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1 Introduction

Consider the nonlinear diffusion problem

Up — Ugy = —U P, x € (=L,1), te(0,7),
u(z,0) = ug(x), = €11, (1.1)
w(Elt) =1, telo,T).

Here p, | and T are positive constants, the initial function satisfies 0 <
ug(x) < 1 and uj — ug? < 0. This type of reaction diffusion equation with a
singular reaction term arises in connection with the diffusion equation gener-
ated by a polarization phenomena in ionic conductors [18]. The problem can
also be considered as a limiting case of models in chemical catalyst kinetics
(Langmuir-Hinshelwood model) or of models in enzyme kinetics [9], [26].

It is known, see (|29] p.34 Th.3.3.), that the equation (1.1) has a local
unique solution in a set (0,¢.) x (—I,). This solution can be continued until
t <T,where T'=inf {7 > 0 |limsup,, .4, (u(z,t) + @) = oo}. It is
also known that (|29] p.41 Th.3.8.) u(z,t) is a C*°-function with respect to
x and tin (z,t) € (—1,1) x (0,T).

The equation (1.1) has been extensively studied under assumptions im-
plying that the solution u(x,t) approaches zero in finite time. The reaction
term then tends to infinity and the smooth solution ceases to exist. This
phenomenon is called quenching. We say that a is a quenching point and
T is a quenching time for u(z,t), if there exists a sequence {(z,,t,)} with
x, — a and t, T T, such that u(z,,t,) — 0 as n — oc.

For the problem (1.1) it is well-known that for sufficiently large I quench-
ing occurs in finite time [1], [2], [22]. It is also known that the set of quenching
points is finite [15]. See also review articles [19], [23].

A primary interest for the problem (1.1) has been the analysis of the local
asymptotics of the solution as ¢ T T in the neighborhood of the quenching
point. In particular, it has been shown that the quenching-rate satisfies

%u(x,t)(:r — )7V — (1 4 )/ (P, (1.2)
uniformly for | — a| < Cv/T —t. This result was first established by Guo
[15] for p > 3, and subsequently generalized to p > 1 by Fila and Hulshof
[6]. For the weaker singularity 0 < p < 1, (1.2) has been shown in [17|. The
result (1.2) for higher dimensions has been obtained in |7] for cases p > 0.

In this paper the quenching problem is studied for the equation

Uy — Uge = In(au), z e (=1, te(0,7),
u(z,0) = ug(x), = €11, (1.3)
w(Elt) =1, telo,T),
where a € (0,1) and uy € (0,1]. The reaction term f(u) = —u? in the

equation (1.1) is thus replaced by a weaker logarithmic singularity f(u) =
In(au).



In the equation (1.3), an essential feature is the contest between the
linear diffusion term u,, and the nonlinear reaction term f(u) = In(au). If
the dissipative diffusion term is dominant, then there is no quenching. Thus
the nonlinear reaction term can achcieve quenching. Because the reaction
term is now much weaker than in the equation (1.1), it is not obvious that
quenching can happen. The first problem is therefore to clear up, whether
quenching may at all occur?

It is assumed throughout this paper that the initial function satisfies

ug(x) + In(aug(x)) <O0. (1.4)

This technical assumption guarantees that u(x,t) is decreasing in time. In
Section 2 we show that quenching is possible, i.e.

Theorem 1.1. For [ large enough, the solution u(z,t) of (1.3) quenches in
finite time.

The proof of this theorem is based on the fact that the stationary problem
corresponding to the equation (1.3) has no solution, if [ is sufficiently large.

In Section 3 it is studied how the weakening of the singularity affects the
set of quenching points? It is known [10] that for a reaction term f(u) = —u~?
the z-derivative of the final profile u(x,T) at the quenching point has a
singularity when p > 1 and is smooth (u,(a,T) = 0), when p € (0,1). Can
this regularity be strengthen in the logarithmic case so that u,(z,T) = 0 for
all x € (¢,b) C [—1,1], in other words can quenching take place on a whole
interval?

The following result tells us that the situation does not qualitatively differ
from the situation, when we had the power-like singularity.

Theorem 1.2. Suppose that u(zx,t) satisfies (1.3) and that (1.4) holds. Then
the set of quenching points is finite.

The proof is based on the general method for certain parabolic equations
developed by Angenent [3]. It is first deduced, using this method, that u,
cannot oscillate, when the quenching point is approached. Then it is shown
that there is a time ¢* such that there is a finite number of local minima
with respect to x after t*, and that this number is constant in time. Finally,
one shows that quenching cannot occur on the boundary and that the set
of quenching points is finite. The proof is essentially the same as Guo’s [15]
(also adopted from [3]) for the stronger singularities f(u) = —u~?.

In Section 4 the local asymptotics of the solution near the quenching point
is studied. The main result of this paper is proven:

Theorem 1.3. Let u(x,t) be the solution of the equation (1.3), where ug is
even, uy(r) > 0, ug(x) € (0,1] and (1.4) holds (r = |z|). Assume that u(z,1)
quenches at (0,T) for some T < co. Then

1 u(@t)  gr

lim(1 + ———
tlTIYEI( * T-1t), In(ar)

uniformly, when |x| < C\/T —t, for every C € (0, 00).

) =0, (1.5)



This theorem can also be proved in a somewhat stronger form

Corollary 1.4. Let u(z,t) quench at (a,T), with an initial function ug that
satisfies ug(x) € (0,1] and (1.4). Then

1 u(@t)  gr
lim(1 4+ —— =0
tlTr%l( T /0 ln(aT)) ’

uniformly, when |x — a| < CV/T —t, for every C € (0, 00).

The content of Theorem 1.3 can be interpreted by comparing the quench-
ing rate to a solution of the corresponding ordinary differential equation v’ =
f(v) (where f(v) = In(aw), with ’initial’ condition v(7T") = 0), and concluding
that these solutions are asymptotically equal in the region |z—a| < Cv/T — t.

Note that Theorem 1.3 is the same as the result (1.2) for the equation
(1.1), if the term In(a7) in (1.5) is replaced by —7 7.

Our proof for a logarithmic singularity is not based on earlier results on
quenching. The proof here uses similarity variables and energy estimates;
in particular observe that our method is different from the earlier versions
to prove the corresponding quenching-rate estimate (1.2). (see Giga-Kohn
[13], [14], Bebernes-Eberly [4], Guo [15]). Especially note that this is a
consequence of the fact that (1.3) does not have the useful scaling property
that the equation (1.1) has.

The rather lengthy proof is further commented and given in Section 4.

Consider now the blow-up problem for the equation

Uy — Vge = af(v) — bvl (1.6)

with Cauchy-Dirichlet data (v is given on boundary and v(z,0) = vo(x)),
when ¢ > 0 and = € Q (bounded). Here ¢, a and b are positive constants,
and f(v) = v? or f(v) = €™ (p and r are also positive constants). Blow-up
means that a solution approaches infinity in finite time. We say that b is a
blow-up point and 7 is a blow-up time for v(z,t), if there exists a sequence
{(zn,t,)} with z,, — b and t,, 1 T, such that v(x,,t,) — oo as n — oc.

The blow-up problem for the equation (1.6) without the damping term
—bv? has been studied extensively [24]. In the problem (1.6), the key question
is to find out how this damping term can affect the possible occurrence of
blow-up, the set of blow-up points and the asymptotics of blow-up. These
questions have been studied in ,e.g., [21], [27], [28].

