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Introduction
In science and in mathematics one often encounters equations of the form
(1) Ax + Br =y,

where y belongs to a vector space X, A and B are linear operators in X, and
x € D(A)ND(B) is the solution to be determined. It is clear that if we have
no or little knowledge of the operators A and B, then little can be said about
the existence and regularity of solutions to the equation. Hence, when we
develop some kind of general theory for equations of the form (1), we have
to restrict our considerations to some special classes of pairs of operators. In
the method of sums, this class consists of pairs of nonnegative operators.

In Chapter 2 we give an introduction to the theory of nonnegative and
positive operators A : D(A) — X in a complex Banach space X. Among the
topics included are, e.g., the interpolation spaces D (6, p) between D(A")
and X and fractional powers of positive operators.

The method of sums, developed by P. Grisvard, is presented in Chapter 3.
It is a powerful tool for solving the abstract operator equation (1): It provides
a unique and explicit solution to the equation in the form of a complex vector—
valued curve integral

S(A By = o [ (4 A (- = B) e
2mi
gl
for all y in any real interpolation space Da(0,p) or D4(0) between X and
D(A), or in any real interpolation space Dg(6,p) or Dp(0) between X and
D(B). Here we assume that 0 < § < 1 and 1 < p < co. The restrictions that
we impose on A and B in order to achieve this are, besides nonnegativity, that
the spectral angles w, and wg of A and B satisfy the inequality w4 +wp < T,
that 0 € p(A) U p(B), and that A and B are resolvent commuting.

In addition to guaranteeing the existence of a unique solution z for y
in one of the above mentioned interpolation spaces, these restrictions also
ensure maximal regularity of the problem with respect to the interpolation
spaces in question. For example, if y € D4(6, p), then not only does = belong
to D(A)ND(B) C Da(0,p), but also Az and Bz belong to this interpolation
space.

The method of sums has also been generalised to pairs of operators with
non—commuting resolvents. In Section 3.4 we present the method proposed
by Da Prato and Grisvard (cf. [10]; a slightly different method can be found
in [8]).

The method of sums may be used to investigate solutions to a number
of problems, e.g. partial differential equations. In Chapter 4 we apply it
to the fractional evolution equation Dfu(t,x) + DPu(t,z) = f(t,z) in the
space Cgyso(Q; E) of continuous functions f : @ — E such that f(0,z) =
f(t,0) = 0, where 0 < o, < 1, a+f < 2, Q = [0,7] x [0,¢] and F
is a complex Banach space, and obtain a maximal regularity result for the



spaces Ch,o(Q; E), where 0 < p < a, 0 < v < 3. The regularity of the
equation Dfu(t,z) + b(t,x) Dyu(t,z) = f(t,z) in the space Coyg0(Q; E)
is also studied using Grisvard’s and Da Prato’s method for non-commuting
operators.

In order to make the presentation self-contained, a chapter on graphs and
linear operators as well as two appendices on integration of vector-valued

functions and on interpolation spaces, respectively, are also included.



1 Graphs and linear operators

In this chapter we discuss some basic properties of linear graphs and func-
tions, that will be needed in later chapters. Actually most of the results on
graphs that we present will only be applied to functions, but we choose to
prove more general versions.

1.1 Graphs, functions and linear operators

Let X and Y be two sets. A graph! G from X into Y is simply a subset of
X xY. Adopting the view that a function (or mapping, or operator) f equals
the set of ordered pairs (x, f(z)), we thus define a graph f from X into Y to
be a function from X into Y if the implication

(1.1) (x,y) € fA(z,2) € f=y=2

holds for any x € X and any y,2z € Y. Thus, functions are many-to—one
graphs. A graph in X is a graph from X into itself. Analogously a function
in X is a function from X into itself.

Let us now introduce some customary generalisations to graphs of familiar
concepts usually defined for functions.

The domain and the range of a graph G from X into Y are the sets

DG):={zeX|TyeY: (z,y) € G}
and

R(G) ={yeY |z e X: (z,y) € G}

respectively.
The inverse of GG is defined by the equality

Gl i={(y,z) €Y x X | (z,y) € G}.

Then D(G™') = R(G) and R(G™') = D(G).

We say that f is a mapping of X into Y if f is a function from X into Y
and D(L) = X. This is denoted f: X — Y.

A function f from X into Y is said to be one—to—one (or injective) if f=*
is also a function. Otherwise it is many—to—one. It is onto (or surjective)
if R(f) =Y. If a function f from X to Y is one-to-one and onto and
D(f) = X, we say that f is bijective from X onto Y.

We define the composition G o G5 of a graph G from X into Y and a
graph G5 from Y into Z by

GyoGy={(z,2) e X xZ|FyeY: (x,y) € Gi N (y,2) € Ga}.

Obviously
(G2 9 Gl)_l = Gl_l ®) GQ_I

ISet theoreticians use the term relation.




We define G* (n = 1,2,...) recursively by putting G' = G and G =
GoG" (n=1,2,...). Hence, we can also set G = (G~ 1)".

We now assume that Y is a linear vector space. Then the sum of two
graphs GG; and G5 from a set X into Y is the graph

G1+G2 = {(fl?,yl—i-’yg) e X XYl(.ﬁU,’yl) EGl/\(fB,yQ) EGQ}

with domain D(G; + G2) = D(G1) N D(Gs). For scalars A of the space Y we
set
AG = {(z,\y) € X xY | (z,y) € G}.

If G is a graph in a linear vector space X we can, as a special case, consider
A=G =M —-G:={(z, \z —y) | (z,y) € G},

where I is the identity function on X. As usual -G := (—1)G and G1 —G4 :=
G + (—Gy).

At this point we note that G + G need not equal 2G, and that G — G
need not vanish (for any € D(G)). But if f is a function and G; and G
are graphs with D(Gy) = D(Gy) C D(f), then

f+Gi=f+Gy= G =Go.

Let X and Y be linear vector spaces over the same scalar field. We call
a graph G from X into Y linear if it is a linear subspace of X x Y. Thus, G
is linear if and only if

(121 + oo, anyy + yp) € G

whenever (z1,y1) € G and (z2,92) € G, and oy and ay are scalars. It is
an immediate consequence of this definition that the domain and range of a
linear graph from X into Y are linear subspaces of X and Y respectively. It
is also easy to prove that if G; and G5 are linear graphs from X into Y, and
A1 and Ay are scalars, then \{G1 + A2Go is linear. Also, G is linear if and
only if G is linear.

For linear graphs GG; and G5 we set G1G5 := G o Gs.

A linear operator from X into Y is a function from X into Y that is a
linear graph. Hence, a linear graph L from X into Y is a linear operator if
and only if

y €Y A(0,y) e L=1y=0.

A linear operator in X is a linear operator L from X into itself, i.e.
L: D(L) — X. It is a linear operator on X if, in addition D(L) = X, i.e.
L: X — X.

Although the above defined concepts for graphs are straightforward gen-
eralisations of the corresponding ones for functions, some of the familiar rules
of calculation with sums and composition of functions do not apply to arbi-
trary graphs. Thus, if H is a graph from X into Y, and F' and G are graphs
from Y into a linear vector space Z we can, in general, only prove that

(F+G)H C FH + GH.
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The reverse inclusion holds only in special cases. For example (F' + G)H =
FH +GH if H is a function. We also have

(1.2) (f+a)ft=1+Gf!

if f (but not necessarily f~') is a function and G is a graph in X. Moreover,
if G and H are graphs from X into a linear vector space Y, and F'is a linear
graph from Y into Z, we have

(1.3) FG+FH CF(G+H),
whereas equality,
(1.4) FG+FH=F(G+ H),

holds if F' is linear and either D(F') D R(G) or D(F) D R(H). One can also
prove that if F'is a graph from X into Y, G is a graph from Y into X and
R(F) = D(G), then

GF = Ingr

implies that G is a function and G = F~!. Here I, is the identity function
on A C X. All the facts stated above can be proved by simple application
of the definitions of the various concepts involved.

1.2 Bounded linear operators

Let X and Y be two normed vector spaces over the same scalar field, and let
L be a linear operator that maps D(L) C X into Y.

We say that L is bounded if there is a constant M such that || Lz |, <
M || z||y for all z € D(L). In that case the operator norm of L is defined by
the equation

Lx
1) = sup L2y 2y
z€D(L) ||55||X z€D(L)
270 Iz |lx=1

It is easy to see that a bounded linear operator is continuous, since bound-
edness immediately implies continuity at the origin, and continuity at the
origin is equivalent to continuity everywhere on account of linearity. The
converse implication is also true, since if L is not bounded there is a sequence
{@p},2, CD(L) with ||z, ||x =1 and || Lay ||y > 0|2 ||y for n=1,2,....
Hence, z], = L1z, defines a sequence with ||z}, ||y = 1/n and || Lz} ||, > 1
for n = 1,2,..., which implies that L cannot be continuous. Thus, a linear
operator is bounded if and only if it is continuous.

The set £(X,Y") of all bounded linear operators L : X — Y is a normed
linear vector space. We set L(X) := L(X, X)

11



1.3 Resolvents of graphs

Even though a graph is generally many—to—many, in special cases its inverse
may, of course, be many-to-one, i.e. a function. Thus, the concept of regular
value for linear operators in a Banach space X can be extended to graphs
in X in the obvious way; we say that \ is a regular value for G if (A — G)™!
belongs to £(X), the space of bounded linear operators on X. In that case
(A — G)7! is said to be a resolvent of G. The set of all regular values of
G is called the resolvent set of G and is denoted p(G) . Its complement
with respect to C is the spectrum o(G) of G. We note that the existence
of a regular value implies that the graph is linear. Thus, a function whose
resolvent set is non—empty is a linear operator.

The following lemma is a straightforward generalisations of some well—-
known facts from the theory of linear operators.

THEOREM 1.1. Let G be a graph in a Banach space X. Then p(G) C C is
open, and the mapping = — (z — G)™' of p(G) into L(X) is analytic with
derivative —(z — G) 2. Moreover, if \, u € p(G@), then we have the resolvent
identity

(1.5) A=G) ' = (-G == -G (u-G)".
Proof. Let G be a graph in X and let 2y be a regular value of G. We have

2—G=21—-G—(2—2)1
= (1= (20— 2)(20 — G)7)(20 — G),

since if G~ is a function then G 'G = Ip(g). Now 1 — (20— 2)(z—G) ! can
be inverted by means of a Neumann series if || (z9 — 2)(20 — G)™' || < 1, and
the inverse is defined on the whole of X. Thus, if |20 — z| < 1/ || (20 — G) 7" ||,
then

-1

(z=G) "' =(20—G)"' (1= (20— 2)(2—G)7")

0 =3 (e 20 (1) 0 — G)
so that
(1.7 §G) 2 1= € €l oo — 2| < 1/]| (20— &) ||}

This implies that p(G) is open. If, in particular, z lies in the circular disc
|2 — 20] < (1=6) || (20 — G)" || for some § € (0, 1), then we have the following
bound on the resolvent:

_ 1 _
(L9 [ -6 < 2 o).
The existence of a representation of (z—G) ™! as the sum of a power series

at 2o also implies that it is analytic in z at 2y, and the derivative at z; is the
coefficient — (29 — G) ™2 of 2 — 2y (cf. Theorem A.24).

12



Now let A\, i € p(G). Then, using equation (1.2), we have
(19 (=G = (=G ) (=G = (A=) (u=G) ~ In(a,
But

A=) (-G == ((b=NI+X1-G)
=(u=NA=G) "+ Ip@),

where the second equality holds by (1.4) since (A —G) ! is linear and defined
on all of X. Inserting this into equation 1.9 we get

(110) (A=) = (= &)") (1= G) = (= VA~ C) gy,
Multiplying by A — G from the right, observing that

In(A = G) = (A = G)Ip(u-c)0-))-

we obtain

(111) (A=) = (=G (p =GN =G) = (1= NIp(u-cyrc))-

Since the domain of (A — G)™! — (u— G)~! and the range of (1 — G)(A — Q)
both equal X, this implies the resolvent identity. O

1.4 Some results on the closure of a linear operator

Let G be a graph from a Banach space X into a Banach space Y. As usual,
G denotes the closure of G, i.e., the set of all (z,y) € X x X such that there
is a sequence {(Zn,y,)} -, in G, which converges to (z,y) as n — co. A
graph is closed if it coincides with its closure. Thus, the closure of a graph
is a closed graph.

The closure of a function is a closed graph, but it need not, however, be
a function. A closed function is a function that is a closed graph. Thus, a
function f is closed if and only if f(z) is defined and f(z) = y whenever
{zn}2 | converges to x € X and {f(z,)},—, converges to y € Y as n — oc.
A function f is closable if f is also a function. We have the following simple
lemma.

LEMMA 1.2. Any bounded linear operator L from X into Y s closable, and
its closure L is a bounded linear operator with || L || = || L||.

Proof. Tt is clear that L is a linear graph, since being the closure of a linear
subspace of X x Y it is a linear subspace of X x Y. We have || Lz | <
| L |||z | for all z € D(L). Hence, if {x,,} -, C D(L) and z, — x as n — oo,
then Lx,, — 0. It follows that if (0, y) € L, then y = 0, which implies that L is

a function. Moreover, if z € D(L), then there is a sequence {z,} ~, C D(L)

that converges to  and such that Lz, converges to Lz as n — oo. Hence,
| Lz || < || L] ||z || for all z € D(L), so that | L| = || L. O

13



We observe that if L is a linear operator in X, then (A+ L)~!' = A+ L =

(A+L)~L. Let us prove a theorem concerning the resolvent set of the closure
of a linear operator (see |7], pp. 309-314).

THEOREM 1.3. Let X be a Banach space and let L be a linear operator in
X such that
(i) there are constants N > 1 and wy > 0 with

N
(1.12) Izl < 5 1Az + La |

for all X > wy and all x € D(L), and

(ii) there is some wy > wy such that R(wy + L) = (wy + L)(D(L)) is dense
n X.

Then (wo(1 — &), 00) C p(—L), and for all A > we(1— %) the range of A+ L
is dense in X and

(113) |0+ <

for all X > wq. If, in addition, L is densely defined in X, then it is closable.
If (i) holds with N =1 and some wy, then it holds with N =1 and wy = 0.

REMARK 1.4. If an operator L satisfies condition (i) of the theorem with
N =1 and wy = 0, it is called m—accretive (cf. Section 2.1).

Proof. Let L be a linear operator in X which satisfies the hypotheses of the
theorem and let A > wy. The inequality (1.12) implies that if (0,y) € (A +
L)™', then ||y || < (N/A)]|0] = 0, so that (A4 L)' is a linear operator in X .
Thus, (A+L)~" is a bounded linear operator in X, with || (A+ L)™' || < N/A.
Consequently, Lemma 1.2 implies that (A + L)™' = (A + L)' is a bounded
linear operator in X, and that H A+ L)t H < N/, i.e., we have the obvious

extension of the inequality (1.12) to L:

(1.14) Iz g%H)\erLH
for all z € D(L) and all A > wy.

Let us show that the bounded linear operator (w; 4+ L)™' is defined on all
of X. Thus, take an arbitrary y € X. Then, since (w; + L)(D(L)) is dense
in X, there is a sequence y,, = (w; + L)z,, n =1,2,...,in D(L) with y, — y
as n — oo. Hence, by (1.12)

N
|20 = Zm | £ — 190 = ym I,
w1

which means that the x,, form a Cauchy sequence, which tends to some =z
as n — oo. Consequently, Lz, = y, — w1z, — y — wi1x as n — oo, so that
(z,y —wiz) € L, ie. (2,y) € wi + L. Thus, for any y € X there is some

x € X such that (z,y) € w; + L, and we have shown that w; € p(—L).
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By (1.14) we have

(1.15) |(A+LZ) ' <

> =

for all A > w,. Hence, if A € p(—L) and A > wq, then by (1.7) we have

(Ml—%xmra%ﬁgpef»

Now w; € p(—L) and w; > wp, and thus (wi(1 — %), wi(1+ %)) € p(—L).
Repeating this argument, we can successively enlarge the interval to obtain,
finally, the inclusion (we(1 — +),oc) C p(—L).

Since the inclusion R(G) 2 R(G) holds for any graph G, and since
R(A+L) = X for any A € p(—L), it follows that R(A+ L) is dense in
X forall A € p(—L) D (wo(1 — %), 00).

Let us now assume that L is densely defined. We shall show that this
assumption in combination with the assumption (i) of the theorem implies
that L is a function. For this purpose we let z, € D(L) be a sequence such
that x, — 0 and Lz, — y as n — oo. We have to show that y = 0. Let

z € D(L) be arbitrary. By (1.12) we have

N
| Az, — 2| < XH)\(Axn—i—Lmn) —Az—Lz|,
and letting n — oo we get

1
HZ”SNH?J_Z_XLZ

Since this holds for all A > wy we can let A — oo obtaining
(1.16) [zl <Ny —=z]-

Since D(L) is dense in X there is some sequence z, in D(L) converging to y
as n — 00. Applying the last inequality to these z, and letting n — oo we
obtain ||y || < N-0=0,1ie y=0.

It only remains to prove that if N = 1, then we may assume wy = 0. But
if N =1and A > 0, then A + wy > wp, and by (1.12) we have

1
< A L
21 < 55 | O +woa + La |
< A2+ La || + —2— ||z |
X X ZT
~ A+ wo A =+ wy ’

which implies that
1
Il < 5 [[Az + La ||
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DEFINITION 1.5. Let {L,},_, be a sequence of linear operators in X, its
limit L as n — oo is defined by putting
D(L) :={z e, D(Ly,)| lim L,z exists}
n—oQ
Lz := lim L,z (x € D(L)).
n—oo
LEMMA 1.6. Let L be the limit of a sequence {Ly} >, of linear operators
in X. Assume that 0 € p(L,) forn=1,2,..., and that the inverses L' are

uniformly bounded. Then 0 € p(L), and

. ~ -1
lim L, 'v =L x
n—oo

for all z € R(L).

Proof. Let us assume the hypotheses of the lemma to be satisfied. Then
there is a constant C' with ||z || < C'||L,z| for x € X and n = 1,2,....
Hence, if x € D(L) we get ||z || < C|| Lz ||. Consequently, L™" is a bounded
linear operator in X with || L7' | < C. Hence, by Lemma 1.2, I =T Tis
a bounded linear operator in X with || L || < C. For z € R(L) the identity

L'z—L'z=L"YL-L,L 'z

holds. Since || L;' || < C forn =1,2,. .., the conclusion of the lemma follows
for # € R(L). For arbitrary x € R(L) and y € R(L) we have

HL;lx—f_le < HL;ly—L*IyH + HL;I(SE—y) - L
<|| L)'y — L'yl +2C ||z —y]l.

(«’r—y)H

Fix e > 0, and choose y € R(L) such that ||z — y|| < ¢/4C. By the above we
know that there is N such that || L'y — L'y || < &/2 for all n > N. Hence,

we have H Liz—T 'z H < e foralln > N, which shows that L'z — L 'z

as n — oo for any x € R(L). O
Let us now apply Theorem 1.3 to the limit of a sequence of operators.

COROLLARY 1.7. Let L be the limit of a sequence {L,}," | of linear opera-
tors in X. Assume that the following conditions are satisfied:
(i) there are constants N > 1 and wy > 0 with p(—L,) 2O (wp, o0) and
N
IO+ L) <
A
for all A > wy andn =1,2,...,
and
(ii) there is some wy > wy such that R(w + L) is dense in X.
Then (wo(l1 — +),00) C p(—=L), R(A+ L) is dense in X for all A >

wo(l — ) and

(1.17) lim (A +L,) e =(\+L) o

n—oo
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forallxz € X and all A\ > wq. If, in addition, L is densely defined in X, then
it is closable. Finally, if (1) holds with N = 1 and some wy, then it holds with
N =1 and wy = 0.

Proof. By the hypothesis (i) we have
ol < Sl Ae + L
forn=1,2,... and all x € D(L,). Then if z € D(L) C D(L,) we get
=] < —||/\fE+LfE||+ | Lnw — Lz ||
Hence, letting n — oo we see that
2l <l Ae+ La |

for all x € D(L). Applying Theorem 1.3 we then obtain all the assertions
of the corollary except (1.17). But this is obtained by Lemma 1.6, since
R(A+ L) is dense in X. O

1.5 Commuting and resolvent commuting operators

DEFINITION 1.8. Let A and B be linear operators in a Banach space X.
We say that A and B commute it AB = BA, i.e. if D(AB) = D(BA) and
ABx = BAx for all x € D(AB). The operators A and B are called resolvent
commuting if there are A € p(A) and pu € p(B) such that (A — A)~" and
(u — B)~! commute, i.e. if we have

(1.18) A=A (u—B)la=(u-B)"'(A-4)~"
for some A € p(A) and p € p(B) and all z € X.

Let us also define the commutator of A and B by setting
(1.19) [A;B] := AB— BA

This operator is defined on D([A;B]) = D(AB) N D(BA).
Since € D((A — A)B) if and only if x € D(B) and Bx € D(A), we have

D((N— A)B) =D(AB)
for all linear operators A and B in X and all A € C. Thus,
D([A—A;p—B])=D(A(u— B)) N D(B(A - A)).
But

v € D(A(j— B)) N D(B(\ — 4)
& x € D(A)ND(B) and pxr — Bx € D(A) and Az — Az € D(B)
< x € D(A)ND(B) and Bx € D(A) and Az € D(B)
& 1 € D(AB) N D(BA)
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for all x € X. Consequently,
(1.20) D([A—A;p—B])=D([A;B]).
For any € D(AB) N D(BA) we have

AN=A)(p—B)x — (up— B)(AN— A)x = A\ux — pAx — A\Bx + ABx
— (pAx — ABx — pAx + BAx)
= ABx — BAx.

Thus, we have the following lemma.

LEMMA 1.9. Let A and B be linear operators in X. Then [A—A;pu—B]| =
[A;B] for any \,n € C.

We also have the following simple results concerning resolvent commuta-
tivity.

PROPOSITION 1.10. Let A and B be linear operators in a Banach space X,
and assume that A € p(A) and u € p(B). Then the following statements are
equivalent.

(i) A= A)" and (u— B)™! commute

(i) All resolvents of A and B commute

(iii) A — A and p — B commute

(iv) A commutes with (n — B)™" on D(A) and (n — B)~'(D(A)) C D(A).

Proof. (ii) = (i). This implication is trivial.

(i)=(iii). Let A; = A — A and B; = ju— B and assume that A, ' and B;*
commute. Firstly,

D(A1By) = R(B;'Ar") = R(AT'BTY)
— D(BlAl),

so that D([A;3;B1]) =D(A1B;y) = D(B1A1). Moreover
AI_IBI_I(AlBl - BlAl)LE = Bl_lAl_lAlBliE - Al_lBl_lBlAliE =0

for all z € D([A;;B,]). Thus, since A7'B;! is injective, 4; and B; com-
mute.

