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1 Introduction

The polar decomposition of a matrix A € C™*" | m > n, is given as
A=QS,

where Q € C™*" has orthonormal columns and S € C**" is Hermitian and
positive semidefinite. S is unique and, in the case A has rank n, also @
is unique (see, e.g., [3],[5]). They are given by

S=(A"A)V2, Q=AAA)?, (1.1)

where /2 denotes the positive semidefinite square root.

Here we want to further decompose S = V PD so that this decomposition
— with unitary V' and nonnegative diagonal D — would have P Hermitian
positive semidefinite and the diagonal elements of P should be ones. This
leads to the decomposition

A=UPD, (1.2)

where U € C™*" has orthonormal columns, P € C**" is Hermitian and
positive semidefinite with unit diagonal, and D € R"*" is diagonal and
nonnegative.

In section 2 it is shown that the decomposition (1.2) always exists. D
is unique and if A does not have columns that are zero, then P is unique,
too, and so is U if A has full rank. In the set of full rank matrices these
factors are smooth functions of A.

Then in section 3 two methods are considered for computing (1.2). First
a simple fixed point iteration of the D part is given and is shown to be
locally convergent. Then two variants of the Newton iteration are discussed.

Finally two applications are given. The first is to parameterize the orbit
(set of similar matrices) of a matrix with distinct eigenvalues, the second is
almost optimal diagonal scaling to reduce the condition number.

2 Existence and uniqueness

In this section the main theorem concerning (1.2) is given. For this note first
that the polar decomposition is real analytic as a function of full rank A.
This is seen from (1.1) and

S = ﬁ/\/z (z— A*A) Ydz (2.1)

where v is a positively oriented simple closed curve in the right hand side of
C enclosing the spectrum of A*A, and /z denotes the root with positive
real part ([5], see also [1]). Formula (2.1) holds even in the case of singular A
now 7 enclosing only the nonzero eigenvalues. It follows that S is smooth
in each of the sets of constant rank matrices.



Notation: |v| denotes the 2-norm of v € C*, D C C*" is the set
of diagonal matrices, D, C Dr C D contain the ones with, respectively,
nonnegative and real entries, and Diag(M) € D is the diagonal of M €
C™ and diag(M) € C" is the corresponding vector. For z € R denote

D(z) = [m ] € Dr and let X : Dr — R" be its inverse mapping.

Tn

Ao B will denote the Hadamard (elementwise) product.

Theorem 2.1 (Refined polar decomposition). Assume A€ C™" |
m > n. Then there exists a decomposition

A=UPD (2.2)

where U*U =1, P is Hermitian, positive semidefinite, Diag(P) =1 , and
DeD,.

D is unique. If A does not have zero columns, then P 1is unique. If
rank(A) = n, then U is also unique and P, D are positive definite.

Proof. Assume first that A does not have a zero column.

Existence. For given positive diagonal D let UpPp = AD be a polar
decomposition of AD. Then Pp is unique. Set F'(D) = Diag(Pp). By (2.1)
F is continuous. Then the existence of (2.2) amounts to solving F(D™ 1) =
I.

Let aq,...,a, and pq,...,p,, respectively, be the columns of A and
Pp . These are nonzero. Set

m =min|a;| , M =max|a| .
J J

Then py; < |pi| = |a;|d; < Md; . Since Pp is Hermitian and positive semidef-
inite, for all ¢, j holds pipj; > |pij|*>. Thus Md; pj; > |pi;|* and

M (Zdi) pii = Y Ipl® = lasPd} = m*d3 .