The equivalence between the quenching problem and the blow-up problem
is well-known [21]. Putting cu = e in the equation (1.3), we get

Vg — Vgy = ave’ — v, xe (=1, te(0,T),
v(z,0) = —In(aug(x)), =€ [-11], (1.7)
v(£l,t) = —In(a), t€][0,T),
Note that quenching for the equation (1.3) corresponds to blow-up in the

equation (1.7). Thus the Theorems 1.1, 1.2 and 1.3 yield the following new
Corollaries



Corollary 1.5. For sufficiently large l, the solution v(x,t) of (1.7) blows up
in finite time.

Corollary 1.6. The set of blow-up points for the equation (1.7) is finite.
Corollary 1.7. Let (0,T) be the blow-up point for the equation (1.7). Then

) 1 < dr
lim =1,
T T =1 Jyay) aTET

uniformly, when |z| < C/T —t.

2 A sufficient condition for quenching

In this Section the possibility of quenching in finite time is studied. There
are two reasons why quenching may not happen. In the first case, we may
have u(z,t) > ¢ > 0, for all ¢ > 0. This means, that there is a solution to
the corresponding stationary equation, which is a subsolution of the equation
(1.3). On the other hand, it might happen, that u(z,¢) > 0 for all ¢ and =,
but that minu(z,t) — 0, as ¢ — oo. This second case is called quenching in
infinite time.

It is known [25] for a general singularity, that u(z,?) quenches in finite
time for [ sufficiently large, provided that the similar stationary equation
does not have a strong solution. We show in Lemma 2.2, that this last fact
holds for the logarithmic singularity.

Lemma 2.1. Let u(x,t) be the solution of (1.3), when x € (—I,1) and
t € (0,T). Suppose that (1.4) holds. Then

(a) u(x,t) <0, when x € (—=1,1) and t € (0,T).

(b) 0 <u(x,t) <1, when x € [—I,l] and t € [0,T).
Proof. Let v(x,t) = uy(x,t), when x € (—=I,1) and ¢ € (0,7). Differentiating
the equation (1.3), we get

1
U — Vg — —0 =0,
Uu

where z € (—1,1), t € (0,T) and + is a locally bounded function.

On the boundary it holds that: v(%l,t) = 0, t € (0,7), and v(x,0) <
0, by the condition (1.4). The claim (a) follows now from the maximum
principle.

The claim (b) follows from (a) and from the fact that uy(z) € (0, 1].

O
Lemma 2.2. When [ is sufficiently large, then the equation
d2
j;f) +In(ag(z)) =0;  g(£l) =1, (2.1)

does not have a solution g € C*(—1,1) N C|—1,1], such that g(x) € (0,1] for
- <x <l



Proof. 1f g € C*(—1,1) N C[—1,1] is a solution of the equation (2.1) then

" 2 9(x)
% +/1 In(ar)dr =C, =z e (=11). (2.2)

If g(z) € (0,1], and because a € (0,1), then ¢”(z) = —In(ag(z)) > 0. So g
is strictly convex, and thus it has one minimum. Denote this minimum point

by z and the minimum by m: ¢(z) = m and ¢'(z) = 0. From the formula
(2.2), we can now see that

/m In(ar)dr = C. (2.3)

From the equations (2.2) and (2.3) it follows that

g(@)" = /m In(ar)dr, (2.4)

g (x) = +{2 /m In(ar)dr}i/2. (2.5)

g(z)

On the interval (-, z), g(z) is decreasing, so an integration of the equation
(2.5) yields

z4+1=— /lm{Q /Tm In(ar)dr} = 2dr. (2.6)

On the other hand, we can conclude from the equation (2.5) that

z—l:/lm{2/Tmln(ozT)dT}_1/2dr. (2.7)

By the addition of the equations (2.6) and (2.7) we see that z = 0.
We have now obtained

= / o / " ln(ar)dry2dr < (). (2.8)

Because [ In(ar)dr=— [ In(ar)dr>—In(e)(r—m) and ,m € (0,1), then
I(m) < M < oo. Chosing [ > M the lemma follows. O

Theorem 2.3. Suppose u(x,t) is the solution of the equation (1.3). Then
for l sufficienly large, u(x,t) quenches in finite time.

Proof. Consider the equation (1.3) with an initial function uy = 1. The
solution of this equation is a supersolution of (1.3). By Lemma 2.2 and [25]
the claim follows. O



3 There exist at most finitely many quenching
points

In this Section we investigate whether the weakening of the reaction term
affects the size of the set of quenching points. Does the fact that f(u) = —u™?
is replaced by the weaker singularity f(u) = In(cou) significantly alter this
size? Is it now possible to have quenching on an entire interval?

The answer to these questions is provided by Theorems 3.7 and 3.8 below.
In these results, we show that the qualitative properties of the quenching set
do not change when a power singularity is replaced by a logarithmic one.

We base our proof on the method developed by Angenent |[3| for the
analysis of the asymptotics of solutions of certain parabolic equations. More
specifically, our proof is essentially that of Guo’s concerning the stronger

singularity f(u) = —u? [15]. To make use of that method possible, our
quenching problem has to be rewritten as a blow-up problem, i.e., in the
form (3.2).

We assume in this Section that quenching happens, and that the assump-
tion (1.4) holds. The quenching time is denoted by T as earlier. By a simple
modification, the equation (1.3) can be written in the form

Up — Uge = €In(u), x € (-1,1), te(0,7),
u(z,0) = ug(x), z € (—1,1), (3.1)
u(£1,t) =1, te(0,7).

Let v be defined by v = —In(au). Then v satisfies the equation

Vy — Vg + V2 — €ae’v = 0, z e (-1,1), te(0,7),
v(z,0) = —In(auy(z)), z e (—1,1), (3.2)
v(£1,t) = —In(a), te(0,7).

By Lemma 2.1, it holds that v > —In(a) in the region A = {(z,t)|x €
(—=1,1),t € (0,T)}. Let also w = vy, then

Wy — Way + 20w, — €1+ v)e"w = 0, x e (—-1,1), te(0,7),
w(x,0) >0, z e (—1,1), (3.3)
w(*l,6) =0, te(0,7)

It follows from Lemma 2.1, that w > 0 in the region A.
The purpose is now to prove the finiteness of blow-up points for the
equation (3.2).
Let
+1 when b > 0,
sgn(b) = 0 when b=0,
—1 when b < 0.

Lemma 3.1. For any a € [—1,1], the limit lim;_,r sgn(v,(a,t)) exists.



Proof. Let a € (—1,0) and Ty < T. Consider the function
w(xat) = U({,E, t) o U(2a -, t)a

when z € (—1,a) and ¢t € (0,7;). Then it follows from the equation (3.2)
that 1) satisfies

wt_¢mm+bl¢m+b2wzoa HS (—1,(1), te (O:TO):
P(=1,t) = —In(a) —v(2a +1,1) <0, t € (0,Tp), (3.4)
Y(a,t) =v(a,t) —v(a,t) =0, te€(0,Tp).

Here by = vg(x,t) — vy (2a—x,t) and by = by(v(x,t),v(2a —x,t)) are bounded
functions. In addition the derivatives of b; are bounded. Let also

Y

80.) =exp(—3 [ (b(e.t)do))i(0. 1)

-1

By the equation (3.4) the function ¢ satisfies

¢t_¢yy+qq5:0: ye (_La)a te (O:TO):
d(—1,t) =(—1,t) <0, t € (0,Tp), (3.5)
¢(a: t) = 07 te (O: TO)

Here ¢(y,t) is a bounded function. Define

_ d)(yat)a -1 S Yy S a,
Ulo,t) = { —¢(2a —y,1), a<y<2a+1,

and

_ Q(y,t), -1 S Yy S a,
Qy.1) = { q2a —y,t), a<y<22a+1.

