.8) (33)(t) = / R(t, s)i(s)ds, te (0,2T),

is compact as an operator from C™"(0,27") to C™*(0,2T). Here (cf. formula
(3.2) in [9]) C™¥(0,2T) is defined as collection of all m times continuously
differentiable functions #: (0,27") — € such that the estimation

1 if k<1-u,
F0@) < e d 1+ |logp(t)] i k=1-,
p(t)t—v=* if k>1-v,
holds with a constant ¢, = cx(Z) for all ¢ € (0,27) and k£ = 0,1,... ,m,
where p(t) = min{t,2T — t}. Restricting #, K and S respectively to z, K
and S, we obtain the statement of Lemma 2.2. O

Lemma 2.3. Let K €¢ W™ (Ar), m € N, v < 1. Then for0 < s <t <
T and 7 =0,1,...,m,

(2.9) (% + %)J / K(r,s)dr = / ((%_ + %)jK(T, s)dr,

S

(2.10) (% + %)j /K(t, )dr = / (% 4 (%)jf((t,f)df.

8

Proof. For 0 < s <t, let d > 0 be such that s <7 < s+ d < t. Then (cf.
[26, p. 28])

s+d s+d

(2.11) %/K(T,S)d’]': / (%—I—%)K(T,s)ds,

8



¢ ¢
d [ OK(1,s)
(2.12) g/K(T,S)dT—/TdT K(s+d,s).
s+d s+d

Indeed, (2.11) follows from the behaviour of the difference quotient which

corresponds to the derivative (d/ds) fss+d K(r,s)dr:
s+h+d s+d
[ il KTS—f—th—fKTSdT}/h—
ss—f:l s+d
= [{K(r+h,s+h)—K(r,s)]/h}dr — [ (£ + 2)K(r,s)dr as h — 0.

The last convergence can be argued using Lebesgue theorem about the lim-
iting process under the integral sign. First, the integrands converge almost
everywhere for 7 € (s, s+ d),

g 0

1[K(r+h,s+h)—K(”)] (at 5)

h
Secondly, due to (1.4),

K(r,s) as h—0 for s <7 <s+d.

F[K(T+h,s+h)— K(r,5)]]| =|

E 4 K(t+ ho,s+ ho)do| =

1
h do

o .

1
‘f( ) T+has+hada‘<c\11(7—_s)
0

where c is a constant, independent of s and 7, 0 < s < 7 < s+ d, and

1 if v <0,
U,(r)=1% 1+|logr| if v=0,
T if v>0.

In other words, the integrands [K (T + h,s + h) — K(7,s)]/h, h — 0, are
bounded by a function ¢¥,(7 — s) which is integrable with respect to 7 on
(s,s+d).

The equality (2.12) holds trivially since there is no singularity in the
integrands of (2.12).

Further, using (2.11) and (2.12) with s < s +d < t we obtain

t s+d
(& + %) [ K(r,s)dr = K(t,s) + 35 ( f K(r,s)dr + fKTs)dT):
s s+d
s+d
=K(t,s)+ [ (£ + 2)K(r,s)dr + fd dT—K(s+d,s):
s s+

K(t,s) +7d( aﬁ) (1,8)dT+

t
+ f (Z+ 2)K(r,s)dr— [ —3K(,j(:’s)d7'—K(s+d, 5) =

s+d s+d
t
=[(Z+ 2)K(r,s)dr.



Now (2.9) follows by induction. The statement (2.10) is a consequence of
(2.9). O

Lemma 2.4. For K € W™ (Ar), m € N, v < 1, let K3 and K4 be
defined by

¢

(2.13) Kyt 5) = /K(t,T)dT, 0<s<t<T:
¢

(2.14) Ky(t,s) = /K(T, s)dr, 0<s<t<T;

Then Kg, K4 S Wm’yil(AT).
Proof. Due to Lemma 2.3 and inequality (1.4), we have

0 d\J .
‘(&4—%) K;;(t,s)‘ < const, (t,s)€ Ap, j=0,1,...,m;

() () el =|(5) " (G + a6 a9 <

1 if v4i—1<0,
<const ¢ 1+ |log(t—s)| if v+i—1=0,
(t—s) D §f v4+i—1>0

for (¢,5) € Ar and all integers 4 > 1, j > 0 such that i + j < m. Therefore

(cf. (1.4) and (1.4’)) the same estimate holds for (2)"(2 + 2)’Ks(t, s).

Thus, K3 € W™ 1(Ar). The proof of the second statement is similar. O
The smoothness of the solution of problem {(1.1),(1.2)} is characterized

by the following statement.

Theorem 2.1. Let a,b € C™(0,T], K € W™ (Ar), m € IN, —o0 <
v <1, yo €C. Then the Cauchy problem {(1.1),(1.2)} has a unique solution
y € ™0, T,

Proof. As we know from Section 1, problem {(1.1),(1.2)} is equivalent to
the integral equation (1.10) where z = y' and the forcing function f; and the

kernel K are given by (1.11) and (1.12), respectively. We rewrite (1.10) in
the form

(2.15) z2=582z2+fi
where
(2.16) (S12)() = / Ky(t, s)2(s)ds. ¢ € [0,T].



Using (1.12) and (2.13), operator S; can be presented as follows:

(2.17) S = AT+ Ss,

where

(2.18) (S52)(t) = / Kyt 5)2(s)ds, ¢ [0,T],
(2.19) (J2)(t) = / (s)ds, tel[0,T],
(2.20) (A2)(8) = a(t)=(t), t€[0,T].

