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1 Introduction

Simulation of a cellular radio network is a prominent tool in testing new
algorithms and optimising the system capacity [1, 2, 3, 4]. Such simula-
tions involve multiple aspects and tend to consume lots of computer time, in
particular, if a large enough grid, comparable with a real network, is used.
Therefore, it would be of interest to know the minimum size of the grid re-
quired to get adequate results. Various aspects of network simulation have
been studied, but no definite answer to the above mentioned question has
been obtained so far.

We present here a method of constructing a minimal grid adopting a
commonly accepted criterion of having the first tier of interference correctly
simulated [4, 5]. This is achieved by use of a revised form of periodic boundary
conditions, also known as wrap-around. The mathematical machinery to be
used is developed rather rigorously, but thereafter the formulation of the
ideas in applications becomes straightforward and compact. On the way to
the applications we also show that some general formulas involved in network
design are readily derived from the somewhat abstract results on tilings to
be discussed first.

The applicability of the general framework of the theory is rather wide,
and similar ideas have previously been exploited in molecular dynamics sim-
ulations [6]. However, the cellular network system possesses some rather
individual characteristics, with which our method works particularly well.
The method has been implemented in the network simulator developed at
Nokia Research Center |1, 2|, and it has been in use in several macro cell
simulations.

The paper is organised as follows. The abstract theory to be used in
applications is treated in Ch. 2. Sect.’s 2.1 to 2.2 fix some basic notation,
whereas symmetry properties of tilings are discussed in Sect.’s 2.3 to 2.4 and
inclusion properties in Sect.’s 2.5 to 2.6. Ch. 3 begins with the principles
of cellular network design and simulation in Sect.’s 3.1 and 3.2. The main
result on optimal grid size is derived in Sect. 3.3 and a concrete example on
applying the theory is given in Sect. 3.4. Some extensions and related ideas
are visited in Sect.’s 3.5 to 3.6. We conclude the paper in Ch. 4.

2 Properties of tilings

The mathematical machinery and notation is presented in this chapter.

2.1 Basic definitions

A tiling is a collection of non-overlapping open bounded sets, the closures
of which cover the plane, and each of which is obtained from any other by
mere translation. (This is a standard definition, see e.g. 7], except for the
translation property, which is not required in general. For our purposes,
however, we are only interested in tilings with this property, so we take it as



a definition to simplify notion. The word tessellation is also used in a similar
context.)

The points covered by the tiling (i.e., all the points of the plane, except
the ones on the boundary of a tile) are called tiling points. Two points a
and b in two tiles of a tiling T, say a € A and b € B, are equivalent in 7T,
if the unique translation mapping A onto B maps a into b. The equivalence
class of a is denoted by [a]. For any tiling point a, [a] consists of exactly
one point in each A € T. Two tilings are equivalent, denoted by T = T, if
the equivalence relations of points induced by these tilings coincide (for all
points covered by both tilings).

The following finiteness property of tilings comes to use: A bounded area
can only have points of finitely many different tiles. Indeed, assume there
were points of infinitely many tiles. Since the tiles are bounded, the whole
tiles would be included in a (possibly larger) bounded domain. But the open-
ness of the tiles implies that they take some (equal) positive area, so infinitely
many tiles would take an infinite area, contradicting the boundedness of the
domain including them.

The equivalence proxzimity P(a) of a point a is the convex domain

{z:Vbela] —{a}:|x—a|] <|z—0|}

of points closer to a than any equivalent point. (The convexity follows from
the fact that this domain is an intersection of half-planes.) Given [a], clearly
every x is in the closure of P(b) for some b € [a], and P(b) N P(c) = O for
b,c € la], b#c.

A neighbour of a is an equivalent point b € [a] — {a} at the closest
distance, i.e., Yc € [a] — {a} : |c—a| > |b— al. This closest distance is called
the neighbour distance D(a). The set of neigbours of a is denoted by N(a).
Any tiling point in any tiling has at least one neighbour, i.e., N(a) # 0, since
certainly there are some equivalent points, and in a bounded region there are
only finitely many, of which some is at the smallest distance.

An open set or a collection of open sets which can be used as tiles in a
tiling are said to have the tiling property.

Several concepts introduced above are illustrated in Fig. 1. In this figure,
P(a) is surrounded by the dashed polygon, N(a) consists of a single point b
and D(a) = D. If the bottom row of tiles were moved slightly to the left,
we would have N(a) = {b, ¢}, and similarly we could have N(a) = {b,d} by
shifting the bottom row to the right.

2.2 Homogeneity

A tiling is homogeneous, if it has the following property: If b is equivalent to
a, then for every tiling point ¢, c+(b—a) is equivalent to c¢. In a homogeneous
tiling the equivalence of a and b clearly follows, if the translation taking a
into b is the same as any of the translations of a tile onto another. Also,
if b € N(a), then o’ + (b — a) is equivalent to ¢’ and we have that D(a’) <
|b—al = D(a), and since the choice of points was quite arbitrary we conclude



Figure 1: Part of a typical tiling.

that D(a) = D(d’) is independent of the point a. Thus we denote by D(T) the
common neighbour distance of all the tiling points of a homogeneous tiling
T. In particular, if a € N(b) then a and b are equivalent and |a — b| = D(b),
but since D(b) = D(a) we find that also b € N(a), and the relation “is a
neighbour of” is a symmetric relation in a homogeneous tiling.