(iii) = (iv). Assume that A—A and pu—B commute. Then D(A(u — B)) =
D(B(XA — A)). Let x be any element in D(A). Then = = (u — B)y, where
y = (u— B) 'z € D(A(u— B)). Hence, y € D(B(\— A)) so that (u —
B) 'z € D(A), and

(t=B)"'(A\ = A)z = (u—B)"" (A= A)(n— By
=(u—B) (n-B)A-A)y=A\—-A)(n—B)'x.

Thus, (u—B) (D(A)) C D(A), and A\— A and (— B)~! commute on D(A).
Then also A and (u — B)™' commute on D(A).
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(iv) = (ii). Assume that (u — B)™'(D(A)) C D(A) and that A and
(u—B)~! commute, and let « € p(A) and y € X. Then a— A and (u— B)~!
commute, and (o — A) "'y € D(A). Consequently,

(@=A)(p-B)a-A)Ty=(n-B)"y.
Applying (o — A)~! to this equation, we obtain
(n=B) a=A)Ty=(a—-A)" (u—B)y,

for any y € X. Thus, in fact, (u — B)~! commutes with any resolvent of A,
and, in particular, with (A — A)~".

(i) = (ii). We have shown that (i) implies (iv), and that (iv) implies
that (4 — B)™' commutes with (o — A)™! for any a € p(A). Interchanging
the roles of A and B we see by (iv) that B commutes with (o — A)~!, and
(a — A)"Y(D(B)) € D(B) and hence (8 — B)~! commutes with (o — A)™!
for any a € p(A) and any S € p(B). O

COROLLARY 1.11. Let A and B be linear operators in a Banach space X
such that 0 € p(A) N p(B), D(AB) C D(BA) and ABx = BAz for all
x € D(AB). Then A and B are resolvent commuting.

Proof. 1f the assumptions of the corollary are satisfied, then AB C BA and
both are bijective from their respective domains onto X. Then we must have
AB = BA, and, in particular, D(AB) = D(BA). Consequently, A and B
commute, and, by Proposition 1.10, A and B are resolvent commuting. [
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2 Nonnegative linear operators

2.1 Nonnegative and positive operators
2.1.1 Definitions

A closed linear operator A in a complex Banach space X is said to be ad-
missible in the direction a € R, if p(A) contains the ray {te® | ¢t > 0},
and
supt|| (te’® — A)~1 < 0.
t>g I ( ) HL(X)

If —A is admissible in the direction o € (—m, 7], then we define Na(«)
by the equation

(2.1) Na(a) := sup{t || (te' + A)~" HL(X) |t >0}

If € [0,7) and — A is admissible both in the direction o and in the direction
—a, then we also set

(22)  Ma(a) = max(Na(a), Na(-a)) = sup [\ 0+ 4) " [
\arii\ofa

DEFINITION 2.1. A closed linear operator A in a complex Banach space

X is called nonnegative if —A is admissible in the direction a = 0, i.e. if

(0,00) C p(—A), and

(2.3) Ny :=supt|[t(t+ A < o0

-1
10 ) Hc(x)

If, in addition, 0 € p(—A), i.e., if A has a bounded inverse on X, then A is
said to be positive.

Evidently, A is admissible in the direction « if and only if —e " A is
nonnegative.

A simple example of a nonnegative operator in a complex Banach space
X is provided by the mapping al, where [ is the identity mapping on X and
a € C\ (—oc,0). It is positive if a # 0.

In the sequel we shall often write ||z || and || A|| instead of ||z ||, and
| All£(x)- respectively, for x € X and A € L(X).

PROPOSITION 2.2. A linear operator A in a complex Banach space X 1is
nonnegative if and only if
(i) there is a constant N such that

N
(2.4) lell < 5 llte + Az

for allt >0 and all x € D(A), and
(ii) there is some wy > 0 such that R(wy + A) = X.
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Proof. The conditions of the proposition are almost identical to the hypothe-
ses of Theorem 1.3. In fact, under these conditions Theorem 1.3 guar-
antees the existence of a positive constant N such that t € p(—A) and
t||(t+A)"| < N for all ¢ > 0. But, by the second condition,

D((w +A) 1) = X,

and, as (w; + A)7! D (w; + A)7!is a function, we must have (w; + A)~t =
(w; + A)~L. Hence, A = A. Consequently, A is nonnegative.

On the other hand, if A is nonnegative, then (0,00) C p(—A), and there
is some constant N such that (2.3), and hence also (2.4), holds for all ¢ > 0.
Obviously R(t+ A) =D((t+ A)~') = X for all t > 0. O

If condition (i) of Proposition 2.2 holds with N = 1 then A is m—accretive
(cf. Remark 1.4 on p. 14).

If A is positive, then f(t) = (1 + )| (t+ A)~"], being continuous on
[0,00), is bounded on [0, 1] by a constant N;. On the other hand, since A is
nonnegative, we know that there is some constant Ns, such that

tft+A4)7" < Ny

for all ¢ > 0. Consequently, (1 +¢) || (t+ A)~'| < 2N, for all ¢ > 1. Tt
follows that with N := max {Ny,2N,} we have

(2.5) 1+ t+4)~" qu) <N

for all ¢ > 0. One often defines a linear operator A to be positive by de-
manding that [0,00) C p(—A), and that there is some constant N > 0 such
that (2.5) holds for all £ > 0.

2.1.2 Spectral angles

We shall now show, among other things, that a nonnegative operator A is
admissible in all directions « for which |« is less than some positive constant
that depends on Ny.

PROPOSITION 2.3. Let A be a closed linear operator in a complex Banach
space X. Then the set of admissible directions for A is open, and the function
N4 18 continuous on this set.

Proof. If X = {0}, then any linear operator A in X is admissible in any di-
rection a € (—m, 7], and N4(a) = 0. Thus, the statements of the proposition
are trivial in this case.

We now assume that X # {0}. Let A be admissible in the direction .
Then B = —e A is nonnegative and Np = N4(—a) > 0, so we first assume
that A is nonnegative and @ = 0. Then Ry C p(—A), and equation (1.6)
shows that

1

(pt+A) T=+A4) Q- (t-—pt+4)7),
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provided that ¢ > 0 is such that |t — u||| (t + A)~"|| < 1. This latter condi-
tion is fulfilled as soon as |t — u| Na(0)/t < 1 — 6 or, equivalently,

(2.6) 1= p/t] < (1—6)/Na(0)
for some 0 € (0,1). We then have

.1 et Ay | < 5]+ 47|

by (1.8). Thus, let us choose § € (0,1) and a direction o € (—%,2). Then
for every p = se'® (s > 0) we wish to show the existence of (at least) one
positive A such that the inequality (2.6) holds. This amounts to minimising
1 — se'® with respect to s > 0, or, equivalently, calculating the shortest
distance between the ray {se’® | s > 0} and the point 1, and demanding
that this distance is not greater than (1 — §)/N4. For if sy minimises this
distance, then we may take A = s/sy = |u| /so, in which case /A = sge'®.

But |1 — sei®|* = (s — cos@)? + sin® o, so that
min{1 — se®* | s > 0} = |sina],

which is attained at s = so = cos . Hence, we deduce the following sufficient
condition for the existence of a A > 0 such that (2.6) holds for all x on the
ray {te’ |t > 0}:

|a| < arcsin (min(1, (1 — 6)/N4(0))).

Then ||(A+A)7" lzx) < Na(0)/A = soNa(0)/|u| = Na(0)cosa/|pl, so
that

_ N4(0) cosa
o ) < e,
by (2.7). In other words, for all ¢ < arcsin (min(1, (1 — §)/Na(0))) we have
(28) p(—4) DT\ {0)
and
(2.9) sglgs | (s€"® + A)~" || < oo,

So if A is admissible in the direction «, then there is a 6 > 0 such that
—e'A is admissible in all directions ¢ with |¢| < §. Consequently, A is
admissible in all directions 8 with | — | < §. This means that the set of
admissible directions for A is open.

Let A be admissible in the directions o and 5. By the Resolvent Identity,

[ t(te + A) =] t(te’ + A) |
<t (te® + A7t — (te' + A)7 |
= t*|e"* — eP||| (te” + A)7 (te'* + A)7|
< |e — €| Ny(a) N4 (B).
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Figure 1: The spectral angle of a nonnegative linear operator.

It follows that
NA(B) < Na(a) + | — e |INa(a)Na(B).

Interchanging o and ( in this formula and combining the two inequalities,
we deduce the inequality

[N4(B) = Na(a)| < € — €| Na(a)Na(B),

which can also be written

1 1
Na(a)  Na(B)| ~

since N4(a), N4(f) > 0. Hence, 1/N,4, and consequently also N, is a con-
tinuous function on the set of admissible directions for A. O

As a consequence of the lemma, the following definition is meaningful.

DEFINITION 2.4. Let A be a nonnegative operator in a complex Banach
space X. We set

(2.10) ¢4 =sup{¢ € (0,7] | (2.8) and (2.9) hold},
(2.11) M} (¢) = ‘51|1<p¢NA(oz)
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for any ¢ € [0,¢4), and

(2.12) WA =T — Pa.
We call wy the spectral angle of A.

If A is nonnegative, then 0 < ¢4 <7, 0 < wy < 7, and M} (a) € [0, 00)
for any o with |a| < ¢4 (see Figure 1). From the above calculations it also
follows that

(2.13) ¢4 > arcsin (min(1, /N4(0))),
and hence
(2.14) wa < — arcsin (min(1, /N4(0))) .

2.2 Yosida approximations of nonnegative operators

In this section we consider Yosida approximations of nonnegative operators.

DEFINITION 2.5. If A is a nonnegative linear operator in a complex Banach
space X we put

(2.15) L=t +A)"
(216) At = AIt - tA(t + A)_l,

for t > 0, and call the A; Yosida approrimations of A.

We see that I;, A; : X — X, and that both are bounded, since
[T =t][ (t+A) " | < Na(0)
and
[ Al =] T =T || < t(1+ Na(0))

2.2.1 Basic convergence properties

In case A is densely defined, the families of operators {I;},., and {4}, ,
have some nice convergence properties as t — 0.

PROPOSITION 2.6. Let A be a nonnegative linear operator in a complex
Banach space X, and define I; and A; as above. Then
(i) tlim Lix =z in X if and only if x € D(A)
—Q
(ii) ltlim Az exists in X if and only if x € D(A) and Ax € D(A), in which
— 00
case lim;_, ., Aix = Azx.

In particular, if A is densely defined, then I;x — Ix for all x € X, and
Az converges if and only if x € D(A), in which case Ax = limy_,, Az,
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Proof. Since I,x € D(A) for all t > 0 and all z € X, it is clear that
limy o [;x = x implies that 2 € D(A).

Let z be an arbitrary element in X. We have I;z — Iz = —A(t + A)~!
and, for any y € X,

|AGE+A) 2| <[[AC+A) N z—y) | +]AC+A) "y

2.17
(2.17) g(L+N@Hx—yH+HAt+A |

Assume that x € D(A). Then we can choose yg € D(A) such that ||z — yo || <
e/(2(1+ Ny)). As yo € D(A) we also have A(t + A) lyo = (t + A) LAy, so

that
Na |l Ayo ||

t

Thus, we can choose N so big that || A(t+ A) 'y || < €/2 for any ¢t > N.
Consequently, for such ¢, || A(t + A) 'z || < &, which implies that

HAt+A H<

hm | ix — Iz || = hm HAt—I—A 'z|| =o0.

Now take # € D(A) such that Az € D(A). Then Az — Az = A([,—T)x =
(I; — I) Az, which, by the first part of the lemma, tends to 0 as n — oc.

Conversely, if y = limy_,o, Asx exists, then limy_, || tA(t—A)'z—y || = 0.
It follows that

lim|| A(t — A)~'z|| = lim|| v — z || = 0.
t—o0 t—o0

Thus, I;# — x and Aljx — y ast — oo, so that © € D(A) and y = Ax, since
A is closed. It also follows that A,z = I; Az, which belongs to D(A) for all
t >0, so that Az = lim;_,,, A;z € D(A).

Finally, if A is densely defined, then D(A) = X and Az € D(A) for all
x € D(A), so that the last statements of the lemma follow. O

COROLLARY 2.7. Let A be a nonnegative operator in a compler Banach
space X. Then limy o I['z = x in X for all x € D(A) and all n € N.

Proof. We have
n—1
I'e — 2= thk(ltz — ),
k=0

so that

n—1

[ w —a || <) || IF(lx — ) |

n—1
<> NillIw— .
k=0

But the expression on the right hand side tends to 0 as ¢t — oo by Proposi-
tion 2.6. 0
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2.2.2 Uniform nonnegativity

We have seen that a nonnegative operator A satisfies the inequality
tl (te” + A7 < Mi(¢)

for any ¢ with 0 < ¢ < ¢4 and any ¢t > 0. We shall now show that for any
t > 0 the Yosida approximations A; are nonnegative, that ¢, > ¢4, and
that for all ¢ with 0 < ¢ < ¢4 there is a constant M4(¢) > 0 such that

M3, (¢) < Mu(9), ie

Ma(9)
RY

(2.18) | (A+A) | <

for all A with |arg A| < ¢ and n=1,2,.... In fact,

A+ A)" = A rtA@+ )7
= {(At+A)+tA) (t+4) 1!
= {(tA+ (A +1D)A) (t+ A) 1}

el ()

= L(t+A) (AA +A>1

A+t +1

1 ) ) !
_ ) _ A

)\+t{ +<t >\+t> <A+t+ ) }

1 12 A !
-1 AN

P { +)\+t<>\+t+ ) }

ift € p(—A) and tA/(A+1t) € p(—A). This is the case provided that A € ¥,
because Xy, C p(—A), arg(tA/(A + 1)) = arg(A/(A + 1)) and either

0 <arg(tA/(A\+1t)) =arg\ —arg(A+t) < arg A

or

0> arg(tA/(A+1t)) = arg\ —arg(A+t) > arg ),

so that |arg(tA/(A +t))| < |arg A| and consequently

(tA/(A+1) € T4\ {0}.
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Hence, for all A with |arg A| < ¢, we have

1 12 A -t
A+ AN < 14— —+ A
[+ 4 H_|)\+t|‘ +)\+t<)\+t+ )
1 12 A -t
< 1+ + A
—|A+t|< |A + ¢ <A+t ) )
2 *
< 1 <1+ t MA(¢>)|A+t|>
|\ + ¢ |A + ¢ 2
1 tM*(ng))
— 14 4
|A+tl< RY
_ 1 P+ EM(e)
Al A+

If ReA > 0, we have |A+1¢| > |A] and |A+1¢| > ¢t. Thus, in this case
| (A+A) ]| < (1+ Ma(¢))/|A. If on the other hand ReA < 0, then
A+ t] > |Alsin(arg\) and |\ +¢| > tsin(arg \), so that, since now 7/2 <
arg A < ¢4, we get

| A+ A7 || < (1+ M (arg A)) /| A sin(m — ¢).

Thus, writing

(2.19) Na() := (1+ Mj(¢))/ sin(max {r/2, $}),
we have NI
ﬁ < Na(¢),

and (2.18) holds.

2.3 A lemma on the denseness of the domain of a sum
of nonnegative operators

Let A and B be linear operators in a vector space X. Recall that the sum
L := A + B is defined in such a way that D(L) = D(A) N D(B) and Lz =
Az + Bz for all x € D(L).

We have the following result on the denseness of the domain of a sum of
densely defined nonnegative operators in a complex Banach space.

LEMMA 2.8. Let A and B be two densely defined nonnegative linear oper-
ators in X such that (t + B)™'(D(A)) C D(A) for any t > 0. (We say that
D(A) is stable under (t + B)™'). Then L = A+ B is densely defined in X .

Proof. For an arbitrary z € X and ¢t > 0 we consider z; := t*(t + B) (¢t +
A)~lz € X. Then z;, € D(B). Moreover, we have (t + A) 'z € D(A), and
hence z; € D(A), as D(A) is stable under the operator (t+ B)~! by assump-
tion. This shows that z; € D(L), when ¢ > 0. It is shown in Proposition 2.6
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that ¢(t + A)™" — I and t(t + B)~" — I strongly as ¢ — oo. Then, since
t(t + B) ! is uniformly bounded, we have t?(t + A) 1(t + B) ! — I strongly
as t — oc. Hence, x; — x as t — oo. ]

COROLLARY 2.9. Let A and B be closed and densely defined linear operators
m X, and assume that there are positive numbers N and w such that

(i) (w,00) € p(=A) N p(=B),

and the following conditions are satisfied for all t > w

(i) [ (t+ A <N/ [[(t+B) | <N/t

(iii) (t + B) " 1(D(A)) C D(A).

Then L = A+ B is densely defined in X.

Proof. Tf the assumptions of the corollary hold, then w + A and w + B
are densely defined and nonnegative, D(w+ A) = D(A), and (t + w +
B)Y(D(A)) C D(A) for all t > 0. Hence, Lemma 2.8 implies that 2w+ A+ B,
and therefore also A + B is densely defined. O

REMARK 2.10. Condition (iii) of Corollary 2.9 is satisfied if A and B are
resolvent commuting (cf. Proposition 1.10).

2.4 Real interpolation spaces between X and D(A")
2.4.1 Definitions

Let X be a complex Banach space, and let A be a closed linear operator in
X. For n € N we consider D(A™), the domain of A", provided with the norm
defined by

(2.20) 12 lpany = 2 llx + DIl AR || x
k=1

The norm || [[54 is called the graph norm of D(A). The spaces D(A") are
complex Banach spaces. Note that A° = I, so that D(A°) = X.

The above observations imply that D(A™) < X, and we may consider
the real interpolation spaces (X, D(A"))yp, for 0 < <1 and 1 <p < oo or
0 € {0,1}1 and p = oo, as well as (X, D(A"))y for 0 < 6 < 1. In the special
case n = 1, we make the following definition.

DEFINITION 2.11. Let X be a complex Banach space, let A be a closed
linear operator in X. If (6, p) € (0,1) x [1,00] U {(0,00), (1,00)}, we set

Da(0,p) = (X, D(A))op,
and if 6 € (0,1), we set

Da(0) := (X, D(A))o-
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2.4.2 Closedness of A"

If A has nonempty resolvent set, then A” is closed and the definition (2.20)
may be replaced by

(2.21) 12 llpeany = 12 llx + [ A" [|x-

These claims are immediate consequences of the lemma below. Thus, in this
case, we may use the notation D4n(,p) and Dan(g for the interpolation
spaces (X, D(A"))g, and (X, D(A"))y, respectively.

LEMMA 2.12. Let A be a closed linear operator in a Banach space X.
Assume that A has nonempty resolvent set. Then for n = 2,3,4,... and
k=1,2,3,...,n—1 there exist constants c,  such that the inequality

lA% [y < cnplllz llx + | A" ||x)
holds for all x € D(A™).

Proof. Assume that —\ € p(A). Let us first prove the statement of the
lemma for n =2, 3,... and £ = 1. Assuming that x € D(A") and writing

Az = A+ A)~ V(N + A" — Az,
we get

Az = D2z + A+ A)" D (A4 A"z — (A + (A + A)"z + A™z)

n

= Xz + A+ A4)"D ((/\ +A) =Y <7Z> (=) + A)i:c)
+(A+A4) Ay i

=-dr - C‘) (=) TN 4+ A0 D 4 (A A)~(=D Ang

1=0

Hence || Az ||x < cpa(||z||x + || A2 ||x) for all 2 € D(A™), where we can
choose

eng < ITA+AT T (@ + RN+ A" = 1)

In particular, the statement of the lemma holds with n = 2 and k£ = 1.
Let us now assume that the statement of the lemma has been proved for
somen >2and k=1,2,...,n— 1. If v € D(A™"), we then have

Az |Ix < enra(loflx + 1A )

and hence
I A% [[x < enpa(] Az [x + || A" ||x)
< Cupr (L4 ) (2 [[x + [ A" ]x)
for k = 2,3,...,n. Thus the statement of the lemma follows by induction.

O
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In case 0 € p(A) we can even use the definition
(2.22) [l pany == 1 A" [

since

R e e o S e F R

2.4.3 Characterisation of D4 (0, p) and D 4. (0)

In case —A is admissible in some direction a, we may characterise the in-
terpolation spaces D4n (0, p) and D4 (f) without using the methods of the
general theory of real interpolation spaces. In particular, the functionals K
and J are dispensable (cf. Section B.2). We start with the following lemma.

LEMMA 2.13. Let A be an operator in a complex Banach space X such that
18 — A s admissible in the direction a. Let n and k be positive integers, and
let t > 0. Then

k—1 .

1 . o ,
= (n +] )tneznaA] (teza 4 A)*n*jx
: J
=0
(2.23) ’ .

k—1 ‘ )

4 n(n—l: ; ) /Tn—lemaAk(Teza + A)_n_kl‘ dT,

for any x € D(A). If, in addition, 0 € p(A), then

o0

k—1 , ,
(224) Tr = n<n+n )/TnlemaAk(Teza —|—A)7n7k{17 dr
0

for any © € D(A). The integrals ftoo ... and fooo ... in these formulas are
improper Bochner integrals, and should be interpreted as lim,_, fts ... and
lim, fos ..., respectively.?

Proof. Since te™(te’® + A)~! = t(t + e **A)~", we see that e™*®A is nonneg-
ative, and (2.23) can be written as follows

k—1

- 1 L . .
. (" +J )tneww (£ + emio Ay g
Jj=0 J
k-1 / . ~
—n n -+ lim /Tn—le—zkaAk (7_ 4 e—ZaA)—n—k dr
kE—1 5—00

2These integrals become proper Bochner integrals if z € D 4x (6, 00) for some 6 € (0, 1),
for then || 77~ teim¥ A¥ (rei @+ A)~"=F || < Na(a)V|| = lp . (6.00)7 7% a.e. at infinity (more
precisely: for a.e. 7> 1) (cf. Proposition 2.14).
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Hence, it suffices to prove (2.23) for nonnegative A and a = 0, i.e. it suffices
to prove

k—1 s—00

t
(2.25) .

— 1 . .
Y (nﬂ, )t"AJ(HA)—"—Jx.