By Lemma 2.4 we obtain that K3 € W™ '(Ar) € W™(Ar). Due to
Lemma 2.2, S3 is compact as an operator from C™" (0, T] to C™*(0,T]. Since
1 € W™¥(Ar), it follows from (2.19) and Lemma 2.2 that J is compact as
an operator from C™"(0,T] to C™*(0,T]. Using (2.20) and Lemma 2.1 we
obtain that A is bounded as an operator from C™"(0,T] to C™"(0,T]. Thus,
AJ and S; are linear and compact as operators from C™ (0, T] to C™"(0, T'].

Further, it follows from a € C™¥(0,T], K € W™"(Ar) that f; €
C™"(0,T). Indeed, fi = g1 + g2, where (see (1.11)) g1(t) = b(t) + yoa(t),
t €10,7T], and

o) :yO/K(t, s)ds, te0,T)

Clearly g; € C™"(0,T] and g2 = yoS1, where the operator S is defined by
(2.6). Since 1 € C™¥(0,T] and S is bounded as an operator from C™ (0, T
to C™¥(0,T] (see Lemma 2.2), go € C™"(0,T].

By Fredholm alternative theorem, 1 — S; has a bounded inverse (1 —
Sy)~t: Cc™¥(0,T] — C™¥(0,T] and equation (2.15) has a unique solution
z=(1-S8)"'f1 € C™(0,T]. In other words, y' € C™"(0,T] implying
= Cm+1’u_1(0,T]. O

Remark 2.1. Notice that C™1*=1(0,T] c C'[0,T], m € N, —o00o < v <
1.

Remark 2.2. For a € C™[0, T}, b(t) = b1(t) + ba(t)t™, by, by € C™[0,T],
K,(t,5) = k(t,s)(t —s)™", kK € C™(Ag), t € [0,T], s € [0,T), m € NN,
0 < v < 1, the statement of Theorem 2.1 can be derived also from Theorem
1.3.16 in [8]; see also [5, 14].

Remark 2.3. Let a,b € C™¥(0,T], K € W™"(Ar),m € N, —oo < v < 1.
Then the integral equation (1.10) has a unique solution z € C™(0, T].

This was established in the proof of Theorem 2.1.

10



3. PIECEWISE POLYNOMIAL INTERPOLATION
For N € IN, let

(31) HN:{tO,,tN 0:t0<t1<<tN:T}
be a partition of the interval [0, 7] by grid points

(3.2) tj =tV =T(/N)Y, j=0,...,N.

J

Here the real number r € [1, c0) characterizes the non-uniformity of the grid
[Iy. If r = 1 then the grid points (3.2) are distributed uniformly; for r > 1,
the grid points (3.2) are more densely clustered near the left endpoint of the
interval [0, 7T]. Let

o; = [tji—1,t;], hj=tj—tj_1, j=1,...,N;

(3.3) h=h") =max{h;: j=1,...,N}.
It is easily to seen that

. < h<r -, =1,...,N.
(3.4) hj <h<rTN7' j=1 N

For given integers m > 0 and —1 < d <m—1, let Sﬁf)(HN) be the spline
space of piecewise polynomial functions on the grid {(3.1),(3.2)}:

S,(T?)(HN) ={u: uly, = u; €My, j=1,...,N;

3.5
(3:5) uP(t)) =dV (), k=0,...,d; j=1,...,N -1},

where 7, denotes the set of polynomials of degree not exceeding m. Note
that elements of S,(Tfl)(HN) = {u: ulo; € T, j = 1,...,N} may have
jump discontinuities at interior grid points ¢1,...,txy 1. The dimension of
S,gf)(HN) is given by

(3.6) dim SW(My)=N(m—d)+d+1, —-1<d<m-—1.
In every subinterval o; = [t;_1,t;], j = 1,... , N we define m € IN inter-

polation points tj; < ... <y,

(37) tjk:tj—1+77khja kzl,...,m;jzl,...,N,
where 7y, ... ,n, do not depend on j and N and satisfy
(3.8) 0<m<...<npgp <1

To a continuous function z : [0, 7] — € we assign a piecewise polynomial
interpolation function Pyx = P](Vm)x € S,(n__lg(HN) which interpolates z at
the points (3.7): (Pyz)(tjx) = «(tjx), k =1,...,m; j =1,...,N. Thus,

(Pnz)(t) is independently defined in every subinterval o;, j =1,... , N and

11



may be discontinuous at the interior grid points t =¢;, 7 =1,... ,N —1; we
may treat Pyx as a two-valued function at these points. Note that in the
case 1 = 0, ny, = 1 (see (3.8)), Pyx is a continuous function on [0, 7.

We introduce also an interpolation operator Py = P](Vm) which assigns to
every continuous function z : [0,7] — € its piecewise polynomial interpola-
tion function Pyz.

Lemma 3.1. Let x € C™"(0,T], m € N, —o0o < v < 1, and let
the interpolation nodes (collocation points) (3.7) with grid points (3.2) and
parameters (3.8) be used. Then the following error estimates hold:

1) if m < 1—v then

(3.9) ||z — Pnz||oo < ch™ for r>1,

2)if m=1-—v then

h™(1+ |logh|) for r=1,
(3.10) ||z — Pnzl||loo < € { pm for r>1,
and
(3.11) |z — Pyz||zror) < ch™ for r>1,1<p<o0;

3)if m>1—v then

A=) for 1<r<m/(1-v),
(3.12) |z = Pyl < ¢ { h™ for r>m/(1—v),

and for 1 < p < oo,

(3.13)
[ prmvir) if 1<r< 52,

m>1—v+pt

|z — Pye|loor < e A1+ [logh)? if =50,
m>1—v+pt

Here h is defined by (3.3), c is a positive constant which is independent of N
(of h) and

o= Pyellee = max max [a(t) = (Pye)(t)]

Proof. Applying to z € C™"(0,T] the estimate (7.15) from [26, p.116]
we obtain that

1 if m<l-—v

(3.14) max |z(t) — (Pyz)(t)| < chf' ¢ 1+ |loghs| if m=1-v
tj—1<t<t; 1-v—m :

t; it m>1—-v

12



for j =1,...,N, with a constant ¢ which is independent of j and N. Esti-
mates (3.9)—(3.13) are easy consequences of (3.14); see [26] for details. O

In sequel, for Banach spaces E and F, by L(E, F) is denoted the Banach
space of linear bounded operators A: E — F with the norm

|Al[ = sup [[Az]|.

z€E,|lx][<1

Lemma 3.2. Let S: L*(0,7) — CI[0,T] be a linear compact operator.
Then

||S — PNSHL:(Loo(O’T)’Loo(O’T)) —0 as N — 0.

