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1 Introduction

The set of normal matrices, denoted by N' C C**", is a rich class of ma-
trices well-suited for numerical computations. To give an example of the
computational well-behavior, extreme sensitivity of eigenvalues and eigen-
vectors does not occur among the set of normal matrices. In the domain of
algorithms, a lot of methods exists exclusively for a subset of A/, namely for
Hermitian matrices. However, for non-Hermitian normal matrices typically
no specific schemes have been developed. Then problems are solved by exe-
cuting more general algorithms that benefit in no way from normality which
can be considered to be a severe waste of available structure. In this paper
we introduce an optimal Krylov method especially designed for solving, with
a given b € C", a linear system

Nz = b, (1)

for a large, possibly sparse, invertible normal matrix N.

For solving (1) we extend the Hermitian Lanczos method to apply to
normal matrices. The introduced scheme is a genuine extension as it will
reduce to the Hermitian Lanczos iteration in case N is Hermitian. To this
end we use the Toeplitz decomposition

N = H +iK, (2)

with Hermitian H = (N 4+ N*) and K = (N — N*), of N. For normal
matrices the Toeplitz decomposition has the property that, denoting by g
the set of nonderogatory Hermitian matrices, the mapping

n—1
(H, 000, 0001) = H+14 Y oy H (3)

J=0

maps Ho x R" into N. And in such a way that its image is an open dense
subset of N. Consequently, a generic normal matrix N equals H + ip(H),
where H = %(N + N*) and p is a polynomial with real coefficients. This
holds also for normal matrices having degoratory Hermitian part under a
moderate technical assumption, see Proposition 3.

As N is invertible in (1), by elementary linear algebra, its inverse is a
polynomial of N. Since N is, generically, a polynomial of its Hermitian
part H, we can deduce that N ! is generically a polynomial of H. As a
consequence, denoting by P;_; the set of polynomials of degree ;7 — 1 at
most, we can replace the GMRES [18] minimization problem at the ;% step

min || Np;_1(N)b — || (4)
pj—1€P;—1
with
min || Np;_1(H)b — b]|. (5)
pj—1€Pj-1
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Remark that the success of GMRES, in fact, relies on the simple property
that the inverse of a matrix is a polynomial of the matrix itself. In practise the
inverse is being approximated by very low degree polynomials via computing
(4). The reason for this is that with GMRES the lenght of recurrencies as
well as memory requirements grow linearly for non-Hermitian matrices.

To avoid long recurrencies and linear growth of memory demands we do
not construct a Krylov subspace with N. Instead, since N and H commute,
we derive an algorithm for solving (1) starting from (5) by considering first

min |{|p;—1(H)Nb — b]|. (6)

pj—1€Pj -1

From this it is readily seen that solving (5) is equivalent to finding the best
approximant to b from the Krylov subspace

K;(H; Nb) = span{Nb, HNb, ..., H "' Nb}. (7)

To this end one could, straightforwardly, execute the Hermitian Lanczos
method with H starting from go = % This would yield the value of (6) and
thereby of (5) with a 3-term recurrence and in such a way that only 3 vectors
needed to be saved. But this scheme would not, as such, yield a solution
candidate to (1) unless we multiply once by N—!. This is obviously not what
we suggest as the inverse of NV is not available. Instead, we construct from
this Hermitian Lanczos iteration a new recurrence by formally multiplying
by N7'. As a result, we obtain a 3-term recurrence for solving (1) with the
same memory requirements as in the standard Hermitian Lanczos method.
The constructed solution candidate fulfills, at each step j, the optimality
condition (5) so that, whenever N is Hermitian, the introduced scheme is
simply GMRES. Thus, in a sense, we extend GMRES for Hermitian matrices
to normal matrices in a way that preserves an optimal 3-term recurrence
property.

In addition to the obtained basic algorithm, there is a restarted and
rotated implementation aimed for a nongeneric or nearly nongeneric N. This
means restarting the algorithm using rotations e N of N for § € [0, 2n).
Rotations can be chosen based on some a priori information, or they can be
generated randomly after a number of steps. This can speed up convergence
dramatically and, in particular, it is simple to code to increase adaptivity in
the basic algorithm. We illustrate this with numerical examples.

