A436

# PSEUDODIFFERENTIAL CALCULUS ON COMPACT HOMOGENEOUS SPACES

Ville Turunen



TEKNILLINEN KORKEAKOULU TEKNISKA HÖCSKOLAN HELSINKI UNIVERSITY OF TECHNOLOGY TECHNISCHE UNIVERSITÄT HELSINKI UNIVERSITE DE TECHNOLOGIE D'HELSINKI **Ville Turunen**: *Pseudodifferential calculus on compact homogeneous spaces*; Helsinki University of Technology Institute of Mathematics Research Reports A436 (2001).

**Abstract:** Pseudodifferential operators on a compact Lie group G are projected to pseudodifferential operators on an orientable compact homogeneous space G/K. Starting with a pseudodifferential operator on a compact homogeneous space G/K with torus K, we extend the operator to act on G; a special example of such a homogeneous space is the two-sphere  $\mathbb{S}^2$  as the base space for the Hopf fibration.

AMS subject classifications: 35S05, 43A85, 22E30, 47G30

 ${\bf Keywords:}$  pseudodifferential operators, homogeneous spaces, Lie groups, analysis on sphere

Ville.Turunen@hut.fi

ISBN 951-22-5524-3 ISSN 0784-3143 Libella Painopalvelu Oy, Espoo, 2001

Helsinki University of Technology Department of Engineering Physics and Mathematics Institute of Mathematics P.O. Box 1100, 02015 HUT, Finland email:math@hut.fi http://www.math.hut.fi/

### 1 Introduction

In this article we treat pseudodifferential analysis on orientable homogeneous spaces G/K, where G is a compact Lie group with a closed subgroup K. This research continues the work in [11], where such analysis on compact Lie groups was studied. Apart from pure theoretical interests, there are applications which call for the present treatise: e.g. Dirichlet boundary value problems in a domain diffeomorphic to the unit ball of  $\mathbb{R}^3$  may be considered within the framework of harmonic analysis on the two-sphere  $\mathbb{S}^2 \subset \mathbb{R}^3$ . Taylor (see [7]) has characterized pseudodifferential operators on the spheres  $\mathbb{S}^n$  by studying the smoothness of certain operator-valued functions on a large group of symmetries, but this result cannot be used for our purposes here.

We explain how a pseudodifferential operator on a compact Lie group G can be "projected" to a pseudodifferential operator on orientable compact homogeneous spaces G/K in a way respecting the algebraic structures. The other way round, given a pseudodifferential operator on G/K when K is a torus we construct an "extended" pseudodifferential operator on G; the "projection" of this "extension" in turn returns the original operator. "Extended" operators can be used to calculate asymptotic expansions for operators on G/K using operator-valued symbolic calculus on G (see [8], [11]).

#### Vector space notation

The space of the continuous linear operators between topological vector spaces X and Y is denoted by  $\mathcal{L}(X, Y)$ , and we write  $\mathcal{L}(X) := \mathcal{L}(X, X)$ ; the dual space of X is  $X' := \mathcal{L}(X, \mathbb{C})$ . If X is a nuclear Fréchet space,  $X \otimes X'$  stands for the complete locally convex tensor product.

### $\mathbf{2}$ - Pseudodifferential operators on $\mathbb{R}^p imes \mathbb{T}^q$

For general treatments of pseudodifferential calculus on the Euclidean spaces or manifolds, see e.g. [3] or [9]. Periodic pseudodifferential operators, i.e. pseudodifferential operators on tori expressed utilizing Fourier series, were introduced in [1], and their complete symbolic calculus is presented in [12].

Let  $\mathbb{T}^q = \mathbb{R}^q / \mathbb{Z}^q$  be the q-dimensional torus group. In the sequel we shall identify  $\mathbb{R}^0$  and  $\mathbb{Z}^0$  with the set  $\{0\}$ , and  $\mathbb{R}^p \times \mathbb{T}^0$  is identified with  $\mathbb{R}^p$ . Let  $\mathcal{S}(\mathbb{R}^p \times \mathbb{T}^q) = \{f \in C^{\infty}(\mathbb{R}^p \times \mathbb{T}^q) \mid \forall y \in \mathbb{T}^q : (x \mapsto f(x, y)) \in \mathcal{S}(\mathbb{R}^p)\}$  be endowed with the natural Fréchet space structure of the test functions. In this space, we define the *Fourier transform*  $f \mapsto \hat{f}$  by

$$\hat{f}(\xi) = \int_{\mathbb{R}^p \times \mathbb{T}^q} f(x) \ e^{-i2\pi x \cdot \xi} \ dx_1 \cdots dx_{p+q},$$

where  $\xi \in \mathbb{R}^p \times \mathbb{Z}^q$ . Let  $e_{\xi}(x) = e^{i2\pi x \cdot \xi}$ , and let  $A \in \mathcal{L}(\mathbb{S}'(\mathbb{R}^p \times \mathbb{T}^q))$ ; then  $e_{\xi} \in \mathcal{S}'(\mathbb{R}^p \times \mathbb{T}^q)$ , and we can define the symbol  $\sigma_A : (\mathbb{R}^p \times \mathbb{T}^q) \times (\mathbb{R}^p \times \mathbb{Z}^q) \to \mathbb{C}$  of A:

$$\sigma_A(x,\xi) := e_{\xi}(x)^{-1} (A e_{\xi})(x), \tag{1}$$

and it is clear that  $\sigma_A$  is  $C^{\infty}$ -smooth with respect to the variable  $x \in \mathbb{R}^p$ . Then A can be retrieved from its symbol  $\sigma_A$  by

$$(Af)(x) = \int_{\mathbb{R}^p} \sum_{\xi_{p+1},\dots,\xi_{p+q} \in \mathbb{Z}} \sigma_A(x,\xi) \ \hat{f}(\xi) \ e^{i2\pi x \cdot \xi} \ d\xi_1 \cdots d\xi_p.$$
(2)

The symbol class  $S^m(\mathbb{R}^p \times \mathbb{T}^q)$  consists of those  $C^{\infty}$ -smooth functions  $\sigma_A : (\mathbb{R}^p \times \mathbb{T}^q) \times (\mathbb{R}^p \times \mathbb{Z}^q) \to \mathbb{C}$  for which

$$\sup_{x \in \mathbb{R}^p \times \mathbb{T}^q} |\partial_{\xi}^{\alpha'} \Delta_{\xi}^{\alpha''} \partial_x^{\beta} \sigma_A(x,\xi)| \le C_{A\alpha\beta m} \langle \xi \rangle^{m-|\alpha|}$$
(3)

for every multi-index  $\alpha = \alpha' + \alpha'', \beta \in \mathbb{N}_0^{p+q}$ ; here  $\alpha = \alpha' + \alpha'', \alpha' = (\alpha_1, \ldots, \alpha_p, 0, \ldots, 0)$ , and  $\langle \xi \rangle = (1 + \sum_{j=1}^{p+q} \xi_j^2)^{1/2}$ . Here  $\Delta_{\xi}^{\alpha}$  is the  $\alpha$ th forward difference operator defined by

$$(\Delta_{\xi}^{\alpha}\sigma)(\xi) := \sum_{0 \le \gamma \le \alpha} {\alpha \choose \gamma} (-1)^{|\alpha-\gamma|} \sigma(\xi+\gamma), \tag{4}$$

 $|\alpha| = 1$  implies  $(\Delta_{\xi}^{\alpha}\sigma)(\xi) := \sigma(\xi + \alpha) - \sigma(\xi)$ . Operator  $A \in \mathcal{L}(\mathcal{S}(\mathbb{R}^{p} \times \mathbb{T}^{q}))$ is called a pseudodifferential operator of order  $m \in \mathbb{R}$ ,  $A \in \Psi^{m}(\mathbb{R}^{p} \times \mathbb{T}^{q}) = OpS^{m}(\mathbb{R}^{p} \times \mathbb{T}^{q})$ , if  $\sigma_{A} \in S^{m}(\mathbb{R}^{p} \times \mathbb{T}^{q})$ .