Proof. We have
(3.15) ||z — Pnx||p~@r) — 0 as N — oo for every z € C[0,T].

Indeed, this convergence takes place for z € C™"(0,T] (see Lemma 3.1), and
an easy observation shows that

(3.16) ||PN||£ C[0,T],L>=(0,T)) = ||P||£ oucp), N eEN,

with the interpolation operator P € £(C|0, 1], C]0,1]) corresponding to the
nodes (3.8):

3

Zx H t o 771)/(77k - 77!)7 LS C[O’ 1]’ te [0’ 1]'

k=1 =1
1#£k

Now (3.15) follows by Banach-Steinhaus theorem, and together with the com-
pactness of S: L*(0,T) — C[0,T] we obtain the assertion of the Lemma.
O

13



4. COLLOCATION METHODS

In order to solve the Cauchy problem {(1.1),(1.2)} we construct two col-
location methods which solve equivalent problems (1.8) and (1.13), respec-
tively.

Method 1. We look for an approximate solution v to equation (1.8) in
S,(nil%(HN), m, N € IN. The approximation v = v ¢ S ( ~) will be
determined from the following collocation condltlons.

tik

vi(tix) = filtin) +alt) [ v(s)ds
(4.1) 0

ik s

+ [ K(tj,s)( [v(r)dr)ds, k=1,...,m; j=1,... N,
0 0

where the function f; and the set of collocation points {t;;} are given by
(1.11) and (3.7), respectively,

£1(t) = b(£) + yoa(t) + vo / K(t,s)ds, te0,T],

tjk:tj—1+77khj7 kzl,...,m;jzl,...,N.

Recall that v; = v|a is the restriction of v to 0; = [t;_1,¢;], 5 =1,... ,N.

The function v € S (HN) is defined on each interval o;, j = 1,. ,N
separately as a polynomlal of degree < m — 1. Therefore, if 5 > 0orn, <1
(see (3.8)), then v(t) has generally two different values v;(¢;) and v;11(t;) at
t:tj,j = 1, ,N—l If?]l :0, Mm = 1,thentjm :tj+1’1,j = 1, ,N—l,
and for every j =1,... , N — 1, we actually have the same equation in (4.1)
for v;(tjm) and vj41(tj41,1), i-e. vj(tjm) = vj41(tj+1,1) whenever

g9(t) = fi(t) +a(t /v ds+/Kts / )dT)dS, t €[0,T],

0

is a continuous function on [0, 7' (and this holds under conditions of Theorem
4.1 below). In other words, the choice of parameters (3.8) with 7, = 0, n,,, = 1
in Method 1 actually implies that the resulting collocatlon approximation v
belongs to the smoother polynomial spline space S 1(HN); of course, the
repeated collocation conditions at t;, = t;41,1 will be taken only once in this
case.

Having determined the approximation v for z = 3’, we can determine also
the approximation u for y, the solution of the Cauchy problem {(1.1),(1.2)},
setting

t

u(t) = yo + /v(s)ds, t €[0,7T].

0
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Clearly,
uly; = uj, jzl,... ,N;
(4.2) ui(t) = u;(tj-1) + f s)ds, t€oj, j=1,...,N;

tj—1

Ul(o) = Yo-

Note also that v € S,(,:_li(HN) implies u € S,(T?)(HN) and v € S,(T?)_I(HN)
implies u € Sg)(HN).

Conditions (4.1) form a system of equations whose exact form is deter-
mined by the choice of a basis in 5’7(7:3 (Ily) (or in Sﬁgll(HN) if =0, n, =
1). For instance, the approximation v can be generated recursively by suc-
cessive computation of its restrictions v; to the subintervals o;, 5 =1,... , N.
In order to render the collocation conditions (4.1) into a form which more
clearly exhibits the recursive nature, rewrite (4.1) as follows:

vi(tjk) = f1( i#) .
( )[Z hlf'Ul(tl—l +’7’hl)d’7’+h]‘ f’l}j(t]‘_l —f—’Thj)dT}

0

= 1 -1 1
#2451+
=
(4.3) + Z h? f K(tjr, ti1 + shl)(fvl(tl_l + rhy)dr)ds
=1 0 0

Nk j—1 1
+h]' f K(tjk,tjfl + shj)ds E hp fUp(tp,1 + Thp)dT
0 p=1 0

Mk £}
—i—h?{K(tjk,tj,l +Shj)({0j(tj,1 +7'hj)d7')d8,
k=1,...,m; j=1,...,N.

For v; we may use the representation
(4.4) wv(tj_1 +Thj) chq ), tjio1+Thj € [tji—1,t], j=1,...,N,

with L,(7) denoting gth Lagrange fundamental polynomial associated with
the collocation parameters (3.8),

m

(4.5) Lyr)= [ =m)/(g—m), 7el0,1],
i=1,i%q

and with

(4.6) Cjq = cx.(v) =v(tjg), ¢=1,...,m.

Let

(4.7) Ay(r) = /Lq(s)ds, (0] g=1,....,m.