From the homogeneity it also follows, by a similar straightforward ar-
gument, that P(a) and P(a’) only differ by translation for any tiling points
a,a’. Consequently, 7" = {P(b) : b € [a]} is a tiling for any [a]. This tiling is
equivalent to the original homogeneous tiling T, since ¢; € P(ay),cs € P(as)
(where a; € [a]) are equivalent in T’ iff the translation of ¢; into ¢, maps
P(ar) onto P(as) iff ¢ — c3 = ay — ay iff ¢4, ¢5 are equivalent in T, since ay, as
are equivalent and T is homogeneous.

As a final property of homogeneous tilings at this stage, we show that
b e P(a) iff a € P(b), i.e., “is in the proximity of” is also a symmetric relation
in a homogeneous tiling. Indeed, b € P(a) iff the closed disc of centre b
and radius |b — a| does not contain any elements of [a] — {a}. Assume then
that a ¢ P(b), i.e., the closed disc of centre a and radius |a — b| does contain
b' € [b]—{b}. By homogeneity, a+(b—V') € [a]—{a} and a+(b—b") = b+(a—0V')
is in the closed disc of centre b and radius |a — b|, which is a contradiction.

2.3 Polygonal symmetry

A tiling possesses g-gonal symmetry, if the following condition holds: If b is
equivalent to a, then all the points a + (b — a)ei"%r, n € Z, (i.e., the vertices
of a regular g-gon with centre a and one corner at b) are equivalent to a.

In a g-gonally symmetric tiling there are clearly at least g neighbours
for any tiling point a. Let g > 3 and b be one of the neighbours of a and
assume D(b) < D(a). (It is obvious that D(b) < D(a).) It follows from
elementary geometry that then at least one of the g neighbours to b is closer
to a than D(a), which is a contradiction, since these are equivalent to a. (We
essentially use the fact that for equal circles with centres at the distance of
their common radius, the arc of one circle inside the other disc is % > é of the
circumference, and should the other circle be smaller, the above mentioned
arc is of strictly larger proportion, and thus contains at least one of the g



Figure 2: The honeycomb lattice.

neighbours of b.) Thus D(b) = D(a) for all b € N(a).

If ¢ > 3, it follows that there are ezactly g neighbours for each tiling
point a. Indeed, if the number g was exceeded by even one, then the g-
gonal symmetry guarantees that there would actually be at least 2g > 6
neighbours, and the distance between two of these would necessarily be less
than D(a). (This follows from the fact that one edge of a regular hexagon
inscribed in a circle is equal to the radius of the circle, and in any n-gon with
n > 6 the edge is smaller than the radius.)

Now it is easy to inductively extend the pattern of equivalent points to a
by using the fact that each such point has g neighbours at the distance D(a)
at the vertices of a regular n-gon. However, the geometry of this procedure
readily reveals that, for g > 3, only the symmetries with g = 4, 6 are possible,
since otherwise the extending pattern soon violates the fact D(b) = D(a). In
these two particular cases, the equivalence class [a] turns out to be the square
lattice {a+ (m-+in)(b—a)} or the honeycomb lattice {a+ (m+e'5n)(b—a)l,
respectively, with m,n € Z. These cases g = 4,6 of particular interest will
be referred to as square symmetry and hexagonal symmetry, respectively
The latter is illustrated in Fig. 2, where the lattice points correspond to the
crossings of lines. The six neighbours at equal distance from the point a are
also shown. Note that while Fig. 2 describes the lattice of one equivalence
class of points in any hexagonally symmetric tiling, the shape of the tiles
themselves is in no way indicated in the figure.

With g = 4,6, we now know that any point is equivalent to a if and only
if it differs from a by (m + nei%ﬂ)(b —a). Now, given any equivalent points
c1, ¢, let ay, as € [a] be the unique points of [a] in the same tile with ¢y, ¢,
respectively. Thus, due to the translation property of a tile onto another,
co—cp=ay—a; = (m+ nei%ﬂ)(b —a). Conversely, if ¢y, ¢y are any two tiling
points separated by (m + nei%r)(b — a), then a; € [a] in the same tile with
c1 is separated from some ay € [a] by this same translation, and since this
is then the translation mapping the tile of a; onto the tile of ay, and it also
maps ¢; into co, we conclude that ¢; and ¢y are equivalent. Thus any two
points are equivalent in a g-gonal tiling, g = 4,6, if and only if they differ
by (m + ei%n)(b — a), where a and b are some neighbours. In particular, we
find that a g-gonally symmetric tiling, ¢ = 4, 6, is homogeneous.