### 3 Analysis on closed manifolds

Let M be a  $C^{\infty}$ -smooth, closed (i.e. compact, without a boundary) orientable manifold. The test function space  $\mathcal{D}(M)$  is the space of  $C^{\infty}(M)$  endowed with the usual Fréchet space topology. Its dual  $\mathcal{D}'(M) = \mathcal{L}(\mathcal{D}(M), \mathbb{C})$  is the space of distributions, endowed with the weak-\*-topology. The duality is expressed by the brackets  $\langle \phi, f \rangle = f(\phi) \ (\phi \in \mathcal{D}(M), f \in \mathcal{D}'(M))$ . Embedding  $\mathcal{D}(M) \hookrightarrow$  $\mathcal{D}'(M)$  is interpreted by

$$\langle \phi, \psi \rangle := \int_M \phi(x) \ \psi(x) \ dx.$$

The Schwartz kernel theorem states that  $\mathcal{L}(\mathcal{D}(M))$  is isomorphic to  $\mathcal{D}(M) \otimes \mathcal{D}'(M)$ ; the isomorphism is given by

$$\langle A\phi, f \rangle = \langle K_A, f \otimes \phi \rangle, \tag{5}$$

where  $A \in \mathcal{L}(\mathcal{D}(M)), \phi \in \mathcal{D}(M), f \in \mathcal{D}'(M)$ , and distribution  $K_A \in \mathcal{D}(M) \otimes \mathcal{D}'(M)$  is called the *Schwartz kernel* of A. Then A can uniquely be extended (by duality) to  $A \in \mathcal{L}(\mathcal{D}'(M))$ , and it is customary to write informally

$$(Af)(x) = \int_M K_A(x, y) f(y) dy$$

instead of  $\phi \mapsto \langle \phi, Af \rangle$  ( $\phi \in \mathcal{D}(M)$ ). Recall that  $L^2(M) = H^0(M)$ ,  $\mathcal{D}'(M) = \bigcup_{s \in \mathbb{R}} H^s(M)$  and  $\mathcal{D}(M) = \bigcap_{s \in \mathbb{R}} H^s(M)$ , where  $H^s(M)$  is the ( $L^2$ -type) Sobolev space of order  $s \in \mathbb{R}$ .

An operator  $A \in \mathcal{L}(\mathcal{D}(M))$  is a pseudodifferential operator of order  $m \in \mathbb{R}$ on  $M, A \in \Psi^m(M)$ , if  $(M_{\phi}AM_{\psi})_{\kappa} \in \Psi^m(\mathbb{R}^{\dim(M)})$  for every chart  $(U, \kappa)$  of M and for every  $\phi, \psi \in C_0^{\infty}(U)$ , where  $M_{\phi}$  is the multiplication operator  $f \mapsto \phi f$ , and

$$(M_{\phi}AM_{\psi})_{\kappa}f := (M_{\phi}AM_{\psi}(f \circ \kappa)) \circ \kappa^{-1} \quad (f \in C^{\infty}(\kappa U)).$$

We sometimes treat write  $M_{\phi}AM_{\psi} \in \Psi^m(\mathbb{R}^{\dim(M)})$ , thus omitting the subscript  $\kappa$  and leaving the chart mapping implicit. Equivalently, pseudodifferential operators can be characterized by commutators (see [11]):  $A \in \mathcal{L}(\mathcal{D}(M))$ belongs to  $\Psi^m(M)$  if and only if  $(A_k)_{k=0}^{\infty} \subset \mathcal{L}(H^m(M), H^0(M))$  for every sequence of smooth vector fields  $(D_k)_{k=1}^{\infty}$  on M, where  $A_0 = A$  and  $A_{k+1} = [D_{k+1}, A_k]$ .

A smooth *left transformation group* is

(G, M, m),

where G is a Lie group, M is a  $C^{\infty}$ -manifold and  $m : G \times M \to M$  is a  $C^{\infty}$ -mapping called a left *action*, satisfying m(e, p) = p and m(x, m(y, p)) = m(xy, p) for every  $x, y \in G$  and  $p \in M$ , where  $e \in G$  is the neutral element of the group. The action is *free*, if m(x, p) = p implies x = e. It is evident how one defines a *right* transformation group (G, M, m) with a *right* action  $m : M \times G \to M$ .

A smooth *fiber bundle* is

$$(E, B, F, p_{E \to B}),$$

where E, B, F are  $C^{\infty}$ -manifolds and  $p_{E \to B} \in C^{\infty}(E, B)$  is a surjective mapping such that there exists an open cover  $\mathcal{U} = \{U_j \mid j \in J\}$  of B and diffeomorphisms  $\phi_j : p^{-1}(U_j) \to U_j \times F$  satisfying  $\phi_j(x) = (p_{E \to B}(x), \psi_j(x))$ for every  $x \in p_{E \to B}^{-1}(U_j)$ . The spaces E, B, F are called the *total space*, the *base space*, and the *fiber* of the bundle, respectively. The cover  $\mathcal{U}$  is called a *locally trivializing cover* of the bundle. Sometimes the mapping  $p_{E \to B}$  is called the fiber bundle.

A principal fiber bundle is

$$(E, B, F, p_{E \to B}, m),$$

where  $(E, B, F, p_{E\to B})$  is a smooth fiber bundle with cover  $\mathcal{U}$  and mappings  $\phi_j, \psi_j$  as above and (F, E, m) is a smooth right transformation group with a free action satisfying  $p_{E\to B}(m(x, y)) = p_{E\to B}(x)$  for every  $(x, y) \in E \times F$  and  $\psi_j(m(x, y)) = \psi_j(x)y$  for every  $(x, y) \in p_{E\to B}^{-1}(U_j) \times F$ .

#### 4 Harmonic analysis on compact Lie groups

Let G be a compact Lie group. Let  $\mu_G$  be the normalized Haar measure of G. The starting point of harmonic analysis on G is the *left regular representation* of G, which is the homomorphism  $\pi_L : G \to \mathcal{L}(L^2(G))$  defined by

$$(\pi_L(y)f)(x) = f(y^{-1}x)$$
(6)

for almost every  $x \in G$ ; equivalently we could begin with the *right regular* representation  $\pi_R : G \to \mathcal{L}(L^2(G))$  defined by

$$(\pi_R(y)f)(x) = f(xy) \tag{7}$$

for almost every  $x \in G$ .