15



With these observations, (4.3) may be written in the following form:

%—mwnmmnzmi% J(1)+ by 3 ighg ()]

q=1
j—1 1 m
(4 8) + Z hl f K(tjk, tl—l + Shl) [ Z hp Z Cquq(l) + hl Z Clqu(S)}ds

Mk j—1 m m
‘f‘hj ‘Of K(tjkatj—l + Shj) [ Zl hp Zlcquq(l) + hj ZIquAq(S)}dS,
p= 9= 9=
k=1,...,m; j=1,...,N.

Thus, for each j = 1,..., N the collocation conditions (4.1) can be treated
as a linear system in €™ for the vector (cj1,...,¢jm); once its components
have been found, the approximation v can be composed by formula (4.4).

Theorem 4.1. Let a,b € C™*(0,T], K € W™ (Ar), m € IN, —o0 <
v <1, yo €C, and let the collocation points (3.7) with grid points (3.2) and
parameters (3.8) be used.

Then for all sufficiently large N € IN, say N > Ny, and for every choice
of collocation parameters (3.8) with n; > 0 or n, < 1, the equatz’ons (4.2)
and (4.1) determine unique approximations u € S,(T?)( N) and v € S 1(HN)
(with v|,, = (uls;)', 5 =1,...,N) to the solution y of the Cauchy problem
{(1.1),(1.2)} and its derivative y', respectively. If i = 0, n, = 1, then
u € S,%)(HN) and v = u' € S,Sfll(HN). The following error estimates hold
fork=0and k = 1:

1) if m <1—v then

(4.9) ||u(k) — y(k)||oo < ch™ for r>1,;
2)if m=1—v then

R™(1+ |logh|) for r=1
(k) _ ) ’
4100 W -y®l<e { 1 oy

3)if m > 1 —v then

RrA=) for 1<r<m/(1-v)
(k) _ (k) == ’
(4.11) ||u Yo < e { hm for r>m/(1—v).

Here h is defined by (3.3), c is a positive constant which is independent of N
(of h) and

k) _ () — )y _ (k)
[[ul® — ™| jgﬁth]r?gtgt]\uj (t) — y™(t)

, U= u|aj.

Proof. The Cauchy problem {(1.1),(1.2)} is equivalent to the integral
equation (1.10) with z = y’. We write (1.10) in the form z = Syz + f1, with
f1 defined by (1.11) and operator S; defined by (2.16),

(S12)(t /K1 (t,8)z(s)ds, te€0,T],
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where
t
Ki(t,s) = a(t) + /K(t,T)dT, 0<s<t<T.

It follows from a,b € C™(0,T], K € W™"(Ar) that f; € C™¥(0,T] C
L*(0,T) and S; is compact as an operator from L*(0,7") to C[0,7] and to
L*(0,T), also. As the homogeneous equation z = S;z has only the trivial
solution z = 0, equation z = S;z + f; has a unique solution z € L*°(0,T).
Moreover, z € C™*(0,T] by Remark 2.3.

On the other hand, the conditions (4.1) are equivalent to the conditions

(4.12)
tjk:
'Uj(tjk) = fl(tjk) —|—/K1(tjk,8)’0(8)d8, k= 1, R un ] = 1, Ce ,N.

0

This follows from the application of Dirichlet formula (1.9) to the second
integral on the right-hand side of (4.1):

[ (69 o(yar)ds = [ ([ Kt s)asyu(ryir

In its turn, collocation conditions (4.12) have the operator equation repre-
sentation

(4.13) v=PySiv+ Pyfi

with Py defined in Section 3. From Lemma 3.2 and from the boundedness
of (1 —8;)™" in L*=(0,T) we obtain that 1 — Py.S is invertible in L*(0,T)
for all sufficiently large N, say N > Ny, and

(4.14) (1 — PNS]_)71||£(Loo(0,T),Loo(0,T)) <c, ¢ =const, N> N,.

Thus, for N > Ny equation (4.13) (Method 1) provides a unique solution
v E S,(TL__I%(HN). We have for it and z, the solution of equation z = Syz + fi,
that (1 — PyS1)(v — 2) = Pyz — 2. Therefore,

v—2=(1—- PyS;) " (Pyz — 2),
and, due to (4.14),

[v = 2|0y < Cl|Pnz — 2|l=01), N > No.
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Applying Lemma 3.1 we obtain the estimations (4.9)-(4.11) with k£ = 1,
z=1y', v=ufor v — y'. Further, due to (4.2),

t t

ui(t) = y(t) =u;ti) + [ v(s)ds — ([ v'(s)ds +y(tj-1))

ti—1 ti—1
t

= u;(ti1) —y(ti—1) + [ [wj(s) —y'(s)lds, te€[tjq1,t;],ij=1,...,

tj—1

with u;(0) — y(0) = 0. Applying (4.9)—(4.11) with & = 1 we obtain the
estimations (4.9)—(4.11) with k£ = 0 for u — y. O

According to (4.11), in the case m > 1 — v, the convergence order ||y®*) —
u®|| < ch™, k = 0,1, is guarantied for r > m/(1—v). For a great v (v < 1),
this condition on r may be too restrictive. To obtain the convergence order
||y — ul|oo < ch™, the condition on r can be essentially relaxed.

Theorem 4.2. Let the conditions of Theorem 4.1 be fulfilled. Then in
the case m > 1 — v, with designations of Theorem 4.1,

lu = y|loo < ch™ for r>m/(2—v), r>1,

where ¢ is a constant which is independent of N (of h).

Proof. Using the equality
(1—PynS1)™ ' =1+ (1— PyS1)"'PyS;, N > Ny,

we rewrite the formula for the error v — z = (1 — PyS1) }(Pnz — 2) in the
form

v—2=Pyz— 2+ (1 - PyS) 'PySi(Pyz — 2).