Hence for any D = [dl R } € D, we get

N

m d?
— < F.(D) < Md, . 2.
i s < BD) < Md 23)

Fix a € (0,1/2]. For 6§ € R" set

g(6) = 6 + aX(log(F (e P@))) e R™ . (2.4)
Assume §; € [\, A] for all j. Then inequalities (2.3) imply

g;(6) < §; + alog(Me %) = (1 — a)§; + alog(M) < (1 —a)A + alog(M)



and

g;(8) > d§; + alog(m?e” %) — alog (M > *‘51')
> (1 - 2a)d; + alog(m?®) — alog(Mn) + a)
>(1—a)d+ Ozlog(]\";—) )

Choosing
A= log(ﬂ—i) and A =log(M)

we get g;(d) € [A\,A] for all j. Hence g maps the convex cube [, A]" C R"
into itself. Further, g is continuous. Hence, by the Brower’s fixed point
theorem (see, e.g., [7]), there exists 6 € Dr such that ¢(d) =6 and D =
eP®) solves F(D™1) =1.

Uniqueness. Define f : R* — R" as
f(d) = X(F(ePD)) . (2.5)

By lemma 2.2 below, the derivative f'(d) € R*™™™ is positive definite for all
d. Hence, if f(d)= f(d) then

-~

0=(d-ad)"(f(d) - f(d)=(d—d)" /0 f(d+1(d - ) dt (d - d)

so that d — d = 0, since the integral is positive definite. Thus f, and
consequently also F', is an injection. This shows uniqueness of D . Then
uniqueness of P and U follow from the corresponding properties of the
polar decompostion.

If A has ¢ > 1 columns that are zero then, necessarlly, we set the
corresponding elements of D to zero. Let A e ¢mx(n-q) _consist of the
nonzero columns of A. Take a refined decomposition A =UPD and put
elements of these in the corresponding places of U, P, and D . Fill the rest of
P (except diagonal elements) with zeros, and U with orthonormal columns,
orthogonal to U. O

Remark 2.1. If A has just one zero column then P is still unique. This is
because in P the norms of the columns corresponding to nonzero columns
of A are the same as those of P. Hence, except the diagonal element, the
row of P corresponding to the zero column of A has to be zero.

The following lemma was needed above and will be used again when
considering the computation of the refined polar decomposition with the
Newton’s method.

Lemma 2.2. Assume A has no zero columns. Let UP = AeP@ be a polar
decomposition and Let P = VD(m)V* be an eigendecomposition of P . Then
the derivative of f of (2.5) is given by

£1(d)6 = diag(V(IL o (VD(§)V))V*) (2.6)



2.2
s —|—7rj

where HU = MTT"]"

definite.

;; =0 if m +m; = 0. Further, f'(d) is positive

Proof. We have P = (¢ A* AeP@)z and this is differentiable with respect
to d. This is true even in the case of singular A since eP(@ A*AeP(@ has
constant rank and formula (2.1) can be applied.

For small § € R* we need a Hermitian A such that

(P+A)2 D(d+3d) A*A D(d+4) +O(52+A2)
i.e.,

PA + AP = D(8)eP@ A* AeP@ P A* 4P DD ()
= D(§)P*+ P*D(9) .

Using P = VD(m)V* we get
D(r) V*AV + V*AV D(x) = V*D(8)V D(x)? + D(n)2 V*D(6)V |
o (m; + ;) (V¥AV )y = (7} + ) (V' D(0)V)y

If mi+mj =0 we take (V*AV);; = 0. Hence V*AV =1l o (V*D(6)V) and
(2.6) follows.

Let u=(1,...,1). Positive definiteness is shown by

5 f'(d)s = tr(D(8)V(ITo (V*D(5)V))V*)
=tr(V*D(6) V(I o (V'D(0)V)))
= X i (VD@ )y
> 22 "5 (VD) V)yl?
= 11:r(V SV ((ru” +urT) o (V*D(8)V)))

1t (V*D(6)VD(nm )V*D(5)V) + 2 tr(V*D(§)VV*D(6)VD(r))

= tr(D(8)PD(9)) = >_; p;;0;

O

Remark 2.2. In the proof of the theorem the g—function was defined by
(2.4) for a € (0,1/2]. Values a € (1/2,1) also work. Then the lower bound
becomes

gi(8) > (1 —2a)A + aX + « log(]’\’/}—)

and the choice
A== ((1—2a)A + alog(£-))

works. In the numerical computations we will mostly use a ~ 2/3.