Then it can be seen by using the equation (3.5), that U(y,t) satisfies the
equation
Uy — Uy + QU =0, ye(—1,2a+1), te(0,Tp),
U(-1,t) <0, t>0, (3.6)
U(2a+1,t) >0, t>0.

Here @) is a bounded function. Denote by z(t) the number of zeros of U on
the interval [—1,2a + 1], so

2(t) = #{y € [-1,2a+ 1} U(y, 1) = 0}.

Concluding now by ref. ([3] Th.D), we have that z(¢) is non-increasing
and finite, when 0 < t < T,. Therefore if there exists a point (o, y) such that
U(yo,to) = Uy(yo,to) = 0, then 2(t1) < z(t3), when t5 < ¢y < ¢;. Because
z(t) = 2m(t) — 1, where

m(t) = #{z € [-1,a];¢(z,1) = 0},



and because Ty < T, then m(t) is non-increasing and finite, when 0 < t < 7.
Furthermore, if there exists a point (g, t) such that ¢ (zo, tg) = ¥z (xg, to) =
0, then m(tl) < m(tz), when ty < tg < ty.

We will now deduce the claim by a contradiction. Suppose that v,(a,t)
oscillates (or reaches zero without changing the sign), when ¢ T 7. The
same is then true for v, because ¥, (a,t) = 2v,(a,t). Thus there exists a
sequence t, T T, when n — oc such that v, (a,t,) = 0 for all n, and because
(a,t) =0, then m(t,11) < m(t,), and

N

m(t;) = Z(m(tz‘) —m(tit1)) + m(tng) > N +m(tng),

for arbitrary N > 1. By this, m(¢;) = oo, which contradicts the finiteness of
m. The lemma is true, when a € (—1,0).

The same proof applies in the case, where a € (0, 1).

Consider now the situation, when a = 0. Then, by the equation (3.2),
the function 1 satisfies

wt_wmm_'_blwm_'—b?w:(]: HS (_150)7 te (07T0)7

W(=1,6) = (0,1) =0, >0, (3.7)

Applying ([3] th. C), we deduce, that m(¢) is non-increasing and finite when
0 <t < T. Furthermore, if there exists a point (zg, tg) such that ¢(xq,ty) =
)y (z0,t0) = 0, then m(t;) < m(tz), when ¢y <ty < t;. We can now conclude
the claim by a contradiction as in the case a € (—1,0).

When a = +1, then v,(—1,¢) > 0 and v,(1,%) < 0. O

Lemma 3.2. There exists a t, € (0,T) such that
n(t) = #{a € [-1,1];v5(a,t) = 0}

is a positive constant for all t € [t,,T). There also exist C'-functions
$1(t), .., Sm(t) from the interval [t., T) to the interval [—1,1], such that s,(t) <
e < Spu(t), and

{a € [-1,1];v.(a,t) = 0} = {s1(t), ..., sm (1) },
when t > t,. Moreover, the limits s; = limpr s;(t) exist for all i =1,...,m.

Proof. |15], p.61.
U

Lemma 3.3. Let sy and s,, be defined as in the previous lemma. Then it
holds that s; > —1 and s,, < 1.

Proof. |15], p.62.

Lemma 3.4. The solution v cannot blow-up, when x = +£1.

10



Proof. Let ¢ be an arbitrary positive constant. Consider the equation

Wy — Wy = 0, z e (=1,1), te(f00),
w(£l,t) =1, t >, (3.8)
w(x,t) = u(z,t), x € (-1,1), t=4.

By writing the equation for w — u, we can see by the equations (3.1) and
(3.8), and by the maximum principle, that w > w, when ¢ € (4,T), and
x € (—1,1). It also holds that w,(—1,t) > u,(—1,t), when ¢t € (,7).
Because v,(—1,t) = —u,(—1,%), and because there exists a constant ¢ > 0
such that w,(—1,t) < —c (see. [12] p.156), when t € (0,T), we obtain that

v (—1,t) > ¢,

for all ¢ € (6,T). Let a = =, By Lemma 3.3, there exists a constant
Ty € (6,T), such that v, > 0 in the set A = [—1,a] x [Ty, T). Consider now
the function

J(z,t) = vy(x,t) — neh(x)e’ ™,

on A, where h(z) = a —z and n > 0 (a constant, determined later). Then
we get from (3.2) for J that

Jy = o + by Ty + by = ae®nh(z)e® @), (3.9)

where by = 2v, and by = —eae”(1+4v). When n is chosen small enough, then
J > 0 on the parabolic boundary of A. By the maximum principle, J > 0 in
A. From this it follows that

vy — nehe’ > 0,

in A. Dividing by e” and integrating this from x € [—1, 1(a — 1)] to a, when
te (Ty, T), we get

v(a,t) a 1 1
/ e Tdr > / ne(a — &)dé = §nc(a — ) > gne(l +a)?>c¢>0,

v(z,t)

by Lemma 3.3. Thus e *@®) > ¢ > 0, when x € [—1,1(a — 1)]. It follows
that v is bounded in the set [—1, 1(a — 1)] x (Tp, T), and v cannot blow-up,
when x = —1. The case x = 1 is concluded similarly. O

Lemma 3.5. Let [a,b] C [—1,1\{s1,...., sm}. If v has a blow-up point ¢ €
(a,b), then limur v(x,t) = oo, either for all x € (c,b] or for all x € [a,c).

Proof. |15], p.64.
U

Lemma 3.6. The function v does not have blow-up points in [—1,1]\{s1, ..., Sm }-

11



Proof. Let sg = —1 and s,,;1 = 1. Suppose that there exists a blow-up point
¢ € (si, Sip1). Let a = 3(s;+c¢) and b = (s;41 +¢). Then thereis Ty € (0,7,
such that v, does not change the sign in the set [a,b] x [Ty, T') (denote this
set by Ry). We can now suppose that v, > 0 in Ry. Consider the function,

J(z,t) = vy(x,t) — neh(z)e’@Y,

when (z,1) € R = [d,b] x [T, T), and h(z) = sin(‘=9") and d € (c, b), also

b—d
n > 0 (determined later). Then by (3.2), the function .J satisfies

71.2

G-

Jp — Jpx + 20,0, + bJ = nee’h{eave’ —

where b = —eae’(1 + v). By Lemma 3.5 there is a T} > Tj such that, if

t > Ty, then
T
v > 2

eave’ > (—b_d) ,
for all z € (d,b). For this T} we can choose n > 0 so small that J > 0, when
t =T and x € (d,b). Furthermore, J > 0, when x = d or z = b, t > T3.
By the maximum principle, we can see that J > 0 in R. Hence v,e™" > neh.
Integrating this from d to b, when ¢t > T}, we get

b
e—v(dt) _ o—v(bit) > ne/ sin(
d

Letting here ¢t 1 T, we can see that the left-hand side converges to zero,
because of Lemma 3.5, but the right-hand side is strictly positive. This is a
contradiction. O

Theorem 3.7. Let the initial function ug in the equation (1.3) satisfy the
condition (1.4). Then the set of quenching points is finite.

Proof. The claim follows directly from Lemma 3.6. O

Thus quenching cannot occur on the whole interval. Theorem 3.7 is of
crucial importance in the proof of the main result 4.2 about the quenching
rate.