Together with (4.14), (3.16) and the boundedness of the kernel Kj(t,s) (see
(1.12) and Lemma 2.4) we obtain for 0 < ¢ < T that

u(t) — y(0)] = | / [o(s) — =(s))ds| < /\v(s) o(s)|ds < c/ [(Puz)(s) — =(s)|ds,

where ¢ is a constant which is independent of N. Let ¢ € [t;_q,¢;],1 < j < N.
Then, by (3.14),

[ut) —y(t) <) / (Pnz)(s) — 2(s)lds < ¢y (t— 1)y,

=1,

with a constant ¢’ which is independent of j and N. Further, we have

tllfufm — Tlfymef'r(lfufm)l'r(lfufm)

b

(t) — ty_y)™ ! < TmHtpmtt yor(metd) (r=1)(mtl)
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(tl _ tlil)tllfyfm < Tm+1,rm+1N7r(27V)lr(2fu)—m71-
Therefore, since r > m/(2 — v),
J
|U(t) N y(t)| < CIIN7T(27V) er(2fu)fm71 < CIIIN7T(27V)j'r(27V)7m < CIIIme’
=1

with some constants ¢” and ¢ which do not depend on N. In other words,

the statement of Theorem holds. O

Remark 4.1. In more special case (a,b € C™[0,T], K(t,s) = x(t,s)(t —
sV, k€ C™(Ar), m e N, 0 <v <1, band K do not vanish identically),
the condition » > m/(2 — v) for r was proposed and justified in [24].

Method 2. We look for an approximate solution u of equation (1.13)
in S,(n_l)(HN), m, N € IN. The approximation v = uN) € S,(n_l)(HN) will be
determined from the following collocation conditions:

tjk
(4.15) %@g:ﬁ@w+/kumﬁm@M&j:L”wN

0

Here u; = ul,, (j = 1,...,N) is the restriction of u € an_l)(HN) to o; =
[tj—1,tj], f2 and K, are defined by (1.14) and (1.15), respectively,

t

h@=m+/WM&tGMﬂ,

0

¢
Kg(t,s):a(3)+/K(T,3)dT, 0<s<t<T.

The collocation points {¢;;} are given by

(4.16) =t 1+mhy, k=1,... m+1 j=1,... N,
where

(4.17) 0<m<...<Mpy1 <1

is some fixed system of collocation parameters, the same for every 7 and V.
It is easily seen (cf. Method 1) that for collocation parameters (4.17) with
m =0, Nmy1 = 1, the resulting collocation approximation u is an element of
the smoother polynomial spline space S,(T?)(HN).
Conditions (4.15) form a system of equations whose exact form is deter-
mined by the choice of a basis in 5% " (Ily). For instance, in each subinterval

o; (j=1,...,N) we may use the representation
m+1

(4.18) uj(s) = Z Ciapja(s), s € 0y,
qg=1
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where ¢;,(s) = Ly((s — tj_1)/h;) with L,(7) denoting gth Lagrange funda-

mental polynomial associated with m+-1 collocation parameters 7y, ... , 9t
in (4.17) (cf. (4.4), (4.5)). The collocation conditions (4.15) then lead to the
following system of algebraic equations for coefficients c;, = cg-flv) = u(tjq):
(4.19)
Jj=lm+1 4
i = faltin) + 30 2 ([ Kaltjn, 5)piq(s)ds)cig+
=1 q=1 +t;_,4
m+1 ik _
+ 3 ([ Kaltjr, s)pje(s)ds)cjq, k=1,... ,m+1; j=1,... N.
=1 tj_1
This system can be solved by a recursive process. First, the coefficients
Ci1, .. ,C1,m+1 can be found by solving the system
m-+1 tik

(4.20) cip = fo(tig) + Z ( Ko (ty, s)@lq(s)ds> cig, ¢=1,... ,m+1.
q=1 0

Having determined ci1, ... , ¢1,m+1, one can find ca1, . .. , ca 1 from the m+1
equations (4.19) with j = 2. Generally, having determined ¢, ..., ¢ mi1, - - -
Cj-1,1,---,Cj—1,m+1, the coeflicients c;i,...,¢jmy1 can be found from the

m+1 equations (4.19) with corresponding j. Once all {¢;,} have been found,
the collocation approximation u can be composed by formula (4.18).

We now analyze the convergence order of Method 2. First we formulate
some auxiliary results (Lemmas 4.1-4.3) which we need for this analysis.

Lemma 4.1. [17, p.174] Let P(t) be a polynomial of order not exceeding
n, and let

(4.21) IPt)| <M, tecla,f], —oo<a<pf<oo.
Then

2
(422 POl 5, el

Next consider an integral equation

(4.23) y(t) = f(t) —I—/K(t, s)y(s)ds, te€]0,T],

and collocation method to solve it:

(4.24)

t]k
W@Q:f@w+/Kﬁm@M$M,k:L“wm+L i=1,....N,
0
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with {3} defined by (4.16) and u € S\ " (Tly), u; = ul,,, j =1,... , N. Let
en be the maximal error of the approximation u at the collocation points
(4.16):

(4.25) ev =, max - futi) = y(ti)]

Lemma 4.2. [9] Let the following conditions be fulfilled:

1) f e C™(0,T], K e W (Ar), me N, v < 1.

2) The collocation points (4.16) with grid points (3.2) and collocation
parameters (4.17) are used.

3) The scaling parameter r = r(m,v) > 1 is restricted by conditions

r > 2?;:1/) for 0<rv<l,
(4.26) r>2t 0 for 1-m<wv <0,
r>1 for v<1l-—m.