Remark 2.3. The II-matrix above is quite interesting: it is positive and
has only one positive eigenvalue. It seems to be negative semidefinite in

the subspace {v | Y= 0} . This would further imply that f'(d) is an
M-matrix (see (3.1) below).

. 2472
Remark 2.4. Since 2= < max(m;, ;) we get ||f'(d)|| < max; m; = ||P||.

In practice, however, we usually observe ||f'(d)|| =~ 2.

Finally, for good matrices the decompostion is smooth (real analytic):

Proposition 2.3. In the set of full rank matrices A € C™*", m > n the
factors U, P and D are real analytic functions of the (real and imaginary
parts of the) elements of A.

Proof. By the implicit function theorem D solving F(D™!) = I depends
smoothly on A (F' is invertible). Then P = (D™'A*AD ")z and U =
AP7'D™! are also smooth. O

3 Numerical computation

Here we consider the two obvious approaches to compute the refined polar
decomposition. First we consider fixed point iterations of the g¢g—function
(2.4). Then we will apply (2.6) in a Newton scheme and consider also more
economic approximate Newton steps.

3.1 Fixed point iteration

A simple numerical method is obtained by iteration of the map g of (2.4)
with a € (0,1). We use the (economy version) singular value decomposition
to compute values of f. From the singular value decomposition

QD(n)V* = Ae P@
we get P =V D(m)V* already eigendecomposed (see Lemma 2.2) and

f(—=d) =diag(P)= (Vo V)r.

For matlab ([6]) and octave ([2]) we can write



function [U,P,D]=UPD_F(A)

% This function computes the refined polar decomposition
% of A using the fixed point iterationm.

sz=gize(A); n=sz(2); alpha=2/3;
expd=ones(n,1); d=zeros(n,1);
err=1; k=0; tol=10"(-13);

while err > tol,
[Q,E,V]=svd(A*diag(expd) ,0) ;
f=log((V.*conj(V))*diag(E));
d=d+alphaxf; expd=exp(-d);
err=norm(f); k=k+1; end

U=Q*V’; P=V*E+V’; D=diag(1l./expd);

For small « local convergence of this iteration is guaranteed:

Proposition 3.1. Given A, without zero columns, then the iteration d*™! =
g(d*) converges from dy close to d = g(d) provided o € (0, H%H)’ where P
1s the Hermatian part of A=UPD.

Proof. This follows directly from ¢'(d) = I — af'(—d) and the positive defi-
niteness of f'. Note that by remark 2.4 ||f'(—=d)|| < ||P]- O

In the following figure « varies from 0.2 to 1 and the iteration counts for
different matrices are plotted. The matrices are s0x50 random matrix (—)
20x20 Hilbert matrix (- - -), s0x50 random matrix of rank 25 ( - - -), and a
random 50x25 matrix (—-—-— )
A thumb rule is that for S closer to a diagonal matrix a closer to one
gives fastest convergence.
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3.2 Newton iteration

We want to solve f(d) = u, where u = (1,...,1). To obtain the polar
decomposition for Computing f(d) we use again the singular value decom-
position QD(7) V* = AeP@ and f(d) = (Vo V)r

Using (2.6) we get the entries of f' :

f’(d)i]‘ = e,z'T fl(d) €j
o (D(e,-)v(H o (V*D(ej)V))V*)

= tr (V*D(ei)V(H o (V*D(ej)V))) (3.1)

= tr ( (H (vw})))
= (vi 0 7;)"II (v; 0 75) ,
where v;’s are the columns of V*. The proof of Lemma 2.2 shows that

max; m;
cond(f'(d)) < —2—- .

min; P

At the solution this upper bound is < n. Hence good conditioning of the
Jacobian and local convergence is guaranteed.