The Fourier transform of a distribution  $f \in \mathcal{D}'(G)$  is said to be the operator  $\pi(f) \in \mathcal{L}(\mathcal{D}(G))$  defined by

$$\pi(f)g = f * g,\tag{8}$$

i.e. the left convolution by f. Let  $A \in \mathcal{L}(\mathcal{D}(G))$  with the Schwartz kernel  $K_A$ . The symbol of A is the mapping  $\sigma_A : G \to \mathcal{L}(\mathcal{D}(G))$  defined by  $\sigma_A(x) = \pi(s_A(x))$ , where  $K_A(x, y) = (s_A(x))(xy^{-1})$  in the sense of distributions. Then we denote  $A = \operatorname{Op}(\sigma_A)$ , and we have

$$(Af)(x) = (\sigma_A(x)f)(x)$$
  
= Tr  $(\sigma_A(x) \pi(f) \pi_L(x)^*)$   $(f \in \mathcal{D}(G), x \in G).$ 

In the sequel  $\Delta$  is the bi-invariant Laplacian of G (i.e. the left and right translation invariant Laplacian, or the Laplacian corresponding to the biinvariant Riemannian metric of G), and we define  $\Xi := (I - \Delta)^{1/2}$ ; then  $\Xi^m$  is a Sobolev space isomorphism  $H^s(G) \to H^{s-m}(G)$ , and it is also biinvariant.

In the notation of [11], let us define

$$Q^{\alpha}\pi(s) = \pi(y \mapsto \check{q}_{\alpha}(y) \ s(y)),$$

where if  $s \in \mathcal{D}'(G)$ , and  $q_{\alpha} \in C^{\infty}(G)$  ( $\alpha \in \mathbb{N}_0^{\dim(G)}$ ) satisfies

$$q_{\alpha}(\exp(x)) = \frac{1}{\alpha!}x^{\alpha}$$

when x belongs to a small neighbourhood of  $0 \in \mathfrak{g}$ , the origin of the Lie algebra  $\mathfrak{g}$  of G; technical details can be found in [11], where we presented the following characterization of pseudodifferential operators:

**Definition.** An operator  $A \in \mathcal{L}(\mathcal{D}(G))$  belongs to  $\Psi^m(G)$  if and only if  $\sigma_A \in S^m(G) = \bigcap_{k=0}^{\infty} S_k^m(G)$ ; here  $\sigma_B \in S_0^m(G)$  if and only if

$$\|\Xi^{|\alpha|-m}Q^{\alpha}\partial_x^{\beta}\sigma_B(x)\|_{\mathcal{L}(L^2(G))} \le C_{B\alpha\beta m}$$
(9)

uniformly in  $x \in G$  for every  $\alpha, \beta \in \mathbb{N}_0^{\dim(G)}$ ;  $\sigma_B \in S_{k+1}^m(G)$ , if

$$\sigma_B \in S_k^m(G),\tag{10}$$

$$[\sigma_{\partial_j}, \sigma_B] \in S^m_k(G), \tag{11}$$

$$(Q^{\gamma}\sigma_{\partial_j})\sigma_A \in S_k^{m+1-|\gamma|}(G)$$
(12)

and

$$(Q^{\gamma}\sigma_A)\sigma_{\partial_j} \in S_k^{m+1-|\gamma|}(G)$$
(13)

for every  $j \in \{1, \ldots, \dim(G)\}$  and  $\gamma \in \mathbb{N}_0^{\dim(G)}$  with  $|\gamma| > 0$ , where  $\{\partial_j \mid 1 \leq j \leq \dim(G)\}$  is a basis for the vector space of the right-invariant vector fields on G.

## 5 Harmonic analysis on compact homogeneous spaces

Let (G, E, m) be a smooth left transformation group. The manifold M is called a *homogeneous space* if the action  $m : G \times M \to M$  is *transitive*, i.e. for every  $p, q \in M$  there exists  $x \in G$  such that m(x, p) = q.

Let us give another, equivalent definition for a homogeneous space: Let G be a Lie group with a closed subgroup K. The homogeneous space G/K is the set of classes  $xK = \{xk \mid k \in K\}$   $(x \in G)$  endowed with the topology co-induced by  $x \mapsto xK$  and equipped with the unique  $C^{\infty}$ -manifold structure such that the mapping  $(x, yK) \mapsto xyK$  belongs to  $C^{\infty}(G \times (G/K), G/K)$  and such that there is a neighbourhood  $U \subset G/K$  of  $eK \in G/K$  and a mapping  $\psi \in C^{\infty}(U,G)$  satisfying  $\psi(xK)K = xK$ . The group G acts smoothly from the left on the manifold G/K by  $(x, yK) \mapsto x^{-1}yK$ . Actually a smooth homogeneous space M is diffeomorphic to  $G/G_p$ , where  $G_p = \{x \in G \mid m(x, p) = p\}$ .

Notice also that  $(G, G/K, K, x \mapsto xK, (x, k) \mapsto xk)$  has a structure of a principal fiber bundle (see [2]).

From now on we assume the Lie group G to be compact. We can regard functions (or distributions) constant on the cosets xK ( $x \in G$ ) as functions (or distributions) on G/K; it is obvious how one embeds the spaces  $\mathcal{D}(G/K)$ and  $\mathcal{D}'(G/K)$  into the spaces  $\mathcal{D}(G)$  and  $\mathcal{D}'(G)$ , respectively. Let us define  $P_{G/K} \in \mathcal{L}(\mathcal{D}(G))$  by

$$(P_{G/K}f)(x) = \int_{K} f(xk) \ d\mu_{K}(k).$$
(14)

Hence  $P_{G/K}f \in C^{\infty}(G/K)$ , and  $P_{G/K}$  extends uniquely to the orthogonal projection of  $L^2(G)$  onto the subspace  $L^2(G/K)$ . Let us consider operators  $A \in \mathcal{L}(\mathcal{D}(G))$  with the symbol satisfying

$$\sigma_A(xk) = \sigma_A(x) \quad (x \in G, \ k \in K); \tag{15}$$

this condition is equivalent to

$$s_A(xk)(y) = s_A(x)(y)$$

in the sense of distributions, or

$$K_A(xk, yk) = K_A(x, y).$$

Then A maps the space  $\mathcal{D}(G/K)$  into itself. Of course, for a general  $A \in \mathcal{L}(\mathcal{D}(G))$  this is not true, but then we can define an operator  $A_{G/K} \in \mathcal{L}(\mathcal{D}(G))$  by

$$s_{A_{G/K}} = (P_{G/K} \otimes \mathrm{id})s_A. \tag{16}$$

Recall that  $\sigma_A \in C^{\infty}(G, \mathcal{L}(H^m(G), H^0(G)))$  when  $A \in \Psi^m(G)$ , so that then

$$\sigma_{A_{G/K}}(x) = \int_{K} \sigma_A(xk) \ d\mu_K(k) \tag{17}$$

exists as a weak integral (Pettis integral), see [4].

Suppose we are given symbols of pseudodifferential operators  $A_1, A_2$  on G satisfying the K-invariance (15). If we look at the asymptotic expansion formulae for  $\sigma_{A_1A_2}, \sigma_{A_1^*}$  and  $\sigma_{A_1^t}$  in [11], we see that all the terms there are K-invariant in the same sense. Moreover, for an elliptic K-invariant symbol the terms in the asymptotic expansion for a parametrix are also K-invariant.

Theorem 1 and its corollary show how to 'project' pseudodifferential operators on G to pseudodifferential operators on G/K:

**Theorem 1.** Let G be a compact Lie group with a closed Lie subgroup K. If  $A \in \Psi^m(G)$ , then  $A_{G/K} \in \Psi^m(G)$ .