The paper is organized as follows. In Section 2 we consider properties of
the Toeplitz decomposition for normal matrices. Based on these properties
we derive a minimization problem analogous to ideal GMRES. In Section
3 we consider the local version of this minization problem. This gives rise
to a Hermitian Lanczos method for solving linear systems involving normal
matrices. Finally in Section 4 we consider numerical experiments.
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2 On the Toeplitz decomposition of a normal
matrix

The set of normal matrices is a large class of matrices containing, for instance,
the set of Hermitian, skew-Hermitian as well as the set of unitary matrices.
For numerical manipulations normal matrices are particularly well-suited as
a matrix is normal if and only if it is unitary similar to a diagonal matrix.
Although this is how normality is most often used in practise, its original
definition is purely algebraic in the sense that N € C**™ is normal if

NN*— N*N =0 (8)

holds. Besides these two chracterizations, there are many ways to define
normality. So far about ninety equivalent conditions for a matrix to be
normal have been collected by Grone, Johnson, Sa and Wolkowicz [9] and by
Elsner and Ikramov [2]. The characterization (8) is taken to be the first in
these listings although it is numbered as the condition zero.

Due to the abundance of characterizations of normality, several of them
deal with the canonical decompositions for matrices. Diagonalizability by a
unitary similarity is, for instance, one such. Another is based on the Toeplitz
decomposition

N = H +iK, (9)

with H = (N 4+ N*) and K = 5.(N — N*), of N. The condition 21 in [9]
states that N is normal if and only if H and K commute. In what follows,
we consider the Toeplitz decomposition for normal matrices in more detail.

First of all, commutativity is a strong property. In particular, it is well-
known that for a nonderogatory matrix A € C"*" the set of matrices com-
muting with A equals the set of polynomials of A [10|. For normal matrices
this can be used as follows, where A, denotes the set of normal matrices N
having nonderogatory Hermitian part H = %(N + N*). In our claims re-
garding normal matrices we use the induced topology of the standard metric
topology of C**".

Theorem 1 [12]/ Ny is an open dense subset of N.

This set is readily realizable. Namely, if we denote by o the set of
nonderogatory Hermitian matrices, then the mapping

n—1
(H,ao,....0n-1) = H+i»_a;H’ (10)

Jj=0

from HoxR™ onto N is injective. In particular, combining this with Theorem
1, we can deduce that a generic normal matrix N is a polynomial of its
Hermitian part H. By a generic property in a set S we mean that it holds
for an open dense subset of S. This is also true for certain matrices not
belonging to Ny. By o(A) we denote the spectrum of A € C"*".



6 M. HUHTANEN

Theorem 2 Assume N = H +iK is normal such that #o(N) = #o(H).
Then N = H +ip(H) for a polynomial p of degree #o(N) — 1 at most.

Proof. Let N be diagonalized by a unitary matrix U so that its Toeplitz
decomposition is

R(M) (M)
N=U U* + iU U* = H+iK,
R(A\n) S(An)
(11)

where Ay, ...\, denote the eigenvalues of NV, counting multiplicities, arranged
in nondecreasing order of modulus. Since #0(N) = #o0(H), we can construct
the Lagrange’s interpolation polynomial p attaining the values (A1), ..., S(\,)
at points R(A1), ..., R(\,). Clearly N = H + ip(H) and the claim follows. [J

The property #o(N) = #o(H) is not generic only in A but also in
subsets of A/ that are relevant for our purposes.

Proposition 3 The property #0(N) = #0(H) is generic in
{N =H+iK € N|#0(N) =k} (12)
for every 1 < k <mn.

Proof.  Let Aq,...,A\x denote the distinct eigenvalues of N, belonging to
{N = H +iK € N|#0(N) = k}. Define a mapping

k—1

N =TT 00) — SO) (13)

=1

from {N = H+iK € N|#0(N) = k} into R. This is clearly continuous. The
inverse image of 0 for (13) equals those N € {N = H +iK € N|#0(N) =
k} for which #0(N) > #o0(H) which thereby is a closed set. To see that
its complement is dense, rotations ¢ N of N remain in (12). Choosing an
arbitrarily small positive § results in #0 (e N) = #0(3(¢” N + e N*)). O