If it is also supposed, that ug is symmetric (ug = uo(r) and ug(r) > 0),
then it follows from the uniquness of the solution and from Theorem 3.7,
that the quenching point is (0,7). We formulate this by following Corollary.

Corollary 3.8. Let the assumptions of Theorem 3.7 hold. Let also the initial
function ug be even and uy(r) > 0. Then the quenching point is (0,T).

4 Local asymptotics in the neighborhood of a
quenching point

The main result of this paper is Theorem 4.2.

12



We first prove the preliminary Lemma 4.1 concerning the asymptotics of
the solution u(z,t). This Lemma gives a lower bound as a function of ¢ for
u(z,t) (x € (—¢,¢)), when the quenching point is approached. It also gives
an upper bound at a minimum point with respect to the z-variable. Theorem
4.2 improves this Lemma by giving a pointwise asymptotic behavior of u(z, t)
in the region |z| < Cv/T — t, when the quenching point is approached.

After this Lemma 4.1, the main Theorem 4.2 is formulated and the proof
is commented on.

Lemma 4.1. Suppose that the initial function ug satisfies the condition (1.4),
and that quenching occurs at t =T. Then there exist positive constants 3,1,
and t, such that

(a) uy — BIn(au) <0, when x € (—ly,ly) (the quenching points belong to this
interval) and t € [t;,T).

(b) u; blows up, when u quenches.

(c) uy(z,t) — In(au(z,t)) > 0, when t € (0,T), and z is a local minimum
point of u(x,t) with respect to x.

Proof. Because we know that quenching happens (Theorem 2.3) and that
the set of quenching points is finite (Theorem 3.7), we can apply ([5], p.
1053-1054) to conclude the claim (a).

The item (b) follows directly from (a).

By the local existence theorem (|29] p.34) u,,(z,t) > 0, where z is a local
minimum point of u(z,t) with respect to x, and the claim (c) follows. O

Suppose in the following, that u, is symmetric in the sense that ug = uy(r)
and ug(r) > 0. Then it follows from Corollary 3.8 that the only possible
quenching point is (0,7"). Suppose that [ is sufficiently large, so that we
know by Theorem 2.3 that quenching occurs.

The local asymptotics of u(z,t) as the quenching point is approached,
will be now studied.

Define new variables:

y:

b

T —t
s=—In(T —1),
where z € [<1,1], t € [0,T), y € [~lez*,le72*] and s € [ InT, 00). Then the

inverse functions x = x(y, s) and ¢ = t(s) are well defined.
The function w is defined in terms of these new variables:

u(z(y,s),t(s)) u(,t)
def 1 dr 1 / dr
w(y, 5) Tz t(s) /0 In(ar) T 0 In(ar) (4.1)

The equation (1.3) can now be written in the form

1
Wy = Wy — SYWy +w + F, (4.2)

13



2
T

where F' = -5 1{ oy and (y,5) € (= le2*,le2*) x (—InT, 00). Analogously to
the formula (4.1), we can write F' = F(z(y, s),t(s)) = F'(z,t). The boundary
conditions are

1 1 dT
+le2®,s) =1 s 4.
w(xle2®, s) +e /0 In(ar)’ (4.3)
when s > —In7T'. The initial condition is now
1 eV gr
—InT)=1+ = 4.4

where y € [—le 2% le 2%].

Remark

Note that in the transformed equation (4.2) the nonlinear term F' cannot
be expressed explicitly as a function of y, s and w. For this reason in the
following the variables x and s, or y and ¢ might sometimes appear in a same
equation. Another reason for this procedure is that in some cases it simplifies
notations.

The goal is to prove:

Theorem 4.2. Assume that ug is even, uy(r) > 0 and ug satisfies (1.4). Let
u(z,t) be the corresponding solution of (1.3). Assume that u(z,t) quenches
at (0,T) for some T < oo. Then for any constant C,

(a) w(y,s)—w(0,s)(1-3y?) — 0, as s — oo uniformly with respect to |y| < C,
and

(b) w(0,s) — 0, when s — oc.

Comment on the proof of the Theorem 4.2

The proof of (a) is built on Lemmas 4.3-4.12 and Corollary 4.13. The
statement (b) follows from (a) and from Lemmas 4.14-4.18.

The proof of (a) is made more difficult by the fact that in the trans-
formed equation (4.2) the nonlinear term F' cannot be expressed explicitly as
a function of y, s and w. Furthermore, F' depends on both y and s; therefore
stationary equation cannot be defined. Finally note that on y-intervals we
only get lower estimates on wy,. An upper bound can be obtained only at
y =0 (Lemma 4.4).

At the beginning of the proof of (a) it is shown, that F' — 0 uniformly
on compact y-intervals for the equation (4.2)(Lemma 4.3). Therefore, on
compact y-intervals the equation A" — %yh' + h = 0 can be considered as the
stationary equation for (4.2), when s is large. A particular solution of this
equation is ha(y) = (1 — 34?). Using Lemmas 4.3 and 4.4, we obtain first the
limit of the theorem 4.2 (a) in a weak sense (Lemma 4.5(b)). The important
Lemmas 4.10 and 4.12 show that w(y, s) — w(0,s)(1 — 2y?) < & (¢ > 0) for
large s and for bounded y. The argument of Theorem 4.2 (a) is based on
this, weak convergence (Lemma 4.5(b)) and the estimates of w (Lemma 4.4).
Lemmas 4.6, 4.7, 4.8 and 4.9 are needed in the proof of Lemma 4.10, and
Lemma 4.11 is needed in the proof of Lemma 4.12.
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The idea of the part (2) (the proof of Theorem 4.2 (b)) is to conclude the
claim from the nonlinear term F of the equation (4.2), as s — co. It is known
by the part (1), that for large s the solution is formally w(y, s) & w(0, $)hs(y)
(for bounded y), and then Lw = wy, — sw, + w ~ 0. Concerning the
reaction term F' it is known , that it is zero only at the point y = 0 and
otherwise positive. Thus for a large s*, the reaction term F' hasn’t any
contribution on w(0, s), but for a large y it has a small increasing contribution
on w(y, s). (In fact it is shown, that for large s, the reaction term is formally
F =~ fi(y,s)f2(s), where a%fl(y, s) > 0 (when y > 0) and fo(s) — 0).
Therefore, somewhat later (s = s* + §), the profile of the solution w(y, s) is
formally w(0, s)[ha(y) + g(s)e(y)], where the function €(y) is non-decreasing
(y > 0) and €(0) = 0. Because the solution w(y,s) has to preserve the
asymptotical form obtained in the part (1), the only possibility is, that w(0, )
has to be decreasing, and that the limit value has to be zero.

The equation (4.2) is studied as a dynamical system in the space L2(R).
Then the eigenvalues and eigenfunctions of the operator £ are well-known.
The scaled Hermite polynomials form an orthonormal base on that space,
and the eigenvalue of the second order polynomial hy(y) is zero. By the
part (1), it is known that this polynomial is dominant, as s — oo. So we
obtain that the multiplier function ay(s) of hy in the Fourier expansion of
the function w is asymptotically equal to w(0,s) (Lemma 4.16), and that
as(s) — 0 (see (4.88)).

The domain of the solution w(y,s) of the equation (4.2) is not (with
respect to y) the whole R. Therefore, the above properties of L% and £ cannot
be applied directly to the equation (4.2). This difficulty can be avoided by
first extending the equation (1.3) to all x € R, and observing that the solution
of this equation in the region {(z,t) € R?*|z € (=I,1),t € (0,T)} is the same
as the solution of the original equation (1.3). Then the transformed solution
w(y, s) corresponding to the extended solution @(z,t) is also defined for all
y € R.