**Proof.** First, notice that  $P_{G/K}$  is left-invariant, and hence

$$(\partial_x^\beta \otimes M_{\check{q}_\alpha})(P_{G/K} \otimes \mathrm{id})s_A = (P_{G/K} \otimes \mathrm{id})(\partial_x^\beta \otimes M_{\check{q}_\alpha})s_A$$

for a right-invariant partial differential operator  $\partial_x^{\beta}$  and a multiplication  $M_{\check{q}_{\alpha}}$ for every  $\alpha, \beta \in \mathbb{N}_0^{\dim(G)}$ . Therefore

$$\operatorname{Op}(Q^{\alpha}\partial_x^{\beta}\sigma_{A_{G/K}}) = \left(\operatorname{Op}(Q^{\alpha}\partial_x^{\beta}\sigma_A)\right)_{G/K}.$$

Since  $A \in \Psi^m(G)$ , we have

$$\|Q^{\alpha}\partial_x^{\beta}\sigma_A(x)\|_{\mathcal{L}(H^{m-|\alpha|}(G),H^0(G))} \le C_{A\alpha\beta m},$$

and so the mapping  $k \mapsto Q^{\alpha} \partial_x^{\beta} \sigma_A(xk)$  belongs to  $C^{\infty}(K, \mathcal{L}(H^{m-|\alpha|}(G), H^0(G)))$ for every  $x \in G$ . Then

$$\begin{aligned} \|Q^{\alpha}\partial_{x}^{\beta}\sigma_{A_{G/K}}(x)\|_{\mathcal{L}(H^{m-|\alpha|},H^{0})} &= \left\|\int_{K}Q^{\alpha}\partial_{x}^{\beta}\sigma_{A}(xk) \ d\mu_{K}(k)\right\|_{\mathcal{L}(H^{m-|\alpha|},H^{0})} \\ &\leq \int_{K}\|Q^{\alpha}\partial_{x}^{\beta}\sigma_{A}(xk)\|_{\mathcal{L}(H^{m-|\alpha|},H^{0})} \ d\mu_{K}(k) \\ &\leq \sup_{k\in K}\|Q^{\alpha}\partial_{x}^{\beta}\sigma_{A}(xk)\|_{\mathcal{L}(H^{m-|\alpha|},H^{0})} \\ &\leq \sup_{y\in G}\|Q^{\alpha}\partial^{\beta}\sigma_{A}(y)\|_{\mathcal{L}(H^{m-|\alpha|},H^{0})} \\ &\leq C_{A\alpha\beta m}. \end{aligned}$$

This proves that  $\sigma_{A_{G/K}} \in \operatorname{Op} S_0^m(G)$ . Let  $B \in \mathcal{L}(\mathcal{D}(G))$  be any right-invariant (left convolution) pseudodifferential operator. Then  $\sigma_B(x) = B$  for each  $x \in G$  and  $x \mapsto s_B(x)$  is a constant mapping  $G \to \mathcal{D}'(G)$ ,  $B = B_{G/K}$ , and

$$(\operatorname{Op}(\sigma_A \sigma_B))_{G/K} = \operatorname{Op}(\sigma_{A_{G/K}} \sigma_B)$$

and

$$(\operatorname{Op}(\sigma_B \sigma_A))_{G/K} = \operatorname{Op}(\sigma_B \sigma_{A_{G/K}}).$$

Assume that we have proven  $\sigma_{C_{G/K}} \in S_k^r(G)$  for every  $C \in \Psi^r(G)$ , for every  $r \in \mathbb{R}$ . Using Lemma 6, Theorem 9 and Proposition 11 in [11], we hence get

$$Op([\sigma_{\partial_j}, \sigma_{A_{G/K}}]) = Op([\sigma_{\partial_j}, \sigma_A])_{G/K} \in OpS_k^m(G),$$
$$Op((Q^{\gamma}\sigma_{\partial_j})\sigma_{A_{G/K}}) = Op((Q^{\gamma}\sigma_{\partial_j})\sigma_A)_{G/K} \in OpS_k^{m+1-|\gamma|}(G)$$

and

$$Op((Q^{\gamma}\sigma_{A_{G/K}})\sigma_{\partial_j}) = Op((Q^{\gamma}\sigma_A)\sigma_{\partial_j})_{G/K} \in OpS_k^{m+1-|\gamma|}(G);$$

this means that  $\sigma_{A_{G/K}} \in S^m_{k+1}(G)$ , and then by induction we get  $\sigma_{A_{G/K}} \in S^m(G) = \bigcap_{k=0}^{\infty} S^m_k(G)$ 

**Corollary 2.** Let G/K be orientable. Then  $A_{G/K}|_{\mathcal{D}(G/K)} \in \Psi^m(G/K)$  for every  $A \in \Psi^m(G)$ .

**Proof.** Let

$$\Psi^m(G)_{G/K} = \{A_{G/K} \mid A \in \Psi^m(G)\}$$

and

$$\Psi^{m}(G)_{G/K}|_{\mathcal{D}(G/K)} = \{A_{G/K}|_{\mathcal{D}(G/K)} : A \in \Psi^{m}(G)\}.$$

By Theorem 1 we know that  $\Psi^m(G)_{G/K} \subset \Psi^m(G)$ . Let D be a smooth vector field on G/K. Since  $(G, G/K, K, x \mapsto xK, (x, k) \mapsto xk)$  is a principal fiber bundle, there exists a smooth vector field  $X = X_{G/K}$  on G such that  $X|_{\mathcal{D}(G/K)} = D$  (see [5]). Then

$$[D, \Psi^{m}(G)_{G/K}|_{\mathcal{D}(G/K)}] = [X, \Psi^{m}(G)_{G/K}]|_{\mathcal{D}(G/K)} \subset \Psi^{m}(G)_{G/K}|_{\mathcal{D}(G/K)},$$

and this combined with  $\Psi^m(G)_{G/K}|_{\mathcal{D}(G/K)} \subset \mathcal{L}(H^m(G/K), H^0(G/K))$  yields the conclusion due to the commutator characterization of pseudodifferential operators on closed manifolds

Hence at least sometimes a pseudodifferential operator on G/K has a nonunique extension to a pseudodifferential operator on G. If  $B_j \in \Psi^{m_j}(G/K)$ has an extension  $C_j = (C_j)_{G/K} \in \Psi^{m_j}(G)$  (i.e.  $C_j|_{\mathcal{D}(G/K)} = B_j$ ), then  $C_j^* \in \Psi^{m_j}(G)$  is an extension of the adjoint operator  $B_j^* \in \Psi^{m_j}(G/K)$ , and  $B_1B_2 \in \Psi^{m_1+m_2}(G/K)$  has an extension  $C_1C_2 \in \Psi^{m_1+m_2}(G)$ ; and if  $C_1$  is elliptic with a parametrix  $D \in \Psi^{-m_1}(G)$ , then  $D = D_{G/K}$  and  $B_1 \in \Psi^{m_1}(G/K)$  is elliptic with a parametrix  $D|_{\mathcal{D}(G/K)} \in \Psi^{-m_1}(G/K)$ .

## **6** Harmonic analysis on G/K, K a torus

In the sequel we always assume that the subgroup K of G is a torus,  $K \cong \mathbb{T}^q$ .