=0 J

n (n th— 1) lim /T”lAk (1 + A)*"*lC dr

for nonnegative A.
First we observe that

@

dT7_n+kAk(7_+A)—n—k — (n—|—k)Tn+k_1Ak+1(T—|—A)_n_k_l,

For £k =1 we have

S S

d

. n—1 —n—1 . n —-n

n Sliglo T A(t+ A) dr = Sliglo e (T"(r+ A) ") zdr
¢ t

= lim s"(s+ A) "z —t"(t+ A)"x

§—00

=z —t"(t+A) "z

where the last equality follows by Corollary 2.7. Thus, (2.25) holds when
k=1

Next, we assume that (2.25) has been proved for some k > 1. Then, using
integration by parts, we get

n (” N ’“) lim / AR (e 4 A) T

n 5—00
_ (k-1 s Ry —n—k
=N sllglo T A%t + A) xdr

k—1
= (n + ) lim [s"AF(s+A) " Fx — " AR (t 4+ A) " F]

k s—00

— 1) A
+ n—(n + k‘ )tk lim [ 7" AR (4 AR AT g dr
nlk! 500
t

k
= (n I )t"Aj(t + A)™ g,
7=0

and (2.23) is proved. Here the last equality was obtained using the induction
hypothesis, and the fact that

lim || s"A"(s+ A)™" xH<NA1—|—NA)k111mHAs—|—A 'z| =0

§—00
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for any x € D(A) by Proposition 2.6, since A(t + A)~' =T — I,.
To prove the second formula of the lemma, we note that if 0 € p(A), then

lim |t AT+ A) || =0

for all positive integers n and all nonnegative integers j. Letting ¢ | 0 in the
first part of the lemma, we thus obtain

k-1 r
T = n(” + ) lim /TnlAk(T + A)’"’kx dr

n §—00

for any = € D(A). O

PROPOSITION 2.14. Assume that —A is admissible in the direction o, and
that (6,p) € (0,1) x [1,00] U {(0,00), (1,00)}. Let n € N, and define

(2.26) 12 1lp o0 = 2 lx +[2]p 00

where

(2.27) [2]p 0 0g) = || T0A™ (t + A) "2 ”LP 00):X) °

Then || |lpmop 9nd || [lxpeany, ,, re equivalent norms on Dan(0,p). If

6 € (0,1), we also have

_ : né n za
Dan(0) ={z € X| lim¢ | A (te'™ + A)~"x ||, = 0}.
In case 0 € p(A) we may use the definition

0
12 p o = |10 A"t + A)~ :cHLp o)
Proof. Again, since || A"(te' + A) "z ||, = || A"(t + e’mA)*”x |y and —A
is admissible in the direction « if and only if e=®A is nonnegative, it suffices
to consider the case o = 0, which means that we can assume that A is
nonnegative.
We observe that substituting of ¢ " for ¢ in the definition of || x ||(X’D(An))9’p

(cf. Section B.3), we get

| || (X, D(A")g.p nthaK ™, z, X, D(A"))

<(1,00)

if0<fd<land1<p< oo,

|2l xpeany, . = Sup K (", x, X, D(A™)),

if0<6<1,and

Dn(0) = {z € X | lim " K (t™", 2, X, D(A")) = 0}
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if 0 <60 <1.

One easily checks that [ |5 ) is aseminorm in {z € X | [z]; .
oo}

Let 2z be an arbitrary element of X, and assume that z = x + y, where
r € X and y € D(A"). Then

At +A) "z =AMt+A) e+ (t+ AT Ay

»p) <

so that

[ At +A) "2 || < @+ Na)" 2]l + NitT" [ A% [l
and, consequently,
(2.28) [ At +A) "2 || <A+ N)" (2]l +ET 1A ]ly) -

for k =0,1,...,n. Since this holds for any partition z = x 4+ y with z € X
and y € D(A"), we get

(2.29) |A™(t+A)7"z || < (14 Na)"K(t™, 2, X, D(A"))
for all z € X and all t > 1, whence

(1 + NA)n
(2.30) [Z]DAn(e,p) < W | 2 ||(X,D(An))€,p

where ¢(n,p) = n if 1 < p < oo, and c(n oo) = 1. It also follows that if
7 € Dy (), then lim;_, o t" H ARt 4+ A) 7k HX = 0, and hence

Dun(0) C {z € X | hmt"@Zt’“"|\A’“t+A 2|, =0}

k=0

To prove that || ||p,, ) 18 finer than the norm || [y p(4ny), . let us
define U(t) : X — X and V(t): X — D(A") by

n—1 .
1 ,
V(t) = " (”ﬂ, )AJ(HA)W
=0

p J

and

Ut) :=1-V(t)
for t > 0.

By the definition of K, we have
(2.31) K"z, X,D(A")) <UDz |lx +t " [[ VD) |lx,
for any x € X and any ¢t > 0, and, consequently,
1
|| x ||(X,'D(A”))9,p < c(n,p) (H LE((1,00);X)

(2.32)
+ | OV ()2 ”Lf((LOO);X)) '
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In case n =1, we have V(t) = t(t+ A)~" and U(t) = A(t+ A)™", so that

1U® ||y = || A+ A) 2|,
IVl < Nallz]lx
EH AV ||y = || A+ A) ||,

Hence, if ||z [|p 4y = ||z || x + || Az [|x, we deduce that

Kt 2, X,D(A)) < Na| x|y +2]|| At + A)~

|
..

If 0 € p(A), we may employ the definition ||z [|5 4, := [| Az || . Then

Kt 2, X, D(A) <2||At+A)"

1
Ix-
In both cases there is a constant C such that
|2 ||(X,D(A))9,p <Cl=z ||DA(9,p)

for all z € X.
We now assume that n > 1. Let us estimate H (- Q)V

(1,00);X)"
First we consider the case ||z ||p 40y = [z ||x + || A"z || x- Then

t V(t)x [lp(an)

M

ST U Ayl ey )

7=0

n—1

< 0 <”+j _1>(1+NA) (N3 | + || A"+ A) ][ ) S
=0

so that

(2.33) " V()2 | pany < CE Oz ||lx + 17 || AR+ A) x|

for any x € X and any ¢ > 0 and some constant C'.
]| [l pany == [ A" ||, then

n—1 .
Y Ol = ("5 e )]
j=0

n—1 1
gt"92<n+j >1+NA | An+ A

so that
(2.34) ¢ m(1-0) ||V( )x||DAn <C’t”9HA”t+A :EHX

for any x € X, t > 1, where C' > 0 is a constant.
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In both cases we have

(2.35) |tV (1) |

L2(ooyx) < Cll D 4 0)

for some constant C' > 0.
Let us estimate || "°U(t) || 12((0,00);x)- By Lemma 2.13 we have

)

t

n—1 T

2n—1 d
- n< " ) ) (to)" A" (to + Az =2
n J—

o

»—A\g

and, consequently,

2n —1 noo n n n do
L) [y o + Ayl 4

1

236 Uy <

forn = 1,2,... and x € Dan(6,p) — Dan(f,00). Moreover, using Theo-
rem A.17, we get

(2.37) || t*U(t)z |

oo
120 =1\ . [ oot an Y
L%Z((Loo);X)Sg( n )NA/tHHA (t+A) "z|xdt.
1

Hence, combining (2.32), (2.37) and (2.35), we deduce that there is a constant
C =C(n,0,p, A), such that
|| € ||(X,'D(A"))9,p S C || x ||DATL(0,p)

for any x € X.
Finally, assume that

lim " || A™(t+ A) "z ||, =0,

t—o0

or that A is positive, || 2 [[p(4n) = || A"z [|x and

lim " || A(t + A) 'z ||, .

t—o00

Then (2.33) or (2.34) shows that
(2.38) lim ¢ V()2 || p 4y = 0.

t—o00

Moreover, there is a constant C' such that

" A"t + Az || < O
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for all t > 1. By (2.37), we have

on —1 i : d
[0 (b)) < n( o )NA(G)" /(tff)"” | Ao + Ay ||~
1
Hence,
(2.39) lim || U(t)z ||, =0

t—o0

by the Dominated Convergence Theorem. Summarising, we get

lim t" K (t ", z, X, D(A")) = 0,

t—00

ie. z € (X,D(A"))y. It follows that
{z e X| tlirglotne | A™(t+A) "z HX =0} C Dan(6).

Since the reverse inclusion has already been obtained, there is nothing more
to prove. [

2.4.4 More equivalent norms

As a special case of the definition in Proposition 2.14 we have the following
definition.

DEFINITION 2.15. Let A be a nonnegative operator in a complex Banach
space X, and assume that (6,p) € (0,1) x [1,00]U{(0,0), (1,00)}. We then
set

(2.40) |z llpa@p) =2 llx + [2]p, 0,
where
(2.41) [2)p 0. = I A(E+ A) 7 2 | 22((0,00)3) -

This norm will often be used in the sequel.
Proposition 2.14 implies that if A is admissible in two different directions
a and 3, then the two norms given by (2.26) are, in fact, equivalent for all
(6,p) € (0,1) x [1,00] U {(0,00), (1,00)}. However, this result can be proved
more directly. Indeed, we have
A(te™ + A)7H = A(te’™ + A)THAte” + A)TH - teP (te + A)71)
= {A(te"™ + A) 7' teP(te™ + A) Y A(te + A)?
= {t(e — ) (te™™ + A) 7' + 1} (te” + A)!

and, since

b —«
2

| t(e" — ™) (te'™ + A)~ HL(X) < 2 |sin

\NA<a>,

we obtain the following lemma.
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LEMMA 2.16. Let a and 5 be two admissible directions for —A. Then
(2.42)

| A (e 4 A)- M&_(Lﬂ

P
Sin

‘ﬂwg )Hmww+A "

for all x € X and n € N.

Assuming that A is nonnegative with ¢4 > ¢ > |a| we have Ny(a) <
M} (¢). It follows that

| A™(te™ + A) "z || < (1+2M4(0)" || A™(te' + A) "z ||
for all z € X. Hence, we could take

121D oy = 1 llx + sup [ A" (te" + A) " |

laf<

LE((0,00);X)

as a definition of the norm in D4« (6, p). In particular, if p = oo, we could
use the definition

CA43) oy =l sup XA+ A) T

larg A

2.4.5 The spaces (D(A"), D(A"))g,

Let A be a linear operator in a complex Banach space X, and let the linear
operator Al, : D(A"™) — D(A") be the restriction of A to D(A"), i.e.
Alp = AN (DA™ x X), for n =1,2,... We also set Al := A

PROPOSITION 2.17. Let A be a nonnegative operator in a complexr Ba-
nach space X. Then Al, : D(A"™') — D(A") is nonnegative in D(A"),
p(=Aln) D p(=A) forn=1,2,... and

D, (0.p) = (D(A"), D(A" )y, = {z € D(A") | A"z € Da(0,p)}
Dy, (0) = (D(A"), D(A"))g = {z € D(A") | A"z € Da(0)}

if0< 8 <1,1<p<ooandn € N. Moreover, there is a constant C,
depending only on A, n, 6 and p, such that

(2.44) [A"2]p 0 < [2]p,, 00 < Cllzlinan) +[A%2]5, )

In particular, if A is positive, then Al, is positive in D(A™), and we define
|2 l[p(any == || A"z [[x, then

(2.45) (10,00 = [A"% )0 40

for any x € D(A™) and any n € N. Hence, if A is positive, then A™ is
an isometric isomorphism of D), (0,p) onto Da(6,p) and of Da, () onto
Da(h).
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Proof. Assume that A € p(—A). Clearly A+ A|,, : Dgn+1 —> Dya is bijective
with inverse (A + Al,) ! such that

A+ AL Tza=0N+A)"1
for any = € D(A™). We have

[+ Al) "2 o) = | A+ A) "2 [lx + | (A + A)~ A% |5
<A+ A Hleeollz o
for any A € p(—A), any x € D(A") and n = 1,2,.... Consequently,
p(=Ala) 2 p(=A) and | (A+ Al)  llspeamy < [+ A) legoay for any

A€ p—A (A+ Al,) ! is bounded and X € p(—AJ,).
For z € D(A™), k=1,2,...,n and X\ € p(—A) we also get

A4+ A) || = || A+ A) 7 AF2 || < Na(arg A) || A*

which implies that
| AN+ A) IHL <NA(arg)\)

Hence, the nonnegativity of A, in D(A”) is proved. We also see that, for
r € D(A") and t > 0,

| A"At+ A) e = [ AN+ A) T A ||
and
A+ A) x| =" (A+ A) Az ||
<71+ Ma)|| Az ||
< O 2| pan.

where C' is a constant that only depends on A and n. These relations easily
yield the remaining statements of the proposition. O

2.4.6 Further results on D4.(0,p) and D (0)

We close this section with the following result together with an interesting
corollary.

THEOREM 2.18. Let X be a Banach, space and let A be an operator in X
such that —A is admissible in the direction a. Let n > 1 and m be integers
with 0 < m <n. Then

D(A™) € Ju (X, D(A™)) N K (X, D(A™)).

Proof. The statement is obvious if m = 0 or m = n. Thus, it remains to
prove the embeddings

Dan(m/n,1) — D(A™) < Dyn(m/n, c0)
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for 1 < m < n. To prove the second one, we assume that x € D(A™). We
have

thA" (te' + A)~ xHX
_ Htm tem—i—A) m An— m(teza+A) (n— mAmxH
< Na(a)™(1 + Na(e))" ™ [| A" ||

for all ¢ > 1. Consequently,
12 \[Dan(m/m.o0) < Nal@)™ (1 + Na(@)™ ™ |2 [ pepm) -

To prove the embedding D(A™)(m/n, 1) < D(A™), we first observe that
if ¥ € Dan(m/n, 1), then

m—1
Z <TL+] >6inaAj(€ia+A)nj$

Jj=0

n—

o0

2n—m—1 - '
n n( n—im ) /tnlemaAnm(tem + A)72n+m{17 dt,
n

1

which is obtained from (2.23) by taking t = 1 and £ = n — m, noting that
Dan(m/n,1) C D(A). Now,

thflAn(teia_FA)an#»m H tm 1N n mHAn teza+A xHX’

for ¢ > 1, so that the closed operator A™ can be applied to the above ex-
pression for x by moving it under the integral sign, and all the integrals are
proper ones. This way we get © € D(A™), and

J
Mm—m—1\ [
+n<n m )/ematnmtem—f—A)( m)
n

MTLAR (tei 4 ) .

n—m—1 n4i—1 - o ‘
AMr = Z < ] )emOéAm+](€1a_‘_A)n]x
j=0

Hence,
n—m-—1 n +] . 1 .
jarelly < 3 ( : )NM)”@ £ NA@)™ 2|
=0
2n—m—1 nm
o] R B A 15 P
which completes the proof. O
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COROLLARY 2.19. Let X be a Banach, space and let A be an operator in X
such that —A is admissible in the direction o. Let n > 1 and m be integers
with 0 < m <n Then

D 4n (0, p) = Dan(mb/n, p)
and
Dan(0) = Dan(mb/n)
for all (8,p) € (0,1) x [1, 00].
Proof. Since
X € Ji(X, D(A") N K, (X, D(A™)
and
D(A™) € Jinn(X, D(A")) N Koy (X, D(A)),

the statement of the corollary is a consequence of the Reiteration Theorem.
O

The corollary implies that Dam (0, p) = Dan(n,p) and Dm(0) = Dan(n)
whenever mf =nn, 0 < 0,n<1,and 1 < p < c0.

In the next subsection we define fractional powers A* for Re z # 0, and
show that Theorem 2.18, and Corollary 2.19, can be generalised to fractional
powers A* with Re z > 0 (cf. Theorem 2.21 (f)).

REMARK 2.20. Theorem 2.18 is used in Subsection 4.1.3 to prove that

C(I)CHO([OaT] ;X) € Jk/n(c(]»—)(]([o’ T] ;X) N Kk/n(c(]»—m([o’ T] ;X)'

2.5 Fractional powers of positive operators

In this section we consider fractional powers A* of a positive operator A for
complex exponents z that are not purely imaginary.

2.5.1 Definition of A* when Rez < (0. Special cases

Let A be a positive operator in a complex Banach space X. In this section we
define the operator A for Re z # 0, and examine some of its basic properties.
If Re z < 0 we define the operator A® by the equality
1
2.46 A% = — [ (=X + A7),
(2.46) [ A4
gl
where v goes from oce ! to coe'”2, for some oy, 09 with 0 < 01,09 < ¢4,
and ~ lies in p(—A) and crosses the real axis to the left of the origin. A prac-
tical choice would be a curve of the form +, for a sufficiently small r (see
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Yo,r

\4

Re A

Figure 2: The curve 7, , in the definition of A*, Rez <0

Figure 2; this curve is defined in Section 3.1.5). The expression (—\)? is cal-
culated according to the principal value of arg(—\) , i.e. (—A)* = e?l08(-%) =
e?nM+iarg(=N] where we take the principal branch of the logarithm.

Let us show that the above definition is meaningful, and, in fact, defines
a bounded linear operator with domain X. Firstly, the integrand is analytic
in C\ R;. Secondly, we note that

|Tm z

|(m—0)
la < =5 [ ) .

Yo,r

The integrand is of order |A|"°* at the origin, since 0 € p(—A), whereas it is
of order [A\['** at infinity, since A is nonnegative. The boundedness of A
follows from these observations.

Choosing, as above, v = 7, we can integrate (2.46) by parts m times.
In this manner we obtain

(=" / o
2.4 A? = AN+ A) A
(247) omi(z + 1) (2 +2) -+ (2 +m) (=07 (A + A) )

b
for m = 0,1,2,3,..., provided that z ¢ {0,—1,—2,...,—m}. Cauchy’s

integral theorem shows that in this formula we may take any v of the kind
accepted in the definition of AZ.

In (2.47) the path o/ along v from Rie %' to Rye™? can be continuously
deformed into a path consisting of the curve {Rie | — o, < ¢ < 0}, the
line segment from R; to r, the circle C, : |A| = r run through in the negative
sense, the line segment from 7 to Ry, and the curve {Rye® | 0 < ¢ < 09},
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where r is so small that B,.(0) C p(—A). We get

JEnmosay i

,y/
Rl R2
— 6—i7r(z+m)/tz+m(t_|_A)—m—1 dt — 6i7r(z+m)z tz+m(t+A)—m—1 dt
+ j[ (=)= (= + A)=m=1 4

Cr
0

+ / Ritmel Tt (R + A)"™ ViR e dg

—01
a2

+ / Rt (Ryei® + A) ™ ViRye™ dp.
0

Letting Ry, Ry — oo, we see that

o0

sin 7z m! om o
A== s (Z—I—l)(z—|—2)...(z_|_m)/t (t+A) dt
(2.48) . ;
+27ri(z—|—1)(z+2)...(z+m)(f(_)‘)z A+ AT,

since
H Rz+mei(z+m)(7r+¢) (Rk€i¢ + A)fmfliRkeitﬁ H < e27r|ImZ|RII€{ez

for £ = 1,2 by the nonnegativity of A.
The positivity of A also implies that || *T"(t + A)™™ ! || < et®e*T™ and

H (_T€i¢)z+m(rei¢+A)fmfl H < Ceﬂlmz\rReerm

in the integrals of (2.48), where ¢ is a constant. Consequently, if —m — 1 <
Rez < 0, we can let r | 0 in that formula, and get

sin 7z m! T
2.49 A* = — (4 AT e
(2.49) T (z+1)(z+2)---(z+m)/ ( )
0
whenever —m — 1 < Rez < 0 and z # —1,—2,...,—m. Since sinmz =

—7/T(z + 1)I'(—2), the last formula may also be written

2.50 A* = L A dt
( ) r( z—l—m / + ’
0
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where —m < Rez <0 and 2 # —1,—-2,...,—m+ 1.
If —z=mn €N, then sin7z = 0 in (2.48), and, taking m = 0, we obtain

1

211
Cr

A (=A) (A + A)"LdA.

Moreover, (—A)™"(A + A)~! is analytic in p(—A) \ {0}. Since
(=AN)"A+A) = (=1)" A1+ 2ATH A

— (_1)71)\an71 Z(_l)k)\k(Afl)k

= 3 (AR,

k=—n

we have PA{E(?(—A)_"()\ + A)7! = —(471)", so that

A = — L o Res(—0) (A + A)! = (A7),

211 2=0

Thus, our new definition of A™" agrees with the familiar one.
Since the right hand member of (2.46) can be differentiated under the
integral sign, z — A* defines an analytic mapping of (—oo, 0) into £(X).

2.5.2 The product formula

Let us now show that if Rez < 0 and Rew < 0, then A*AY = A**%_ For
this purpose we choose paths of integration v, := 7,, », and vy, := ¥, 4,, With
r1 > 19 and o1 > 09, so that 7, lies to the left of v5. Then

z w_i RN -1 L o \w -1
arar = oo [ oo [Em e ) ) ay
Y1 Y2
I i/(— VA4 A+ A) L dp |
= o omi | H H K
st Y2
—L ERNY L oNwy,,  y\—=1 1
— o [V (o [Emm =0 (0 4)
st Y2
—(u+ A d,u) d\
1 a1 =
oot | L
omi | TV A+ A) 2m/u—Ad“ dA
st Y2
1 Y e\
=N (ut A | — ax | dp.
omi | A e+ A) 2m/A—u a
2 Y1
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The integrand (A — p)~'(—A)* in the last integral is analytic on and to the
left of 7, and it is of order |A["*~" at infinity. Consequently, the path
of integration can be replaced by a closed path, and, by Cauchy’s integral
theorem (Theorem A.25), the integral evaluates to zero. The integrand (p —
A~ (—p)¥ is analytic on and to the left of 7, except at A = pu, and it is
of order |u|**™~" at infinity in this region. Hence, the integration can be
performed along a closed path with ) inside. According to Cauchy’s integral
formula A.13, the value of this integral is 2wi(—\)". Therefore,

z w_i RN 7R N -1 . Aztw
A" = o [N (N (A + A) T dA = 4
71

whenever Re z, Rew < 0.

2.5.3 Definition of A* when Rez > 0

Using the above formula, one easily shows that A? is injective if Rez < 0.
In fact, if A*z = A%y, then AYx = AV 2 A%x = AV 2 A%y = AYy, if Rew <
Rez < 0, so that, in particular, A="2z = A™"y for all n € N such that
n > — Re z. Tt follows that x = y. Consequently,

A*= (A (Rez>0)

defines a linear operator if Re z > 0, and the definition agrees with the usual
one for n € N. The operator A* is closed since A~ * is. It also follows from
the definition that

D(A*) = R(A™*)  (Rez #0).

Observe that if Rez > 0, then 0 € p(4°). Consequently, ||z |lp4.) =
|| A?z || defines a norm on D(A?) that is equivalent with the graph norm of
associated with A%

2.5.4 Some properties of fractional powers

In the following theorem we have gathered some useful properties of fractional
powers of positive operators.

THEOREM 2.21. Let A be a positive linear operator with spectral angle
wa € [0,m). Assume that z,w € C and Rez,Rew # 0. Then the follow-
ing assertions hold.

(a) A® is an injective, closed linear operator, and A~* = (A%)~L.

A* € L(X), if Rez < 0.

If Rez < Rew, then D(A?) D D(A").

If A is densely defined, then so is A*.

If Rez,Rew,Re(z + w) # 0, then A*AY = Ipa--)A* T Ipiawy. If, in

b
¢
d

(&

~—~~ T~ N/
N~ — Y
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addition, Rew < min {0, —Rez} or Rez > max {0, — Rew}, then A*A" =
A=t

(f) If B is an operator in X such that A and B are resolvent commuting,
and if 0 < Re z, then A* and B are resolvent commuting. In particular, if B
is positive, Rew > 0 and A and B are resolvent commuting, then so are A?
and B".