4.1 Proof of Theorem 4.2 (a)

We begin by

Lemma 4.3.

(a) u(z,t) — O uniformly, when t 1T and |z| < C/T — 1.
(b) F is uniformly bounded, when (x,t) € [—1,1] x [0,T).
(¢) F — 0 uniformly, when t t T and |x| < C\/T —t.
Proof. We show first the inequality

Pla,t) e Sus(e,0)? — ula, (1~ In(au(, 1))

+ u(0,%)(1 — In(au(0,t))) <0,

(4.5)

in the region A = {(z,t)|x € (=1,1),t € (0,T)}.
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Because the initial function ug is symmetric, we can see that u,(0,¢) =0
for all ¢t € [0,7), and thus P(0,t) = 0 for all ¢ € [0,7). Differentiating the
function P with respect to x, we get

P, = ugtizy + ug In(au) — uy + uy = uguy,

by the equation (1.3). It follows from the symmetry and Lemma 2.1 that
P, <0 (r =|z|). So we have obtained the inequality (4.5).

By (4.5), we have that the function u, is uniformly bounded. Claim (a)
follows now from Corollary 3.8.

Claim (b) can be directly obtained from (4.5) by estimating:

0<F<

2(1 — In(au)) C
now))? = Thiaw)] = M <% (4.6)

because u € (0,1] and « € (0,1).
The claim (c) follows from the inequality (4.6), the continuity of the
logarithmic function and the item (a). O

Lemma 4.4. There exist positive constants c¢i,co and 0 such that for all
s> —1InT,

(a) —c1 < wy,(0,s) <O0.
(b) —co < wy,(y,s), when —lez® <y < lez®.

(c) —coy < wy(ly, s) <0, when 0 < y < le2*. Furthermore, 0 < wy(y,s) <
coy, when —lez® <y < 0.

(d) 0 <w(0,s) <1-—0.
(e) —%czyQ <w(y,s) <1—40, when —lezs < y < lez.
Proof. Differentiating the equation (4.1) with respect to y, we get

1 Uy

= 4.

Y= TS tIn(au)’ (4.7)

e Wy =—2  _p=_ M1 F (4.8)
Y In(au) ~ In(au) ’ '

by the equation (1.3).

Applying Lemma 4.1 (¢) and the fact that u,(0,t) = 0 to (4.8), we get
Wy, (0, 5) < 0. Recalling, in addition, Lemma 4.1 (a), we get w,, (0, s) > —c;.
This proves (a).

Applying Lemmas 2.1(a,b) and 4.3(b) to (4.8), we obtain the claim (b).

The item (c) follows by integrating (b), and noticing the symmetry of .

By Lemma 4.1 (a), we get

0 dT T
/u o T 27 /t dr. (4.9)
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From this it follows that

1 uOb - dr

0,5) =1+ —/—— <1-5. 4.10
w(0, 5) * Tt/ In(ar) — P (4.10)

Similarly by Lemma 4.1 (c), we get

0 d T
/ T < / dr, (4.11)
u(0,t) In(ar) t
and so
u(0,t) dr

w(0,8) =1+ —— > 0. (4.12)

T—-tJ), In(ar)
We get the claim (d) from (4.10) and (4.12).
An integration of the item (c¢) yields the claim (e) by the item (d). O

exli(fi/:)), and let a(s) be a bounded function for
2

(1 — y?) be the second order (Hermite) polynomial.

Lemma 4.5. Let p(y)
s> —InT. Let hy(y) =
Then

1
(a) fole— w(y, s)p(y)dy — 0, when s — oco.
is
(0) |y (w(y5) = a(s)ha(w)p(y)dy — 0, when 5 — oo.
Proof. (a) Multiply the equation (4.2) by p to obtain
(s — w)p = (wyp)y + Fp.

Integrating this with respect to y from 0 to leés, we get

/062 (ws(y, s) —w(y, S))p(y)dy=wy(le%s,S)p(le%s)Jr/UeZ Fp(y)dy. (4.13)

Because u,(l,t) is bounded for all ¢, then

e ugz (1, 1)
In(a)

wy(le; ,s)p(le%s) = e2*

— 0, (4.14)

as s — o0o. Writing

le3® K le3®
/ Fpdy = / Fpdy + / Fpdy,
0 0 K

we can see, by Lemma 4.3(b,c), that

le%s
/ Fp(y)dy — 0, (4.15)
0
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as s — o0o. By the formulas (4.14) and (4.15) the terms on the right-hand
side of the equation (4.13) converge to zero, as s — co. Furthermore,

8 le%s 1 1 1 1 le%s
o[ sy = gletuiet ptet) + [T ity o)y
0 0
(4.16)
Define

1) =5 [ woswd- [ wlnpd @10

By (4.16), (4.17) and the definition (4.1), we get

I(s) = %l(exp(%s— 12463))(1+65 /0 IHEZT)) 0. (418)

i
Let now J(s) = fole;) w(y,s)p(y)dy. Using the equations (4.13), (4.14),
(4.15), (4.17) and (4.18), we can see that

tﬂ$—ﬂ$=H$+A&(mmﬁ—w@@M@Mw+& (4.19)

as s — 00.

To obtain (a) from (4.19) we argue as follows. Suppose that there exists a
sequence {s;} such that |.J(s;)| > e. Then by (4.19) |J(s;)| = o0, as s; — oc.
This contradicts Lemma 4.4.

The claim (b) follows from the item (a) and from the partial integration:

Awhxwmw@nzﬂwpry+@m@»xw»—ﬂmpryzo

O

Lemma 4.6. There exist constants v € (0,00), l; € (0,1) and t; € (0,T)
such that u,, — yuy > 0, when x € [—ly, 1] and t € [t1,T).

Proof. Let J(r,t) = uq(r,t) — yuy(r,t). Differentiating this, we get

U Ut

Jy— T — lJ = R
u U
The right-hand side of this equation is non-negative, by the facts that u, > 0
and u; < 0. Because there is only one quenching point, we can choose v
sufficiently big, so that the point (0,7 has a neighborhood, for which J > 0
on the parabolic boundary of that neighborhood. This follows from Lemma
4.1, and from boundedness of the functions wu,.(r,t) and u;(r,t). We obtain
the claim now from the maximum principle. O

Lemma 4.7. The function W is bounded, when t € [0,T).
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Proof. The problem is the vanishing u(0,¢), as ¢t 1 T. Using the inequality
(4.9), we get

“Inau(0, 0)(T — 1) _ n(au(0,1)) [ L
0= (0, 1) = Bu(0, 1) ‘

Applying L‘Hospital’s rule, we obtain

IU(OJ) dr 1
0 In(at) In(au(0,t))
u(0,t) 1 _ 1
In(au(0,1)) In(au(0,t))  (In(eu(0,t)))?

1, (4.20)

when u(0,t) — 0. 0

Lemma 4.8. The function W is bounded, for x € [—l;,l1] and t €
[t1,T).

Proof. Because u(z,t) is symmetric, it is sufficient to study the case = > 0.
By Lemma 4.6,

T

w2, 1) — ug(0,1) = / we (1, 1) > / w(n, £)dy =
0 0

y/ox(um(n,t) + In(au(n, t)))dn >

Y(ug(z,t) + 2 In(au(0,1))).

(4.21)

Thus it follows from Lemma 4.1 that
—uy(z,t) < —uy(0,t) — v ln(au(0,t)) < —In(au(0,t))(1 +vyz), (4.22)
and so

0<

- u(z,t) - u (1+92).