**Example of special interest:** Let  $\mathbb{B}^n$  be the unit ball of the Euclidean space  $\mathbb{R}^n$ , and  $\mathbb{S}^{n-1}$  its boundary, the (n-1)-sphere. The two-sphere  $\mathbb{S}^2$ can be considered as the base space of the Hopf fibration  $\mathbb{S}^3 \to \mathbb{S}^2$ , where the fibers are diffeomorphic to the unit circle  $\mathbb{S}^1 \subset \mathbb{R}^2$ . In the context of harmonic analysis,  $\mathbb{S}^3$  is diffeomorphic to the compact non-commutative Lie group G = $\mathrm{SU}(2)$ , having a maximal torus  $K \cong \mathbb{S}^1 \cong \mathbb{T}^1$ . Then the homogeneous space G/K is diffeomorphic to  $\mathbb{S}^2$ , so that the canonical projection  $p_{G \to G/K} : x \mapsto$ xK is interpreted as the Hopf fiber bundle  $G \to G/K$ ; in the sequel we treat the two-sphere  $\mathbb{S}^2$  always as the homogeneous space G/K. Notice that also  $\mathbb{S}^2 \cong \mathrm{SO}(3)/\mathbb{T}^1$ .

In [6] a subalgebra of  $\Psi^m(\mathbb{S}^2)$  was described in terms of so called spherical symbols. Functions  $f \in \mathcal{D}(\mathbb{S}^2)$  can be expanded in series

$$f(\phi,\theta) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \hat{f}(l)_m Y_l^m(\phi,\theta), \qquad (18)$$

where  $(\phi, \theta) \in [0, 2\pi] \times [0, \pi]$  are the spherical coordinates, the functions  $Y_l^m$  the spherical harmonics with Fourier coefficients

$$\hat{f}(l)_m := \int_0^\pi \int_0^{2\pi} f(\phi, \theta) \ \overline{Y_l^m(\phi, \theta)} \sin(\theta) \ d\phi \ d\theta.$$
(19)

Let us define

$$(Af)(\phi,\theta) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} a(l) \ \hat{f}(l)_{m} \ Y_{l}^{m}(\phi,\theta),$$
(20)

where  $a : \mathbb{N}_0 \to \mathbb{C}$  is a rational function; in [6], Svensson states that  $A \in \Psi^m(\mathbb{S}^2)$  if and only if

$$|a(l)| \le C_{A,m}(l+1)^m.$$
(21)

Let us present another proof for a special case of Theorem 1 and Corollary 2.

**Theorem 3.** Let G be a compact Lie group with a torus subgroup K. If  $A \in \Psi^m(G)$ , then  $A_{G/K} \in \Psi^m(G)$  and the restriction  $A_{G/K}|_{\mathcal{D}(G/K)} \in \Psi^m(G/K)$ .

**Proof.** Let dim(G) = p + q,  $K \cong \mathbb{T}^q$ . Let  $\mathcal{V} = \{V_i \mid i \in \mathcal{I}\}$  be a locally trivializing open cover of G/K for the principal fiber bundle  $(G, G/K, K, x \mapsto xK, (x, k) \mapsto xk)$ ; Let  $\mathcal{U} = \{U_j \mid 1 \leq j \leq N\}$  be an open cover of G/K such that for every  $j_1, j_2 \in \{1, \ldots, N\}$  there exists  $V_i \in \mathcal{V}$  containing  $U_{j_1} \cup U_{j_2}$  whenever  $U_{j_1} \cap U_{j_2} \neq \emptyset$ . Notice that we can always refine any open cover on a finite-dimensional manifold to get a new cover satisfying this additional requirement (proving this is easy, see an analogous treatment for partitions of unity in [10]). Then each  $U_i \cup U_j$   $(1 \leq i, j \leq N)$  is a chart neighbourhood on G/K, and furthermore there exist diffeomorphisms  $\phi_{ij} : (U_i \cup U_j) \times K \to p_{G \to G/K}^{-1}(U_i \cup U_j)$  such that  $p_{G \to G/K}(\phi_{ij}(x, k)) = x$  for every  $x \in U_i \cup U_j$  and

 $k \in K$ . To simplify notation, we treat the neighbourhood  $U_i \cup U_j \subset G/K$  as a set  $U_i \cup U_j \subset \mathbb{R}^p$ , and  $p_{G \to G/K}^{-1}(U_i \cup U_j) \subset G$  as a set  $(U_i \cup U_j) \times \mathbb{T}^q \subset \mathbb{R}^p \times \mathbb{T}^q$ .

Let  $\{(U_j, \psi_j) \mid 1 \leq j \leq N\}$  be a partition of unity subordinate to  $\mathcal{U}$ , and let  $A_{ij} = M_{\psi_i} A M_{\psi_j} \in \Psi^m(G)$ . With the localized notation we consider  $A_{ij} \in \Psi^m(\mathbb{R}^p \times \mathbb{T}^q)$ , so that it has the symbol  $\sigma_{A_{ij}} \in S^m(\mathbb{R}^p \times \mathbb{T}^q)$ . Then

$$\sigma_{(A_{G/K})_{ij}}(x,\xi) = \sigma_{(A_{ij})_{G/K}}(x,\xi)$$
  
=  $\int_{\mathbb{T}^q} \sigma_{A_{ij}}(x_1,\ldots,x_p,x_{p+1}+z_1,\ldots,x_{p+q}+z_q;\xi) dz_1 \cdots dz_q$ 

and it is now easy to check that  $\sigma_{(A_G/K)_{ij}} \in S^m(\mathbb{R}^p \times \mathbb{T}^q)$ . This yields  $(A_{G/K})_{ij} \in \Psi^m(G)$ , thus

$$A_{G/K} = \sum_{i,j} (A_{G/K})_{ij} \in \Psi^m(G)$$

**Theorem 4.** Let G be a compact Lie group with a torus subgroup K. Let  $B \in \Psi^m(G/K)$ . Then there exists an operator  $A = A_{G/K} \in \Psi^m(G)$  such that  $A|_{\mathcal{D}(G/K)} = B$ .

**Proof.** Let  $K \cong \mathbb{T}^q$ , dim(G) = p + q, and let  $\{(U_j, \psi_j) \mid 1 \leq j \leq N\}$ be the same partition of unity as in the proof of Theorem 3. Let  $B_{ij} = M_{\psi_i} B M_{\psi_j} \in \Psi^m(G/K)$ . With the localized notation we consider  $B_{ij} \in \Psi^m(\mathbb{R}^p)$ , so that it has the symbol  $\sigma_{B_{ij}} : \mathbb{R}^p \times \mathbb{R}^p \to \mathbb{C}$ , and the mapping  $(x,\xi) \mapsto \sigma_{B_{ij}}(x,\xi)$  is zero when  $x \in \mathbb{R}^p \setminus (U_i \cup U_j)$ . We use Lemma 5 in Appendix to construct a pseudodifferential operator  $A_{ij} \in \Psi^m(\mathbb{R}^p \times \mathbb{T}^q)$  such that  $\sigma_{A_{ij}} : (\mathbb{R}^p \times \mathbb{T}^q) \times (\mathbb{R}^p \times \mathbb{Z}^q) \to \mathbb{C}$ ,