Knowing how the points of [a] are distributed, it is also clear that P(a)
is determined solely by the condition |z —a| < | — (a + (b — a)ei"%ﬁﬂ,
n = 0,...,9 — 1, and it is easy to see that the domain determined by
such a condition is a regular g-gon. From the results about homogeneous
tilings we conclude that a square symmetric tiling is equivalent to a tiling
by squares, and a hexagonally symmetric tiling is equivalent to a tiling by
regular hexagons. The squares or hexagons in question may be chosen as

{P(b) : b € [a]} for a desired tiling point a.

2.4 Characterization of symmetry

We now have a look at the lower order polygonal symmetries not dealt with
in Sect. 2.3, and with the understanding of these, we obtain a complete
characterization of polygonally symmetric tilings.

It is possible to show that 3-gonal, i.e., triangular, symmetry always im-
plies hexagonal symmetry. Indeed, if we start from one tiling point and its
neighbour in a triangularly symmetric tiling 7 and extend the pattern of
equivalent points, as above, according to the triangular symmetry, we obtain
a honeycomb lattice similar to that with hexagonal symmetry, but with a
sublattice removed. The equivalence class of the point 1 (possibly after a
change of coordinates) is given by [1] = L; — Ly = {m + ne's} — {(1 +
€'5)(k + Le'5)}. This lattice can also be described in terms of the sublattice
as [1] = (Ly + 1) U (Ly + €™). (A picture of the situation will clarify the
argumentation here.) Should the equivalence class include any of the points
Lo, then it would include all of Ly (as a consequence of triangular symme-
try), and we would have hexagonal symmetry. Since the closures of the tiles
cover the plane, a given point ¢ € Ly is in the closure of some A € T, and
we have an a € [1]NA. If a € Ly + 1, then a + 1 € [1], and the tile A+ 1
of a + 1 contains points arbitrarily close to ¢+ 1 € Ly + 1 C [1], which is a
contradiction, since ¢+ 1 is a tiling point and has some open neighbourhood
in its own tile. Similar reasoning applies, if a € Ly + €'5. Thus triangular
symmetry does not exist on its own, but only as part of hexagonal symmetry.

2-gonal, or linear, symmetry simply means that a+ ¢ € [a] impliesa—c¢ €
[a], i.e., that the lattice [a] is the same forward and backward in any direction
from any point a of the lattice. This can also be described as a reflection
property. If a € N(0) and b € [0] is the closest equivalent to 0 outside the
line through 0 and a, then reflection arguments can be used to show that [0]
at least contains the lattice {ma+nb} —{ka+¢b: k, ¢ odd}. Argumentation
similar to the proof that triangular implies hexagonal symmetry can then
be used to show that even the a priori subtracted lattice must be in [0].
Therefore, now that [0] is a simple parallelogram lattice, an argument similar
to that showing the homogeneity of square and hexagonally symmetric tilings
shows that the linearly symmetric tiling is homogeneous. (The converse of
this statement is trivially true.)

We can again apply the property of homogeneous tilings that the set
{P(a) : a € [0]} gives a tiling equivalent to the original, but we can also
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Figure 3: Characteristic parameters of symmetric tilings.

construct explicitly an even more convenient equivalent tiling. Let us fix the
coordinate system in such a way that the parallelogram lattice above is of
the form {ma+n(Aa+i3)}. To each a € [0] we associate the rectangle with
vertices a+ %aii%ﬁ. We claim that the set of these rectangles forms a tiling

T equivalent to the original T. The proof is really quite similar to the proof
of the same property for equivalence proximities, so we omit the details.

We now have a complete characterization of all homogeneous plane tilings.
Up to equivalence and the choice of coordinate axes, all homogeneous tilings
are parametrised by the three parameters «, § and A as in Fig. 3, where «, (3
are the lengths of the edges of the rectangle, and A\, 0 < A < %, indicates
how much one row of rectangles has been shifted relative to another. (We
can always switch from A to 1 — A after rotating the plane by 7 radians; this
is the reason for A < I instead of A < 1.)

We note in particular that square symmetry is described in terms of these
parameters by a = 3, A = 0 and hexagonal symmetry by o : f = 2 : /3,
A=1.

2.5 Inclusions

It is possible to introduce a partial ordering in the set of all tilings in a
convenient way, which will be discussed here. Given two tilings, T and 77,
we say that T’ is included in T, denoted by T’ < T, if the equivalence of any
two points in T implies equivalence also in J’. In particular, this is the case
if each of the tiles of T is composed of N tiles of T’ (similarly located with
respect to each other), where N € Z*. This gives some justification for the
name. It is also obvious that T; < Ty and T, < T3 imply Ty < To.

We also say that T’ < T if equivalence in T implies equivalence in J”
for all common tiling points (i.e., in the set (UT) N (UT")). It follows that
the two conditions Ty < T3 and T3 < T4 hold simultaneously precisily when
T1 = T5. By using equivalent tilings, where each tile A € T is replaced by
AN (UT") and vice versa, we can assume, without loss of generality, that all
tiling points are common to both tilings in any particular inclusion to be
considered. This is henceforth understood to be the case here, in order to



simplify notion.