Theorem 2 has a consequence as to solving iteratively linear systems in-
volving normal matrices. To see this, we consider first the so-called ideal
GMRES approximation problem [8]. For that purpose, assume having an
invertible A € C"*". By elementary linear algebra, A~ = p(A) for a polyno-
mial p. Based on this, in the ideal GMRES approximation problem [8] one
considers, for 1 < j <n —1,

min | Ap;1(4) — I, (14)

pj—1€Pj-1

where P;_; denotes the set of polynomials of degree j —1 at most. Typically
the behavior of these quantities are of interest for small values of j compared
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with the dimension n. The reason for this is that (14) is related to solving
the linear system Ax = b, with a b € C", by using GMRES via

min ([ Ap;1(A)b— b < min [l Ap;o(A) — Il (15)

Pj—1€Pj-1 Pj—1€Pj—1

For further details of GMRES algorithm and its relation to ideal GMRES
problem, see e.g. [6, 18]. In addition to interest in behavior of (14) while j
grows, there is a related property of A that governs the ultimate number of
steps needed for solving Az = b exactly, at least in exact aritmethic. To this
end, recall that the minimal polynomial of A is the monic polynomial of least
degree annihilating A. Let deg(A) denote degree of the minimal polynomial
of A e C .

Proposition 4 Let deg(A) denote the degree of the minimal polynomial
of A€ C™". Then A~! = p(A) for a polynomial of degree deg(A) — 1.

This is well-known and can be found e.g. from [16]. In particular, because
of (15), after deg(A) — 1 steps GMRES yields the solution.

Theorem 2 gives rise to a a problem analogous to ideal GMRES problem
in the following manner. Namely, according to Theorem 2, a generic normal
matrix N is a polynomial of its Hermitian part H = %(N + N*). Assuming
N to be invertible, it holds that N~! is a polynomial of N. Consequently, a
generic normal invertible matrix [V is a polynomial of its Hermitian part. By
this deduction one easily derives an upper bound (deg(N)—1)? for the degree
of a polynomial yielding N~! = p(H). This, however, is far too pessimistic.

Theorem 5 Assume N € N is generic in the sense of Proposition 3.
Then N~' = p(H) for a polynomial p of degree deg(N) — 1 at most.

Proof. Let N = UAU* be a diagonalization of N by a unitary matrix U
so that its Toeplitz decomposition is as in (11). Since N is normal, there holds
#0(N) = deg(N). Further, being generic in the sense of Proposition 3 means
that K = q(H) for a polynomial ¢ and, consequently, deg(H) = deg(N).
Obviously the Toeplitz decomposition N™! = H + iK of N1 is

R(1/A) S(1/A)
N1l=U U* +iU U*.
R(1/An) S(1/An)
(16)

By interpolation, find a real polynomial p; that attains the values ®(1/A1), ..., R(1/A,)
at points R(A1), ..., R(A,). Then, analogously, find a real polynomial p, that
attains the values I(1/\1),...,S(1/\,) at points R(A1), ..., R(A,). The de-
gree of both p; and p, is at most deg(N) — 1. Furthermore, by construction
p(H) =p1(H) +ips(H) = N7' and the claim follows. O
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Thus, since the inverse of N € N is generically a polynomial of its Her-
mitian part, we are naturally led to consider, aside from the ideal GMRES
problem,

min | Np;_1(H) - I||. (17)
Pj—1€Pj-1
According to Theorem 5, this attains zero no later than the ideal GMRES
does whenever N is generic. As with (14), for practical purposes the behavior
of these quantities is of most interest for values of j far smaller than deg(N)—
1. Their behavior is easily understood as N is normal. Though, the problem
of characterizing the convergence behavior of the ideal GMRES, as well as
GMRES for solving Az = b, using simple properties of A and b has received
a lot attention, see [18, 6, 16] and references therein as well as more recent
[15, 13, 11, 14]. From this point of view normal matrices are well-understood
as the convergence can be characterized by solving polynomial approximation
problems on the spectrum of N [7]. For (17) the corresponding approximation
problems are just solved on the spectrum of H. Or, while approximating the
inverse of N we have two real polynomial approximation problems as follows.

Corollary 6 Let p; and p; solve min,,_ cp,_, [|R(A™") — pj_1(An)| and
min,,_ep,_, [|S(A™) — pj_1(Ag)l| respectively. Then

min ||pj—1(H) = N7 = ||p1(H) + ip2(H) = N7
pj—1€Pj 1

Note that whenever N is Hermitian, then (17) reduces to the standard
ideal GMRES problem for this Hermitian matrix. And the other way around,
this is a continuous extension of the ideal GMRES for Hermitian matrices to
the set of normal matrices. This extension is clearly not the same as (14) is.