Then there exists an Ny € IN such that for N > Ny the collocation con-
ditions (4.24) define a unique approzimation u € S,(n_l)(HN) (if m = 0,
Nma1 = 1 then u € Sﬁg)(HN)) to the solution y of equation (4.23) and

(4.27) ey < ch™,

with h defined by (3.3) and a constant c, independent of N (of h).

Lemma 4.3. [9] Let the following conditions be fulfilled:

1) f e Cmt2r(0.T), K € WHHP2Y(Ap)ym e N, p € 2,0 < pu < m,
—oo < v <1

2) The collocation points (4.16) are generated by grid points (3.2) and
parameters (4.17) which are choosen so that the quadrature approzimation

1 m+1
(4.28) /go(s)ds R~ Z Ap(ng), 0<m <...<0pi1 <1,
0 =1

with appropriate weights {A,}, is ezact for all polynomials of degree m~+1+p.
3) The scaling parameter r = r(m,v, u) > 1 is subject to the restrictions

po>mEL s milov oy ] 41

1-v>? — 2—v
(4.29) p>mEL s B2 p 1 <1 —v<m+1,
r>%“:2 if 1—v>m+41.
Then
h if v <O,
(4.30) en < ch™t ¢ h(1+]loghl) if v=0,
hl=v if v>0,

where h and ey are defined by (3.3) and (4.25), respectively, and c is a
positive constant which is independent of N (of h).
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Theorem 4.3. Let a,b € C™*(0,T], K € W™ (Ar), m € N, —o0 <
v <1, yo €T, and let the collocation points (4.16) with grid points (3.2) and
collocation parameters (4.17) be used.

Then there exists an Ny € IN such that, for N > Ng, the collocation
conditions (4.15) define a unique approrimation u € S,(Tfl)(HN) (if m = 0,
Dmi1 = 1 then u € Sﬁ,?)(HN)) to y, the solution of the Cauchy problem
{(1.1),(1.2)}, and the following error estimates hold:

1) if m < 1—v then

(4.31) | —y||oo < ™ for r>1;
(4.32) |u' — ¢']|e < ch™  for r=1;
(4.33) [|u' — ¥']|e.c0 < cch™  for 1 >1;

2)if m=1-—v then

(438)  Ju-ylle<e { o os R =
(4.35) |u' — || < ch™(1+ |logh|) for r=1,;
(4.36) |u' — ¥'||e00 < cch™  for 7 >1;
3)if m >1—v then
(437)  [u—yllo <c { A T L= ((;2111))//((22:5))
(4.38) v — ¥ ||ee < cht™Y  for r=1;
439) il { g o TSI

Here h is defined by (3.3), the constants ¢ and c. in (4.31)-(4.39) are inde-
pendent of N (of h), and

[u® —y® | = sup [u®(t) —y®)(2)]

(4.40) (k) PR (k)
' = k) () — (k) k) _ *) k—0 1
jmax  max u(f) —yP )] uT = (ulg), b =0.1;

lu' = ¥/lle,00 = sup [u'(t) — ¢/ (2)]
(4.41) e Tl
_ ! o I !
= jfpax o max ui(t) —y'(¢), )= (uls,), 0<e<T.

22



Proof. The Cauchy problem {(1.1),(1.2)} is equivalent to the integral
equation (1.13) with the forcing function f» and the kernel K, defined by
(1.14) and (1.15), respectively. We write (1.13) in the form

(4.42) y =5y +f
where
(4.43) (Say)(t) = / [a(s) + Ka(t, s)|y(s)ds, t € [0,

0

with K, defined by (2.14). We may rewrite
(4.44) Sy = JA+ 54,

where J and A are defined by (2.19) and (2.20), respectively, and

(445) S4y /K4 t S S, t e [O,T]

Clearly A € L(L*(0,T),L>(0,T)) and J is compact as an operator from
L>(0,T) to C[0,T]. Due to Lemma 2.4, K4 € W™ Y(Ap) C W™ (Ar).
Together with Lemma 2.2 this implies that S; is compact as an operator
from L*°(0,T) to C[0,T]. Thus, Sy is compact as an operator from L*(0,T)
to C[0,T] and to L*°(0,T), also.

Further, it follows from b € C™"(0,T] that f, € C[0,b]. As the homoge-
neous equation y = S,y has only the trivial solution y = 0, equation (4.42)
has a unique solution y € L*(0,T). Due to Theorem 2.1, y € C™*1*=1(0, T7.

On the other hand, it is easy to see that the collocation conditions (4.15)
have the operator equation representation

(4.46) u = PnSau+ Py f2,
with an interpolation operator Py = PJ(VmH) which assigns to every contin-

uous function z: [0,T] — € its piecewise polynomial interpolation function
Pyz € S (HN) interpolating x at the points (4. 16) (see Section 3). From
Lemma 3.2 and from the boundedness of (1 — S5)™! in L*°(0,7') we obtain
that 1— Py.Ss is invertible in L>(0, T') for all sufficiently large N, say N > N,
and

(4.47) I1(1— PN52)71||L(LOO(O,T),L00(0’T)) <c¢, c¢=const, N > Nj.

Thus, for N > Ny, equation (4.46) (equations (4.15)) provides a unique
solution u € S5 (ILy). We have for it and y, the solution of (4.42) that
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(1 — PySs)(y — u) = y — Pyy. Therefore, y — u = (1 — PySo) ™' (y — Pny),
and, due to (4.47),

(4.48) 1y — ullzeo) < €[y — Prnyllr=or) for N > Np.