Due to (3.1), the complexity (flop count) is O(n*) per iteration step. On
the other hand computing f’ this way parallelizes easily.

In the experiments the initial guess d = 0 seems to work in most cases!
but for safety we take first one step of the fixed point iteration of g with
a =2/3 to obtain dy = —g(0).

With these remarks the Newton’s method for computing the refined polar
decomposition can be written as follows

function [U,P,D]=UPD_N(A)

% This function computes the refined polar decomposition
% of A using the Newton’s method.

sz=size(A); n=sz(2);

[U,E,V]l=svd(A,0);
d=-2/3%1og((V.*conj(V))*diag(E));
expd=exp(d) ; w=ones(n,1); df=zeros(n,n);
err=1; k=0; tol=10"(-13);
[U,E,V]=svd(A*diag(expd),0);

Vc=conj(V); p=diag(E);

£=(V.*Vc)*p-w;

!In the short series of test problems tried so far just a few cases required a better initial
guess.



while err > tol,

Pi=(p. 2%w’+wxp’."2) ./ (p*w’+w*p’);

for i=1:n , for j=i:n , % these
v=(V(i,:).*Vc(j,:))?; % take
df (i,3j)=v’*Pixv; % 0(n~4)
df(j,i)=df(i,j); end, end, % flops

d=d-df\f; expd=exp(d);
[Q,E,V]=svd(Axdiag(expd),0);
Vc=conj(V); p=diag(E);
f=real (V.*Vc)*p-w;
err=norm(f); k=k+1; end

U=Q*V’; P=V*E+V’; D=diag(1l./expd);

In the following figure a typical convergence graph is drawn. The solid line
is 10-base logarithm of the norm of f when started from the trivial guess
d=0 and (—-—— ) corresponds to the better starting value. The dashed line
plots cond(f’), Here A is a random 100x100 matrix ( randn(100) ).

log,, (1f 1) cond(f,")
2 T T T 20
o~ o
-2+ \\\\
N\
-4+ N
AN
N N 115
\\\\ \
-8 \\\\\ \\
\\\ \
T N
-10+ \
\
\
-12f \\
\
\
4 ‘ ‘ ‘ . ‘ 10
1 2 3 4 5 6 7

3.3 Approximate Newton

In the Newton’s method above the computation of f’ is the most flops
consuming part O(n?). In each Newton step we solve f'(d)d = u— f(d), i.e.
(see (2.6)),

diag(V(ILo (V*D()V)V*) = u — f(d) . (3.2)

Let us eigendecompose II = WAW?Y . II has one positive and many small
negative eigenvalues. We take an approximation:

M~ = Z)‘j’ijjT,

‘)\j|>€

10



where w;’s are the columns of W . Using II in (3.2) we get simplification:
diag (V(ﬁ 0 (V*D((S)V))V*)

= 3" ), diag (V((ijfo (V*D(5)V))V*)

= Y, diag (VD(uy)V*) D) (VD(u,)V"))
1Aj1>¢
Y A (G060

‘)\]‘|>E

where G; = VD(w;)V*. Hence:

Fld)m Y X (GoGy).

|)\j|>€

For ¢ = 0.001 we typically get 4-6 terms in the sum while the iteration count
stays practically the same as for the genuine Newton’s method. This takes
the Newton step back to O(n?®) as can be seen from the tests of the next
section.

The matlab/octave code for this approximate Newton is obtained by
replacing the four lines (“these take 0(n”4) flops”) by lines

[W,lambda]l=eig(Pi); df=zeros(n,n);
for j=1:n ,
if abs(lambda(j,j)) > rtol ,
G=V*diag(W(:,j))*V’;
df=df+lambda(j,j)*(G.*conj(G)); end,end

Remark 3.1. Here we just use the eig routine to get the eigendecomposi-
tion of II. Since we want only a couple of largest (in modulus) eigenvalues
and the corresponding eigenvectors, the Lanczos iteration should give extra
savings.