Of course it is possible that a given N € N is nongeneric in the sense that
N is not a polynomial of its Hermitian part. This is the case, for instance,
when N is skew-Hermitian as then the Hermitian part of NV is the zero matrix.
And more generally, when /N has more than one eigenvalue on a vertical line.
There is a simple trick that removes this problem. Namely, instead of N,
consider e? N for a 6 € [0, 27). It is obvious that this rotation of N remains
normal.

Theorem 7 [12] Assume N € C**" is normal. Then, for 8 belonging to
an open dense subset of [0,27), holds

N = Hy + Zpo(Ho)
for Hy = %(eioN + e ®N*) and a polynomial pg with real coefficients.

By the same reasoning as earlier we have, for an invertible N € N and
for a 6 belonging to an open dense subset of [0, 27),

Nil :po(Ho) (18)
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for a polynomial py. It is readily seen that the claim of Theorem 5 holds; i.e.,
the degree of pg in (18) is at most deg(N) — 1, as well. However, it is not
obvius how to pick a rotation € yielding an optimal decay in the minimization
problem (17). Still, since this rotation is important for our purposes, we set
the following.

Definition 8 Let N € C™" and 0 € [0,27). Then N = e Hy +ie “ K,
18 the rotated Toeplitz decomposition of N by the angle 6.

In this decomposition the parts are typically not Hermitian matrices.
This is obviously irrelevant as all the computational aspects are analogous
for Hy and e ®Hy. Recall that matrices Hy arise while approximating the
field of values of a (not necessarily normal) matrix N. Namely then, for a
finite number of different #, one computes the largest eigenvalue of Hy and

intersects certain half-planes defined on the basis of these eigenvalues, see
e.g. [10][Thm 1.5.12, 1.5.14].

3 A Hermitian Lanczos for solving Nx = b

Consider solving iteratively, with a given b € C", a linear system
Nz =b, (19)

for a large, possibly sparse, invertible matrix N € N. If N is Hermitian,
then this can be accomplished by an optimal method based on a 3-term
recurrence, see e.g. [6]. If N is non-Hermitian normal matrix, then the
recurrencies for an optimal approximation are generically long by the result
of Faber and Manteuffel [4]. Their result states that there is an optimal
recurrence of length deg(p) + 2, where p is the degree of the polynomial
yielding N* = p(N). That for a normal N there holds N* = p(N) for a
polynomial p is the condition 17 in [9]. Irritatively though, the length of a
recurrence is a very noncontinuous property among the set normal matrices.

ExAMPLE 1. Consider a Hermitian invertible H € C**" and solving
iteratively a system Hz = b for b € C". This can be done by using a 3-term
recurrence. However, let us slightly perturb H in a very simple manner, for
instance, set N = H + iaH?, where a > 0 is a small parameter. Then N is
not quite Hermitian anymore and the spectrum of N does not lie on a line
but it is slightly concave down. This small perturbation has destroyed the
optimality of the used 3-term recurrence.

An optimal 3-term recurrence for solving a linear system, whenever N*
is available, is always obtained by executing the CGN method, the CG for
the normal equations. That is, by solving, instead of (19), the system

N*Nz = N*b or NN*y = b with z = N*y (20)

using CG method. It is well-known that this approach may not be a good
idea although it is not clear when it is so. The squared conditioning of the
resulting systems (20) is the most standard argument against the CGN.
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In what follows we derive a 3-term recurrence for solving (19) that does
not use normal equations and does not lead to squared condition number.
To this end, in order to obtain an iterative method, we replace (17) with
a minimization problem involving the vector b. That is, we consider, as in

GMRES,

min |[Np; 1(H)b— b (21)

Pj—1€Pj-1

with H = 2(N + N*). As the relation (15) between GMRES and the ideal
GMRES, there is an anlogous relation between (17) and (21). Consequently,
using the notation of Corollary 6, the decay of (21) can be bound by the
complex approximation problem

min ||[Np; 1(H)b - bl < min [[Ap; 1 (Ag) - I][}o  (22)