(g) If 0 < a:=Rez < n, where n € N, then
D(A%) € J2(X,D(A")) N K= (X, D(A")).
Hence, if 0 < a:=Rez < [ := Rew, then

Da:(0,p) = Daw(ab/ S, p)
Da:(a) = Daw(ab/B),

with equivalence of norms, for any 6 and p with 0 < 6 <1 and 1 < p < 0.

(h) If 0 < « < 1, then A is positive with spectral angle wae < aw,, and we
have

o

(2.51) (2 + A7) = Sinwa/ T

T r2q + 2rez cos o + 22

[0}

(r+A) tdr

0

Moreover, Daa(0,p) = Da(ab,p) and Daa(0) = Da(ab) for any 0 and p with
0<f<landl<p<cco.

Proof. Statements (a)—(b) have already been proved.

(c) Obviously D(A) D D(A?) D .... We generalise this property to non-
integer exponents as follows: Assume that © € D(A"Y), and that Re z < Rew.
We may also assume that Rez > 0 and Rew > 0, since otherwise D(A*) =
X. Then z € R(A™), ie. 2 = AWy = A2A )y for some y € X.
Consequently, x € R(A™%) = D(A)?, and (c) is proved.

To prove (d), assume that A is densely defined. Thanks to (c) it suffices
to show that D(A") = X for any n € N. We start by showing an auxiliary
result:

Let us assume that A is densely defined in X, that 0 € p(A) and that
0 € p(B). Take an arbitrary x € D(B) and ¢ > 0. By the denseness of D(A)
there is some u € D(A) with [[u —y | <e/|B~'|. We put v = Au. Then

H B 'Aw—2 H = H B 'u— By H <e.

Hence, D(B) C D(AB), so that D(B) C D(AB). Therefore, if B is also
densely defined, then so is AB.

Applying this result to A, we get D(A?) = X. Using induction, we
conclude that D(A") = X for any n € N.

(e) It has been shown above that if Re 2 < 0 and Rew < 0, then A**" =

A*Av. If Rez > 0 and Re(z + w) < 0, then Re(—2) < 0, so that A*AY =
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A#(A7# A7) = A*T Tf Rew > 0 and Re(z4w) < 0, then Rez < —Rew <
0, so that A*A" = A>T AW AY) = A*"Ipswy. This formula also holds in
the previous two cases, since then Rew < 0, and hence Ip(4») = Ix. Thus,
APAY = A* [pawy whenever Re(z +w) < 0 and Re z, Rew # 0. Finally, if
Re(z 4+ w) > 0 and Re z, Rew # 0, then Re(—z — w) < 0, so that

AT = (A7) A = (ATAT) = (A )
= Ip(a— A7

It follows that A*A" = Ip-:)A*AYIpawy = Ipa AZ+wID(Aw) provided
that Re z, Rew, Re(z + w) # 0.
(f) By claim (b) and the definition of A%, we have 0 € p(—A?), and
1
ANV =A7 = — [ (=N)*(A+ A)7 dA.
(4 [0
v

Thus, to prove the first statement it suffices to show that (A+ B)~!' and A~*
commute. But this is immediate from the above formula for A7%. If B is
positive and Rew > 0, this result may be applied once again to the pair B
and A* and we immediately obtain the second statement of (f).

(g) By Theorem 2.18 the first statement of part (g) holds when z is a
nonnegative integer. Therefore we assume that 0 < a:=Rez <n € N, and
a ¢ N. We should prove that

Dan(2,1) < D(A®) < Dan (£, 00)

To prove the first of these embeddings, note that, by formula (2.50),

AT = s /tz Yt + A) "z dt.
F (n—2)
0
Proposition 2.14 guarantees that the closed operator A™ can be applied to the
last integral by moving it under the integral sign, since the resulting integral
is absolutely convergent, and we get

2, _ AN Z—n . __ F oozl n
APz = A"z A Z_—F(z)rn—z /t At + A) "z dt,

so that
I'(n)

< ——Fn0—7"7— a
¥ S T =2 e
for any x € Dan(%,1). Thus Dyn(a/n,1) — D(A?).
To prove the embedding D(A?*) < Dan(a/n,oc), we take an arbitrary
x € D(A*). Then z = A%y, where y = A*z. By (2.50),

| A%z ||

o L(n) i

FA (4 A) Ay = ANt A [ (s 4 A) Ty d

(t+ A) Y CESINE) + /s (s+ A) "yds
0
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Now recall that || (A+ A)7'|| < MaA™" and ||AON+ A)7'| < 1+ My for
any A > 0. Using this, and dividing the interval of integration into two parts,
we obtain

t
o LT / s (s 4 A) My ds

0
t

=t*||(t+A)™" / s FL AN (s 4 A) "y ds

0
t

<[t + ) H||y||ta—n/ —atn=t|| gn(s 4 4)7 || ds

0
t

<M1+ M) ||yt / s"heds =

0

%HAZ I
n —

(67

and

o

AT+ AT / s Ft (s A) "y ds

t
oo

<fare a7yl e s s 4y ds
t

e
Qa )

M1+ Ma)" ||y || ta/sa1 ds =
t

so that

T(n+1) M?(Ma+1)"

A+ A4 ”< Fn—2T(2) «an-—a)

| A%z ]|

It follows that

I[(n+1) Mj(Ma+1)"
[x]DAn(%aoo) = Fn—2T(2) an-—a)

| A%z ]|

This completes the proof of the first statement of (g).
Since

D(A?) € Jom(X,D(A")) N Kqoym(X,D(A))
and

D(A") € J5/u(X, D(A™)) N KX, D(A))

47



if0 <a:=Rez < f:=Rew < n €N, the Reiteration Theorem shows that

D4:(0,p) = Dan(ab/n,p) = Dan(B(ab/B)/n.p) = Daw(ab/B,p),
and
Da:(0) = Dan(ab/n) = Dan(B(ab/B)/n) = Dau(ab/B).
The proof that A% is positive with spectral angle wsa < aw, as well

as the formula for (2 + A%)~! can be found in [1], pp. 159-160. The last
statement of (h) is a direct consequence of (g). O

REMARK 2.22. One can also define A® for purely imaginary z as the closure
of the operator A, : D(A) — X defined by

o0

/tzt+A ) 2Axdt  (z € D(A))

0

SlD7TZ

Tz

(cf. [1] or [13]).

2.6 The operator Ay, := A+ A
2.6.1 Positivity

Let A be a nonnegative operator with spectral angle w,. Then for any A > 0
the operator Ay := \ 4+ A is positive with spectral angle wy, < w4. In fact
we have the following result.

PROPOSITION 2.23. Let A be a monnegative operator, let A € C be such
that ¢ = |arg \| < ¢pa. Then Ay is positive and ¢, > min(pa, ™ — ¢).

Proof. Let 0 < a < min(¢4, ™ — ¢) and let |arg z| < a.. Then |arg(z + \)| <
max(a, ¢) < ¢4. We also have z + X\ # 0, since z = —\ would imply that
larg z| = m — |arg A\| = m — ¢, which contradicts the assumptions. Hence,
z+ A€ p(—A) so that z € p(—A,) and |z + Al|| (z + A)) || < Mi(a+ 9)
(see Figure 3).

In order to find an upper bound for |z| || (z + Ax) 7' ||, we write |z + \| =
|z|]|1 + A\z/|2]?|. We have

larg(\/z)| = |arg A + arg Z|
< |larg A| + |arg Z|
<¢o+a<m,

whence (\/z) € S,44. But

sinw if

winfl1+¢l [ce sy = { ™ &

Hence, we deduce that

. M (o + @)
(2.52) MA,\ (a) = Sjn(maX {7T/2, o+ Qs}) ‘
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\ 4

Figure 3: The spectrum of Ay = A+ A

In particular,

- Mj ()
(2.53) Mi, (o) < sin(max {a, 7/2})

if A > 0.

We have shown that A) is nonnegative and ¢4, > « for any « belonging
to [0, min(¢4, ™ — ¢)). But it was assumed that |argA\| = ¢ < ¢4, whence
A€ p(—A), ie 0€ p(A,). Consequently, A, is positive. O

REMARK 2.24. Observe that we do not have lim. g M4 (o) = My(a). In
fact, if A is the zero operator, then M4(«) = 1, whereas

Ma, (o) = 1/ sin(max {o, m/2})

for any € > 0.

2.6.2 Convergence of the seminorms [z ],

Since ||z || + [[ex + Az | < (1 + |e))([[= || + [| Az []) and [[z ][ + || Az ]| <
(1+1e)(||z || + || Az ||), the graph norms of the operators A and € + A are
equivalent. Hence, the interpolation spaces D4 (6, p) and Dy (6, p) must be
equal with equivalent norms, and the same is true of D4 () and Dy, (6). We
even have convergence of the seminorms [2]5, (o) t0 [2]p,,) as € = 0.

Recall that [z =||t?A(t+ A) "'z
'DA(Q,]))

Li’((0700);X))'
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PROPOSITION 2.25. Let A be a nonnegative operator and let e € Xy, .
Then Da(0,p) = Da,(0,p) and D4(0) = D4, (0) with equivalence of norms if
0<60<1andl<p<oo. Moreover [z]p, (g, = []p, 0, ase— 0 in
Yo for some a < m— wy.

Proof. Using the resolvent identity (formula (1.5)) we get

A(t+A) =A@+ A

:(6+A)(t+6+A)_1—A(t+A)_1
=e(t+e+ AT+ A(t+e+A) = (t+A4)7)
=e(t+e+ A) 1—6A(t+€+A) e+ A
=clt+e+A) T —e(l1—tlt+A) ) (t+e+A)(t+A)"

=et(t+A)7'(t+ A"
Hence,
11| At + A) || — || At + A) |||
<t et(t+ A) Tt + A) x|
< NAONL Ol
and

‘['x]'DAE(H,p) N [x]DA(HJJ)

= [ A+ A) 2 [+ A2 | ey |
< || At + AT x—t(’(t+A "2 | 12 0.000%)
€
< N4(0)N4 (0) || = £
< Na(0)NA (0) [ [] Er et || nom

= NA(O)NAE(O)GH H tg(t + 1)71 HLS(O,OO) ” 4y ||X :

Clearly this implies that if one of the seminorms [z (4, and [ ]p 40,
is finite, then so is the other. Moreover,

1
—IICCIIDA o) < 2 llpanem < cllllp, @ -
where
0 £
= c¢(6 A) =14+ N4(0)N4 (0 .
C( 7p567 ) + A( ) AE( )6 t"—l

Consequently, Da, (0,p) = Da(0,p) with equivalence of norms. It is also
obvious from (2.52) that ¢ — 1 as € — 0 in X,, where a@ < ™ — w4, which

implies that ||z [, _(6,p) Converges to |2 1lp,(,) for any z as e = 0 in X,.

One also sees that if £/ | A(t+ A)~'x || tends to 0 as ¢ — oc, then the
same is true for ¢ || A (t + A.) 'z ||. Hence, Da(0) = D4 (6). 0O
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2.7 A perturbation lemma

We end this chapter with a sufficient condition for an operator C'B to be
nonnegative (positive) if B is assumed to be nonnegative (positive).

LEMMA 2.26. Let C and B be linear operators in a complez Banach space X .
Assume that C is closed with 0 € p(C') and that B is nonnegative (positive).
Also assume that ¢ < ¢p and |1 —C™! ey MB(6) < 1. Then CB s
nonnegative (positive), and pcp > ¢.

Proof. We have

A+ CB=C(\C" +B)
=C(A+B+MNC'-1))
=C(1-M1-CH(A+B)H(A+B).

Now, by assumption, SMp(¢) < 1, where f = ||1 — C! |2y, so that 1 —
A1 —=CH(XA+ B) ! can be inverted by means of a Neumann series. Thus,

A+CB)'=A+B)'1-\1-C"H(A+B)"H)'Cc,

where
L=-X1-CHA+B) ) = > M@a-Cc A +B) "
n=0
and 1
[(1=A1=CH(A+B)™H Hg(i{) < T

Hence,

S o TA+BH[CTH| _ (B+1)Mp(¢) 1T
e L s B 7 17 Ry S VAT MY
for all A with |arg A\| < ¢. O
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3 The method of sums

In this chapter we study equations of the form
(3.1) Ax + Bx =y,

where A and B are nonnegative operators in a complex Banach space X,
y € X and x € X is the solution whose existence and regularity we are
investigating. We shall impose some additional conditions arriving at a so
called parabolic problem. This parabolic problem will be treated as two
separate cases depending on whether A and B are (resolvent) commuting (cf.
Proposition 1.10) or not. In both cases the operator S(A, B), to be defined
below, will play a fundamental role in expressing and analysing solutions to
these equations. In the resolvent commuting case S(A, B)y actually proves
to be the unique solution to the equation (3.1), provided that A and B and
y satisfy certain additional conditions.

3.1 The operator S(A, B)

In this section we first carry out a short and somewhat formal calculation
the outcome of which is a candidate for a solution operator S(A, B) of the
equation Ax + Bx = y. We then discuss some conditions under which this
linear operator is well-defined, as well as some of its basic properties.

3.1.1 A formal derivation

Let us rewrite our equation Ax+ Bz = y as (z+A)z—(2—B)x = y, where z is
a complex number. Assuming that z € p(—A)Np(B), and that the resolvents
of A and B commute, we can multiply this equation by (2 + A)"!(z — B) !
toget (z—B) 'z —(2+A) 'z = (24 A)"'(2— B)"'y. We then observe that
(z—B)'=(1/2)1+B(z—B) Hand (z+ A) ' =(1/2)(1 — A(z + A) 1},
so that we have

(32) L4a)lar+ %(z _B) 'Br=(:+A) (= B) .

z
Here we have used the fact that A(z + A)™'z = (2 + A)"' Az and B(z —
B)™'z = (2 — B)™'Bx for x € D(A + B) = D(A)ND(B). We now integrate
the two terms of the left hand member along a curve 7 lying completely in
p(—A) N p(B) and passing from coe ™ to oce’, where o is some suitable
angle. We also assume that it crosses the real axis to the left of the origin,
that the region to the left of v is contained in p(B), and that the region to
the right of ~ is contained in p(—A). (Below we discuss conditions under
which such curves exists.) In order to be able to carry out the integration,
we also assume that (z+A) ' Az and (2 — B) "' Bz are of order 2% at infinity
for some § > 0 (9 =1 if A and B are nonnegative). Hence, 1(z — B) ' Bz is
of order 2~ at infinity. consequently, using standard methods of complex
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analysis, we easily see that

/(z — B)—le@ =0.

VA
v

As for the expression X(z + A) ', it is also of order z~*~? at infinity. It is
not analytic at the origin, but if we assume that p(—A) contains v and the
region to the right of v, then, using the calculus of residues and the fact that
the residue of £(z + A)~'Az at the origin is

1
limz-~(24+A) Az =2 — lin% 2(z+ A) TAr =1z
Z2—r

z—0 z

we get

/(z + A)fleﬁ = —2mix,
z
b

where the negative sign stems from the fact that we first integrate along the
part of v where |z| < R and some curve to the right of ~ far from the origin,
so that we get a closed path encircling the origin in a clockwise fashion.
Letting R — oo, the integral along the circular path vanishes. Thus, we can
also integrate the right hand member of (3.2) along 7, and we obtain
—1 -1 -1
r= g (z4+A)" (2 — B) 'yd=.
gl

The right hand member of this equation is what we shall shortly define as
S(A, B)y.

3.1.2 Definition of S. Boundedness

Let us now assume that A and B are nonnegative, and that their spectral
angles w, and wpg satisfy the inequality

(33) wpg +wp <M,

or, equivalently, wp < ¢4. Let us also assume that 0 € p(A) U p(B). These
assumptions guarantee that p(—A) N p(B) covers a certain portion of the
complex plane including simple curves y from occe' to ooe', where o € (0, )
is some suitable angle (see Figure 4). More precisely, if 0 € p(A) we let
ry =sup{r > 0| B(0,7) C p(A)}, and if 0 € p(B)\ p(A) we let r; = sup{r >
0] B(0,7) € p(B)}. In the first case we let I' = (3,4, U B(0,71)) \ ¥, and
in the second T = (03, U B(0,7,)) \ (3,,, where B(0,r) is the open disc
with centre at the origin and radius ;. Then I' is a simply connected domain
that includes ¥, \ ¥, and is contained in p(—A) N p(B).

DEFINITION 3.1. For any r > 0 and 0 < o < 7 we define simple curves -, ,
and 7,7, by
(3.4)

Vor ={te " oo>t>r}U{re" [2r—0 > 7 >0} U{te ™ |r <t < oo}
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Figure 4: The paths 7, and 7.

and
35 | |
Vor i ={te Joo>t>riu{re”| —o <7 <o}U{te™ |r <t < oo}

The curves v, and fy;fr pass from ocoe % to oce’ along the ray from
ooe™ to re~", along a circular path from re=% to re' with radius r and
centre at the origin, and finally along the ray from re* to oce® (see Figure 4).
Let 7, be the limit of these curves as r | 0, i.e.

(3.6) Yo i={te oo >t>0}U{te | 0<t< oo}

If 0 € p(A) let 7y =sup{r > 0] B(0,r) C p(A)}, and if 0 € p(B) \ p(A) let
ry = sup{r > 0| B(0,7) C p(B)}, as above. We then take ry = min(1,7/2).
Also let 09 = (¢4 + wp)/2, so that wp < g9 < ¢, since we have assumed
that wp < ¢A-

For any y € X we get an analytic function f : p(—A) N p(B) — L(X)
by putting f(z) = (2+A) (2= B)*. For z € Cwithwp < 0 = |arg z| < ¢
we have

Ma(o)Mp(m — 0).

(3.7) | (z+A)(z—B)™" Hﬁ(x) < B
Hence, this function is absolutely integrable over ~, . or q/jo,ro.

DEFINITION 3.2. We set

(3.8) S(A,B)y = 2_—732 (z+A)'(z— B) 'y dz,
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where v := v if 0 € p(A), and v := 7 . if 0 € p(B)\ p(A). Here o and
ro are defined as above.

When there is no risk of confusion, we simply write S instead of S(A, B).
Since

39 ISyl <o lvl [ G+ =By dl

the estimate (3.7) shows that S(A, B) is a bounded linear operator on X.

PROPOSITION 3.3. If A and B are nonnegative operators in a complex
Banach space X, if pa+ ¢p < 7, and if 0 € p(A) U p(B), then S(A, B) €
L(X).

3.1.3 Independence of the choice of path

We shall now prove that the curve 7 in the above definition of S(A, B) can
be replaced by a whole range of simple curves.

LEMMA 3.4. Let A and B be two nonnegative operators in a complex Banach
space X. Assume that 0 € p(A) U p(B) and that the spectral angles wa and
wp satisfy the inequality wa + wp < w. Let wp < 01 < 09 < ¢4 and let
v =7(1) (o0 < T < o0) be a simple path in p(—A) N p(B), which can be
continuously deformed into vy, without passing any point in the spectra of — A
or B and such that

() lim ()] = o,

|T]—00

(i) and there is a 79 > 0 such that
T > 19 implies that o1 < arg(v(7)) < o9
T < —7¢ implies that —oy < arg(v(7)) < —o7y.
Then

A, B) = — A" Yz - B) 'dz.
SAB) = o [+ A) - B) s
gl
Proof. Assuming that 0 < 7 — w4 we have
M3 (o)
||

(3.10) | (z+4)7 1 <

for all z with |arg z| < 0. When wp < o we get the estimate

Mz (m —

(3.11) |(z=B)™"|| < %

z

for all z # 0 with |arg z| > o, since for such z we have |arg(—z)| <7 —0 <
7 — wp. Consequently, we have

M Mg (m —
O R T

|z
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As a consequence, the integral [(z+ A)~'(z — B)~!dz converges absolutely.

v
By the assumptions on ~ there is a 73 > 79 such that if 7 > 7 then

|v(£7)| > ro, where 7o has been defined above. Thus, let 7 > 7. Then the
integral along 7y, from |[y(—7)] e " to |y(7)|€e"° equals the sum of the
integral along ~ from (—7) to v(7) and the integrals from |y(—7)|e % to
v(—7) and from |y(7)]€*° to v(7) along circles with radii |y(—7)| and |y(7)|
respectively. Letting 7 — oo these latter integrals tend to 0, and thus the
statement of the theorem follows. O

A simple consequence of the above theorem is that the curve ~, . or v}
in the definition of S(A, B) can be replaced by any 7, or 7/, respectively,
where wp < 0 < ¢ and B(0,7') C p(A) or B(0,r") C p(B), respectively, for
some 1’ > 7.

3.1.4 Commutativity

Among the basic properties of S we note the following, which is a direct
consequence of Theorem A.6.

LEMMA 3.5. Let X, A, B and v be as in Lemma 3.4, let x € X, let P be a
closed linear operator in X, and assume that

(z4+A) Y (2—=B) 'Pr=P(z+A) '(2—B) 'z
for all z on . Then
(3.12) SPx = PSz.

In particular, if A and B are resolvent commuting,

(3.13) SAr = ASz  (z € D(A)),
and
(3.14) SBx = BSx

for all z € D(B).
When A and B are resolvent commuting, we also have S(B, A) = S(A, B).

LEMMA 3.6. Let A and B satisfy the hypotheses of Proposition 3.3, and
assume, in addition, that they are resolvent commuting. Then

(3.15) S(B, A) = S(4, B).

Proof. We have

-1 1

B, A)x = — B) '(z—A)! = — AN z=B)!

S(B,A)x 5 (z+B) (2= A) 'xdz 5 (z+A) (2= B) 'zdz,
v v

!
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where 7' = —v, v = Y5, wa < 0 < ¢p, and the sign in ~,, is "+" or "-"

depending on whether A is invertible or B is invertible. If we set o/ = 7 — 0,
we get wp < 0’ < ¢4. Now, changing the direction of 7 = —v,,, we get
v = fyj,’r. This amounts to changing the sign in the last integral, and so

_ 1 —1(, _ py-1
S(B,A)x = 5 (z+A)" (2 —B)  xzdz
,-Y,I

= S(A, B)z.

3.1.5 The operator S)(A4, B)

We still assume that A and B are nonnegative operators, whose spectral
angles satisfy the inequality w4 + wp < m. In Section 2.1 we saw that if A is
a nonnegative linear operator with spectral angle w4, then the operator A, :=
A+ A is positive for any complex number A with |arg A\| < ¢4. In this case
the spectral angle w4, of A, satisfies the inequality wy, < max(wa, |argAl).
Hence, if |arg A\| < min(¢4, ¢p), then the operator A, is positive, and wy, <
7 — wp. Consequently, the operator

is well defined. (The same applies to S(A, By)). When there is no risk of
confusion, we simply denote this operator by Sy. The case A € (0,00) is
illustrated in Figure 6. In this case, by Lemma 3.4, the path of integration
~v may be, e.g., any simple curve, which coincides with v, — A\’ at infinity
and lies between the broken lines v,, — A and 7,, for some o and X" with
wp <o < ¢4 and 0 < N < . Examples of such paths are provided by the
curves v, — A, 7, — A and v, where wp < 0 < ¢4, 0 <N < Xand r > 0is
sufficiently small, so that the curve under consideration lies in p(—A,)Np(B).
We have the following estimate on the norm of S).