Denoting the equivalence class of a in T by [a]y etc., we have T' < T iff
b € [aly = b € [a]y, ie., [a]y C [a]ly. If we have [a]y = [a]y then T = T
Thus we assume that [a]3 3 b ¢ [a]y, but then we must also have [b]g C [a]5.
It follows that the equivalence classes of T are of the form [a]y = Ula;]s.

Let us now take instances a; € [a;]5 for each i so that a; € A € T, for the
same tile A. (This is possible, since each tile contains exactly one element
from each equivalence class.) Now a; € [a]y are distinct but equivalent in
J’, and thus must lie on different tiles A} of J’. Suppose first that the union
[a)7r = Ula;]7 is infinite. But then there are infinitely many tiles A} € T” at
least partly on the tile A € T, and this contradicts the finiteness property
of the tilings. Thus we have a finite union [a]y = UY  [a;]7, where [a;]5 are
disjoint.

We claim that the N in the expression above is independent of the choice
of a. Indeed, assume [a]; = UN[a;]y and [b]y» = UM, [b;]y. Consider then
a number of tiles of 7. Each of these tiles contains a unique element from
each [a;]7 and each [b;]7, thus in total N elements of [a]y and M of [b]g. We
then take a disc and let the radius tend to infinity, so that the ratio of the
number of elements of [a]y inside the disc to those of [b]y will tend to 2.
Now this ratio must be 1, since each tile of T’ contains exactly one element
of [a]y and one of [b]3:. (We use the fact that both T and J” are tilings, in
particular essential covers, of the plane.)

Consider further the a; € A € T and let A, € T’ be the tile of @; in 7. Now
each tile of J” is uniquely related to exactly one element of [a]y = UY  [a,],
i.e., to exactly one element of one of the [a;]y, i = 1,..., N. The elements
a; € [a;]y are, in turn, uniquely related to the tiles A} constructed above for
A € T. Thus taking all the tiles A, € T’ for each i = 1,...,N and A € T,
constructed as above, we get exactly once all tiles of T”.

For each A € T, we then take the union UY,A!. From the previous
remark it follows in particular that all these unions form an essential cover of
the plane. We claim that these unions form a tiling J. Indeed, if B,C' € T,
then the translation of B onto C' takes in particular each b; € [a;]y N B into
¢; € [a;]yNC. Thus this one translation takes each Bj onto the corresponding
C!, where these are constructed as above. Therefore, the translation of B
onto C' takes UY ;B! onto UY,C!. This means in particular that each U} A
is obtained from any other by mere translation, and Tis a tiling.

Assume further that T is homogeneous. Then ¢ € A}, d € B; are equiva-
lent in T iff the translation of ¢ into d maps UA] onto UB; iff ¢ —d = q —Zj
and k = j iff ¢,d are equivalent in T, since 6k,gk are equivalent in 7T, and
T is homogeneous. Thus T = T. (Note the similarity with the argument
which was used to prove the equivalence {P(b) : b € [a]s} = T when T is
homogeneous.)

Summarising, if 7/ < T, then there exists a tiling T > T’ such that each

! A reader familiar with measure theory should observe the analogy between equivalence
of tilings and almost everywhere equality of measurable functions.



tile of T consists of N tiles of T’, and the area of a tile of T is equal to the
area of a tile of J. The integer IV will be referred to as the tiling ratio. If T
is homogeneous, then T = 7.

2.6 Symmetric inclusions

Let T,7" be g-gonally symmetric and 7' < T. We call this situation a g-
gonal(ly symmetric) inclusion. It is assumed throughout this section that
g = 4,6. Since g-gonal symmetry implies homogeneity, T = %, where each tile
of T is a union of N tiles of J’. Since we are concerned with the equivalence
relations induced by the tilings, we assume without loss of generality that
T = T, i.e., that T has the above mentioned property. Furthermore, we
assume that 0 and 1 are neighbours in J’ (possibly after a new choice of
coordinates), whence any two points are equivalent in J" if and only if they
differ by m+nei277r. We can finally assume that tiles of T’ are regular g-gons,
since in any case 7’ is equivalent to such a tiling.

Since equivalence in T implies equivalence in J’, neighbours in T are
separated by m + ne'’s for some m,n € Z, i.e., we obtain the following
neighbour ratio:

D(T)
D(T")
where s4(m,n) = m? + n?, s¢(m,n) = m? + mn + n?

It follows from elementary geometry that one tile of T has the area d? in
the square symmetry and ?(P in the hexagonal symmetry, where d = D(T).
We denote ay =1, a5 = @

Now each tile of T is essentially a union of NN tiles of T, so N is the ratio
of the areas of tiles in the two tilings. From above, we have another way of
expressing this ratio, and we obtain

a,d?
ozgd’2
Thus only tiling ratios of certain form are possible.