Applying Lemma 3.1 we obtain the estimations (4.31),(4.34) and (4.37) of
Theorem 4.3.
Let y € C™1~1(0, T be the solution of the Cauchy problem {(1.1), (1.2)}

and let u € S,(n_l)(HN) denote the collocation approximation determined by
(4.15) for N > Ny. We shall estimate the error

[uj(t) —y' ()|, wi(t) = (uls,)'(t), t€o;, j=1,...,N.
Let Pyy = PJ(VmH)y € S,(n_l)(HN) (see Section 3) interpolate y at the col-

location points (4.16): (Pyy)(tjx) = y(tj), k=1,... m+1;j=1,... N.
Let

(Pny); = (Pny)lo;,  (Pry);(t) = (Pvy)le;) (), teo;, j=1,...,N.

Thus, the derivative (Pyy)'(t) of (Pyy)(t) att=1¢; (j=1,... ,N—1)is un-
derstood as two valued function with values (Pyy))(t; —0) and (Pny)’ 4 (t;+
0). We have

Clearly (Pyy) € S,(,:_li(HN), and by Rolle’s theorem, in every o; (j =
1,...,N) there exist m points t; € (tjr,tjx1) C 05, k = 1,...,m so
that (Pyy)’ interpolates y' at these points:

(Pnvy); () =9 (i), tjx <ty <tjrp, k=1,...,m; j=1,... N

This allows to use Lemma 3.1 to derive upper bounds for |(Pyy)j(t) — ' (t)],
t €oj,j=1,...,N. By (3.9), (3.10) and (3.12) we find the following
estimations for ||(Pny) — ¥'||co:

1) if m > 1 — v then

(4.50) (Pny) — Y|l < ch™ for r >1;
2)if m =1 — v then

. h™(1+ |logh|) for r=1,
(4.51) |(Pny) = ]| < c{ Bm for r>1;

3) if m > 1 — v then

RrAY) for 1<r<m/(1-v)
! ! - - )
(4.52) (Prny) = ¥l < C{ A for r>m/(1—v).
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We now return to |uj(t) — (Pny)i(t)], t € o5, j = 1,..., N, the first
summand on the right-hand side of the inequality (4.49). We have

(4.53) [lu = Prylloo < [Jt = Ylloo + ||y — Pryllo-

We have already found the estimations for ||u — y||o and we may use Lemma
3.1 to estimate ||y — Pyy|leo- By (3.9), (3.10), (3.12), (4.31), (4.34), (4.37)
and (4.53) we find the following estimations for ||u — Pny||co:

1) if m > 1 — v then

(4.54) llu — Pyylloo < ch™t for r>1;

2) if m =1 — v then

R (1 + [loghl) for r=1,
(4.55) lu — Pyyllo < C{ pmt1 for r > 1;
3) if m > 1 — v then
ArC=v) for 1<7r < (m+1)/(2—v),
(4.56)  [lu— Pyyllo < C{ hmtl for r>(m+1)/(2-v).

We now use Lemma 4.1 to derive upper bounds for the derivative of u — Pyy
since u;(t) — (Pny);(t), t € 0; (j =1,...,N) is a polynomial of degree not
exceeding m. For r = 1 we obtain the following estimates:

1) if m > 1 — v then

(4.57) lu" = (Pvy) 'l < ch™;
2)if m =1 — v then

(4.58) [ = (Pvy)'[leo < ch™(1+ |log h]);
3) if m > 1 — v then

(4.59) lu' = (Pny)'|leo < A"

If » > 1 then we choose a small ¢ > 0 (¢ < T) and estimate |u'(¢) —
(Pny)'(t)] for t € [e,T]. If t € [,T] when t € [tj,_1,tj,] with some j, €
{1,...,N}. For jo =1, t € [¢,t;] we have

Rt < BT e < (T/e)h™.
Let 2 < jo < N. Then

t>t, 1 =TGo—1)'N">e¢
implies

TN7(jo— (Jo—1)") > TN "r(jo—1)"!

tio = tjo—1 =
> (jo— 1)7"'re > N7 lre.
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Therefore, by (3.14),
W™ (5, — tjo—1) < (T/e)h™
Since tj11 —t; > t; —t;1, J=1,..., N, we now obtain that
R (¢ —t; 1) < (T/e)R™, j=1,...,N.

Using Lemma 4.1 we obtain from this and (4.54)—(4.56) that, for N > N,
the following error estimates hold:
1) if m <1 — v then

(4.60) [|u" — (Pny)|]ec0 < cch™ for r > 1;

2)if m > 1 — v then

RrC==1 for 1< < AL
(4.61) 10" = (Pny)]leco < ce { h™ for r> %

Here c. is a positive constant which is independent of N (of h), possibly
c. — 00 as € — 0, and (see (4.41)

/() = (Pny)|leo0 = sup |u'(t) — (Pny)'(t)], 0<e<T.
e<t<T

Combining (4.49)—(4.52) and (4.57)—(4.61) we obtain the statements (4.32),
(4.33), (4.35), (4.36), (4.38) and (4.39) of Theorem 4.3. O

It follows from Theorem 4.3 that, for Method 2, the maximal possible
order O(h™*') for the error ||[u — y||e can be achieved using sufficiently
large values of r, the scaling parameter of the grid {(3.1),(3.2)}. There are
possibilities to reduce 7 > 1 restricting ourselves to L¥(0,T) estimates of
the error u — y (Theorem 4.4) or to uniform estimates at the collocations
points (4.16) only (Theorem 4.5). Moreover, the convergence rate at the
collocation points will be higher than O(h™*1) for special choice of collocation
parameters (4.17) (Theorem 4.6).

Lemma 4.4. Leta € C™¥(0,T], K ¢ W™"(Ar), me N, —co < v <1,
and let Sy be defined by (4.43). Then Sy is compact as an operator from
LP(0,T), p > 1, to C[0,T].

Proof. We have Sy = A + S4 where Sy is defined by (4.45) and

t

(Ay)(t) = / a(s)y(s)ds, e [0,T].