PROPOSITION 3.7. Let A and B be nonnegative operators with wa+wp < 7,
and let A € C be such that |arg A\| < min(¢a, ¢p). Then there is a constant
m depending on Ma, Mp, ¢4, ¢p and arg A, but not on |\|, such that

m

Al

If A € (0,00), we may take m = my, where

1S M 2ex) <

2 r dr
= =M (o) M5 (m — _—_
mo . (o) Mp(m 0)/ r2e?io — 1]
0

and wp < 0 < T — wya. If, in addition, either A or B is positive, then

lim || Sx(4, B) — S(A, B) || =0,
A—=0

)\Ei(b

for any ¢ with 0 < ¢ < min(Pa, ¢p)
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Figure 5: Paths of integration used in the proof of Proposition 3.7

Proof. We may let v consist of two rays of the form ~,(r) = —3 + re™
(0o > 7> 0) and (1) = =4 4+ 7€' (0 < 7 < 00), where

wp < 0, < min(¢4, arg(—N\))
max(arg \, wg) < 0p < ¢4

if arg(—\) > 0, and

max(arg A\, wp) < 0, < ¢4
wp < 0y < min(¢a, arg(—N))

if arg(—A) < 0 (see Figure 5). Let

S = — [(z+ A+ A) Yz~ B) 'dz,

so that Syz = S® + 5@ for all x € X. There are angles 0% and o} depending
only on o,, 0, and arg ), such that |arg(z + \)| < o} and |arg z| > o} on
7. Hence, on the first ray we have || (z+ A+ A)™'|| < M(o}) |2+ A| and
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| (z — B)7'|| < Mp(m — op%)/ |2|, and thus

Mile Vb oi) [ 1,
EIEES
71

- M;:(az)Mz(w—a:)j dr
N ‘re“’a /\‘

A —1i0 _A‘
27 + 3 ‘re «—3

- |)\| |T2621 Oa— arg)\ _1|

Analogously we get

Is®) <

(02) M (7

M o}) 1
(2) A b

ESE [ e
71

_ Mj(o7) Mg(m — ;) / dr
B ‘re“’b + ’\‘

27 3 ‘m—m; -3l
_ Mi(op)Mg(m — oy) / dA+A)”
o |)\| |T e2z op—arg) _ 1|
Thus, if
m =
T |T2621 Oq—arg ) _ 1|
MZ(UZ)ME(W —a) [ dr
+ T |7a e2i(op—argA) _ 1|’
we get || S, || < 7.
If A € (0,00) Wecantakevz—%jL%, and 0, = 0, =0, = 0, = 0, SO

that m = my.
If we assume that either A or B is positive, and that the argument of A
satisfies |arg \| < min {¢4, ¢}, then, using the Resolvent Identity, we obtain

S\(A,B) — S(A,B) = )\E (z4+ A+ A2+ A) " (2— B) ' dz,

where v = v, or v = 7}, is a path for S(A, B) with o € (wp, 4) and 7 > 0
sufficiently small. It follows that there is a constant C'(A, B, ¢) > 0 such that

15x(4, B) = S(A, B) || < C]A[[[ S

for any A\ € X4, where ¢ < min(¢a, ¢g). This implies that || Sy — S| — 0
as A — 0, A € 0,4. Hence, using the first part, we infer that the mapping
A — Sy is bounded on 7. O
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Imz

Rez

Figure 6: Spectral angles and paths of integration involved in the calculation
of Sy (A >0).

The following lemma shows that if A and B are resolvent commuting
they may change places in the definition of S,(A, B) without changing the
operator.

LEMMA 3.8. Let A and B be resolvent commuting nonnegative linear op-
erators with wq + wg < w. Assume that A\, > 0, and u+ X > 0. Then
S/\+N(Aa B) = S(AA7 Bu)-

Proof. The statement of the lemma follows from the equalities

—1
S)\+“(A,B) = % / (Z+)\+/L+A)_1(Z—B)_1d2
Yo — 25k
—1
=5 / (z+ A+ A) " (z—p—B) 'dz=S(A\, B,).
T
'70’}'“;7/\

O

The result of the lemma may, of course, be generalised to non-real A and
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3.2 The resolvent commuting case

In this section we study the existence, uniqueness and maximal regularity of
solutions to the equation Az + Bx = y in the case where the resolvents of
A and B commute. According to the previous section we can then expect
x = Sy = S(A, B)y to be a good candidate for a solution to the equation.

Throughout the rest of this chapter we shall assume that A and B are
(at least) nonnegative linear operators in X, and that their spectral angles
satisfy the inequality ws + wp < 7. In this section we also assume that
0 € p(A) U p(B). Thus, the linear operator S = S(A, B) will belong to
L(X). We shall also assume that - is a simple curve from oce™ to oce® for
some 0 € (wpg, ¢4) as described in Lemma 3.4. Moreover, A and B are usually
assumed to be resolvent commuting. However, resolvent commutativity will
not be needed in all the lemmas and theorems of the section and will therefore
be stated explicitly where needed.

3.2.1 Some useful integrals

Let us now state and prove a simple lemma that will turn out to be useful
in the sequel.

LEMMA 3.9. Let A be a nonnegative operator in a complexr Banach space
X, let0< o< ¢y andlet r > 0. Then

1
(3.17) / Lot A) =0
Vo
and
1
(3.18) / ;A(z +A) lrdz =0
Vo

for any x € Dy(0,00) (0 < 0 < 1). If, in addition, A is positive and r is so
small that 7, lies in p(—A), then

1
(3.19) / ;(Z + At dz = —2miAT,
Yo,r
and
1
(3.20) / ;A(z + A) ' dz = —2mi,
Yo,r

for any x € Da(f,00) (0 <0 <1).
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Proof. Under the assumptions of the lemma, the function f : p(—A)\{0} —
L(X) defined by f(z) := 1(z + A)~! is analytic. It is absolutely integrable
over ), since it is bounded of order |2/7% at infinity in any sector Y,
where 0 < ¢ < ¢4. Choosing R > r, we can continuously deform the
part fy;fT’R of fy;“’, that lies between Re % and Re% into the circular path
Cr = {Re™ | — 0o < 7 < o} without changing the value of the integral
f%ﬁ f(2)dz. Letting R — oo, we make the integral along C'r tend to 0, so
that (3.17) holds.

For z € Da(0,0), we define g : p(—A) \ {0} — X by g(z) == TA(z +
A)~!. This function is bounded of order |z| *~? at infinity in any sector g,
where 0 < ¢ < ¢4, and imitating the above argument, we arrive at (3.18).

Assume now that all the hypotheses of the second part of the lemma hold.
Then the function f introduced in the first part of the proof is defined and
analytic in some region containing 7, and all points "to the right of" this
curve, except the origin. Letting R > r, deforming the part of 7, that lies
between Re™" and Re™ into the circular path Cr = {Re™ | —0 <7 < 0},
adding 277 times the residue of f at the origin, and finally, letting R — oo,
we see that

/ f(2)dz = —2miA™",
"
since the residue is lim 2f(z) = lirr(ll(z +A)"! = A~! by Theorem A.31.
z—r z—r

Formula 3.20 is obtained by an analogous argument, using the function
qg. ]

3.2.2 Uniqueness

We shall now prove that for any y € X, x = S,y is the only possible so-
lution to the equation Ax + Bx = y, provided that A and B are resolvent
commuting. We recall that
-1 -1 -1
S = v (z+A) (2= B) " d=.
%

THEOREM 3.10 (Uniqueness). Assume that y € X and that x € D(A) N
D(B) is a solution to the equation Ax + Bx =y, where A and B are non-
negative linear operators such that 0 € p(A) U p(B) and ws +wp < 7. Then
we have

S(A, B)y =z + J(A, B)a,

where
(3.21)
J(A, B)z = 2_—7r11 [(z4+A4)(z—=B) (2 + A)z — (2 — B) '] d=.

Y

In particular, if A and B are resolvent commuting, then J(A, B) vanishes,
and the equation has at most one solution x given by x = S(A, B)y.
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Proof. Assume that y = Az + Bx. Let us put D := (2 + A)~' (2 — B)~'. We
then have

Dy = (24 A) (= B ((= + Ay + (B — 2)2)
=(z+A) "' z-B)'e+Az+(z+A)7 "z
=—(z+A) 2+ (z-B) '

+ {(z +A) Y z=B) e+ A)r— (2 — B)’lx}

But —(z+A4) 'z = 1((z44) 'Az—z) and (:—B) 'z = 1 (2+(2—B) 'Bz),

and we get

(z4+A)(z—B)ly= %(z + A) 7 Ax + %(z — B)"'Bx
+{(z+A4)7(z—B)(z+ Az — (2 — B) 'z}

Since 0 € p(A) U p(B) either A or B has a bounded inverse defined on all
of X. If 0 € p(A), then we take a curve 7 of the form v = v, and get

(3.22)

—1 dz

— A A~ g

5 (z+ A) x . x
v

by Lemma 3.9. The same lemma also yields

—1 dz
— - B2 Y —o.
omi | (2 B) B

Y

If, on the other hand, 0 ¢ p(A), then 0 € p(B), and by an argument
analogous to the one used above we get

-1 dz
— A TAr—= =
5 (z+ A)" Az . 0
¥
and . J
— [ (z— B)_le—Z =z,
211 z

v

since in this case we may take v = 7.7,. Thus, we have shown that the
first three expressions in (3.22) are absolutely integrable over ~. Hence, also
the term inside the curly brackets in the right hand member must be abso-
lutely integrable over 7, i.e. the integral defining Jz := J(A, B)x converges
absolutely, and the equation Sy = x + Jz holds.

In the resolvent commuting case the integrand in the definition of Jz
vanishes, so that z = Sy. 0

REMARK 3.11. The operator J(A + A, B) was introduced by Labbas and
Terreni in [8]. They used it to obtain a left inverse to A + A + B in the
non-commutative case, much in the spirit of Section 3.4, where we consider
Grisvard’s and Da Prato’s method of obtaining a right inverse.
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3.2.3 Existence

We shall proceed to prove that x = Sy really is a solution to (3.1) when A and
B are resolvent commuting. More precisely, we shall prove that (A4 B)Sy =
y for y € D(A) + D(B) and, more generally, for y € D4(0,p) + Dg(0,p),
where 0 < § <1 and 1 < p < oo. Note that, as D(A) C Da(0,p) C Da(0) C
Da(0,00) and D(B) C Dg(0,p) C Dp(f) C Dg(h,0) for 1 < p < oo, it
suffices to consider the case y € D(f, 00) + Dp(f,00). We first present the
ideas of the proof through a sequence of formal calculations. Then we state

and prove a number of lemmas that together yield a rigorous proof.
Assume that y € D4(0,00) or y € Dp(f,00) and that 0 € p(A). Using
the identity (z — B)"'ly=1((z = B)+ B)(z = B) 'y = 1y + 1B(z — B)™'y
we rewrite the integral defining S as follows.
-1 1 1 1y dz
Sy = 57 (z+A4)7'y—(z+A)'B(z—B)™'y) .

gl

1 dz
o4 -1 oyl
= A"y + Py /(z+A) B(z — B) y—z ,
v

where we have used Proposition 1.10 to compute the integral of 1(z+ A) 'y
over . Applying A to this new expression for S we get

1 d
ASy=y+ — /A(z + A)7'B(z - B)_ly—z
271 z
v

—y+ %MB/((z +A)—2)(z+ A) (2= B) ly—

v

271 g
¥ ¥

=y — BSy,

where the last equality follows from (3.17) (applied to B) and the definition
of S. Thus, AS(A, B)y+ BS(A,B)y =v.

In case 0 ¢ p(A), one has 0 € p(B). Hence, the above argument shows
that AS(B, A)y + BS(B, A)y = y. But since A and B are resolvent com-
muting, we have S(B, A) = S(A, B). (The last equality also follows from the
uniqueness result of Theorem 3.10).

These calculations will now be made precise. Actually, resolvent commu-
tativity can be used to obtain an algebraic relation involving only A, B and

S (which holds on X and not just on interpolation spaces between D(A) or
D(B) and X).

PROPOSITION 3.12. Let A and B be nonnegative linear operators in a com-
plex Banach space X such that ws + wp < w. Then, if 0 € p(A),

1 1 d
=y+ —.B/(z +A) Nz - B) 'ydz - TB/(Z - B)*lyjz

(3.23) S=A""+ _—1 (z+A)"'B(z — B)—lﬁ.
211 z
Y
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If, in addition, A and B are resolvent commuting, then
(3.24) S+ BAT'S = A"
If 0 € p(B) and A and B are resolvent commuting, then
(3.25) S+AB™'S=B"".

Proof. Assume first that 0 € p(A). Then we may assume that the curve 7
in the definition of S lies to the left of the broken line v, (so that it crosses
the real axis to the left of the origin). Using the identity (z — B) 1y =
H{(z— B)+ B}(z — B) 'y = 1y + 1 B(z — B) 'y we obtain

(z+A) Y (z2—B)ly= %(z + Ay

(3.26) 1
— ;(z +A)'B(z - B)™'y.
By Proposition 1.10 we have
-1 dz
— A7 ly—= =AYy,
omi | GHATY Y
gl

Hence, we have proved (3.23).
As for the second part, still assuming 0 € p(A), we note that if A and B
are resolvent commuting, then

(z4+A)"'B(z—B)'=B(z - B) ' (z+ A)~"
=B(z+A) Y(2-B)"

Since B is closed, it can be moved in front of the integral in (3.23), and we
obtain . p
S=A"'+__B A7z - B

+ o8 [G+A7 - B
v
Next, observe that, by the resolvent identity, (z +A)™' = —zA7 ' (z +A)~' +
A~!. Inserting this into the last integral, and moving A~! in front of the
integral, we get

z

1 1
=A'4+_—_BA! AN z=B)y'-—=-(z-B)! .
s o /[(z+ ) M- B) - e B dz
Y
But, by Proposition 1.10, [ (z — B)~'y<4z =0, so that (3.24) holds.
In case 0 ¢ p(A), one has 0 € p(B). Hence, S(B,A) + AB'S(B,A) =
B~!. But S(B, A) = S(A, B), and formula (3.25) follows. O

COROLLARY 3.13. Let A and B be resolvent commuting nonnegative oper-
ators in X such that 0 € p(A)Up(B) and wa +wp < . Then, ify € X and
Sy € D(A) UD(B), we have Sy € D(A) N D(B) and ASy + BSy = y.
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Proof. Assume that 0 € p(A) so that
S+BA'S=4"1

If Sy € D(B), then Sy € D(BA™') and BA™'Sy = A~'BSy by Proposi-
tion 1.10. Consequently, Sy + A"'BSy = A 'y. Therefore, Sy belongs to
D(A), and ASy + BSy = y.

If Sy € D(A), then , since A™'y € D(A), also BA™'Sy belongs to D(A).
Hence, ASy+ABA~'Sy = y. Now note that A commutes with p+ B for any
p € p(—B). Take such a p. Thus, D(BA) = D((u+ B)A) = D(A(n+ B)),
which implies that D(BA) = D(AB) N D(A), and ABx = BAz for all
x € D(BA). Since A~'Sy € D(AB)ND(A), we have ABA™'Sy = BSy, and
thus ASy + BSy = y.

The case 0 € p(B) follows from the previous case, since S(A,B) =
S(B,A) so that we can simply let A and B change places in the above
formulas. 0

Using the preceding results we are now ready to prove that, in the resol-
vent commuting case, (A+ B)Sy = y for all y in the real interpolation spaces
Da(0,p), Da(0), D(0,p) and Dg(0). Since Dy (0,p) — Dr(0) — DL(0, )
for any closed linear operator L, any 6 € (0,1), and any p € [1, 00), it suffices
to consider the spaces D4 (6, 00) and Dp(6, 00).

THEOREM 3.14 (Existence). Assume that A and B are resolvent com-
muting. If y € Da(0,00) + Dp(0,00), where 0 < 0 < 1, and if x = Sy, then
x € D(A)ND(B) and x is the unique solution to the equation Ax + Bx = y.

Proof. The uniqueness of solutions = to the equation Ax + Bx = y has been
proved in Lemma 3.10. Thus, we only have to prove the existence part.

Let y € D4(0,00)UDp (0, 00). We first prove that if 0 € p(A) and z = Sy,
then © € D(A) N D(B) and Ax + Bx = y. By Proposition 3.12 we have

-1 dz
2 = A7y + — A)'B(z - B)'y—.
o) Sy=aTy o [ A BBy

v

Let us show that the assumption y € D(0,00) U Dp(f, o) implies that the
integral in the above formula belongs to D(A), and that A can be applied
under the integral sign. We have A(z + A) ' =1 — z2(z + A) ! and B(z —
B)™' = 2(2 — B)™!' — I so that

| A(z+A) || < (14 Ma(0))

and
| B(z—B)™"|| < (14 Mp(r —0))
for z on 7,. Now, if y € Dg(f, 00), then Lemma 2.16 shows that

1
| B(z=B)"'y[| < (1+2Mp(r — 0))[y]p, (0,00 - o
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on 7,, except at 2 = 0. Thus, f(z) = (1/2)A(z+ A)"'B(z— B) 'y is analytic
on v,,, and is bounded of order 2|7'"% at infinity. Hence, it is absolutely
integrable over v, ., and since A is closed we infer that

(3.28) A/(Z—FA)_lB(z—B)_ly% = /A(Z—FA)_IB(Z—B)_ly%.

v v

Ify € Da(6, ), we first note that A(z+A) 'B(z—B) 'y = B(z—B) 'A(z+
A)~ly by resolvent commutativity, so that a perfectly analogous argument
again shows that formula (3.28) holds. Thus, Sy € D(A), and

gL g — Byl P
(3.29) ASy=y+ i /A(z +A)" B(z—B) 'y .
b

for any y € DA(0,p) UDg(0,p). By Corollary 3.13, ASy + BSy = y.

If 0 ¢ p(A), then 0 € p(B), so that AS(B,A)y + BS(B, A)y =y by the
above argument. But S(B, A) = S(A, B), and there is nothing more to prove
in this case.

Finally, if y = y; + y2, where y; € D4(0,00) and yo € Dp(0, ), we put
x; := Sy; and get x; € D(A)ND(B) and Az; + Bx; = y; for i = 1,2. Hence,
x:=x1+x9 = Syisin D(A)ND(B) and Az+ Bx = (A+B)x1+ (A+B)xy =
Y1+ y2 =y. O

The following corollary states that if D(A) + D(B) is dense in X, then
A+ B is an invertible linear operator with inverse S(A, B) € L(X).

COROLLARY 3.15. Let A and B be resolvent commuting nonnegative op-

erators in a compler Banach space X, and assume that wy + wp < 7 and

0 € p(A)Up(B). Then A+ B is closable. If, in addition, D(A) + D(D) is
1

dense in X, then 0 € p(A+ B) and A+ B = S(A, B).

Proof. Let {z,},2, € D(A)ND(B) be such that lim,,_,o, x, = = and Az, +
Bz, converges to some y in X. Then, by Theorem 3.14 and the continuity
of S,
Sy = lim S(Az, + Bz,) = lim z, = .
n—oo n—oo

Hence, A+ B is closable and SA + Bx = x whenever x € D(A + B). It also
follows that A + B is injective.

If D(A)+D(B) is dense in X, then for any y € X, we may find sequences
{a,};", €D(A) and {b,},-, C D(B) with lim,_,(a, + b,) = y. Then the
continuity of S implies that lim,, . S(a, + b,) = Sy. We also have

lim (A + B)S(a, + b,) = lim a, + b, = y.

n—oQ n—oQ

Consequently, A + B Sy = y, showing that A + B is surjective. Since A + B
is also injective, we conclude that A + B = S(A, B). O

67



3.2.4 Maximal regularity

We continue to consider the equation Ax + Bx = y. In the previous section
we proved that if y € Dy(0,p), then there is a (unique) solution z = Swy,
which then, of course, belongs to D(A) N D(B) C D4(0,p). The question is
now: Do we also have Az, Bx € D4(0,p)? The answer to this question is
affirmative, i.e., we have mazximal reqularity.

By the maximal regularity of the equation Ax+ Bx = y in X with respect
to the space Y < X we mean that, whenever y € Y and z € X is a solution
to the equation, we have x, Az, Bx € Y. We start by proving a useful lemma.

LEMMA 3.16. Let Dy ,,(2) := (2+A)7'B*(t+B)™(2—B) ™", wheren = 0, 1;
k=0,1,...,n4+1; and z € p(—A)Np(B). Let vy be a curve as in Lemma 3.4,
and assume that vy crosses the real azis to the right of z = —t. Then if k < n,
the following equation holds

Zk
D dz =
[ atomic [ 2
Y

v

(24 A4) (2= B) 'ydz (y € X).

If y € Dp(0, 00), then we also have

/Dn+1’n(z) ydz = / %(z + A)™'B(z — B) 'y dz.

In case A and B are resolvent commuting, the above formulas may be written

_ k
Bt + By Sy = —1/zi(z+A)_1(z—B)_1ydz,

2mi ) (z+ )"
v
if k <n, and
—1 2"
B (t+ B)™"Sy = — A)'B(z— B) 'yd
(t+B)"Sy = o | e+ A7 Bl - By d

v

respectively. In the right—hand members of these formulas the path of in-
tegration v may be deformed into vy,, provided that k > 1 (whenever k is
involved).

Proof. We have

I Din(2) ll oy < Ma(o)(1+ Mp(0))* Mp(0)" " Mp(r — o)
by 7] 2

on 7 for large |z|. Hence, Dy, (2) is absolutely integrable over ~.
In case n = 0 there is nothing new to prove. Let us now calculate the
integral [ (z+ A)7'(t + B)~'(z — B)"'ydz. By the resolvent identity,

(3.30) (t+B)'(:-B)' = Zit(”B)lJrHt

(z— B) .
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Since (2 + A)7'(t + B)™'y is analytic, as a function of z, on the whole of

p(—A) except for the point —¢, and is bounded of order |z| ™ on and to the
right of 7 as |z] — oo, we have

1
/ e+ A+ B) My =0,
Y

and the integral converges absolutely. Thus, also Z%rt(z + A~z — B)ly is
absolutely integrable over v, and we have

Z+t

/Do,l(z)dz:/ L Gty - B Yy,

provided that « passes to the right of 2 = —t. We also observe that B(t +
B)~'=1—t(t+ B)™!, so that we also obtain

/Dl,l(z) iz = / (1 _ %) (2+ A) (2 — B) Yy dz

v

= / Zit(z + A7z - B) 'y d-=.

v

It is obvious from the above argument that the particular choice of ~ is
unimportant, provided that v passes to the right of 2 = —¢. In fact,

z
A~ z-B)™!
| Zrare-m)|

1
< Mgp(m — U)m ” (z+ A)_l Hﬁ(X) |yl

which remains bounded as z — 0 to the left of v, if 0 € p(A), and analogously
if 0 € p(B). Thus, the path of integration can even be deformed into .
Assume that y € Dpg(f, 00). Using formula (3.30), we get

B(t+B) 'B(z—B) '=B(1-t(t+B) ')(z—-B)!

t
Z+t

B(z—B)!