—u(a, ) (T = 1) _ = In(a(u(0,1)(T 1)
(0,1)

The claim now follows from Lemma 4.7. O

b

Lemma 4.9. For |y| = |\/7%| < C < oo, we have

limsupvT — 1t “

rt
T In(ow)

<0,

uniformly.

Proof. By Lemma 4.6,

T—i—2mt < T —2
In(au) In(au)

U2

t

when x > 0. So it sufficies to show that (7" — t)w —0,ast1T.
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Lemma 4.8 implies

T —1¢ —
w— < Mu il

"(In(au))? — (In(au))?’

Therefore it is sufficient, by Lemma 4.3(a), to obtain that
The Taylor expansions give:

W is bounded.

In(au(z,t)) = In(au(0,t)) + 1(u(:v, t) —u(0,t)) <

1 w423
In(au(0,t)) + w0.0) (u(z,t) —u(0,t)) < In(au(0,t)) + u((]:t)’
where n = n(x,t) € (u(0,1),u(z,t)), and
(1) = (0,1) + Sutza(€, )a” =
(4.24)

u(0,t) + %(ut —In(au))(&, t)x?

where £ € (0, ). Using Lemma 2.1, and the fact that u(0,t) < u(&,t), in the
expansion (4.24), we get

(e, ) < u(0,4) — %ln(au(ﬂ, )22, (4.25)

By Lemma 2.1, and by (4.22) and (4.23), we have

—uy(x,t) —C'In(au(0,1))
0= Mo, ) < Tz, )
—C Cu(z, 1)

t
ot ) " Tataate, 000,07
Making use of (4.25) and applying the definition of y yield

0< —wlt) o —C ¢ _
~ (In(au(z,1)))> = In(au(z, 1))~ (In(ou(z,1)))*
1, o (T —t)In(au(0,t))

2 Y (0, ) In(au(z, 1)

The claim now follows from Lemmas 4.3(a) and 4.7. O
Lemma 4.10. For 0 < y < C, we have

lim sup wy,, (y, s) <0

§—00

uniformly.
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Proof. Differentiating the equation (4.8) with respect to x, we get

4
1
N > G, (4.26)
i=1

where

Gi(a,t) = VT — 1ot (4.27)

Gy(z,t) = —T — t———— (4.28)

)2 (4.29)

Gulz,t) = —/T — 1 ( ey, (4.30)

By Lemma 4.9 it is sufficient to prove that G; — 0 uniformly for bounded v,
as s — oo and 1 = 2,3, 4.
Using the symmetry of u, Lemmas 2.1 and 4.8, we obtain

o (T —t)(~uw) 1 o
0<Gy= mln(au) U — ln(au) <M y]n(OéU) .

Applying Lemmas 4.4 and 4.3, we get the claim limup Gy = 0.
From the inequality (4.5) and the symmetry of u, it follows that

T—t —Ug u? T—1 Cw 1 — In(au)
-7 u (VT —tln(aw)) (—uln(au)) =2 u ) —In(au)

By Lemmas 4.4 and 2.1, the two last term on the right-hand side are bounded.

Using also the fact u(0,t) < u(z,t), Lemma 4.1 (b) and applying L‘Hospital’s

rule to the term %, we obtain the claim limyr G5 = 0.
The function G4 can be written in the form

Tt
G =26, + 2——(w,) (1 + F).

Applying Lemmas 4.4, 4.3 and 4.1, we conclude that the last term at the
right-hand side converges to zero. Because limyr Gy = 0, then also limyr Gy =
0. O

Lemma 4.11. There exists a positive constant M such that (T — t)uy < M
in some neighborhood N = (—a,a) x (T — 6,T) of (0,T).

Proof. Let H = (T'—t)uy — M, where the constant M > 0 will be determined
later. Then
Hy = —uy + (T — t)up,

Hmm — (T - t)uttmm-
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Therefore we get from the equation (1.3)

U U 1
Hy — Hyp = (T — t)(In(au))u —un = (T’ — 1) f N (Zt)Q} T — t(H+ M),
and further
Ut \ 9 M u
Hy — Hyp +0H = —(T —t)(— —(1- ’
— Haat 00 = ~(T = (22 + 20— )
where b = ﬁ — % is locally bounded function. We can see that “}"i? >

“T(L_’? — oo, by Lemma 4.1 (b). Hence there is a neighborhood N = (—a, a) X

(T'—6,T) of (0,7T), which is independent of M, such that
Ht_Hmm+bH§ O:

on N. When M is chosen big enough, then H < 0 on the parabolic boundary
of N by Theorem 3.7. The claim now follows from the maximum principle.
O

Lemma 4.12. Let w(y, s) be the solution of (4.2). Then

lim w(0, s) = 0.

§— 00

Proof. Using the formulas (4.7) and (4.8), the equation (4.2) can be written
in the form

In(ou) b= 2(T — t)In(au)

ws—w:wyy—§ywy+F:

Differentiating this with respect to t, we get

1 1 1 1 =x Uy,
T s g =W = gy} = =5 T e
Uiy Uzt
T In(au) u(ln(au))2}+ (4.31)
Uy u?

In(au)  u(ln(au))?’
In (4.31), take y = 0 to obtain

B (0, 1) (u(0, 1))
wasl0:8) =wnl0,9) = (T = 00,87~ (0, ) (infau(0, )7

Here the last term of the right-hand side converges to zero by Lemma 4.1(b,c).
Thus, applying Lemma 4.11, we have

lim inf{w (0, s) — ws(0,s)} > 0. (4.32)

§—00

We prove next that liminf_, . w4(0,s) > 0.
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By Lemma 4.10, for every € > 0 and C' > 0, there exists s; > —InT such
that w,,, < e, when s > s; and 0 <y < C < oo. Integrating this inequality
three times with respect to y, we get

wyy (Y, 5) — wyy (0, 5) < ey, (4.33)
1
Wy (Y, $) — ywyy (0, s) < §5y27 (4.34)
1 1
w(y,s) — w(0,s) — §y2wyy(0, s) < 66y3, (4.35)

when y € [0, C]. Because w4(0,s) = wy,(0,s) +w(0,s), it follows from the
inequality (4.35) that

1

lim sup{w(y, s) + wy, (0, s)(1 — §y2) — w,(0,5)} <0, (4.36)
§—00

uniformly, when 0 <y < C < oo. Let g(y,s) = w(y, s) + wy, (0, s)(1 — 1y?),

and consider the function

Gly,s) = / ’ (91, ) = w0y (0, 5))p(n)dn.

An application of (4.36) to this definition gives that for every ¢ > 0 and
K € (0,00) there exists sy > —InT such that

G(y,s) <e, (4.37)

when s > s and 0 < y < K.
Choosing y big enough, we can see, by Lemmas 4.4 and 4.5 (b), that

Gly,s) + w,(0, 5) / " o) — 0, (4.38)

as s — o0o. Using the formulas (4.37) and (4.38), we get

lim inf w(0, s) > 0. (4.39)
§—00
Suppose now that there exists a sequence s; — oo such that w(0, s;) >
e. From this it follows by (4.32) and (4.39), that w4(0,s;) — oo. This
contradicts Lemma 4.4. O

After these preliminary Lemmas we turn to the proof of Theorem 4.2(a).
Let ¢ be as in the proof of Lemma 4.12. By this Lemma 4.12 and by

(4.36),
limsup g(y,s) <0 (4.40)

§—00
uniformly, when 0 < y < C' < oc. Furthermore, by Lemma 4.5(b) (where
a(s) = —wy (0, 5))

1
le2®

lim 9(n, s)p(n)dn = 0. (4.41)

§—00 0
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By Lemma 4.4 it holds that |g,| < Cy. Therefore it follows from (4.40),
(4.41) and the symmetry of the solution that

lim g(y,s) =0, (4.42)

uniformly, when |y| < C' < co. By Lemma 4.12, w,,(0,s) +w(0,s) — 0, as
s — 00, and so Theorem 4.2 (a) follows from the equation (4.42).