3.4 Comparison

Below we have plotted the flop counts divided by n® of the three methods:
F: the fixed point iteration with a = 2/3 (—), N: the genuine Newton’s
method ( - - -), and A: the approximate Newton’s method (—-—-— ).

We took four series of test problems. In each of these the (column)
dimension (horizontal axis) grows from 10 to 100.

1. Complex random matrices ( A=randn(n)+sqrt(-1)*randn(n) )

2. Hilbert matrices ( A=hilb(n) )

11



3. Singular real matrices with rank = % ( A=randn(n,n/2)*randn(n/2,n) )

4. Random 2nxn full rank matrices ( A=randn(2#n,n) )

900
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800
N .- N
2000 P 1 700
F e P
e 600 7 1
1500 -7 , W
. 500 _
-7 / /
-7 A ! o A __
Sy s e = 400 J 4
_ \ s T e N e
woof, T T ¢/ , AR
300 _-7
2001 ~
500
100F
o . . . . . . . . o . . . . . . . .
10 20 30 40 50 60 70 80 % 100 10 20 30 40 50 60 70 80 90 100
Random matrices Hilbert matrices
800 . . . . . . : T . , , . , , : :
| 1200 ,
N .-~
600 -7 4 1000 -
-7 N !
400 -7 B -
- 600 -7
T _ A T
] T i T A
’ N e i T e .
a0f” v L-s
200F ~
200
100+
o . . . . . . . . o

L L L L L L L L
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Singular matrices: rank(A4) = § Random 2nxn full rank matrices

Methods F and A seem to have O(n?®) complexity, while N is clearly O(n?).

Remark 3.2. The methods above are just simple first approaches. It will
be interesting to study how the iterations for the polar decomposition (see
e.g. [4]) can be adapted to this case.

4 Applications

4.1 Parameterizing the orbit of a diagonable matrix

The orbit of a matrix is the set of matrices similar to it.

Complex case. Let the eigenvalues of A € C**" be distinct. Then A
is diagonable: A = TAT ' A = [)\1 EN } €D, \; # )\ for i # j. The

12



orbit of A is given by
S(A) = {XAX | X € C", det(X) £0} .

If X and Y are nonsingular such that XAX " =YAY "' then Y 'XA =
AY 'X and for i # j holds (A — A;)(Y 'X);; = 0. Hence D =YV 'X
is diagonal. Write any diagonal nonsingular matrix as D= ED , where
|E“| =1 and D; > 0 for all i.

Let X =UP,i.e., U isunitary and P € P; — the set of Hermitian pos-
itive definite matrices with unit diagonal. Then all matrices that transform
A to the same matrix as X does are of the form

Y =UPED .

Since E*PE € P;, too, and X = UEE*PE gives also XAX 1 = XAX !
we still have to choose E. We do this by requiring that the first nonzero
entry in each column of U is real and positive. Let U denote the set of such
unitary matrices. Then

S(A)={UPAP'U*|UcU, P < P}

and for each B € S(A) the factors U and P are uniquely defined. To

separate the unitary orbit Sy(A) and the transversal part Sp(A) take the
refined polar decomposition T'= UyPyD with Uy € U . Then

Su(A) = {URAP,'U* |U*U = I}
Sp(A) = {UsPAP'Us | P € P1} .

Real case. For A € R"" with distinct eigenvalues one might want to
consider only the real orbit. If the eigenvalues are real, then we can proceed
exactly as in the complex case, now only restricting to real matrices. This
way we obtain unique coordinates for any real matrix in the orbit.

In the figure below the orbit of A = [§¥ %®] is drawn. The displayed
coordinates of M € R?*2 are My; — My, Mys + Moy and Myy — Moy . The
fourth coordinate trace(M) is not shown, since it is constant on orbits.

A is drawn as a small circle and A = [10877, 9..] as a cross. The two

darker circles on the surface form the orthogonal orbit of A :
So(A) = {UAU" |U e R™", UTU =1} .