$$\sigma_{A_{ij}}(x; P\xi, 0, \dots, 0) = \sigma_{B_{ij}}(Px; P\xi),$$

where  $Py = (y_1, \ldots, y_p)$   $(y \in \mathbb{R}^{p+q})$ . Hence  $A = A_{G/K} = \sum_{i,j} A_{ij} \in \Psi^m(G)$ and  $A|_{\mathcal{D}(G/K)} \in \Psi^m(G/K)$ . Let  $f = \sum_k f_k \in C^\infty(G/K) \subset C^\infty(G)$ ,  $f_k = f\psi_k$ ; then

$$\begin{aligned} (Af)(x) &= \sum_{i,j,k} (A_{ij}f_k)(x) \\ &= \sum_{i,j,k} \int_{\mathbb{R}^p} \sum_{\xi_{p+1},\dots,\xi_{p+q} \in \mathbb{Z}} \sigma_{A_{ij}}(x,\xi) \ \hat{f}_k(\xi) \ e^{i2\pi x \cdot \xi} \ d\xi_1 \cdots d\xi_p \\ &= \sum_{i,j,k} \int_{\mathbb{R}^p} \sigma_{A_{ij}}(x; P\xi, 0, \dots, 0) \ \hat{f}_k(P\xi, 0, \dots, 0) \ e^{i2\pi (Px) \cdot (P\xi)} \ d\xi_1 \cdots d\xi_p \\ &= \sum_{i,j,k} \int_{\mathbb{R}^p} \sigma_{B_{ij}}(Px; P\xi) \ \hat{f}_k(P\xi, 0, \dots, 0) \ e^{i2\pi (Px) \cdot (P\xi)} \ d\xi_1 \cdots d\xi_p \\ &= \sum_{i,j,k} (B_{ij}f_k)(Px) \\ &= (Bf)(xK) \end{aligned}$$

### 7 Discussion

Theorem 4 combined with Lemma 5 provides just one way of extending operators, unfortunately destroying ellipticity: this is due to the apparent non-ellipticity of the symbol  $\chi$  in Lemma 5. Let us discuss this problem and provide other extensions.

Let us extend the identity operator  $I \in \Psi^0(\mathbb{R}^p)$  using the process suggested by Lemma 5. Of course, it would be desirable if  $I \in \Psi^0(\mathbb{R}^p)$  could be extended to the identity in  $\Psi^0(\mathbb{R}^{p+q})$ , but now  $\sigma_I(x,\xi) \equiv 1$ , and thereby its extension  $A \in \Psi^0(\mathbb{R}^{p+q})$  has the non-elliptic homogeneous symbol  $\sigma_A = \chi \in$  $S^0(\mathbb{R}^{p+q})$ .

Given an elliptic symbol  $\sigma_B \in S^m(\mathbb{R}^p)$  we can occasionally modify the construction in Lemma 5 to get an extended elliptic symbol in  $S^m(\mathbb{R}^{p+q})$ . Sometimes the following trick helps: Let  $\sigma_{A_1} \in S^m(\mathbb{R}^{p+q})$  be an extension of  $\sigma_{B_1}$  as in Lemma 5,

$$\sigma_{A_1}(x,\xi) = \chi_1(\xi) \ \sigma_{B_1}(x_1,\ldots,x_p;\xi_1,\ldots,\xi_p),$$

where  $\chi_1 \in S^0(\mathbb{R}^{p+q})$  is a homogeneous symbol satisfying  $\chi_1|_{(U \times \mathbb{R}^q) \setminus \mathbb{B}(0,1)} \equiv 0$ ,  $\chi_1|_{\mathbb{R}^p \times V} \equiv 1$ , where  $U \subset \mathbb{R}^p$  and  $V \subset \mathbb{R}^q$  are neighborhoods of zeros. Take any elliptic symbol  $\sigma_{B_2} \in S^m(\mathbb{R}^q)$ , and modify Lemma 5 to construct an extension  $\sigma_{A_2} \in S^m(\mathbb{R}^{p+q})$  such that

$$\sigma_{A_2}(x,\xi) = \chi_2(\xi) \ \sigma_{B_2}(x_p, \dots, x_{p+q}; \xi_p, \dots, \xi_{p+q})$$

for a homogeneous symbol  $\chi_2 \in S^0(\mathbb{R}^{p+q})$  satisfying  $\chi_2|_{(U \times \mathbb{R}^q) \setminus \mathbb{B}(0,1)} \equiv 1$ ,  $\chi_2|_{(\mathbb{R}^p \times V) \setminus \mathbb{B}(0,1)} \equiv 0$ . Then  $\sigma_{A_1} + \sigma_{A_2} \in S^m(\mathbb{R}^{p+q})$  is an extension for  $\sigma_{B_1}$ (modulo infinitely smoothing operators). For instance, if  $B_1 = I \in \Psi^0(\mathbb{R}^p)$ , let  $B_2 = I \in \Psi^0(\mathbb{R}^q)$  and  $\chi_2(\xi) = 1 - \chi_1(\xi)$  (for  $|\xi| > 1$ ), then  $A_1 + A_2 = I \in \Psi^0(\mathbb{R}^{p+q})$  (modulo infinitely smoothing operators).

It may happen that any extension process for an elliptic symbol  $\sigma_B \in S^m(\mathbb{R}^p)$  constructs a non-elliptic symbol in  $S^m(\mathbb{R}^{p+q})$ . Consider, for instance, a case where  $B \in \Psi^m(\mathbb{R}^2)$  is an elliptic convolution operator and  $\xi \mapsto f(\xi) \equiv \sigma_B(x,\xi)$  is homogeneous outside the unit ball  $\mathbb{B}(0,1) \subset \mathbb{R}^2$ . If the mapping  $f|_{\mathbb{S}^1} : \mathbb{S}^1 \to \mathbb{C} \setminus \{0\}$  is not homotopic to a constant mapping (i.e.  $f|_{\mathbb{S}^1}$  has a non-zero winding number) then no extension  $\sigma_A \in S^m(\mathbb{R}^3)$  of  $\sigma_B$  can be elliptic.

Multiplications on G/K have already been extended to multiplications Gvia  $x \mapsto xK$ , and  $A = A_{G/K}$  for any left convolution operator (multiplier)  $A \in \mathcal{L}(\mathcal{D}(G))$  (in fact, then  $\sigma_A(x) = A$  for every  $x \in G$ ). Sometimes on G/K we have operators that resemble convolution operators. Suppose we are given a left convolution operator  $A \in \Psi^m(\mathrm{SU}(2))$ . Then the restriction  $B = A|_{\mathcal{D}(\mathbb{S}^2)} \in \Psi^m(\mathbb{S}^2)$  is of the form

$$(Bf)(\phi,\theta) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} \left( \sum_{n=-l}^{l} a(l)_{mn} \ \hat{f}(l)_n \right) \ Y_l^m(\phi,\theta), \tag{22}$$

where the coefficients  $a(l)_{mn} \in \mathbb{C}$  can be calculated from the data

$$\{BY_l^m \mid l \in \mathbb{N}_0, m \in \{-l, -l+1, \dots, l-1, l\}\}$$

It is even true that the original operator A can be retrieved from the coefficients  $a(l)_{mn}$ . In fact, any operator  $B \in \mathcal{L}(\mathcal{D}(\mathbb{S}^2))$  of the form (22) can be extended to a unique left convolution operator belonging to  $\mathcal{L}(\mathcal{D}(\mathrm{SU}(2)))$ . Now a natural question arises: given a pseudodifferential operator  $B \in \Psi^m(\mathbb{S}^2)$  of the form (22), does its extension to the left convolution operator belong to  $\Psi^m(\mathrm{SU}(2))$ ? This is an open problem. An interesting special case is

$$(Bf)(x) = \int_{\mathbb{S}^2} \kappa(x \cdot y) \ f(y) \ dy, \tag{23}$$

where  $\kappa \in \mathcal{D}'(\mathbb{S}^2)$ ,  $(x, y) \mapsto x \cdot y$  is the scalar product of  $\mathbb{R}^3$ , and the integration is with respect to the angular part of the Lebesgue measure of  $\mathbb{R}^3$ . Then

$$(Bf)(\phi,\theta) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} c_l \ \hat{\kappa}(l)_0 \ \hat{f}(l)_m \ Y_l^m(\phi,\theta)$$

for some normalizing constants  $c_l$  depending only on  $l \in \mathbb{N}_0$ .