Corollary 4.13. For |y| < C < oo, we have lim,_, o ws(y, s) = 0 uniformly.

Proof. By Lemma 4.12, w,(0, s) = w,, (0, s) + w(0,s) — 0. Combining this
with inequality (4.34), we have

lim sup{w,(y, s) + yw(0,s)} <0, (4.43)

§—00

uniformly, when 0 <y < C' < co. Writing

1 y
(o 3) = 00,91 = 5357) = [y (0.9) + 0,9},
we obtain, by Theorem 4.2(a), (4.43) and Lemma 4.4, that

lim (wy(y, s) + yw(0, s)) = 0, (4.44)

§—00

uniformly for bounded y. Correspondingly, to conclude (4.46), we first write

y
0y 0:3) + 50(0.5) = [ (g (.5) + w0, (145)
0
Using the inequality (4.33) and Lemma 4.12, we get

lim (wy, (y, s) + w(0,s)) <0,

§—00

uniformly for bounded y. Applying this together with (4.44) and Lemma 4.4
to the equation (4.45), we can see that

lim (wy,, + w(0,s)) = 0, (4.46)

§—00

uniformly for bounded y. Writing
1 1,
ws = (wyy +w(0,5)) = gy(wy +yw(0,5)) + (w - w(0,5)(1 - 5y7)) + F,

we obtain the claim from (4.46), (4.44), Theorem 4.2(a), and Lemma 4.3(c).
0
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4.2 Proof of Theorem 4.2 (b)

We will now replace the equation (1.3) by an extended one, defined on the
whole real line with respect to x. This equation of course admits the same
solutions as (1.3) on the original interval (—,). The technical construction
is done similarly as in [30] or in [10]. Without loss of generality, we may
assume that [ = 1 in the equation (1.3). So let > 1, and define the kernels:

LE2

V(z,t) = \/% exp(—ﬂ),

T 1'2

W(z,t) = e exp(—ﬂ

),

when |z| < oo and 0 < ¢ < 0.
Differentiating these, we can see that V, = —W, V, =V, and W, = W,,.
Define the extension @ of u(z,t), when z > 1 and ¢ > 0 by

u(z,t) = (x —1) /OtW(x —1,t — T)u, (1, 7)dr + 1. (4.47)

Here u,(1,t) is obtained from the equation (3.1) (uy(1,?) = lim,4 uy(2,1)).

Lemma 4.14. The function u satisfies:
t
Up — Uy = 2u,(1,0)V(z — 1,¢) + 2/ V(e —1,t — 7)u, (1, 7)dr,
0

when 1 < z < 00.

Proof. Differentiating (4.47), we get

(o, 1) = (z — 1)/0 Wiz — 1,4 — 7yuy(1, 7)dr, (4.48)

Em(x,t):/o W(a:—1,t—¢)um(1,7)d7+(a§—1)/0 Wo(z—1,t—7)us (1, 7)dr,

(4.49)
and

t
T2, 1) = 2 / Waw — 1,t — 7)ug(1,7)dr+
o (4.50)
(gj — 1) / Wm:(l‘ — 1, t— T)u:c(la T)dT'
0
Subtract (4.50) from (4.48), yields
t
T, = —2/ Vo — 1,t — Pus (1, 7)dr,
0

by the formulas W, = -V, = =V, and W; = W,_,. An integration by parts
of the right-hand side gives the claim. O
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Correspondingly in the extension of u to the left of #+ = —1 the term
uz(1,t) in the equation (4.47) is replaced by the term u,(—1,1).
An extended equation is now defined

Up — Ugy = f(ﬂ(l‘,t)), T € R\{il}’ 0<t< T, (451)
where - §
i u(z,t), when |z| <1
u(w,t) = { u(z,t), when |z| > 1,
- _ [ In(au), when |z| <1
&)= { g(x,t), when |z| > 1, (4.52)
and

(2. 1) = 2u(1,0)V(z — 1,£) + 2 /t Vg =1t — P (1,7)dr.  (4.53)

We can see that @ € C'(R) (fixed t), but f is not continuous at x = +1, and
therefore 7 is not twice continuously differentiable.

Because u(z,t) cannot quench at x = +1, then the functions u,(1,¢) and
ug(1,t) are uniformly bounded.

Lemma 4.15. The functions u(x,t) and g(x,t) satisfy
1 <z, t) < ¢ < oo,

and
0 <g(zx,t) < ey < o0,

when || > 1 and 0 <t <T.

Proof. Using the inequality (4.5), we get

Uy < v/2u(l — In(au)) = /2(1 — In(a)), (4.54)
when = 1 1. Writing the equation (4.47) in the form

(z—1)%

ﬂ:/tﬂexp(_
0 Qm 4(t — 1)

and substituting (4.54), we can see that

7 < C\/2(1 —Tn(a)) /Rge—%zg +1< oo (4.55)

Yug (1, 7)dT + 1,

Also '
supg < c|V(x —1,t)| + 203/ V(e —1,t —7)dr < 0.
0
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From (4.55) we get the inequality
atu < Cay/1 —In(a) + «a, (4.56)
and from (4.49) there follows
U, < ¢4 < 00, (4.57)

when |z] > 1and 0 <t <T.

Define, when y € R (y = ﬂ‘f—_t) and s > —InT:

1 w(zt)  dr
0 =14+ -— — 4.
w(y, s) tr— i ) (4.58)

where

In(ar) , 0<71<1,
fr) = { In(ar) +g(r) , 7>1 (4.59)

The function g is defined such that f(7) is smooth, increasing and negative,
when 7 > 0. Differentiating the definition (4.58), we get

1 _
Wy = iy, + Sy, — 0 = F, (4.60)
where ' = F, when y € (—e2® e2®), and at intervals (—oo, —e2®) and
(e2%,00):
n y(l‘,t) ﬂczr I(—
=000 T ey, 4.61
@ e o

where g is defined by the equation (4.53) and f by the equation (4.59).
Using (4.56)- (4.59), (4.61) and Lemma 4.15, we obtain, when |y| > le2® and
s> —InT,

o (y, 5)] < Cy?, (4.62)

|y (y, s)| < Cy, (4.63)
and .

IF| < M < oo (4.64)

Consider now the extended equation (4.60) as a dynamical system in the
space

L(R) = {g(y)| / 9(y)*p(y)dy < oo} (4.65)
R
We use from now on the notation w = w. Then
ws — Lw = F, (4.66)
where 1
Lw = wy, — Sy +w, (4.67)

on the set R x [—InT, 00).
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The space Lf, is a Hilbert space with an inner product

(f, g = /R F)a(w)p(y)dy

Concerning the linear operator £ it is known that (see [11]), it is self-
adjoint i.e, that
(Lf, 9>L,% = (/, £9>Lg; (4.68)
with spectrum
Ne=1— %k; E=0,1,2, .. (4.69)

The corresponding eigenfunctions are

~ 1

hi(y) = cp H(5

2y), (4.70)

where Hj are the (standard) Hermite polynomial and aj = (7225+1k!)~3.