Pj—1€Pj-1 Pj—1€Pj-1

on the spectrum of H. Since

min |[Apj—1(Ag) — 1] < [N]| | min Ipj-1(As) — A7Y| (23)

pj—1€Pj-1

j—1S/5-1

the convergence can also be bounded by considering two real approximation
problems on the spectrum of H, see Corollary 6.
Since N commutes with H, (21) is equal to

min ||p;—1(H)Nb — b| (24)

pj—1€Pj-1

the value of which is readily obtained with a Krylov subspace method. That
is, finding (24) is equivalent with approximating b from the Krylov subspace

K;(H; Nb) = span{Nb, HNb, ..., H' "' Nb}. (25)

An inexpensive way to realize this is to execute the Hermitian Lanczos
method with H starting from ¢y = ‘1]:,7—2 The Hermitian Lanczos method
is a well-known algorithm that transforms a Hermitian matrix to a tridiago-
nal matrix. It is realized by computing, with a Hermitian H, using an initial
vector gg € C”

oy B O i
Br ar Bo
T =QHQ;=| 0 B " (26)
Q1 ﬂjfl
i Bi-1 oy

where Q; € C* has orthonormal columns spanning the Krylov subspace

Ki(H; q0) :Span{quHQOaquﬂu-"aHJ;IQO}' (27)
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The elements of the matrix (26) are computed by using the 3-term recursion

ﬁqu‘ = HQj—l - (HQj—la Qj—l)Qj—l - (HQj—la %—2)%‘—2, (28)

where (3; equals the norm of the right-hand side of (28). For further details
of the Hermitian Lanczos, see e.g. [1, 19, 17, 5.

To solve (24), we formally start the iteration from g = % € C" as

No b,
[Nl (1|

[p(H)Nb = b = [[Nb]||[p(H) (29)

for every polynomial p. The standard Hermitian Lanczos iteration (28) would
then proceed as

. 1 . JEUEN
G = B_(qu — (Hdo, 4o)do) (30)
1

. 1, .. JEA SN
G2 = E(qu — (Hd1,G1)6 — (Hd1, Go)do) (31)

so that at the j® step one computes

1

= 5_(
j

The constants (;’s are chosen such that [|¢;|| = 1 for 0 < k < j. Then,
obviously,

A

q; Hg;—1 — (HGj—1,d-1)8j—1 — (HGj—1, 4j—2)qj—2). (32)

Nb b
i (H)Nb—0b|| = ||[Nb|| mi (H — 33
i |lp;(H) I = 1INB]| min [lp;( )||Nb|| Vo | (33)
is realized by the polynomial p; fulfilling
No b
(H)—— = E ——— 4:)q; 34

k=0

as the vectors {Gi}._, are orthonormal. The problem is that this scheme
does not yield a solution candidate x; for solving the linear system Nz = b.
Instead, it yields the minimum value (24), so that the vector (34) should be
multiplied by || Nb||N~! to get the approximation z;. To avoid inversion, the
trick is that, since

J J
b s N
z; = ||ND| Z(M,Qk)]\f "G =) (b, d) N G, (35)
k=0 k=0
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we do not actually compute (30), (31) and (32). Instead, we set gy = o

(| NB|
and

L1 o
g :=N"'g = ﬂ—(qu — (Hdo, Go)do0) (36)
1

. 1 . .
=N "¢ = E(qu — (Hg1,41)q1 — (Hdr, o) o) (37)

so that at the j'* step we have

g =N"'4; = ﬁ_(HQj—l — (Hdj-1,4j-1)qj-1 — (Hdj—1,d4j-2)gj—2).  (38)
At each step the inner-products only formally involve ¢;’s as they can be
computed by using the relation Ngy = §;. Consequently, only vectors of the
form g, are saved and the arisen recurrence relies only on 3 vectors as (35)
yields an update

1
J

j
;=Y (b, Ngj)g; = zj-1 + (b, Ngj)g;. (39)

k=0

Thus we have obtained the following basic algorithm.
Algorithm 1. “For solving Nz = b".

For N = H+iK € N and a vector b set H = (N + N*), o = m, g1=0
and xg = (b, Ngo)qo-
For j =1 to k compute

g = ngfl —(HNgj 1,Ngj 1)gj1 — (HNg; 1, Ngj 2)g; 2

% = TNgT

zj = zj_1 + (b, Ngj)g
end for.

Remark 1. As opposed to the CGN method, the proposed scheme does
not square the condition number as H is formed via a (weighted) summation,
not multiplication. Another consequence of the summation is that the scheme
reduces to GMRES whenever N is Hermitian.