B(t+B)™!

z+t

B(t+B) ' + ZLHB(z _B)L

z2+t

Now (2 + A)™'B(t + B)~'y is analytic in 2 to the right of v,,, and is

bounded of order |z| * on and to the right of v as |z| — oo, since

My(o)(1+ Np) [ty
|z +t| |2]

b

A)7'B(t+ B) ly || <
G BB
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where we have used the estimate || B(t+ B)™'|| = ||[1—t(t+B)™'|| <1+
Np. Consequently,

/ . i (= + A B 4 By de =

v

We now turn to the expression 25 (2+A)"'B(z—B)~'y . This expression
defines an analytic function of 2z on (X4, — A) \ ¥,,, except for the point
z = —t if this point lies in that region. On 7, \ {0}, and thus on v when |z]

is large, we get, using the assumption y € Dg(f, 00),

Iyl

) R ER:E RN
(z4+A)'B(z—B) 'y || <

Z+1 ‘_ 21" |2+ 1]

where C' is a constant, which can be chosen to be M4(0)(2Mp(m — o) + 1)
(cf. Section 2.4 and Lemma 2.16). Thus, the expression is bounded of order
12|7'7% as |z| = co. Hence, it is absolutely integrable over v and the value
of the integral is independent of the particular choice of ~.

Now || B(z— B) gl = lly — 2(2 — B) 'y || < (1+ Mn(x — o)) |y 1t
0 € p(A), then || 2(z + A)~" || ;x) tends to 0 as 2 — 0. If 0 ¢ p(A), then v
lies in 3, \ {0}. .But | z(z + A)~! lzx) < Ma(o) in this region. Hence, in
both cases there is a constant C' such that

o) B B) | <Cly

at z = 0 when 7 is deformed into 7,. Consequently,

z -1 -1
/Dg’l(Z)de = / . +t(z +A)" ' B(z — B)” 'ydz.
8! gl

If A and B are resolvent commuting B(t+ B)™' commutes with (z+A4)~".
On D(B) the operators B and (z + A)~' commute. Since B(t + B) ™! is
bounded, and B is closed, both can also be moved out in front of the integral
sign in the formulas we have just proved, and we obtain the last two formulas
of the lemma. These observations complete the proof. O

REMARK 3.17. It is easy to show that the lemma just proved is true not
just for n = 0,1, but for any nonnegative integer n.

By Lemma 3.16 we have BSy = 5= [(2 + A)"'B(z — B)~'ydz for any

v
y € Dp(f, 00). From this it is not difficult to show the existence of a constant
M such that || BSy|| < M |[y|lp,, ) for any y € Dp(f,00). Since ASy =
y—BSy, we also have || ASy[| < (1+M) ||y |l pyp,0)- However, it is not easy
to find a nice expression for M, since the integration cannot be performed
along a curve 7, passing through the origin. With the seminorms | ]'DB(H,oo)
the situation is different.
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THEOREM 3.18. Let A and B be resolvent commuting nonnegative operators
with 0 € p(A) U p(B) and wa +wp < m, and let v = Sy be the unique
solution to the equation Ax + Bx =y. Then if y € Dg(0,p), where (0,p) €
(0,1) x [1,00], we have Az € Dp(0,p) and Bx € Da(0,p) N Dp(0,p). If
y € Dg(0), then Az € Dg(0) and Bx € D4(0) N Dg(0). Moreover, we have
the following estimates

(3.31a) [Az]p, 0, < X+ e)[Y]p, 0
(3.31Db) [Bx]p,0 < 1LYy
(3.31c) [B2]p, 00 < 2[¥]0,0.0):
where
(3.32a)
v 5= o0 A, B) = 2Ma(o)(1 4 25in (§) Myl — o) [ ot
7T / 10 |tetr + 1]
(3.32b)
o 5= el A, B) = ZMa(o)(1 + 25in (§) Myl — o) [ ot
- 10 |teio — 1]

0
for any o € (wp, da).

The fact that we also have Bz € D4(0,p), when y € Dg(f,p), is a
somewhat unexpected result referred to as cross regularity. We also note

that if y € D4(0,p) or y € D4(0) we get perfectly analogous results, as
S(B,A) = S(A, B).

Proof. We shall estimate [ BSy]p, ), [ASY]p, 4, and [BSY]p 4
Let us start with [ BSy]p_,,)- According to Lemma 3.16, we have

-1 2
3.33 B(t+ B)"'BSy = — A)'B(z— B) 'yd
(333)  BU+B)BSy = [ e+ A B - B) My
Yo
i.e.
1 r re2o dr
3.34) B(t+B) 'BSy= LY/ —,
( ) (t+B) v= m/[re“’—l—t )+re_“’—|—tw (r) T
0
for any ¢ > 0, where
(3.35) Vo (r) =y (r; A, B) := r(re'” + A)"'B(re'” — B)™'y.
Substituting ¢s for r in (3.34), we get
1 r se~ 2o ds
3.36) B(t+ B) 'BSy = (st : _o(st)| —
(8:36) B(t+B) v= m/[se“’—i—l )+se“’—|—1w (s1)
0
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Both terms of the integrand are of the form required in the hypotheses of
Corollary A.18. It is also clear that

oo

” » Se:l:Qm / ds -
[ — = | —— < x.
se*io 41 L1(0,00) sf|sie 4+ 1|
0

Regarding 1., (t), we have, by Lemma 2.16, the estimate

(3.37) | 2o (@) | < (o) Bt + B) 'y,

where ¢(0 := c(0; A, B) := Ma(0)((1+ 2sin (%) Mg(m — 0)). It follows from
the assumption y € Dp (0, p) that

[Y]pp0m = | t’B(t+B) 'y Il £2((0,00):x) < 00,
so that %91, (t; A; B) € LP((0,0¢); X) and

(3.38) |05 (t; A; B) [ 12 ((0,000x) < €(05 A, B)[Yp, 0.

Consequently, we can apply Corollary A.18, and get

(3.39) [B(t+B)"'BSylp, 0, < c1(0.0)[¥]p,0,):
where N
1 dt
c1(0,0) :==¢1(0,0; A, B) := ;c(a; A, B) / Pl 1]
0

In particular, if y € Dg(0), then y € Dg(f, 00) and

llmr9|‘B7‘+B yH—O

T—00

Using (3.36) and (3.37), we get
(3.40) taHBt—FB 1B:EH< /Wts HBts—I—B des

Since (ts) || B(ts+B)_1y|| < [¥]p,0.): (ts)?|| B(ts + B)"'y|| tends to 0
ast — oo (s >0) and [;° s %(s+1) "' ds < co, we can apply the Dominated
Convergence Theorem to formula (3.40) and obtain

lim ¢’ || B(t + B)™'Bz || = 0,
t—o0

i.e. Bx € Dy(h).

Using the equality Az = y— Bz, where y, Bx € Dg(0, p), we immediately
infer that Az € Dg(0,p), and that Ax € Dg(f) if y € Dp(d). Moreover, we
get

A2 [|p, 0, < (1+c1(0,0; A, B)) [y 0, -
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We also have (t+ A)~'(z+ A)~™' = Z((z+ A)~' — (t+ A)7"), so that
(t+A) 'Br = —1 ! (z4+A) 'B(z — B) 'ydz
2mi ) t— 2z ’
Yo,r

since

1

(z— B) 'ydz =0,

/ tiz(tth)lB(z—B)lydz —(t+A4)'B / t

Yo,r Yo,r

provided that we choose r < t. As A(t+ A)™' =1 —t(t + A)~', we then
obtain

—1 z

Alt+ A 'Br = —

(+ ) a 271 Z —
Yo,r

t(z + A)'B(z — B) 'y d=.

Now the path of integration can be deformed into 7, without changing the
value of the integral, so that

9 . .
1 7"€2w 7"6_2“7
211

A1) A(t+ A)'BSy=— . —
(341) (t+4) 5y re’”—t¢g(r)+re*20—t

where 1), (r; A, B) has been defined above. Again we can substitute ts for r,
and get

B -1 I’y SeQia Se—?ia
(342) A(t+A)'BSy= — [sew — o (st) + ——
0

se~to —
Consequently, we can argue exactly as above to deduce

[Bx]'DA(H,p) < (o, 9)[?!]@3(9,;;)7

where
o0

c2(0,0) := c3(0,0; A, B) := lc(a; A, B)/
7

0

dt
t0|tic — 1|

If y € Dp(h), then y € Dp(,00) and

lim r’ | B(r + B) "'y || = 0.
T—0Q

On account of (3.42) and (3.37), we have

(3.43)

o0

| A(t+ A) 'BSy|| < %c(a)/ !

m(tS)g H B(tS + B)ily H dS.
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Since (ts)? || B(ts + B)"'y|| < (9], (0,000 (ts)?|| B(ts + B)~'y|| tends to 0
as t — oo (s> 0), and

o0

/ ds <
- <
s¥ |setr — 1] ’

0

we can apply the Dominated Convergence Theorem to formula (3.43) and
get

lim ¢’ || A(t + A) "Bz || = 0,

t—o0

i.e. Bx € DA(Q) U

Let us assume that A and B are resolvent commuting and nonnegative
with wq 4+ wp < 7. However, we now drop the assumption that either of
the operators is positive. Let x be a solution to the equation Az + Bx = y,
where y € Dg(0,p). Then, for any € > 0, we have Az + Bx + ex = y + ex
and y + ex € Dg(f,p) (since z € D(B)). Hence, z = S.(A, B)(y + ex),
Az € Dg(0,p) and Bx € Da(0,p) N Dp(h,p). In particular, if y € Dg(h),
then Az € Dp(0) and Bz € D4(0) N Dp(f). We have

(3.44) Bx = BS.y + eBS.x.

By (3.31b),

[BS.r] < (o, 9§AeaB)[I]DB(6,p)’

DB(07p)
where wp < 0 < ¢4 and

o

1 o dt
Cl(U, H,AG,B) = ;MAE(O') (1 + QSln(g)MB(ﬂ' — 0)) / m
0

Ma(o) (1+2sin($)Mp(m —0)) [ dt
= 7 sin [max {7 /2, 0}] / t0 |tei + 1|

0
Hence,

(3.45) lifgl e[ BS.x] = 0.

DB (9,]7)

To handle [ BS:y]p, ) We first note that (3.36) implies

1T sedio
B(t+ B)"'BS.y = — : t: A, B
4B b5 = oo [ | S iaeAL)
(3.46) 0
se~ %7 ds
i, q V-0 taAeaB R
+se*”’+1¢ (S ) S
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and [BSey]DB(a,p) < ¢o,0; A, B)[y]DB(G,p)' Clearly, by the above proof, the
integral in the definition

—1
U(t; A, B) := 5 Zit(z+A)’1B(z—B)’lydz
Vo
-1 T se?io se~ 2o ds
S — . st A B+ —5 .y (st:4,B)| L
2me [se“’ + 11’/} (s )+ se' + 1¢ (s )

0

is also convergent for all £ > 0, and

1 £°0(2) L2((0,00):x) < €1(0, QQA’B)[?J]DB(G,JD)

where we have simplified notation by writing W(¢) instead of ¥(¢; A, B). Now,
by the resolvent identity,

¢io(t; A€7 B) - ¢i0(t; A7 B)
= —et(te™ 4 e+ A) " (te™7 + A) ' B(te® — B) 1y,

so that
|| ,lvbzl:a(t; Aea B) - ,lvbzl:a(t; Aa B) ||
< Mu(o)Mj(0) (1+ Mp(m — o))
620 t@

Hence, formula A.7 of Corollary A.18 yields

€
ly ”W.

0

L2(0,00)

|#°B(t + B) ™' BSey — t"U(2) || 2(0,000:x) < O,

where

J
L2(0,00)

C:= MA(O—)M:X(O-) (1 + MB(’/T o 0 || Y || / 9 |t€10 + 1| ‘ telff +1

so that we finally get
lim|| t’B(t + B) ' BScy — t"U(t) || 12((0,00)5x) = 0

e—0

which tends to 0 as € | 0. Consequently,
(3.47)  Um[BSylp,q, = [ £°%(@) || 2o.00x) < €1(0,0; 4, B)[ Y5, 0,

Equations (3.44), (3.45), and (3.47) together imply that
[B2]p,0.,) = lelﬁ)l [BSey]py0 + lelfgl e[ BSex]p, )

=1 t" () || L2((0,000:)
<cai(0,0; A, B)[Y]pg 0.
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Since Ax =y — Bx, we infer

[‘43j ]DB(G,p) < (1 ta (U: 9; A7 B))[y]DB(G,p)'

As for the cross regularity estimate, we have

(3.48) [Ba]p,, 09) < [BSlp, (o) T €l BSe]p, ()
By (3.31c¢),
[BS 1, ) < 02005 A ).
where
¢y(0,0; A, B) Lar (o) (1 + 2sin(§) Mp( ))]o e
o,V A, = = eps\O 2 T—0 10 [tpic _ 1]
20, Uy T A_ep 2 B t0|t6za_1|
0
Ma(o) (1 + 2sin(2) Mp(r — o)) ]° dt
7 sin[max {7 /2, o}] t0 [teie — 1|
Hence,
(3.49) 161%1 E[BS€$]DAE(0,p) =0.
By (3.41),
A(t+A)7'BSy = L [ [ o (r; Ae, B)
e € y_27T’L Teia—ta s 4les
0
Te—?io’ dr
——)_,(r; A, B) | —.
re—to — td} (T‘ ):| T

Again the proof of Theorem 3.18 shows that

-1
Y=t = %/ 2 - ~(z+ A)7'B( = B) 'y dz
Yo
—1 T se?io s 2i0 ds
271 |:S€“7—]_,¢}U(S y 41y )+S€_w—177/) U(S ; A, ):| S

0

is convergent for all ¢ > 0, and

1£°0(=1) | 2 ((0.00)5) < €2(05 05 4, B)[Y]p 0.0
where ¢3(0,0; A, B) is given by (3.32b). Arguing as above, we then infer that

1 B(t+ B) 'BSey — t"W(=1) || 12((0,00x) < C"¢’,
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where

40
teio + 1

C" = Ma(o)Mi(0) (1 + Mp(r — o)) || y|| / " |teff,t_ 1 ‘ o
, 2(0,

We conclude that

(8:50) lim [BSylp, (o5 = | V(=) 20003 < €2(0,0: 4, B)[Y ] a0

Proposition 2.25 and equations (3.48), (3.49), and (3.50) together yield

[Bx]DA(H,p) = leifgl[Bx]'DAe(H,p)

= leiir(r]l [ BS.y ]DAE 0p T lgfgl e[ BS.x ]DAE 6.0)

= | "9 (=1) |22 (0.00):)
< ea(0,0; A, B)[Y]p,0)-

Summing up these observations, we can state the following corollary to
Theorem 3.18:

COROLLARY 3.19. Let A and B be resolvent commuting nonnegative oper-
ators with spectral angles wa and wpg, respectively, satisfying the inequality
wa +wp < m. Assume that Ax + Bx = y. Then if y € Dg(0,p) we have
Az € Dg(0,p) and Bx € Da(0,p) N Dp(0,p) for all (6,p) € (0,1) x [1, 0.
Analogously, if y € Dp(0) then Ax € Dg(0) and Bx € D4(0) N Dp(f). In
addition, we have the following estimates

[Ax]DBw,p) < (1 + Cl)[y]DB(G,p)
[Bx]DB(G,p) S Cl[y]DB(67p)
[Bx]'DA(G,p) < CQ[y]DB(HJJ)’

where ¢; and ¢y are as in Theorem 3.18.

REMARK 3.20. The above proof of the corollary avoids a mistake in [6],
where it was wrongly assumed that lim. o Mp_ (¢) = Mp(o).

3.3 The operator S) revisited

We have seen above that if A and B are nonnegative, if wq + wp < 7 and if
larg A\| < min(¢a, ¢p), then Ay = A+ A and By = A+ B are positive, and we
have wa, +wp < 7 and wy + wp, < 7. Hence, the above results on S(A, B)
and the equation Ax + Bx = y apply to the pairs (A,, B) and (A, B,).
Consequently, S\(A, B) = S(A,, B) = S(A, B,) is the unique solution to the
equation Az + Ax + Bz =y for any y € D4(0,00) + Dg(6,00) (6 € (0,1)).
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3.3.1 Additional regularity of S,

We shall prove a result on the range of the bounded operator Sy, which
strengthens Proposition 3.7.

THEOREM 3.21. Let A and B be resolvent commuting and let X\ > 0. Then
Sy is a bounded linear operator mapping X into D4(6,p) N Dg(0,p) for any
0 € (0,1) and any p € [1, 00|, and we have

(3.51) 1Sa |l <moA™ ]|,
(3.52) (S35 ]p, (0 < A 2|
(3.53) (S35 ]y < maA™ 0 2],
where
2
(3.54) mo = _MA( |t262m —1]
(3.55) 2 Ma(o) M — o) -
) my = — T™T—0 4
! o A telo — 1|1 || te —1 v ’
2 t179 t9

3.56 = —M%(oc)M - : 4 )
( ) mo T A(U) B(ﬂ- U) teio 4+ 1 teic + 1

Proof. The estimate (3.51) has already been stated and proved in Proposi-
tion 3.7. Let us now show that (3.53) holds for all z € X.
By Lemma 3.16 we have
-1 z
B(t+B)™'Sya = —
(t+B)" S = 2 ) z+t
Yo

(z4+ A+ A)"2—B) 'adz.

On v, \ {0} we have z = re*", and the following estimate holds

|re“’ + ¢ |re“’ + )\|
where we have used the fact that |e =™ + b| = |e’® + b| for all a,b € R. Hence,
writing ¢ := ZM} (o) Mp(m — o), we get

(z4+A+A) Y (2—-B)'x

z+t

dr
+ t] |reir + )|

50+ )50 <l el [
0

ol [ =
=cllx 4 4 —
|sete + 1] [tset + A| s
0

We now take f(t) :=t[te’ +1]" and g(t) := [te” + A|”" in Corollary A.18
and deduce the following inequality

40
teio + \

[SAx]DB(aap) S ¢ H (teia + 1)

L.
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40
teio + 1

40
teio 4+ \

‘ — )\ (19

and we thus have [ Sz ]y, ) < moA~1=0 || 2 ||, where

- )
r? r?

tl*ﬂ t9

teio + 1

1
= — * - B
ma = M (o) My(r — o) || 22

L L?

We have shown that S\(A, B) maps X continuously into Dg(6,p) for
any 6 € (0,1) and any p € [1,00]. Since Sy(A4, B) = Sy\(B, A), it follows
that S\(A, B) maps X continuously into D4(6, p). Moreover, we have wy <
T — o < ¢p, so that, interchanging the roles of A and B and replacing o by

7 — o in formula (3.56), we see that we can choose

2

41-0
my = mgy(B, A) = ;MA(O)ME(W —0)

teic — 1

40
teic — 1

Ll L?
(where the meaning of the arguments A and B of msy should be obvious).

This ends the proof of the theorem. O

REMARK 3.22. One might wonder why the estimates allow || Syz ||y to
grow faster than [ Sz ]y, and [Siz]p, ) as A decreases. Note that this
is, however, supported by the fact that it A = B = 0, then S\ = (1/\)1, so
that || Sy [| = 1/ |A[, whereas [Six]p, g, = [Sr2]p e, = 0 for all z € X.

3.3.2 Regularity constants for the equation \z + Ax + Bx =y

When applied to Ay and B, Theorem 3.18 yields some of the statements of the
following theorem on the maximal regularity of the equation Az + Az + Bx =
Y.

THEOREM 3.23. Let A and B be resolvent commuting nonnegative operators
with wy +wp < @, let A > 0, let wg < 0 < ¢4 and let © = Syy. If
y € Dg(0,p), where (0,p) € (0,1) x [1,00], then x € D(A) N D(B), =
is the unique solution to the equation A\x + Ax + Bx = vy, and we have
Az € Dg(0,p) and Bx € DA(0,p) NDp(0,p). If y € Dp(h), where 6 € (0,1),
then Az € Dp(0) and Bx € DA(0) N Dp(0). Moreover,

||| < meA™" |y [%]pp00) < CO)\_l[y]'DB(ﬂ,p)
[ Az || < (L 4+mo) [yl +aA[Y]pyp [AT]py0, < (1+c+c))
| Bzl < ElA—a[y]DB(H,p) 191500
[B]p, 00 < @lY]py00 [Ba]py0m < AlY]py00

Here myg is given by Proposition 3.7; ¢, := ¢1/sino; dy := ¢y/sino, with ¢
and ¢y given by Theorem 3.18;

_ Mi(o)(1+2sin(g)Mp(r — o) || ?
0= Tsino te + 1|,
. Mi(o)(1+2sin(g)Mp(r —0)) || 7
1= .
! 7 8in o te +1 ||’
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21,1
wzth5+5—1.

Since S\(A, B) = S\(B, A), interchanging the roles of A and B in the
above theorem yields a set of analogous estimates.

Proof. By Lemma 2.25, Dy, (0,p) = D4(0,p) and Dy, (6) = D4(6). There-
fore, all the statements of the theorem, except the estimates, follow directly
from Theorem 3.18.

By Proposition 3.7 we have || Az ||y < mq||y||y-

By Lemma 3.16

1 1

27m z4+1
y

(3.57) B(t+B)™! (z4+ A+ A)'B(z— B) 'yd-=.

On ~, \ {0} we have z = 7e*"?, and by Lemma 2.16 we get

(z+A+A)—1B(z+B)—1yH < ¢

—1
= |rei + ¢ |rei”+)\|HB(T+B) yH’

z+t
where ¢ := M}(0)(1 + 2sin(§)Mp(m — 0)). This shows that the integrand
remains bounded in p(—A) N p(B) as z — 0. The path of integration may

consequently be deformed into 7,. Combining these results, and using the
fact that ||re” + \|| > Asino, we get

1 1 - -
| B(t+B) 'z || = %/Z+t(z+)\+/l) 'B(z — B) 'ydz
Yo
B(t+ B)™!
< [UBE+B) Wi,
27 |z + Al |z + t|
Yo

C T
vl A LR
0

o]
C

:7r)\sina/sew—|—1 HBtS—i_B yH_
0

where the last equality was obtained by substituting ts for r in the integral.