The two parts correspond to orthogonal matrices with determinant +1, re-
spectively. The dashed curve on the surface is the transversal part

Sp(A) = {UyPAPT'U{ | P € PrNR™™} .

13



If A € R™™ has distinct eigenvalues, but some of them are complex,
then it admits a real similarity transformation A = TAT~! to real block
diagonal A, where the blocks are either real numbers or 2x2 blocks of the
form [f‘ﬂg] :

Let D, denote the set of block diagonal matrices with the same block
structure as A has. Now the diagonal matrices do not commute with A but
those in Dj do. Hence we want to consider refined polar decompositions

X =UPD

with orthogonal U, symmetric positive definite P having unit diagonal, and
D € D, having nonnegative diagonal. Existence and uniqueness results can
be obtained using similar techniques as in the proof of theorem 2.1. The
idea is to write D = CD, where C,D € D, and C is orthogonal and D
is diagonal. This is to first transform a symmetric positive definite S to
S =0TSC, so that the diagonal pairs of S corresponding to the 2x2 blocks
of A match: S;; = S;41,j+1. Then combine this with diagonal scaling. This
combination can then be used? in F'.

An algorithm for computing this is obtained by modifying the fixed point
iteration. In the following code vector z contains the starting indices of the
2x2 blocks, i.e., it defines D, .

function [U,P,D]=C_UPD(A,z)

% This function computes the refined polar decomposition of A
% A=UPD with D "real C-diagonal" determined by z.
% Here the fixed point iteration is used.

2The details are not written here, since more general cases are under work.

14



sz=size(A); n=sz(2); alpha=2/3;
expd=ones(n,1); d=zeros(n,1); C=eye(n);
err=1; k=0; tol=10"(-13);

while err > tol,

[U,E,V]=svd(A*diag(expd),0) ;

for j=z , jj=j:j+1 ;
W=V(jj,:)*E*V(jj,:)’;
fi=atan((W(1,1)-W(2,2))/(2*xW(1,2)))/2;
c=cos(fi); s=sin(fi); C(jj,jj)=[c,-s;s,c]; end

V=C%V;

f=log ((V.*conj(V))*diag(E));

d=d+alphax*f; expd=exp(-d);

err=norm(f); k=k+1; end

U=UxV’; P=V*E*V’; D=C*diag(l./expd);

In the following figure the orbit of A =[7%" 3107 is drawn. A is shown
as a small circle and A = [ %°] is on the top of the lower part. The two
darker circles on the surface form again the orthogonal orbit and the dashed

curve is the transversal part.

Remark 4.1. The orthogonal orbits and transversal parts seem to intersect
orthogonally (w.r.t. (A, B) = tr(AB*)). This is true for 2x2 matrices, but
not generally.

4.2 Diagonal scaling

Another way to use the refined polar decomposition is in diagonal scaling of
a matrix to reduce its condition number. The following result shows that
the diagonal part of the refined polar decomposition gives an almost optimal
(right) scaling.

15



Proposition 4.1. Let A = UPD be the refined polar decomposition. Then
for the 2-norm condition number

k(AD™') < n inf k(AE).

EcDy

Proof. A result of van der Sluis ([8]) says that if P is Hermitian positive
definite and has constant diagonal, then

<
k(P)<n Elean+ k(EPE) .

Hence, denoting by Amin/max, Omin/max the maximal and minimal eigenval-
ues and singular values:

k(AD ') = k(UP) = k(P) <n inf x(EPE)

EcDy
2
=n inf 7)\max(EPE) =n inf 7)\max(PE )
5D, Amn(EPE) ' BeD, Apn(PE?)
. . Omax(PE?) . .
< L = = :
<n Elean+ oo (PE?) n Elean+ k(PE)=n Elen’Df+ Kk(AE)

O

Naturally, since the computation of the refined polar decomposition is so
expensive, this result is at most a theoretical curiosity.
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