The first three eigenfunctions are
~ 1 - ~ 1 - ~ 1 =11
ho=—=n1, hi=-miy, hy==m1(=y2—1). (4.71)

V2 2 2 2

The Fourier-expansion of w with respect to this base is:
w(y,s) = > ar(s)hi(y). (4.72)

Then one has

Lemma 4.16. Let as(s) = —%W_Tldz(s). Then as(s) — w(0,s) — 0, as
s — 00.

Proof. Let ¢(y,s) = w(y,s) — w(0, s)ha(y), where hy is defined as in the
Lemma 4.5. Projecting the function ¢ to the subspace generated by the
function hq, we get

(b, o)z = Zak (hiey hi2) 2 — w(0, ) (ha, ho)rz = =277 (az(s) — w(0, 5)).

p

Applying Holder’s inequality to this, it follows that

oa(s) = w(0.5)| < O (wly.5) = w(0,)hp) Rl =0,

R

by Theorem 4.2(a) and the inequality (4.62). O
Lemma 4.17. The inequalities

(T - t)(~In(T - 1)

0<
B u(z, 1)

<M< x

hold on the set [—1,1] x [0,T).
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Proof. We first prove that

. (Jo =mary) (= In(k f§ =ptamy)
ul0 u

=1, (4.73)

holds for a positive constant k. To show this, we use L‘Hospital’s rule twice.

We first obtain v
ln(k fO TZ—OH'))

1. 4.74
In(ow) - (4.74)
The claim (4.74) is true, because
1
k “Talar) —In(au —dr
fU 711’1 aT — -EJ — In(arT) — uu ) BN 1’ (475)
In(au) - In(ou) [, (ar)
by (4.20).
The claim (4.73),
f(] —ln (aT) ln kfo —1In on'))) kf(] —ln (aT) +1n( u)
— 1 — 1:
u

now follows from the equation (4.75).
By the inequalities (4.9) and (4.11) we can see that

u(0,t) dr 1 u(0,t) dr
< T-t<= L
/0 —In(ar) — - ﬁ/o —In(at)’

when ¢ € [0, 7). Because u(0,t) < u(z,t), then

(T -t (=T -1)) _ 1y O St (—n(f 0 )
T u(0, ) ~F
as u(0,t) — 0, by (4.73). O

Lemma 4.18. For the solution u(z,t) one has

(T — t)(— In(T — t)) 1

u(x,t) 1= w(0, 5)ha(y) -0

uniformly for bounded y, ast 1T (s — 00).
Proof. By Theorem 4.2(a),

1 “odr
1 — h
727 | ey — w0kl .

(at)
uniformly for bounded y, as ¢t 1+ 7. Dividing this by the function 1 —
w(0, s)ha(y) (# 0 by Lemma (4.4)), we get

u dr
0 —In(ar)

(T = 1)(1 = w(0, s)ha(y))

—1, (4.76)
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uniformly for bounded y, as ¢t T T. From the properties of the logarithmic
function it follows that

1 “oodr
1 —In(T —t
T 9 Jy Ty T 020
and ( . P
In s
1—w(0,s)ha(y) JO —In(at)
1 4.77
(T — 1) o (4.77)
uniformly for bounded y, as t 1 T.
Let
u dr u dr
g T-)mT-1)) Jo e~ mmamm Jo )
u 1 —w(0,s)ha(y) u '
(4.78)
This can be written in the form
(T —t)(—In(T —t))
"= : )
u dr 1 u dr (479)
(1 . 0 —In(ar) ln(lfw((],s)hg(y) 0 ln(aT)))
(T = 1)(1 = w(0, 5)ha(y)) In(T" — 1)
By Lemma 4.17, and by the formulas (4.76) and (4.77),
H —0, (4.80)
uniformly for bounded y, as t 1 T.
Writing the equation (4.78) in the form,
T —t)(—In(T — 1
g =0T —1) N
u 1 —’LU(O,S)hQ(y)
u dr 1 U dr (481)
1 (1 . ( 0 T(ow))(_ ln(lfw((],s)hg 0 7ln(o¢7))))
1 _'LU(O,S)hQ(y) u ’

we can see that the claim follows from (4.80), and 4.73, provided we recall
that (1 —w(0, s)ha(y)) € [6, C] for bounded y, by Lemma 4.4. O

Proof of Theorem 4.2(b). Projecting the equation ws = Lw + F' to the sub-
space generated by the function hs, we obtain

> (5) (P, ha)rz = (Lw, ho) 1 + (F, ha)z.
k

13
Note that (F), hz)L% = QIUM +f;:;s Fhop, where the latter integral is less
than Cexp(—ee®) by (4.64), and so only the first integral is essential in
the equation (4.82), as s — oo. The factor 2 is included in the integrals
below, because the solution is symmetric. We can conclude by (4.68) and

the orthogonality of the base {h;}22,, that (C' = 4y/7)
2

Cab(s) = 2 / ) ()l =2 / )

au))

T—1
u

wiha(y)p(y)dy,
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and

Csiyfs) =2 | TEZOERT =) a0 000y,

u y
Write this in the form

Csay =2 /0°° LoD T =) (wi — w(0, 5)%y*)ha(y) p(y) dy+

U Y

 [EEEREE) 00,9 kel
2 [ e 0. ey

oo a2(8)2y2 B 4
2/0 — S)hQ(y)hg(y)p(y)dy = I(s)

(4.82)

Next we show that [;(s) = 0, as s - co and j = 1,2, 3.

When j = 1, then by Lemmas 4.4, 4.15, 4.17 and the inequality (4.63),
we can apply the Lebesgue Dominated Convergence Theorem. Writing wi —
w(0, s)*y* = (wy +w(0, s)y) (w, —w(0, s)y), we can conclude by Lemmas 4.4,
4.15,4.17, the inequality (4.63) and the formula (4.44), that

lim 7(s) — 0. (4.83)

§—00

Correspondingly, in the case j = 2, we obtain from Lemmas 4.4, 4.18 and
4.15 that
lim Ir(s) — 0. (4.84)

§—00

When j = 3, we obtain, by Lemmas 4.4 and 4.16,
lim I3(s) — 0. (4.85)

§—00

Finally, we have that there exist positive constants ¢; and ¢y such that
—c1a5(5)? < I4(s) < —cpas(s)?, (4.86)

forall s> —InT.
By the relations (4.82)- (4.86) it follows that

lim sup(sa)(s) + craz(s)?) < 0. (4.87)

§—00

Finally, we conclude that (4.87) imply
lim ay(s) = 0. (4.88)

55— 00

(1): If ay has a non-zero limit a* (a* > 0, because of Lemmas 4.4 and

4.16 ), then by (4.87) it holds that for every € > 0 there exists a sg > —InT
and C' > 0 such that sal, < —C, as s > s¢. Integrating this, we obtain

s

as(s) — as(sg) < —C'ln(—) — —oxc,

S0

31



which is a contradiction to Lemmas 4.4 and 4.16 .

(2): If ay does not have a limit, then it it follows, by Lemmas 4.4 and 4.16,

that there exists a sequence s; — oo such that a}(s;) > 0, and as(s;) > 6 > 0,
which is a contradiction to (4.87).

Theorem 4.2(b) follows from (4.88) and Lemma 4.16. O

From Theorem 4.2 we can deduce Corollary 1.4: In the proof of Corollary

1.4 we can, by Lemma 3.2, replace the minimum point x = 0 of u by function
si(t), and note that the analysis in a neighborhood of quenching point is
qualitatively similar as in the proof of Theorem 4.2.
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