### 8 Appendix

**Lemma 5.** Let  $\chi \in C^{\infty}(\mathbb{R}^{p+q})$  be homogeneous of order 0 in  $\mathbb{R}^{p+q} \setminus \mathbb{B}(0,1)$ , i.e.  $\chi(\xi) = \chi(\xi/||\xi||)$  when  $||\xi|| \ge 1$ . Furthermore, assume that  $\chi$  satisfies  $\chi|_{(U \times \mathbb{R}^q) \setminus \mathbb{B}(0,1)} \equiv 0$ ,  $\chi|_{\mathbb{R}^p \times V} \equiv 1$ , where  $U \subset \mathbb{R}^p$  and  $V \subset \mathbb{R}^q$  are neighborhoods of zeros. Let  $\sigma_B \in S^m(\mathbb{R}^p)$  and

$$\sigma_A(x,\xi) := \chi(\xi) \ \sigma_B(Px, P\xi)$$

where  $P(x_1, \ldots, x_{p+q}) = (x_1, \ldots, x_p)$ . Then  $\sigma_A \in S^m(\mathbb{R}^{p+q})$ . Moreover,  $\sigma_A|_{(\mathbb{R}^p \times \mathbb{R}^q) \times (\mathbb{R}^p \times \mathbb{Z}^q)} \in S^m(\mathbb{R}^p \times \mathbb{T}^q)$ .

**Proof.** We shall first prove that

$$|(\partial_{\xi}^{\gamma}\chi)(\xi)| \le C_{\gamma r} \langle P\xi \rangle^{-r} \langle \xi \rangle^{r-|\gamma|}$$
(24)

for every  $r \in \mathbb{R}$  and for every  $\gamma \in \mathbb{N}_0^{p+q}$ . It is trivial that  $(x,\xi) \mapsto \chi(\xi)$ belongs to  $S^0(\mathbb{R}^{p+q})$ . If  $r \geq 0$  then obviously (24) is true. Since we are not interested in the behaviour of the symbols when  $\|\xi\|$  is small, we assume that  $\|\xi\| > 1$  from here on. There exists  $r_0 \in (0,1)$  such that  $\chi(\xi) = 0$  when  $\|P\xi\| < r_0$ . Let r < 0 and  $\xi \in \operatorname{supp}(\chi)$ . Then  $\|P\xi\| \geq r_0 \|\xi\|$ , and thus

$$\begin{aligned} |(\partial_{\xi}^{\gamma}\chi)(\xi)| &\leq C_{\gamma} \langle \xi \rangle^{-|\gamma|} \\ &= C_{\gamma} \langle P\xi \rangle^{-r} \langle P\xi \rangle^{r} \langle \xi \rangle^{-|\gamma|} \\ &\leq C_{\gamma} \langle P\xi \rangle^{-r} \langle r_{0}\xi \rangle^{r} \langle \xi \rangle^{-|\gamma|} \\ &\leq C_{\gamma} r_{0}^{r} \langle P\xi \rangle^{-r} \langle \xi \rangle^{r-|\gamma|}. \end{aligned}$$

Hence the inequality (24) is proven. Now

$$\begin{aligned} |\partial_{\xi}^{\alpha}\partial_{x}^{\beta}\sigma_{A}(x,\xi)| &\leq \sum_{\gamma\leq\alpha} \begin{pmatrix} \alpha\\ \gamma \end{pmatrix} |(\partial_{\xi}^{\gamma}\chi)(\xi)| |(\partial_{\xi}^{\alpha-\gamma}\partial_{x}^{\beta}\sigma_{B})(Px,P\xi)| \\ &\leq \sum_{\gamma\leq\alpha} \begin{pmatrix} \alpha\\ \gamma \end{pmatrix} C_{\gamma r_{\gamma}} \langle P\xi \rangle^{-r_{\gamma}} \langle \xi \rangle^{r_{\gamma}-|\gamma|} C_{B(\alpha-\gamma)\beta m} \langle P\xi \rangle^{m-|\alpha-\gamma|} \\ &\leq C_{B\alpha\beta m\chi} \langle \xi \rangle^{m-|\alpha|}, \end{aligned}$$

if we choose  $r_{\gamma} = m - |\alpha - \gamma|$ . Thereby  $\sigma_A \in S^m(\mathbb{R}^{p+q})$ . Clearly we can consider this symbol as a function  $\sigma_A : (\mathbb{R}^p \times \mathbb{T}^q) \times (\mathbb{R}^p \times \mathbb{R}^q) \to \mathbb{C}$  and study its restriction  $\sigma_A|_{(\mathbb{R}^p \times \mathbb{T}^q) \times (\mathbb{R}^p \times \mathbb{Z}^q)}$  we claim that this restriction belongs to  $S^m(\mathbb{R}^p \times \mathbb{T}^q)$ . Indeed, Taylor expansion of a function  $\sigma \in C^{\infty}(\mathbb{R}^q)$  yields

$$\begin{split} \triangle_{\xi}^{\gamma} \sigma(\xi) &= \sum_{\delta \leq \gamma} \binom{\gamma}{\delta} (-1)^{|\gamma - \delta|} \sigma(\xi + \delta) \\ &= \sum_{\delta \leq \gamma} \binom{\gamma}{\delta} (-1)^{|\gamma - \delta|} \\ &\times \left( \sum_{|\rho| < |\gamma|} \frac{1}{\rho!} \delta^{\rho} \left( \partial_{\xi}^{\rho} \sigma \right)(\xi) + \sum_{|\rho| = |\gamma|} \frac{1}{\rho!} \delta^{\rho} \left( \partial_{\xi}^{\rho} \sigma \right)(\xi + \theta_{\delta} \delta) \right) \\ &= \sum_{|\rho| < |\gamma|} \frac{1}{\rho!} \left( \partial_{\xi}^{\rho} \sigma \right)(\xi) \sum_{\delta \leq \gamma} \binom{\gamma}{\delta} (-1)^{|\gamma - \delta|} \delta^{\rho} \\ &+ \sum_{\delta \leq \gamma} \sum_{|\rho| = |\gamma|} \frac{1}{\rho!} \delta^{\rho} \left( \partial_{\xi}^{\rho} \sigma \right)(\xi + \theta_{\delta} \delta) \\ &= \sum_{\delta \leq \gamma} \sum_{|\rho| = |\gamma|} \frac{1}{\rho!} \delta^{\rho} \left( \partial_{\xi}^{\rho} \sigma \right)(\xi + \theta_{\delta} \delta), \end{split}$$