Conversely, given N = s,(m,n) and a g-gonally symmetric tiling 7’ (with
points 0 and 1 neighbours after a change of coordinates if necessary), take
the g-gonal lattice of points

{(k+ 0" m+ne' ) k0 € Z}

= |m+ne's | = \/sy(m, n),

N =

= 54(m, n).

and form the equivalence proximities of these points as if they were an equiv-
alence class of a tiling. These indeed give us a g-gonally symmetric tiling T,
and it follows rather readily that 7’ < J. Thus g-gonal inclusions are possible
if and only if the tiling ratio is s,(m, n) for some m,n € Z. In fact, it is easy
to see that all possible ratios can be obtained with non-negative m, n.

By considering successive inclusions, i.e., Ty < Ty < T3, it follows immedi-
ately that the product s,(m,n)s,(k, ¢) is a proper tiling ratio. Using the pre-
vious results, this can also be verified algebraically; in fact, s4(m, n)s4(k, () =
sg(mk — nl,ml + nk) and s¢(m,n)se(k, l) = s¢(mk — nl, ml + nk + nl).
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3 Applications

We now show how the abstract theory is applied to the design and simulation
of cellular networks.

3.1 Cellular network concepts

We start with the definition of the main components of a cellular network,
making use of the concepts introduced above. See [5] for a more thorough
and less mathematical introduction to these matters.

A site is the area served by one base station (BS). In practice this area will
be of varying irregular shape and overlap other sites, but in our theoretical
considerations we will assume that the sites are fixed domains having the
tiling property with hexagonal symmetry.

Each BS uses a particular set of radio frequencies (RF’s) to communicate
with mobile stations (MS’s), this being a subset of all the RF’s allocated to a
given operator, say. We will in particular treat the case of simple frequency-
division multiple access (FDMA) with a frequency plan in which any two BS’s
either use exactly the same RF’s or have no RF’s in common. A macro cell
type (non-urban) environment shall mainly be considered, with no landscape
structure other than the BS’s.

In the context of cellular networks, the significance of the notion of equiva-
lence as defined above lies in the fact that the same MS’s at equivalent points
in the network are in a similar position in their relation to the surrounding
network. In particular, two MS’s at equivalent positions in their sites are at
the same distance from their serving BS’s, and other physical interpretations
of equivalence will also emerge below.

From the properties of tilings above, we know that the hexagonally sym-
metric sites are now equivalent to sites exactly of regular hexagonal shape.
This is the usual assumption in theoretical network design [5], and we now
see that the a priori more general assumption of hexagonal symmetry is in
effect the same. We can thus equally well use the conventional assumption.

A cluster is a collection of sites, such that each RF set allocated to a given
operator is used exactly once by the BS’s of the cluster. We further assume
that the clusters, too, have the tiling property with hexagonal symmetry.
Now the same RF is used at equivalent points of two clusters, so the notion
of equivalence is directly related to the locations of potential sources of co-
channel interference (CCI). It is also clear, if we denote the tiling consisting
of the sites by & and that of clusters by C, that we have a hexagonal inclusion
S <C.

Note that if we take the sites to be of hexagonal shape, a cluster defined as
a union of IV of these hexagons will not usually be of the same shape although
there is an equivalent tiling by hexagons. Now the definition of equivalence
and inclusion in rather general terms above offers significant flexibility in
notion. In most of the cases the exact shape of the tiling is irrelevant and
all that matters is the equivalence relation induced. The idea of tiling is

11



nevertheless useful for visualization and geometric intuition.

In the context of cellular networks the tiling ratio N between 8§ and € is
referred to as the cluster size, and it is well-known [5], and also shown above,
that possible values are exactly all

N = s6(m,n) = m* + mn +n’.

Since the equivalence in C is related to frequency reuse (FR), i.e., the
use of the same RF’s in the network, the neighbour distance in € is called
the mean reuse distance D = D(C). The site radius R (i.e., half the largest
diameter of a hexagonal site) is related to D(8) by R = %D(S), which
follows from elementary geometry. The formula of neighbour ratio can now
be written in the form more common in network design [5]:

D
— =V3N.
R

We can also consider the case where 120°-direction antennas are used by
the BS’s. The area served by one direction antenna is called a sector or cell.
In this case it is common to assume that the sectors are of hexagonal shape [5],
and it is clear that we could as well assume just hexagonal symmetry, which
yields an equivalent situation. In this case, each site is composed of three
hexagons, but 3 = s¢(1,1) is a proper hexagonal tiling ratio, and thus the
sites are still equivalent to hexagons, and clusters can be defined exactly as
before. If the tiling formed of all the sectors is denoted by &', we now have
successive hexagonal inclusions §' < § < €.

If N is the number of sites in a cluster (i.e., the cluster size) and M
is the number of FR sets in use (which equals the number of cells), then
the expression N/M is called the FR ratio. Of course, with omnidirectional
antennas we have M = N, and with 120°-direction antennas M = 3.