Remark 2. In addition to the complexity of the standard Hermitian
Lanczos iteration step (32), additional 3 matrix-vector products Ng;_2, Ng;_1
and Ng; are needed while computing g;. .

Remark 3. The computed vectors {gx}_, themselves need not be or-
thonormal but {Ng}._, are.

Remark 4. It is straighforward to modify the above algorithm such that
an initial guess x_; is used instead. That is, then b is replaced with the

residual r = b — Nx_, and ¢o = ||Nr—r|| taken to be the starting vector. Then

the approximative solution is, at the kt* step, & = z_1 + 5.
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Remark 5. Because of (18), it is possible to use a rotated Toeplitz
decomposition of IV instead. This means simply replacing H with Hy in the
above algorithm.

Remark 6. Combining Remarks 4 and 5 gives a scheme in which the
rotation parameter 6 is varied during the iteration. That is, the iteration
is started with a 6y and with an initial guess x ;. Then the algorithm is
executed, with r = b — Nz _; in place of b, gy = HJ\?—TH and with Hy in place
of H. After, let us say, k steps the algorithm has produced z; so that an
approximative solution Z, = x_; + x is obtained. Then another rotation
parameter 6; is chosen, in case of stagnation for instance, and the scheme is
restarted by using the just computed Z; as an initial guess. We will consider
this more below.

Let us formulate, aside form the basic Algorithm 1, an algorithm resulting
from Remark 6.

Algorithm 2. “For solving Nz = b".

For N = e ®Hy +ie Ky € N and an initial guess x_, set r = b — Nz_q,
% = e 41 = 0 and o = (b, Ngo)qo-

For j =1 to k compute
q; = Hoqj—1 — (HoNgj—1,Ngj—1)qj—1 — (HeNgj—1, Ngj—2)qj—2
4

9% = INg

zj = zj1+ (b, Ngj)g
end for.
.Cf?k =T_1+ .
Rstart with a new 6.

Remark 7. The usage of restarts and rotations suggested in Remark
6 removes the nongenericity problem of N € A not being a polynomial of
its Hermitian part. A simple way to achieve this is to monitor the size of
updates (b, Ng;)g;. If the updates remain under a threshold for a number a
consecutive steps and the approximative solution is not sufficiently accurate,
then another 6 is introduced and the so far computed approximation is used
as an initial guess. Thereby no gained information is lost.

Remark 8. In a nearly nongeneric case the convergence can slow down
for a while unless rotations and restarts are used. This is readily explained
by the bound (23) and Corollary 6. Namely then the Hermitian part of N
has has close eigenvalues and therefore the approximation polynomials p;
and py of Corollary 6 may need to make violent turns over a short interval
in order to approximate R(A™') and I(A~') well. We strongly recommend
using restarts and rotations in these cases. The convergence can be very good
with extremely thick restarts combined with random rotations, see numerical
examples of Section 4.

Remark 9. As with the original the Hermitian Lanczos method, also Al-
gorithm 1 suffers from loss of orthogonality (of vectors {Ng;}._, in Remark
3) resulting from finite precision and short term recurrencies. This is a prob-
lem in eigenvalue approximations in particular. Standard tricks against this
are full-orthogonalization or selective orthogonalization [17, 1]. But then,
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obviously, the memory requirements increase accordingly.

Remark 10. As the underlying minimization problem is (17), also other
information could be extracted from the iteration process, like location of
eigenvalues. An algorithm was derived in [12] and from (21) it is possible to
derive another type of algorithm. We do not consider this problem here.

Let us illustrate Remark 7 more thoroughly with a simple nongeneric
example.

1
0 — .
0 . Thus N is

and b =

0
0
EXAMPLE 2. Let N = 0

O . O O
DO [0 [ D | =00 [ =

O O = O

0 —1
nongeneric as #o(H) =3 < 4 = #o0(N). A simple computation gives

ICs(H; Nb) = K4(H; Nb) = span{

OO O =
O O = O
—

O ONIFN-

Therefore Algorithm 1 yields x3 = and Nzg = so that r =

2 SE sk o o

— r
[N

0
b— Nz = 8 . Next we set qq and z3 to be the intial guess. We
1
2
S

choose 6 = 7 so that according to Remark 6, with go, 3 and Hz, we obtain

0
Ko(Hz; Nv) = K3(Hz; Nr) = span{

)
_ oo O O

o

Thus y, = and Ny, = . In particular, we obtain the solution

Il Dlele. O O
NENI= O O

as N(z3 + y2) =b.