Taking f(t) := 7 and g(t) := || B(t + B)~'y || in Corollary A.18,we obtain

@58) ] B+ B ] ] < eod ] B+ Bl

Le. [2]p,0p < CO)\_I[y]DB(G,p)7 where ¢ is given in the theorem.
Let us now estimate || Bz ||. By Lemma 3.16 we have

Br=— A+ A)'B(z — B) Yy dz.
x 5 %(z+ + A) (z )y dz
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Hence, using Holder’s inequality and the formula

741709

teto + \

1-6
St

teio + 1

we get

teza+)\‘t9 t+B yH_

1 o
| Bz || < =M}(0)(1+ 2sin (%) Mp(r — o) /
T
0
< 61)‘79[y]D3(0,p)'
By Theorem 3.18 we have
[BS:y]p pop) S € [y]DB (0,p)

where ¢ := ZM, 4(0)(1+ 2sin(§)Mp(m
M} (0)/sino by (2.53), whence

o)) Jy tf)\tew+1\ But M;4(0) <

[BSxy1p,00) < LY 1000

Since Ax = y — Ax — Bz, we also have

|| AS,\y || < (1 + mO) ” Y H + 61)‘_6[y]173(9:10)

and
[AS\Y py0p < (4o + Cll)[y]DB(H,p)'

Finally, by (3.52) we have [Bx],DAk(e’p) < clylp,pyp) Where

1 o dt
=—-M 14 2sin(2) M — R p—
¢ = —My, (0)(1 4+ 2sin (2) g(m—0)) /0 Tlier — 1]
and My, (o) < M}4(o)/sino. O

REMARK 3.24. The proof of Lemma 2.25 provides formulas that could be
used to obtain cross regularity estimates that do not include [ Bz ]y, (4, or
)\ b

1Bz lp, (0.0

REMARK 3.25. The theorem could be generalised to apply to all A € C
with |arg A| < min(¢a, ¢p). In particular, there is a function ¢y such that
[S\y 1,0 < collargAl) IA7! [4]p, 0, for any y € Dg(6, p). Hence, there

is also a function mg such that || Sx|{|zp, s, < Mollarg Al) A7
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3.3.3 The nonnegativity of A+ B

As a consequence of Proposition 2.23, we note that if A and B are nonnegative
with wy +wp < 7, and if |arg A\| < min(¢4, ¢p), then A, and B are resolvent
commuting and nonnegative, Ay is positive and wy, +wp < 7. Hence, using
Corollary 3.15 and Proposition 3.7, we arrive at the following theorem.

THEOREM 3.26. Let A and B be nonnegative resolvent commuting operators
with wa+wp < 7, and assume that D(A)+D(B) is dense in X. Then A+ B
is nonnegative, wirg < max(wa,ws) (or, equivalently, ¢xr5 > min(pa, o)

) and (A + A+ B)™' = Sy for all X with |arg A\| < min(¢4, ¢p)-

REMARK 3.27. The above theorem can be used to generalise the method
of sums to sums of more than two nonnegative operators.

One may also consider the restrictions of the operators A and B that
map into D4 (0, p) or into Dp(0,p), where (0,p) € (0,1) x [1,00]. Thus, let
X =Dg(0,p), let A= Al; and let B = B|;. Here L|y is defined by putting

D(Lly) ={z € D(L)NY | Lz € Y}
Liyz =Lz  (z€D(Lly)),

ie. Lly = LN (Y xY), for any linear operator L in X and any subspace
Y of X. We have the following simple result that shows that A and B are
nonnegative in X.

LEMMA 3.28. Let A and B be two resolvent commuting nonnegative linear
operators in a complex Banach space X, let X = Dp(6, p), where (0,p) €
(0,1) x [1,00] U {(0,00), (1,00)}, and put A = A|z and B = B|z. Then
A is nonnegative, p(—A) D p(—=A), ¢; > da, and N;i(¢p) < Na(¢) for all
¢ € Xg,. If A is positive, then so is A. In particular, B is nonnegative,
o5 > ¢p and Ni(¢) < Np(¢) for all ¢ € ¥,,. Moreover, A and B are
resolvent commuting.

Proof. Take A € p(—A). Tt is clear that A + A is one-to-one. Let us show
that
(A +A4)7(D5(0.p)) € Ds(0,p).

In fact, for any « € Dg(0,p) we have

| Bit+B) A+ A) || =4 || A+ A)T'B(t+ B) 'z |
<[ (A+4) ﬂu ﬁHBt+B z ||

Hence, [(A+A)"'2]p, 5, < 1A+ A7 ) [2]p,0,) < 00, S0 that ()\ +
A)~'z € Dp(0,p). As a consequence, we have A(A\+A)~'z = - A(A+A4)"
Dy(h,p). It follows that z € D((A+ A)'), and thus R(A + A) = X and
A+ A z=N+A) 'zforallze X,

The above calculation also shows that p(—A) D p(—A), and that

‘MA+AY1




for all A € p(—A). In particular, if A € £, we have
Na(arg )

A+ A)!
H( ) Lop@p) — A

forall A € £4,.

Having a nonempty resolvent set, A is closed.

Summing up what has been proved so far, we see that A is nonnegative
in X, p(—A) 2 p(—A), ¢5 > ¢a, and N;(¢) < Na(¢) for any ¢ € ¥4,. As
a special case we see that if A is positive, then so is A.

Since all resolvents of B commute with each other, the statements re-
garding B follow.

Finally, it is clear that A and B are resolvent commuting, since

A+ A (u+B)le=0+A4)"(u+B) 'z

— (4 B O+ A)

=(u+B) "0+ Az
for all 2 € X. 0
We have seen that x = S,\(fl, B)y = Sx(4, B) is the unique solution to the
equation Az + Az + Bx =y for any y € X = Dp(,p) and XA € Zrin(g..65}-
Thus, we have Sy(A,B)y = (A + A+ B)~'y for such A and y. If A or B
is positive, then S(A,B)y = (A + B)™'y for all y € X. For any ¢ with

|¢| < min{¢pa, pp} there is a number m > 0 such that arg A = ¢ and A # 0
implies that
mo(¢)

Al
by Proposition 3.7. From these observations we obtain the following Theo-
rem.

H Si(4, B) Hz()”() =

THEOREM 3.29. Let A and B be resolvent commuting nonnegative operators
with wa+wp <, let (0,p) € (0,1)x[1,00], and put X = Dy(0,p), A= Al
and B = Blg. Then A+ B is nonnegative in X, ¢ 5, 5 > min(d4, ¢p) and

My, 5(8) < mo(o)

for all ¢ € R with |arg ¢| < min(¢4, pp), where mo(¢) is given in Proposi-
tion 8.7. If, in addition, 0 € p(A) U p(B), then A+ B is positive.

REMARK 3.30. The theorem remains true if we take X = Dp(0). Since
Sx(A,B) = S\(B,A), it is also clear that we can take X = Dy(0,p) or
X =Du(h).

3.4 The non—commutative case

In this section we consider the equation Az + Az + Bx = y, where A > 0,
and the linear operators A and B are nonnegative with spectral angles w4
and wp that satisfy the inequality w4 + wp < m. However we do not assume
the operators A and B to be resolvent commuting. The material is based on
Section 6 of [10].

83



3.4.1 Introductory discussion

In the case where A and B are resolvent commuting we were able to show,
among other things, that (A + B)Sy = y for any y in Dp(f,00) (or in
D4(0,00)), whenever 0 < § < 1. This means that S is a right inverse to
A 4+ B on these interpolation spaces. Let us now look at the expression
(A + B)Sy without assuming A and B to be resolvent commuting. First we
observe that if 0 € p(A), then formula (3.29) is still valid for y € Dg(0, ),
where 0 < 6 < 1, i.e.

—1 dz
ASy=y+— [ Alz+ A)"'B(z — B) ly—.
Sy y+2m./ (z+A) "B(z - B) v
Y

For z € p(—A) we have the identity A(z+ A) ' =1 —2(2+ A)"!, and, using
Lemma 3.9 to calculate [ B(z — B)'y% =0, we get

(3.59) ASy =y — Uy,
where

—1
(3.60) Uy :=U(A,B)y := 5 (2 + A)le(z — B)*ly dz.
Vs
Y

The last integral converges absolutely by Lemma 3.16.

In the resolvent commuting case considered above B commuted with all
resolvents of A. Since B is closed we were allowed to move it in front of the
integral in the right hand member of (3.59). Thus, in that case, we were
able to infer that ASy = y — BSy. In the present case, these steps are not
feasible. Instead we examine the difference

B(z+ A Y(2—B) 'y—(2+A) 'B(z— B) !y

(3.61) = [B;(z+A)"](z— B)™ 'y,

which is well-defined provided that we have (z + A)"}(D(B)) C D(B) for
every z € p(—A).> By Lemma 3.16 the second expression of the left hand
member of (3.61) is absolutely integrable over v whenever y € Dg(6,p)
for some (6,p) € (0,1) x [1,00]. Thus, the first expression is (absolutely)
integrable , provided that the right hand member has this property. Since B
is closed, it can be moved in front of the integral sign, and we get

BSy =Uy + Ry,
where

(362)  Ry=R(ABy:= - / [Bi(z+A)'] (= — B) 'y d-.

3Also note that [B;(z + A)" '] (z—=B)'=(z+A) - (z-B)(z+A)~z-B)~L
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Therefore, using (3.59), we obtain
ASy+ BSy =y + Ry.

However, for the above calculations to be valid, we must impose some condi-
tions on [B;(z+ A)7'](z — B)™' to make it integrable over some suitable
curve 7.

Going one step further we realise that it would be useful to have R
bounded with || R|| < 1, rendering possible, under certain circumstances,
the construction of the inverse (1 + R)™! as a Neumann series. This would
give (A+ B)S(1+ R)™'y = y, i.e., we would have a right inverse to (A + B).
But of course we have no reason to expect the condition ||R|| < 1 to be
satisfied very often. However, replacing A by A, := A + A, where A is
nonnegative, in the above argument, it seems plausible that the norm of
[B;(z+ X+ A)"'](z — B) ! becomes small for large A. Thus, it appears
more likely that

(3.63)  Ryi= R(AA,B):%/ [Bi(z+ A+ A) '](2— B) 'dz.

exists with norm less than 1 for large .

3.4.2 An augmented set of hypotheses H(A, B,o4,0p,1)

The above observations were first used by Da Prato and Grisvard in [10],
p. 346, where they introduced a set of sufficient conditions for the line of
reasoning sketched above to work out. We now present a somewhat simplified
version of that set of conditions:

DEFINITION 3.31. We say that A and B satisfy H(A, B,04,0p,1) if
(i) A and B are nonnegative operators with wy + wp < 7,
(ii) 04 and op are positive numbers such that

wp < op < 04 < Pa,
(iii) D(B) is stable under resolvents of A, i.e.,
(3.64) (z+4) (D(B)) € D(B),

for all z € 3,, \ {0},

and

(iv) The mapping (z,w) + [Bj;(z + A)~'](w — B)™! is continuous into
L(X), and v is a measurable function

¥ (0,00) x (0,00) — [0, 00)

such that the integral fw (|2 + A, |z|) d]|z] is convergent for all curves v =
—N 4+ 7,, where 0 < X < X and o5 < 0 < 04, and we have

(3.65) lim /w(|z+)\|,|z|)d|z| 0
A—00
v
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and
(3.66) [ [B5(z+ A7 ] (w—=B)7" || < (|2, [w])
for all z,w € C\ {0} with |arg 2| < o4 and |argw| > op.*

Note that if we fix a curve v for some A\ = )¢, then this v will do for all
A > Ao, so that (3.65) makes sense.

In the rest of this chapter we usually assume that H(A, B,04,05,1)
holds, that A > 0 and that v is of the form v =+, — X, where 0 < \' < \.

3.4.3 Some simple consequences of H(A, B,o,0p,1))

Assuming that H(A, B,o4,0p,1) holds, we have
[[B3(z+A+A) 7] (z=B)7" || < vz + Al |2]),

forally € X and all z € ((S,, — M) \ E,5,) \ {0, —A}, and, consequently, for
all z on any curve 7 = v, — A as described above. Let y € Dg(0,00), where
0 < 6 < 1. It follows by Definition 3.31 (iv) that the integral defining Ryy
converges absolutely for such 7, and (3.4.1) holds with A and R replaced by
A, and Ry, respectively, i.e.

(3.67) A+ A+ B)Syy=vy+ Ryy.

We also have the estimate

1
(3.68) IRl < o [ wllz+ N 2D el
v

Since S, is bounded by Proposition 3.7, the above argument results in the
following lemma.

LEMMA 3.32. Assume that A and B satisfy H(A, B,oa,0p,%) for some
oa,0p € (0,7m) and ¢ : (0,00) x (0,00) — [0,00), and let 0 < 6 < 1. Then
Sy maps Dp(0,00) continuously into D(A + B) = D(A) ND(B), and

for all x € Dg(0,00), where the linear operator Ry : X — X is defined by
(3.62). For x € Dp(0,00) the particular choice of vy does not influence the
value of Ryx.

As we have proved that (A + A+ B)S\u = (1 + Ry)u for u € Dg(0, ),
we could try to invert 1+ Ry to get (A + A+ B)S\(1+ Ry)~'y = y, provided
that (14 R,)™" exists and (1+ Ry)™'y € Dp(0, 00) for some § € (0,1). Now

Tt will become clear below that (3.66) does not necessarily have to be satisfied for
small |z|.
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the inverse of (1 + R)) can be constructed as a Neumann series when A is
large enough, because, as has been seen above,

1
IRl < oo [ wllz ML 2D el
v

and according to the assumption (3.65) there is some constant Ay such that
| Ry || < 5 for A > Xo. In order to make this work out in all detail we would
still need to establish that (1 + R)) 'y € Dg(f,00), for some 6 € (0, 0),
hopefully for all y € D(A+ B) = D(A) N D(B); only then can we apply
formula (3.69). This would be a major restriction to the usefulness of the
method.

At this point we may, nevertheless, draw the following conclusion from
the previous lemma.

COROLLARY 3.33. Assume that A and B satisfy H(A, B,oa,0p,%) for
some 1, and that B is densely defined in X. Then there is some Ay > 0 such
that the range of A+ A+ B is dense in X for all A > ).

Proof. By Lemma 3.32
(3.70) R(\+ A+ B) D (1+ R))(Dy(f,00)) D (1+ Ry\)(D(B)),

and thus, since 1+ R, is bounded and bijective for A large enough, the range
R(A+ A+ B) is dense in X for A large enough, provided that D(B) is dense
in X.5 0

3.4.4 Inverting \+ A+ B,

We shall avoid the above described difficulty in inverting A+ L = A+ A+ B
directly by means of a procedure where the operator B is replaced by its
Yosida approximations B, := nB(n + B)~' (n=1,2,...). We thus consider
the operators L, := A + B, defined on D(L,) = D(A) N D(B,) = D(A).
We intend to apply Corollary 1.7 to the sequence {L,} - ,. By Lemma 3.33
the hypothesis (ii) of that corollary is satisfied, i.e. R(A+ L) is dense in
X, as soon as B is densely defined. Furthermore, we know that if B is
densely defined, then {B,z} ~ is convergent exactly when x € D(B), and
then lim,,_,,, B,x = Bz. Consequently, Az + B,x converges precisely when
z € D(L) = D(A) N D(B), and the limit is Az + Bz (see Proposition 2.6).
Thus, we have

(3.71) L= lim L,

n—oe

in the sense of Definition 1.5.

When L : X — X is bounded and bijective, ¥ C X is dense in X, z € X
and € > 0 we can take y € Y such that || L‘lx—yH < ¢/||L||. Then ||z — Ly|| <
|LI[| 7'z —y|| < e. Assuch ay € Y can be found for any z € X and € > 0 we

conclude that L(Y") is dense in X.
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It remains to show that (i) of the corollary in question is satisfied, i.e.
that there are constants N > 1 and \¢ > 0 satisfying p(—L,,) 2 (A, 00) and

N
—1
SRR

for all A > \g and n = 1,2,.... This is the object of this subsection. The
idea is to apply the method suggested in Subsection 3.4.3 to A + A + B,,.
This will be possible since D(B,,) = X.

First we show that A and B, satisfy H(A, B,, 04,05, 1/3) for some 1) and
alln e N.

In Section 2.2 it was shown that the B, are uniformly nonnegative: for
all ¢ with 0 < ¢ < m — wp there is a MB(¢) > 0 such that

M
I+B.)) < 222
2|
for all z with |arg z| < ¢ andn = 1,2,.... From this it follows that ws+wp, <

m,and wp, < op < o4 < da.

The inclusion (z+A) 1 (D(B,)) C D(B,) is trivially satisfied, as D(B,,) =
X.

In order to show that (iv) of Definition 3.31 holds with B replaced by B,
and ¢ replaced by some 1), we assume that larg z| < o4 and |argu| > op.
We observe that B, = (—n* + n(n+ B))(n+ B)™' =n —n?*(n+ B)~'. We
also have the identities [z + P;Q] = [P;Q] and, if P is invertible (i.e.
injective), [P;Q]z = P[Q;P '] Pz, for all z € D(PQ) N D(P'QP).
Hence,

[Bs(z+A)'] =—n?[(n+B) 5(z+A4)7"]
= —n*(n+B) ' [(z+A)";B](n+B)™",

where we have used the fact that D((n+ B)(z + A)"'(n+ B)™!) = X by
(3.64). By the definition of B,, we also have (u— B,)(n+ B) = nu+(u—n)B,

so that

(n+B)~ (u— By~ = — (”“ +B>1.

U—n\u—n

Moreover,

{ nu +B}_1:(u—B)1(u—B)< nu +B>_1

u—n u—n

2 -1
:_(U_B)l{l— “ ( o +B> }
u—mn \u—n
Combining these equalities, we obtain

(3.72)
[Bus(z+A4) 7 ] (u=By)™" =

2

(n+B) ' [B;(z+A) "] (u—B)""

u? nu !
K1 - + B .
u—n\u—n
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At this point we note that either arg(u — n) > argnu = argu > 0 or
arg(u —n) < argnu = argu < 0, so that

larg(nu/(u — n))| = [arg(u — n)| — |arg ul
< — |argu|
<mT—o0p.
Therefore,
| [Bns(z4+4)7" 2|
n2 NB
lu—mn| n

< n+ |u| M3 (7

Jul

w<|z|,|u|){1+| M |argu|>'“‘”'}

<
- n [ul

gD ] Jul)

[n = ul
< NpMp(r — op)e(|zl, u]).

Hence, we can take @/A) = NBMB(TF — o)1, and conclude that
(3.73) | [Bns(z4+A) 1 (u—By) || < &2, ul)

for all z,u € C\ {0} with |argz| < 04 and |argu| > o and n = 1,2,...
(For the definition of M, see formula (2.19)). Thus, we have the following
lemma.

LEMMA 3.34. If H(A, B,oa,05,1) holds, then H(A, By, 04,05,1) holds
form=1,2,..., where 1) := NgMp(m — op).

We can now prove that A € p(—(A + B,)) for large n € N, and, in fact,
that the sequence L, := A + B, satisfies condition (i) of Corollary 1.7.

LEMMA 3.35. Let A and B satisfy H(A, B,o4,0p,%), and let L, == A+
B, = A+ nB(n+ B)~"'. Then there is a constant A\g > 0 and a constant
N > 0 depending only on Ny, A and B such that (A\g,00) C p(—L,), and

(3.74) | A+ L)™' < %

for all X > \g andn=1,2,...
Proof. Assume that H(A, B,04,0p,) holds. By Lemma 3.34 there is some
¢ such that H(A, B,o4,0p, 1/)) holds for all n € N. Let us define

1
Sox = Sa(A, By) = 2m/(z+)\+A)( _ By,

v

and

R, = R\(A, B,) /[Bn, (z4+ A+ A)7' (2 - B,) "dz,

27m

89



for A > 0 We then have
(3.75) (A + Ln)Sm,\ =(1+ Rn,A)

for all A > 0 and n € N, by Lemma 3.32. Here we have used the fact that
D(B,) = X.
By (2.18) and Proposition 3.7 there is a constant m > 0, with

(3.76) I Saall < 5
for all A > 0 and all n € N. Since A and B, satisfy H (A, B,O’A,O'B,’lj}) for
all n, Lemma 3.34 shows that there is some g such that || R, || < 3 for all
A > Ao, n=1,2,... This implies that (1+ R,)"" is defined on the whole of
X, and

[ (14 Rop) ™' <2

for A > Ap, n € N. It follows that

(3.77) A+ L) ' =Sua(1+ R0
and 5
[+ L)™' < =2
)\
for all A > )y and all n € N. O

3.4.5 Inverting \+ A+ B

We have already verified the conditions of Corollary 1.7 for the operators
L, = A+ B, and L = A+ B, where H(A, B,04,05,%) holds for some
and B is densely defined. Hence, there is some constant A\g > 0 such that

(Ao, 00) € p(—L), R(A+ L) is dense in X and

lim( A+ L,) 'v=(\+ L) '

n—oo

for any A > )¢ and any x € X. Moreover, if A is also densely defined in
X, then Definition 3.31 (iii) and Lemma 2.8 show that L is densely defined
so that L = A + B becomes closable, i.e. L = A+ B is a (closed) linear
operator. We shall now show that, for large A,

()\ —+ Z)*lx = S)\(l + R)\)ilf,E

for any x € X. We begin by proving a simple result on the convergence of
the operator sequences S, y and R, ).

LEMMA 3.36. Let A and B be nonnegative operators with ws + wp <
m, then S, — S\ in operator norm as n — oo. If A and B satisfy
H(A, B,04,0p,1), then R, x — Ry strongly on X as n — oo.
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Proof. We have

Spal — Sz = 2_—1 /(z +A+A)7 ((z=B,) 'z — (2 — B)"'2) dz,

7”’7

and thus

1
18 =Silli= 5 [ G+A+A =B = (= B dl,
v

The integrand is bounded by an integrable function for all n since

[ (z+A+A)7 | < Mi(0)/ [z + A,
[ (z=B)7"|| < Mi(r —0)/ |2

and
| (z = Ba) ™" || < Mp(r —0)/ ||
on 7, where Mp does not depend on n. Moreover the integrand tends to 0 as
n — oo, since || (z — B,)™" — (z — B)™'|| = 0 as n — oc by Proposition 2.6
and Lemma 1.6. Hence, by the Dominated Convergence Theorem,
Turning now to R,y — R, we have

—1
Ryt — Ryz = 2—2/( [Bn;(z+ A+ A)7' (2= By) 'z
m
0

— [B;(z4+ A+ A) "] (z— B) ') d-.
Here X
| [Bns (z+ A+ A)7" ] (z = Ba) 7" || <4b(|2 + Al |2,

forn=1,2,..., and
[ [Bs5(z+A+4) "] (z=B) ' < vz + Al |2)),

so that the integrand is bounded above by 1(|z + A|, |z))z +¢(|z + A|, |2])z,
which is absolutely integrable over  (chosen to be of the form v = ~, — X,
where 0 < \' < )\, as before).