MS’s at equivalent positions in two sites are not only at the same distance
but also in the same direction from the serving BS’s, and thus receive equal
power, given that the direction antennas at the BS’s are identical and the
same power is transmitted.

3.2 Network simulation

Computer simulation is the most common tool used in evaluating system per-
formance in a cellular network [3], and there are numerous articles touching
some side of the subject. Various concepts involved, including the question
of grid size and wrap-around technique of our interest here, are treated on
a general level in [4]. Important simulation aspects falling outside the scope
of the present work are also discussed in [2, 3, 8]. A review of some existing
(either commercially or freely available) network simulators is found in [9].
One of the basic problems in simulation models is the fact that the sim-
ulations are limited to a finite area with strict boundaries due to obvious
technical reasons. The whole simulation area is referred to as the grid G.

12



If the grid has the tiling property, then a simulation field virtually without
boundaries could be obtained by constructing the corresponding tiling § and
using a mobility model in which a MS can freely move across the boundary,
but is then shifted to an equivalent position on the grid G.

The main concern is the calculation of received powers (both desired and
interfering), and this is where problems occur with a simple grid, since no
interference is received from behind the boundaries, and thus MS and BS
units close to the edges in the simulation tend to perform better than they
actually would. As a solution, we could consider an equal transmitter to
each one on the grid G at the equivalent positions, and so power would be
received also from behind the boundaries. For these power transmissions to
match with the configuration of the network inside the grid G, it is necessary
and sufficient that equivalence in G implies equivalence in C, i.e., € < G.

The method of simulation outlined above is known as wrap-around [4],
and a grid which can be used as a tile in a tiling § > € will be referred to as
a wrap-around grid. For practical reasons, it is required that the tiling G be
homogeneous. (Otherwise, with the mobility described above, a MS could
move from point a to @’ € [a]g to return to the same point, but the equal and
parallel route from b to b+ (a’ —a) would not take another MS to the point of
its origin. Thus, two MS’s moving at equal speed to the same direction would
not remain at the same relative displacement! The homogeneity assumption
ensures that such bizarre effects do not occur, and things work in accordance
with intuition. Luckily, a simulation on a homogeneous tiling is also much
easier to implement.)

With our characterization of homogeneous tilings, we hence know that
the proper tilings applicable to wrap-around are exactly as in Fig. 3. Con-
ventionally, boundary conditions with A = 0 have been used, but we will
soon see that this is not the optimal way.

3.3 Optimal grid size

In a finite grid, interference beyond the grid border will not take place. Of
course, interference sufficiently far away will not be of significance. The
problem of deciding the grid size is about where to draw the line; it is also
a significant matter, since the simulation complexity increases rapidly as a
function of the grid size (if the density of BS’s and MS’s is preserved). Since
the simulation basically deals with interactions between objects, and the
number of possible pairs is %n(n — 1) when the number of objects is n, a
dependence of order 8(n?) is expected. Expressed in terms of the length ¢ of
the grid (e.g. of square shape), this becomes (/*).

It is quite commonly accepted a principle [4, 5] that the so-called first
tier of interference is necessary and sufficient to yield sufficiently accurate
results. If a is the source of the signal of interest to a given unit, then the
first tier of interference is N(a), where the neighbours are taken in the sense
of €, i.e., the closest locations, where the same RF might be in use. This
definition can be extended to the tier of order n in an obvious fashion, and
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in the hexagonally symmetric tiling €, the name “tier” is in consistence with
intuition. It is easy to verify that the tiers of order 1, 2, 3 contain six potential
CCI’s, each, whereas the fourth tier already has 12.

In order to construct a grid consistent with the above mentioned principle,
we thus need at least parts of seven clusters to be in the grid so as to have
the six CCI’s of the first tier and the source of the signal of interest for a
given unit. From the inclusion results it follows that G is equivalent to a
tiling G, where each tile of G consists of n > 7 tiles of €. Hence the absolute
minimum grid would be one consisting of seven clusters, six forming a “tier”
around the centre one.

Without using wrap-around, problems would still remain with the border
clusters, which do not have the full tier around them. This is, however, over-
come with wrap-around, and it turns out that the above mentioned minimum
grid can always be realized. This follows from the fact that 7 = s¢(2,1) is
a valid hexagonal tiling ratio, and thus we can form a hexagonal inclusion
g>¢C

With the wrap-around technique, we now have infinitely many equivalent
signal sources corresponding to each one on the grid G. We must then decide
which of these equivalents to use to obtain the maximum benefit of wrap-
around. (Always taking the one on G corresponds to not using wrap-around
at all.) Tt would be natural to take the one from which the propagated signal
is the strongest. When omnidirectional antennas are used, this is the same
as to take the source of interference b such that the receiver a € P(b). In a
homogeneous tiling (such as G), this is the same as b € P(a), and thus we want
to take, for each interference source b, the equivalent b € [b]g N P(a). Recall
that all the equivalence proximities {P(a) : @' € [a]g} form a tiling equivalent
to §. The algorithm to find the correct equivalent now only involves some
equivalence-preserving shifts, which can be implemented easily. With such
a solution, each unit experiences interference as if it was in the centre of a
hexagonal grid, which exactly includes the first tier of interference.