Although also the rotation resulted in nongeneric ez N, the solution was
obtained after one restart. An interesting problem is how to rotate N during
the iteration to achieve the fastest possible convergence. It is interesting to
note that as such, while using rotations, the method is not quite a Krylov
subspace method. As to Algortihm 1, its convergence for Hermitian H is the
same as GMRES and for most rotations of H this is true as well.

Proposition 9 Assume H € H and b € C*. Then the convergence of
Algorithm 1 for solving e Hz = b is independent of 6 € [0,2m)\{3, 2 }.



A HERMITIAN LANCZOS METHOD FOR NORMAL MATRICES 15

Proof. This follows from the property that
KC;(Hg; € Hb) = span{Hb, HHb, ..., H ' Hb}.

as long as 6 € [0,27)\{%, 2*'}. Easiest way to verify this is to diagonalize H
first by a unitary similarity. Thus, by (24), the claim follows. O

To end with, one can argue that solving linear systems involving nor-
mal matrices is too specific a problem. However, the first argument against
this point is that before even considering mastering nonnormal problems, we
have tried to gain understanding of solving systems with normal matrices.
Second, there also arises the possibility of using normal matrices while pre-
conditioning nonnormal problems as they can be solved with modest memory
requirements with the proposed algorithm. Third, minimal decomposition,
i.e., finding for a given A € C**" a splitting A = N + F with a normal
N such that F' is of least possible rank, is also of interest besides from the
point of view of analysis [15]. Namely, whenever the splitting A = N + F
of A is regular, any linear system Az = b, with b € C", can be solved using
inner-outer iterations such that the number of outer iterations depends on
the rank of F' directly. For more details, see [15, 14].

4 Numerical experiments

Next we consider numerical experiments for solving Nx = b. Our matrices
are relatively small as we have prefered well-known examples to illustrate
how Algorithms 1 and 2 extends GMRES and how to use restarts suggested
in Remarks 6 and 7. The computations are performed with Matlab and we
use its syntax while explainig the numerical examples. In all the examples
N € C"™ isnormal and, unless otherwise stated, b € C" is a random complex
vector, that is b = rand(n, 1) + irand(n, 1).

EXAMPLE 3. We start with a very well understood example illustrating
how Algorithm 1 extends GMRES for Hermitian matrices to normal ma-
trices in a continuous way. We compare the convergence for Ny = H =
diag(8(6+randn(600,1))) € C*600 with Hermitian positive definite H and
for a “slightly” bent Ny, that is, for N; = H + ia; H?, with small positive
a;’s. Besides ag = 0, we set oy = 0.01, ap = 0.1 and a3 = 1. Note that for
Ny Algorithm 1 is GMRES. In Figure 4.1 we have depicted the eigenvalues
of Ny, Ny and N, and N3. Note that Ny, N;, Ny and N3 are not close. Still,
from Figure 4.2, where we have plotted relative residuals ||b — Nzy]| /||b]|, we
observe that the convergence of Algorithm 1 is very similar for these matrices.

EXAMPLE 4. This example illustrates the effect of rotations combined
with initial guesses as suggested in Remark 6. We define N via N =
diag([n1;n2;n3;nd]), where nl = 3(5-+randn(100,1)), n2 = 5(—7+randn(100, 1)),
n3 = 4(6 + randn(100, 1))¢ and n4 = 2(—10 + randn(100,1))i. Thus, N €
(CA00x400 and its spectrum lies on the union of z- and y-axis like a “cross”, see
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6000

5000 [~ * 7

4000 - 4

3000 - B

2000 - B

1000 P .

Figure 1: The eigenvalues of the matrices Ny, N1, Ny and N3 of Example 3

Y)Y 0 )

are denoted by 'z’, '0’, '+’ and %’ respectively.

-6

-8+

-10+

-12 L L L L L L L L L

Figure 2: The convergence of relative residuals for Algorithm 1 in log10-scale

for Example 3. The convergence is denoted by '—’, ’—%’, '——" and '—-’ for
Ny, N1 and Ny and N3 respectively.