0

Due to Lemma 2.4, Ky € W™ 1 (Ar). Let y € LP(0,T), ||yl|lzeor) < 1,
p>1,q¢=p/(p—1). Then (1/p)+ (1/¢q) = 1 and, by Holder inequality,

max |(Ay) ()] < ex, max [(Swy) ()] < ez,
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where

t

T
1/q
/|a ds) "', er = max (/|K4(t, 9leds) .
0<t<T
0

0

Further, for any ¢ > 0 there exists a 6 > 0 such the, for 0 < ¢t; <ty < T,
to—t; <4, and y € LP(0,T), ||y|lwo,r) < 1, p> 1, we obtain

|(Ay)(t1) — (Ay)(t2)| < (f|a )|9ds)Ye < e,

K&wm)(&wb\<fUQh,)JQ%JNMH®+?UQ%JmMﬂ%

t1
t1

S[UWﬂthS%—BM@%SH%kV“%-dﬂﬂMUmSN%kV“]§€

0 t1

By Arzela-Ascoli theorem, A and S and thus also S; are compact as opera-
tors from LP(0,T) to C[0,T],p > 1. O

Theorem 4.4. Let the conditions of Theorem 4.3 be fulfilled. Then, with
designations of Theorem 4.3, the following error estimates hold:
1)ifm <1—v then

(4.62) lu—yl|lrr) < ™ for r>1,1<p < oo;
2)if m>1—v then for 1 < p < o,

(4.63)

r\s—v 1

prErty) for 1§r<(m+1)/(2—1/+%),
m+1>2-v+ 1,

for r:(m+1)/(2—l/+%),
m+1§2—1/+]1—),

pmtt for r>(m+1)/(2—y+%), r>1.

S =

lu = yllrry <4 R™(1 + |logh))

\

Proof. We repeat the argument of the proof of the estimates (4.31), (4.34)
and (4.37) in Theorem 4.3 with LP(0,T) instead of L*°(0,T).

We use the operator equation representations (4.42) and (4.47) for the
Cauchy problem {(1.1), (1.2)} and collocation conditions (4.15), respectively.
By Lemma 4.4, S, is compact as an operator from LP(0,T) to C[0,T] for
p>1.

As fy € C[0,T] and the homogeneous equation y = S,y has only the
trivial solution y = 0, equation (4.42) has a unique solution y € LP(0,T),
p > 1. Due to Theorem 2.1, y € C™1*=1(0, T).

Further, we have

|z — Pna||zpo) —+ 0 as N — oo forevery € C[0,T],

27



and together with the compactness of Sy: LP(0,T) — C[0,T]| we derive that
||S2 - PNS2||,C(LP(0’T)’LIJ(0’T) —0 as N — oc.

>From this and from the boundedness of (1 — S;)~! in LP(0,T) we obtain
that I — Py S, is invertible in LP(0, T') for all sufficiently large N, say N > N,
and

(1 = PnS2) M| e o.r),L00,my) < const, N > Ng, p> 1.

Thus, for N > Ny, equation (4.47) provides a unique solution u € S,({l)(HN)
and we establish that

l|lu = yl|eeo,r) < const||y — Pny||zeory, N > No, p> 1,

with y, the solution of the Cauchy problem {(1.1),(1.2)}. Applying Lemma
3.1 we obtain the estimations (4.62) and 4.63) for p > 1. Since the right-
hand side of the inequality (4.62) does not depend on p, (4.62) holds also by
smaller p, i.e. for 1 < p < oco. O

Theorem 4.5. Let a € C™0,T], b € C™[0,T], K € W™"(Ar),
m € N, —oo < v <1, yo €, and let the collocation points (4.16) with
grid points (3.2) and parameters (4.17) be used. Let the scaling parameter
r=r(m,v > 1 be restricted by the conditions (4.26).

Then there exists Ng € IN such that, for N > Ny, the collocation condition
(4.15) define a unique approzimation u € 57({1)(1_[]\/) (if m =0, D1 =1
then u € S,(T?)(HN)) to y, the solution of the Cauchy problem {(1.1),(1.2)},
and the error estimate (4.27) holds.

Proof. Due to Section 1, the Cauchy problem {(1.1),(1.2)} is equivalent
to the integral equation (1.13) with the forcing function fs and the kernel
K, defined by (1.14) and (1.15), respectively. It follows from b € C™[0,T]
that fo € C™1[0,T] € C™1¥(0,T]. By Lemma 2.4, Ko € W™ (Ag).
Applying Lemma 4.2 we obtain the estimation (4.27). O

Theorem 4.6. Let the following conditions be fulfilled:

1) a € C™ER2[0.T], b € C™HRH0,T] K € W22 (Ag), m € NN,
peEZ,0< u<m, —oo<v<l.

2) The collocation points (4.16) are generated by the grid points (3.2) and
by the knots (4.17) of a quadrature approzimation (4.28) which is exact for all
polynomials of degree m + 1+ p, where p s an integer satisfying 0 < pu < m.

8) The scaling parameter v = r(m,v,u) > 1 is subject to restrictions
(4.29).

Then there exists Ny € IN such that, for N > Ny, the collocation condi-
tions (4.15) determine a unique approximation u € 57({1)(1_[]\/) (if m = 0,
NMms1 = 1 then u € S,(T?)(HN)) to the solution y of the Cauchy problem
{(1.1),(1.2)} and the error estimate (4.30) holds.

Proof. Using arguments analogous to those in the proof of Theorem
4.5 we find that the kernel (1.15) of the equation (1.13) belongs to the set
W Hst2Y(Ar) and the forcing function (1.14) belongs to the set C™#+2¥(0, T7.
Applying Lemma 4.3 we obtain the estimate (4.30). O
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