Using the fact that a tiling by regular hexagons is equivalent to a tiling
by rectangles, the simulation as described above can even be realized on a
rectangular grid, which is convenient in view of the implementation.

3.4 An example

We now demonstrate with a concrete example how the ideas discussed above
can be exploited in practice to construct a minimal simulation grid.

Suppose that we wish to simulate a network with FR 3/9. The building
blocks of the network are now as in Fig. 4. According to the theory, the
minimal simulation grid will then consist of seven of the 3-cell (9-sector)
clusters, and two copies of such a grid are shown in Fig. 5. The one with
stronger lines will be the base of our simulation grid, and the other one is
just one of the six surrounding tiles in the tiling G.

Let O be some point in the base grid. The choice of this point is quite
arbitrary, but it is practical to take a point which is related to the geometry
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Figure 4: Sector, site and cluster in FR 3/9 with a typical FR pattern.

of the sites in a simple manner, such as the centre of the centre cluster here.
The equivalent neighbours of O are labelled A through F. We may draw
the segments OA through OF, and the equivalence proximity P(O) will be
determined by the perpendicular bisectors of these segments. It is easy to
see that these bisectors coincide with the lines AC', BD, CE, DF, FA and
FB, and P(0) is then the regular hexagon with vertices G through L as in
Fig. 5.

The transformation of this hexagon into a rectangle can be done following
Sect. 2.4 or as in Fig. 5, where the final grid is the rectangle JLM N. Here
M and N are the points of intersection of the line through H parallel to JL
with the lines F'B and EC| respectively. The empty area inside this rectangle
is not, of course, left empty, but sites are placed there as they would appear
in the tiling by copies of the base grid.

We observe that the locations of the BS’s are typically not related to
the new coordinate system (induced by the directions of the edges of the
rectangle JLMN) in any simple manner after the two transformations. It
requires some straighforward plane geometry to find the new coordinates.
This needs only to be done once, when the grid is constructed, so that it
does not affect the computational complexity in any way.

The minimum grid for FR 3/9 constructed here has 7 x 3 = 21 sites,
and the similar construction for FR 4/12 yields a grid with 7 x 4 = 28 sites.
In [4] it was claimed that 48 sites is a minimum for both FR 3/9 and FR 4/12
(with the same criterion of the first tier as here), but this depends, of course,
on sticking to the conventional form of wrap-around. With our method we
could, in fact, get the correct interference from two closest tiers with just 39
sites with FR 3/9 (see Sect. 3.5), and even this is clearly less than the 48
sites in [4].

3.5 Different cellular systems

Should we at some point want to get the interference from more tiers than
just the first one, the extension of the above consideration is straightforward.
For instance, for 2 or 3 tiers we require that the grid be composed of 13 or
19 clusters, respectively, and the inclusion results imply that these can be
realized.
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Figure 5: Grid construction for FR 3/9.

It is also of interest to simulate other than pure FDMA systems. The
use of time-division multiple access (TDMA) causes no special problem as
such, since the above considerations apply during each fixed time slot, and
the equivalence relations are preserved, although different connections are
active during different time slots. Code-division multiple access (CDMA),
in which all connections can operate on the same RF, can also be handled,
once we realize that a cluster in the sense of the above considerations is
now the same as a site, and thus we just have a special case with cluster
size N = 1. There could also appear some other ways, possibly related to
the code used in separating connections, of determining the most significant
sources of interference, but we will not treat this question further.

It should be noted that when no RF separation is made between uplink
(MS to BS) and downlink (BS to MS) transmission, it is also possible to
have interference between two MS’s or two BS’s, and significant CCI may
occasionally appear closer than the first tier of interference. (Interference
modelling for simulation purposes in such a case is discussed in [8].) However,
this definitely does not reduce the CCI from the first tier, and it is still
assumed that this tier is necessary.

Extra considerations are needed when dealing with T/FDMA systems
using frequency hopping (FH). When FH is used, the allocation of RF’s
changes from a time slot to another, so that the CCI’s will not stay at fixed
locations, and the definition of equivalence as used above is not related to the
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RF’s as strictly as before. Neither will there be a fixed first tier of interference,
which was the crucial part in the above considerations. However, we can still
define a cluster as an area of sufficiently many sites, so that the total number
of RF sets used in one cluster is equal to the overall total of RF sets allocated
to the operator. In such an area we typically expect one CCI, although its
location can be other than the equivalent position. Thus we could still do
with seven clusters, which ensure the presence of the six potential CCI’s to
a MS at a in the clusters containing the points N(a).