Firgure 4.3. In particular, N is nongeneric as there are several eigenvalues on
a vertical line, that is, on the y-axis. This is a difficult problem for GMRES
as a lot of iterations are needed. We perform 80 steps which a very large
amount taking into account the dimension. We use the following rotation
choices with Algorithm 2:

20-20 is such that we take 20 steps with H and then rotate by 7 and take
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20 steps with Hz. This is then repeated.

Random-5 is such that we take a random rotation and perform 5 step and
take another random rotation and perform 5 steps. This is then repeated.
8-8 is such that we take 8 steps with H and then rotate by 7 and take 8
steps with Hx. This is then repeated.

In Figure 4.4 we have plotted relative residuals ||b— Nzy||/||b]| of GMRES
and each 3 strategies above.

Let us try to explain the dependence of the convergence on rotations for
20-20 and 8-8. Starting with 8, = 0 means that H, does not posess any in-
formation of the eigenvalues on the imaginary axis. Thus, then the iteration
behaves nearly like GMRES for the Hermitian diag([nl;n2]) and decreases
error in the corresponding subspace of dimension 200. After stagnation,
the corresponding projected problem onto that subspace is approximatively
solved. If a rotation #; = 7 is then made, using the obtained solution can-
didate as an initial guess, then the iteration behaves nearly like GMRES
for the Hermitian diag([n3/¢;n4/i]) and decreases error in the corresponding
subspace of dimension 200.

Note that Random-5 decreases the residual like (full) GMRES.

40

XX

30 : .

20 B

XX 30K

10 B

0| X - SRTROKIN: XONBIBCOMENK - X - - 3¢ X % M DOCRBERAL X —

—-10+ 4

-30 I I I I I I I
-50 -40 -30 -20 -10 0 10 20 30

Figure 3: The eigenvalues of the matrix N in Example 4.

EXAMPLE 5. We let N € C?%9%5%0 tg be the notorious unitary shift and b a
standard unit basis vector. Thus, the origin is surrounded by the eigenvalues
of N, see Figure 4.5. Although being an easy problem for CGN [6], this is a
very diffucult problem for GMRES. It is well-know that the convergence of
GMRES for this starting vector is catastrophic as it makes no progress before
n'" step. As there are no angles to prefer, we use very thick restarts with
random rotations. That is, we use Random-1 and Random-3 strategies

explained in Example 4. The convergence of relative residuals |[b— Nzy||/|b]|
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-3+

-4

-5

-7 I |
0 10 20

30

Figure 4: The convergence of relative residuals for in log10-scale for Example

4. Solid line is GMRES and '——

8-8.

" is 20-20, '—-’ is random-5 and '—x’ is

is depicted in Figure 4.6. Surpricingly, very thick restarting seems to be a

good choice for this example.

Figure 5: The eigenvalues of the matrix N in Example 5.

EXAMPLE 6. We set N = I + 0.1diag(randn(100, 1) + srandn(100,1)) €
C100x100 = A5 opposed to Example 5, this matrix is particularly favourable to
GMRES since N has a very concentrated spectrum around 1. The spectrum
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-8 I I I I I

Figure 6: The convergence of relative residuals for in log10-scale for Example
5. Solid line is Random-1 and '—-’ is Random-3.

is otherwise very unstructured so that there is no direction to prefer with
Algorithm 1 and polynomial interpolation for the Hermitian part can be
troublesome. We use therefore Algorithm 2 with thick restarts by using again
Random-1 and Random-3 strategies explained in Example 4. Observe
from Figure 4.7 that Random-1 wins.

-10F

—12+

14 | I
0

Figure 7: The convergence of relative residuals for in log10-scale for Example
6. Solid line is GMRES, '—-’ is Random-1 and '——’ is Random-3.
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5 Conclusions

In this paper we have derived a Hermitian Lanczos method for solving a
linear system Nz = b involving a normal matrix N. The obtained method
is optimal when measured in a way that resembles the definition of GM-
RES. The algorithm is realizable with a 3-term recurrence and reduces to
GMRES whenever N is Hermitian. Furthermore, rotations and restarts play
an extremely important role in the convergence behavior of the introduced
method. We have illustrated this with numerical examples. If there is in-
formation about the spectrum, then rotations should be chosen such that
parts of the spectrum are well approximated by polynomials if possible. Un-
less there is information about the spectrum of N, we do not know how to
optimally choose rotations as well as thickness of restarts. However, thick
restarting combined with random rotations seems to a very good alternative
then.
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