because

$$\sum_{\delta \le \gamma} \binom{\gamma}{\delta} (-1)^{|\gamma - \delta|} \delta^{\rho} = \triangle_{\xi}^{\gamma} \xi^{\rho}|_{\xi = 0} = 0$$

whenever  $|\rho| < |\gamma|$ . Therefore

$$\begin{aligned} |\Delta_{\xi}^{\gamma}\sigma(\xi)| &\leq \sum_{\delta \leq \gamma} \sum_{|\rho|=|\gamma|} \frac{1}{\rho!} \delta^{\rho} |(\partial_{\xi}^{\rho}\sigma)(\xi + \theta_{\delta}\delta)| \\ &\leq c_{\gamma} \sup_{\eta \in S_{\gamma}, |\rho|=|\gamma|} |(\partial_{\xi}^{\rho}\sigma)(\xi + \eta)|, \end{aligned}$$

where  $S_{\gamma}$  is the hyper-rectangle  $\prod_{j=1}^{q} [0, \gamma_j]$ . Let  $\alpha' = (P\alpha, 0, \dots, 0), \ \alpha'' = \alpha - \alpha'$ ; then

$$\begin{aligned} |\partial_{\xi}^{\alpha'} \Delta_{\xi}^{\alpha''} \partial_{x}^{\beta} \sigma_{A}(x,\xi)| &\leq C_{\alpha} \sup_{\eta \in S_{\alpha''}, |\rho| = |\alpha''|} |\partial_{\xi}^{\alpha'+\rho} \partial_{x}^{\beta} \sigma_{A}(x,\xi+\eta)| \\ &\leq C_{\alpha} C_{A\alpha\beta m} \sup_{\eta \in S_{\alpha}} \langle \xi+\eta \rangle^{m-|\alpha|} \end{aligned}$$

$$\leq C_{\alpha} C_{A\alpha\beta m} 2^{|m-|\alpha||} \sup_{\eta \in S_{\alpha}} \langle \eta \rangle^{|m-|\alpha||} \langle \xi \rangle^{m-|\alpha|}$$
  
$$\leq C_{\alpha} C_{A\alpha\beta m} 2^{|m-|\alpha||} \langle \alpha \rangle^{|m-|\alpha||} \langle \xi \rangle^{m-|\alpha|}$$
  
$$= C'_{A\alpha\beta m} \langle \xi \rangle^{m-|\alpha|};$$

notice the application of the Peetre inequality

$$\langle \xi + \eta \rangle^s \le 2^{|s|} \langle \xi \rangle^s \langle \eta \rangle^{|s|}.$$

Hence  $\sigma_A|_{(\mathbb{R}^p \times \mathbb{T}^q) \times (\mathbb{R}^p \times \mathbb{Z}^q)} \in S^m(\mathbb{R}^p \times \mathbb{T}^q)$ 

### References

- Agranovich, M. S.: Spectral properties of elliptic pseudodifferential operators on a closed curve. Funct. Anal. Appl. 13 (1979), 279–281.
- [2] Bröcker, Th. and tom Dieck, T.: Representations of Compact Lie Groups. New York: Springer-Verlag 1985.
- [3] Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Berlin: Springer-Verlag 1985.
- [4] Rudin, W.: Functional Analysis. New Delhi: Tata McGraw-Hill 1974.
- [5] Spivak, M.: A Comprehensive Introduction to Differential Geometry, Vol. II. Houston: Publish or Perish 1979.
- [6] Svensson, S. L.: Pseudodifferential operators a new approach to the boundary problems of physical geodesy. Manuscripta Geodaetica 8 (1983), 1-40.
- [7] Taylor, M. E.: Beals-Cordes -type characterizations of pseudodifferential operators. Proc. Amer. Math. Soc. 125 (1997), 6, 1711–1716.
- [8] Taylor, M. E.: Noncommutative microlocal analysis. Mem. Amer. Math. Soc. 52 (1984), No. 313.
- [9] Taylor, M. E.: *Pseudodifferential Operators*. Princeton Univ. Press 1981.
- [10] Turunen, V.: Commutator characterization of periodic pseudodifferential operators. Z. Anal. Anw. 19 (2000), 95–108.
- [11] Turunen, V.: Pseudodifferential calculus on compact Lie groups. Helsinki Univ. Techn. Inst. Math. Research Report A431. 2001.
- [12] Turunen, V. and Vainikko, G.: Symbolic calculus of periodic pseudodifferential operators. Z. Anal. Anw. 17 (1998), 9–22.
- [13] Wallach, N. R.: Harmonic Analysis on Homogeneous Spaces. New York: Marcel Dekker, Inc. 1973.

(continued from the back cover)

| A430 | Ville Havu and Juhani Pitkäranta<br>Analysis of a bilinear finite element for shallow shells I: Approximation of Inex-<br>tensional Deformations, May 2000                                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A428 | Jarmo Malinen<br>Discrete Time $H^\infty$ Algebraic Riccati Equations, Mar 2000                                                                                                            |
| A427 | Marko Huhtanen<br>A Hermitian Lanczos method for normal matrices, Jan 2000                                                                                                                 |
| A426 | Timo Eirola<br>A Refined Polar Decomposiotion: $A = UPD$ , Jan 2000                                                                                                                        |
| A425 | Hermann Brunner, Arvet Pedas and Gennadi Vainikko<br>Piecewise polynomial collocation methods for linear Volterra integro-differential<br>equations with weakly singular kernels, Dec 1999 |
| A424 | Olavi Nevanlinna<br>Resolvent conditions and powers of operators, Dec 1999                                                                                                                 |
| A423 | Jukka Liukkonen<br>Generalized Electromagnetic Scattering in a Complex Geometry, Nov 1999                                                                                                  |
| A422 | Marko Huhtanen<br>A matrix nearness problem related to iterative methods, Oct 1999                                                                                                         |
| A421 | Ph. Clément, G. Gripenberg, V. Högnäs, and S-O. Londen<br>Some remarks on the method of sums, Oct 1999                                                                                     |
| A420 | Ville Havu and Juhani Pitkäranta<br>An Analysis of Finite Element Locking in a Parameter Dependent Model Prob-<br>lem, Aug 1999                                                            |
| A419 | G. Gripenberg, Ph. Clément, and S-O. Londen<br>Smoothness in fractional evolution equations and conservation laws, Aug 1999                                                                |
| A418 | Marko Huhtanen<br>Pole assignment problems for error bounds for GMRES, Aug 1999                                                                                                            |
| A417 | Kirsi Peltonen<br>Examples of uniformly quasiregular mappings, Jul 1999                                                                                                                    |

#### HELSINKI UNIVERSITY OF TECHNOLOGY INSTITUTE OF MATHEMATICS RESEARCH REPORTS

The list of reports is continued inside. Electronical versions of the reports are available at *http://www.math.hut.fi/reports/*.

- A435 Timo Salin On Quenching with Logarithmic Singularity, May 2001
- A434 Ville Havu An Analysis of Asymptotic Consistency Error in a Parameter Dependent Model Problem, Mar 2001
- A433 Ville Havu and Juhani Pitkäranta Analysis of a bilinear finite element for shallow shells I: Consistency error, Jan 2001
- A432 Tuomas Hytönen Optimal Wrap-Araoud Network Simulation, Dec 2000

ISBN 951-22-5524-3 ISSN 0784-3143 Libella Painopalvelu Oy, Espoo, 2001