If directional antennas are used in BS’s, the definition of the first tier of
interference from the point of view of a MS also becomes somewhat fuzzy,
since the variation in antenna gain to different directions is typically large
enough to make the BS-CCI’s in the second tier with the antenna directed
towards the MS more significant than the BS-CCI’s in the first tier with
opposite orientation. Thus the optimal way of exploiting wrap-around would
now require taking the equivalents of the CCI's from a domain other than
the hexagonal equivalence proximity, which is evaluated quite easily. This
would cause quite a lot of complications, but the above approach still yields
a reasonably good solution, though not absolutely optimal as before. But
if we accept the first tier to be sufficient (which is the case in [4]), we still
have a solution. It is nevertheless worth pointing out that the exploitation of
the gain pattern of the directional antennas could yield some enhancement,
unless it gets too complicated.

If we wish to add some structure to the landscape, extra considerations
are also needed. No sudden changes in the environment should be caused by
the boundary conditions, but the landscape on two sides of an edge of the
wrap-around grid should match smoothly. This is analogous to the require-
ment € < G, which in effect states the same thing for the FR plan and BS
locations. This point becomes crucial in particular in micro cell type (ur-
ban) simulations, where MS’s typically move in street canyons, which should
match on the border with the streets on the other side of the grid.

3.6 Further remarks

The importance of different boundary condition geometries in the context of
molecular dynamics (MD) simulation was already recognised in [6]. These
simulations, of course, involve three dimensions, but it is readily observed
from Sect.’s 2.1 and 2.2 that all the basic definitions of tilings and ho-
mogeneity immeadiately extend to higher dimensions. Indeed, the two-
dimensionality above only occurs in the terminology, such as discs rather
than balls. This is even the case with inclusions (Sect. 2.5), although this
part of the theory appears to be more connected to the cellular networks,
where it plays a prominent role. The notion of symmetry does require some
reconsideration in three dimensions, but this is also achievable when the
regular polygons are replaced by regular or semiregular polyhedra [7].

The particle interactions of interest in MD are typically due to central
forces with an essentially finite range. This is analogous to the problem with
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cellular networks, where the first tier of interference is to be included in the
simulations, but the rest may be ignored. In MD, the corresponding part of
space could be referred to as the ball of interaction, and in order to minimise
the grid size we need to find the smallest solid with the tiling property, in
which the ball can be inscribed.

Thus there is a direct connection to the classical problem of mathematics
called sphere packing |7]. This has been studied, and it is known that the best
possible packing ratio with a regular lattice is achieved by hezagonal close
packing (hep), where the tiles have the shape of a rhombic dodecahedron.
Three dimensional boundary conditions derived from this and other possible
geometries are discussed in more detail in [6].

The packing ratio is the ratio of volumes of the balls and all space, or
equivalently the ratio of the ball inscribed in a polyhedron tile to the whole
tile. In view of the applications to simulation theory, it is the portion of
“effective grid content”. For hcp this ratio is % = 74.05%, whereas a simple
cubic structure would only give § = 52.36% [7]. Similar ratios can also be
computed for plane tilings, now assuming the range of interaction to be a
disc inscribed in the grid. For the square the ratio is T = 78.54%; for the

4
regular hexagon we have ;7= = 90.69%, which is, again, the best possible

2V3

packing ratio of discs on the plane |7]. Thus it is clear that any objects with a
fixed radius of interaction can be simulated in both two and three dimensions
more efficiently, when boundary conditions are derived from the special tile

shapes discussed here.

In cellular network simulation, the method performs even better, as due to
the technical nature of the network, the range of interaction can be regarded
as the hexagon, as discussed above, so that the approximation of the effective
range is in fact exact. We should note, on the other hand, that the hexagons
are used in network design exactly for the reason that they approximate a
disc so well [5], and our method works so nicely, since there is no further
need for approximation.

A fascinating observation from applications to both cellular networks and
MD is the fact that the optimal periodic boundary conditions in some sense
reflect the geometry of the objects simulated: in the former, the BS locations
and the channel allocation plan, in the latter, the crystal structure of matter.
In a sense, the solution is very natural.

There is another interesting observation related to the topology of wrap-
around: The conventionally used periodic boundary conditions (in 2 dimen-
sions) can be visualised by folding the (rectangular) simulation grid in 3
dimensions as sketched in Fig. 6. The optimal wrap-around in the plane can
be similarly visualised, except that then the points A and N in Fig. 6 must
be joined with M and B, respectively, not with B and M as in the figure.
The surface so obtained will be the famous M&bius strip [7].
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Figure 6: Illustration of wrap-around.

4 Summary

New kinds of simulation methods were considered, based on the mathematical
theory of tilings, which gives a convenient description of some of the relevant
aspects of cellular networks. These extend the ideas involved in the well-
known simulation principle of wrap-around, which is used to overcome the
effects of a finite grid. We found that certain “natural” periodic boundary
conditions can be used to reduce the size of the simulation grid in network
simulations. The results show that with the criterion of having the first tier of
interference correctly simulated, the minimal grid consists of seven clusters,
and such a grid can always be realized with the techniques discussed herein.
When T/FDMA with omnidirectional antennas is simulated, our solution
cannot be improved, but in some other cases, taking into account special
properties of the system could yield further enhancement.
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