The integrand in the above expression for R, y» — R)x also satisfies

[Bo;(z4+A+A) ' (z—B,) 'y~ [B;(z+A+A4) '] (z—-B) 1y
=[B,—B;(z+A+A4) '] (z-B) 'y
+ [Bos(z+ A+ A4)7] ((z_Bn)ily_ (Z_B)ily)-
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Let us show that both terms of the right hand member tend to 0 as n — oc.
First note that
| [Bn—Bs(u+A) " z|| < || (Ba—B)(u+A) "z
|| (u+ A7 (Ba = Bz ||

for all u € £, and all x € D(B), so that [B, — B;(u+ A)~" ]z — 0 for all
x € D(B) as n — oo. Hence,

[B,— B;(z+A+A4) '] (z=B) 'z =0

for all z € X as n — oo whenever z is on 7.
Since (z — B,) 'y — (2 — B)™' = (2 — B,) (B, — B)(z — B)™!, we also
have
H [Bn;(z+ A+ A)1] ((z —By) ty— (2 — B)*ly) H
[Bui(z+ A+ A) "]z = Bo) || [ (Ba = B)(z = B) 'y |
b2+ Al [20) || (Ba = B)(z = B) 'y |

<
<

for n = 1,2,..., where we have applied Lemma 3.34 to obtain the last in-
equality. As B,z — Bz for all z € D(B) and (z — B)™'y € D(B), it follows
that

[Bn;(z+ A+ A)1] ((z —By) 1ty — (2 — B)*ly) —0
for all y € X as n — co. Summing this up, we have
[Bo;(z4+ A+ A7 (z—B) 'y~ [B;(z4+A+A4)7"'(z-B)™" =0

as n — oo. Consequently, we can again apply the Dominated Convergence
Theorem to conclude that

(3.79) lim R, v = Ryx

n—o0
for all x € X. O
We are now ready to prove one of the main results of this section.

THEOREM 3.37. Assume that A and B satisfy H(A, B,o04,0p,1) and that
B is densely defined in X. Then there exists some Ao > 0 such that we have
p(A+ B) D (A, 0) and

A+A+B) '=50+R)"  (A>)).
If A, too, is densely defined, then A+ B is closable. Finally if || (A + A)7']| <

$ and || (A4 B)"'|| < £ for all A > 0, then the above statements hold with
)\0 = 0
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Proof. We assume that A and B satisfy H(A, B,oa,0p,1) and that B is
densely defined. We put L := A+ B, B, :==nB(n+ B)™}, L, := A+ B,,
Sna = S\(4, B,) and R, ) := R\(A, B,), as before, and choose \; so large
that || R,n || <3 (n=1,2,...) and || R\ || < i for all A > \g. We have seen
above that

A+L)'z= 731)120()\ + L,) '

for all z € X and all A > A\g. By (3.77), we also have
A+ Ly) ' =Sun(1+Ryp) !

for all n € N and all A > Ag.
We must show that (A + L,,) 'z = S, x(1+ R,,\) 'z converges to Sy(1+
Ry) 'z for any x € X as n — oo. Let us write

Sn)\(l + Rm)\)_l:E — S,\(l + R,\)_liE :Sn’,\ ((1 + Rn,,\)_lzv — (1 + R,\)_ILE)
+ (Sn)\ — S,\) (1 + R,\)ilm.

The estimate (3.76) shows that S, is uniformly bounded. We have also
proved that S, » — S\ (even in operator norm) as n — oo (see Lemma 3.36).
Hence, it suffices to prove that (1+ R, )" — (1+R))~" strongly as n — oc.
But, by Lemma 3.36, R, x — I, strongly as n — oo, so that the result follows
by Lemma 1.6. Summing this up, we have proved that S, x(1+ R,,) 'y —
Sy(14+ Ry\)"ly=(A+ L)'y as n — oo, for all y € X and all A > \,.

If A is densely defined, then, by Lemma 2.8, D(L) = D(A) N D(B) is
dense in X and L is closable as noted above.

Let us now assume that || (A +A4) '] < § and || (A+ B) | < 5 for all
A > 0. Then

AL, =A+n+A)—(n—B,)
=(A+n+A) —n*(n—B)!
={1-n*(n+B)"' A +n+A)"" I\ +n+A).

Since

HnQ(n+B)_1()\+n+A)_1 H §n2H (n+B)™! H H(A%—n+A)_1 H
o1 1 n

< n— =
— nd+n  A+n

<1,

we get the inverse
(A + Ln)*1 =AN+n+ A)*l{l — n2(n + B)*l()\ +n+ A)*l}*1
Its norm can be estimated as follows

[+ L) < [[A+n+ )T H{T = n*(n+ B) (A +n+A)7
1 1 1

< e =3
A+n 1 in A

We can thus take N =1 in Corollary 1.7 and consequently \q = 0. 0
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REMARK 3.38. It should be stressed that A + B, and hence also A+ A + B,
are graphs, but need not be functions; they are functions precisely when
A + B is closable. Thus, Theorem 3.37 implies that for y € X we have
(z,y) € A+ A+ B if an only if z = S\(1 + Ry) 'y, provided that ) is
sufficiently large. In particular, if y € R(A+ A + B), which is dense in X,
then x = S\(1+ Ry) ™'y is the unique solution to the equation \z+ Ax+ Bz =
y for sufficiently large \.

3.4.6 The continuity of S,

Let us prove the analogue of Theorem 3.21 for the non—commutative case.

THEOREM 3.39. Assume that H(A, B,oa,0p,1) holds. Then the linear
operator Sy maps X continuously into D 4(0,p) N Dp(0,p) for any 6 € (0,1)
and 1 < p < 0o. Moreover, we have the estimates

(3.80) 1Sz ||y <moA™" ||z ||y,

(3.81) [Saa)p, 0 <A 2]l
and

(3.82) [S32]p, 00 < ma(N) (2]

where mo and my are as in Theorem 3.21, and mh(\) — 0 as X — oo.

Proof. Formula(3.80) has been stated and proved before, and has only been
included here for completeness. Let us estimate [ Siz ], (5, and [Sx2]p, g ,)-

In the integral defining S, we carry out the substitution ¢ := 2z + A and
obtain

S\r = 2_712,/((4—/4)1(( —A—B) 'zdC¢
v

As path of integration we may take v = fy;f’r, where wp < 0 < ¢4 and r is
chosen so small that 0 < r < X\ and argz < o on v (see Section 3.1.5). Then
the integral converges absolutely, and, since the linear operator (¢ + A)~' :
X — X is bounded, we have

(t+ A) 28 = 2_—732 /(t YA YC+ A) Y- A — B) wdc.
v

By the resolvent identity
(A7 AT = T ()T =+ A,

Let 0 <7 < min(A,t). It follows that

1 _ _
/a(t%—A) "¢C=A=B)'zd¢ =0,

v
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since the integrand is bounded of order at most |z|_2 at infinity and analytic
in a domain containing v and the region to the left of v, so that the inte-
gration can be performed on along a circular path with centre at the origin.
Consequently,

(t+A)" 'Sy = 2_—732 / ﬁ(c + A= A=B)'zdc.

Using the identity A(t + A)~' =1 —#(t + A)~!, we hence get

-1 ¢
27 t—¢
gl

A+ A 'Sao=— [ ——(C+A)(C-A-B)'zd(.

On the circular part of v}, we have ( = re'” (-0 < 7 < 0), so that

S(o) My (m — o)
- |re” t] |reim — A

H—<+A) ¢ A B) xch 2.

which clearly remains bounded as 7 — 0. Hence, the path of integration ~,
may be deformed into 7, without changing the value of the integral, and

—1
At + A)_IS)\ZE = - / L(C + A)_I(C —A— B)_ll‘ dc.
2n1 ) t—C
Yo
On 7, we have ¢ = e, so that

dr
— t| [refr — )|

e sl < el [
0

o
I ”/ 5 1 ds
=cllx . . —
[tseic — 1] |sei® — \| s’
0

where ¢ := M3 (0)Mj(r — o)/x. Taking f(t) = t|te’” — 17" and g(t) :=
lte’” — A\|" in Corollary A.18, we deduce that

tl—ﬂ tﬂ
S < . .
[ )\:E]DA(G,])) — C terLo— _ 1 Li tezg— _ )\ Lg || :E ||
But ; ;
! el [
tel? — \ LP teto — 1 LP ’
and thus we have [Syz]p,, 5 < ma A~ || 2|, where
1 tl*ﬂ t9
my :—MA( VM (7 — o) 4 4 .
te'” — 1|1 || te"” — 1 |[zp
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Since B(t + B)™' : X — X is bounded for ¢ > 0 we also have

-1
Bt + B) Sy = %/B(t +B) e+ A+ A) Mz = B) ladz
Y

=5 (z+A+A)"'B(t+B) (2= B) 'zdz
i

Y
-1
+ 2—/ [B(t+B) ';5(z+A+A) ] (2 - B) 24z
i
gl
In the proof of Theorem 3.21 it was shown that

/(z +A+A)'B(t+B) (z— B) 'zdz

<c| ||/ s 1 ds
cllx 4 . —
- |seie + 1] [tsei@ + A s’
0

with ¢ as above, and, from this, that

I 2—2,/(2+)\+A)1B(§+B)1(z—B)1xdz
7

gl x e
<mA 2]

where
tl*ﬂ t9

teio + 1

1
my = ;MZ(O‘)ME(TF —0) ‘

te's + 1 Il 54

Using the identity B(t + B)™' =1 —t(t + B)~' we deduce
[B(t+B) '5(z+ A+ A) ']

=—t[(t+B) " 5(z+A+4)7"]
—t(t+B) ' [t+B;(z+ A+ A7 (t+B)™!
=t(t+B) '[B;(z+A+A) "] (t+B),

and, consequently,

(3.83) [B(t+B) '5(z+A+A4) '] (z—B)™*

' =t(t+B) ' [B;(z+A+A)7"](z—=B)"'(t+B)"".

Therefore,

/ [B(t+B)';(z+A+A4)"](z—B) 'zdz

v

N2
<ZElal [ wllz+ M, 12D el
v
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On the other hand, since || B(t + B)™' || < 1+ Np, we have
| B(t+ B)'Shz|| < (14 Np)meA ™' ||z |,

where my is given by formula (3.54). It follows that

- M (o) My (r — o) [ s 1 ds
1 A B

|‘B(t+B) S)\:EH S T Hx”/|sei”—i—l||t86”+)\|?
0

4 min{ NpmoA ", N3¢ /¢(|z AL DAY 2.
Y

We then multiply by #?, replace the min by the first term for 0 < ¢ < 1 and
by the second for 1 < ¢, and take the LP-norm of both members. This results
in the estimate

(3.84) [S3&]pp00 < ma(N) (2],
where
mh(A) := maA?™!

(3.85) + (p0) rmoNpA 1 (p(1 — 0))—%N§/w(|z + Al lz]) d 2|

for0<f<1and 1<p<oo,and

(3.86)  ml(\) = moA?"! 4 moNA~! 4 N2 / o2+ N, |2 d 2]

v

if 0 <6 <1 and p=oo. Here my and my are as in Theorem 3.21. Finally,
we let A — oo to obtain m(A\) — 0. O

3.4.7 A maximal regularity result

We close this section with a result on the maximal regularity of the equation
Ar + Az + Bz = y, where A and B satisfy H (A, B,o4,05,1). But let us
first prove the following lemma.

LEMMA 3.40. Assume that H(A, B,oa,0p,1) holds, and let (6, p) € (0,1) x
[1,00]. Then AS) maps Dg(0,p) continuously into itself. If we also have
R\(Dg(0,p)) C Dp(0,p) then BS\(Dp(0,p)) C Dg(0,p). If, in addition, R,
maps Dp(0,p) continuously into itself, then so does BS).

Proof. Let x € Dg(0,p). According to formula (3.59) we have

(3.87) ASyx =x — A\S)x + Uyz,
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where

1
(3.88) Ux = 5 /(z +A+A)'B(z - B) 'xdz.
i
bl
By the previous lemma, S\ maps Dp(f,p) continuously into itself. Now

B(t+ B)™' : X — X is bounded and the integral that defines U, is
absolutely convergent. Hence, we get

~1
B(t+ B) 'Uyz = 5 B(t+B) Y(z4+ X+ A)"'B(z — B) 'z da.
v

In the proof of Theorem 3.39 it was shown that
[Bt+B)'5(z+ A+ A)7"] =tt+B) ' [B;(z+ 2+ 47" (t+B)"".
Consequently,

B(t+B)'(z+ A+ A)'B(z—B) 'z
= [Bt+B) 5z + X+ A4)7"B(z-B)'x
+(z+A+A)'B(t+B) 'B(z— B) 'z
=t(t+B) ' [B;(z+ A+ A7 '|t+B)'Bz—-B) '
+(2+A+A)'B(t+B) 'B(z— B) 'z

By Lemma 3.16,

- (z4+ A+ A)7'B(t+ B)"'B(z — B) 'zdz
i
v

-1

2 2+t
¥

(z+ A+ A)'B(z— B) 'zdz.

It can be seen from the proof of Theorem 3.23 that

2 /(z A+ A) 'B(t+B) 'B(z— B) 'zds|| € I
Y
and
-1
105 [ 2% 4) B+ B) Bl - B) M dz x|
Y

< c(Ax B)[2]p, 0,

Concerning the expression ¢(t+B)~' [ B (2+A+A) ™' ] (:—B)"'B(t+B) =,
observe that

|t(t+B) " [Bs(z+A+A) '](—B) 'B(t+B) 'z||
< Nptb(lz + AL |2) | Bt +B) = ||
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Hence,

I /t(t Y B [Bi(z 4+ A+ A (2= B)"'B(t+ B) 'z dz ||

< Nal| Bt + B o | [ llz+ . 2] dz
v

and
I t‘9|| /t(t+ B)*1 [Bs(z+ A +A)*1] (z — B)*lB(t—l— B)*lx dz || x ||L€
v

< Na[2lnyap [ 02+ |2 d2

Yo

Summarising, we have shown that
B(t + B)ilU)\.’L'

-1
-2 /t(t By [Bi(2+ A+ A)'] (2 = B)'B(t+ B) "z d=
VIV
Y
-1
211 z+1
Y

(z4+ A+ A) 'B(z — B) 'adz,

and there is a constant

N
c:=c1(Ay, B) + 2—71:/@/}(|z + Al |z]) dz
b

such that

(3.89) [U)\I]DB(H,;D) =c [x]DB(G,p)

for any = € Dg(0, p).

By the proof of Theorem 3.23, we have || Uz || < A7 ||« 550, Where
¢, does not depend on y. Thus, we have, in fact, shown that Uy maps Dg(0, p)
continuously into itself. By (3.59), AS\ = y — ASyy — U,y. It follows that
AS) maps Dg(f,p) continuously into itself.

Let us now assume that Ry(Dp(0,p)) C Dp(f,p). By (3.4.1)

BS)\:E = U)\l‘ + R,\LE,

so that BS\((Dg(0,p)) € Dp(6,p). Moreover, if Ry maps Dg(f,p) continu-
ously into itself, then so does BS, = U, + R). O

In the following theorem we strengthen the inequality (3.66) of the hy-
pothesis H in order to satisfy all the assumptions of the previous lemma, for
sufficiently large A.
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THEOREM 3.41. Let A and B be nonnegative operators in a complexr Banach
space X. Assume that H(A, B,o4,05,%) holds, B is densely defined in X,
[B;(z+A) '] (w—B) '€ L(Dg(0,p)) and that

(3.90)  [[[Bi(z+ 471w =B)" | yopiom < YUl f)

for all z,w € C\ {0} such that |arg z| < o4 and op < |argw|, where (0,p) €
(0,1)x[1,00]. Then there is a \g > 0 such that the problem A\z+Ax+Bx =y
has a unique solution x = S\(1 + Ry) 'y € D(A) N D(B) for any y €
Dy(0,p) and any A > \g. The mappings Sx(1 + Ry)~, AS\(1+ Ry)™! and
BS\(1+ Ry)™!, are continuous from Dg(0,p) into itself.

Proof. By Lemma 3.32, we have (A + A+ B)S)z = (1+ Ry)z for all z €
Dgp(0,p). Assume now that y € Dg(#, p). We then have

| "Bt + B)™'Ryy||

:iw / B(t+B) ' [B;(z 4+ A+ A) '] (2 — B) 'y dz

Y

g/Ht”B<t+B)‘1 [Bi(z+A+A)" (= B) 'y dl2].

If p = oo, we immediately infer that

1
[ Rt onasr < e 19 ooy [ 9012+ AL D

since in this case

[#’B(t+B) "' [B;(z+A+A)"'1(z—B)'y||
<[[Bs(z+A+A)7 (2= B) " 'Ylp,0.00
<Oz + AL 1D Y o, 0,00 -

If 1 < p < o0, using Fubini’s Theorem, we deduce the same inequality, i.e.

1
[ Rt T < 5 19 loa | 002+ A D el
v

Hence, there is some constant K such that

(3.91) | B lleopony < K / Bz 4 AL =) d2].

By assumption, the expression to the right tends to zero as A — oo, so that
| B[l £(py 0,00 < 1 for all A larger than some Ag > 0.

Consequently, Ry maps Dg(f,p) continuously into itself, and there is
some A\g > 0 such that 1+ Ry : Dg(0,p) — Dp(6,p) is invertible, by means
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of a Neumann series, as soon as A > \g. Hence, we have (A + A+ B)Sy(1 +
Ry) 'y =y, by Lemma 3.32, i.e., S)(1+ Ry) 'y is a solution to the equation
Ax+ Az+ Bx = y. Choosing )\ sufficiently large, we can apply Theorem 3.37
to get uniqueness.

We also see that (14 Ry)~"' maps Dp(#, p) continuously onto itself for A >
Ao, 50 that, by Lemma 3.40, Sy(1+ R,)™", AS\(1+R,)™", and BS\(1+R))™!
are continuous from Dg(f, p) into itself. O

3.4.8 Resolvent commuting operators with perturbation

Let us apply the theory developed above to equations of the form
A + Az + CBzx =y,

where A and C'B are nonnegative, wy + wep < m, and B commutes with
resolvents of A. The operator C' can be thought of as a perturbation. This
idea will be pursued further in Section 4.3, where the following theorem will
be applied in combination with Lemma 2.26.

THEOREM 3.42. Let A, B and C be linear operators in a complexr Banach
space X, and let (0,p) € (0,1) x [1,00]. Assume that the following conditions
are satisfied:
(i) A and CB are nonnegative and wa + wep < 7.
(ii) C bounded and injective with bounded inverse, and D(C) O R(B).
(iii) B is densely defined in X .
(iv) B commutes with resolvents of A on D(B).
(v) There is a number o4 with wep < 04 < ¢a, as well as constants K, R, § >
s

0 such that [C5(z+ A)~']C~' € L(Dep(0,p)) and
H [C; (Z + A)il ] c! ||£(D0B(9’P)) < K|Z|7175

for all z with |arg z| < o4 and |z| > R.

Then there is a A\g > 0 such that the problem Az + Az + CBx = y has a
unique solution © = S\(A,CB)(1+ Ry(A,CB)) 'y € D(A) ND(B) for any
y € Dg(0,p) and any X > \g. Moreover, we have

|2 lps@p + 1| A2 |ps@s) + | B2 llpse.) < My lpse.n
for some positive constant M that only depends on A\, A and B.
Proof. Assumption (ii) implies that

D(CB) = D(B)
| Bz| <[ C7|[|CBz||

and

1CBz || < | B
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so that D(C'B) and D(B) are equal with equivalent graph norms. Hence,
Dcp(0,p) = Dy(0, p) with equivalent norms.
From (iv) it follows that D(C'B) = D(B) is stable under resolvents of A.
Let us fix some ocp with
wep < 0cp < 04 < Pa.

Thanks to Theorem 3.41 it suffices to show that there is some measurable 1)
such that (3.65) holds, the mapping (z,w) — [CBj;(z+ A) '] (w—CB)™!
is continuous into £(X) and

[ [CBs(z+A) 7 1w —=CB) | yip, 0 < Y21 w])

for all z,w € C\ {0} such that |arg z| < 04 and |argw| > o¢p with |z| large
enough.
First we note that, since B commutes with resolvents of A,

[CB;(z4+A)'](w—CB)™' = [C;(24+ A" B(w—-CB)™!
= [Ci(z+ A" C'CB(w—CB)™.
This defines a continuous function from {(z,w) € C x C | |argz| < ¢a A
larg w| > wep} into L(X).
Let us show that for any w with wep < |argw| < 7, we have CB(w —
CB) ' € L(Dcr(6,p)) and
| CB(w = CB) ™ lletponom < 1+ Men(r — argw)
In fact, if € Dep(d, p), then
|CB(t+CB) 'CB(w—CB) 'z|x
= |CB(w—CB)™'CB(t+CB) 'z ||x
< (14 Meg(m — argw))||CB(t + CB) 'z || x,
and hence
[CB(w - CB)ilx]'DOB(Q,p) < (L4 Mep(m — arg w))[x]ch(G,p)'
Using the assumption of the theorem, we deduce that there is a constant

c=K(1+ Mcp(m — ocg)) such that

H [CB;(z + A)_l] (w — C’B)_1 HL(DB(H < c|z|_1_‘5

P))
whenever |arg z| < o4, m > |argw| > o¢p and |z| > R. Clearly ¢(x,y) :=
cx~ 19 satisfies (3.65). In fact, if oo < 0 < 04 and R/ sin(min {0, 7/2}) <

Ao < A, then
T dt
A" 0d|z] = 2/ :
/ 2+ AT dlz] 16 + A — Agi+0
0

—Xo +Yo

L2 7 dt
— ()\ _ )\0)5 |te’i0' _|_ 1|1+5’
0

which tends to 0 as A — oo. O
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4 Fractional evolution equations
in Holder spaces

In this chapter we apply the theory on abstract operator equations developed
in the previous chapter to fractional evolution equations of the form

Du(t,z) 4 b(t, x) DPu(t, 2) = f(t, z)

in the space Cy,g0(Q; E) of all continuous functions f : [0,7] x [0,£] — C
such that f(0,2) = f(¢,0) = 0 for all ¢ € [0,7] and all z € [0,£]. The
partial differential operators D¢ and D? will be of fractional orders o and 3,
respectively, where 0 < o, 5 < 1, and a + § < 2.

In the first section we study differential and fractional differential opera-
tors D in spaces of the form Coo([0,7]; E) := {f € C([0,T];X) | f(0) =
0}, as well as the relationship between these operators and the subspaces
Cs,o([0,T]; E) of the Hélder spaces C*([0,T]; E).

In the second section we prove some results on the existence and max-
imal regularity of solutions to a fractional evolution equation of the form
Dgu(t,x) + DBu(t,z) = f(t,z) in Caooo(Q; E). The technique that we use
is to consider the equation as an equation in Co0([0, &]; Coso([0, 7] ; E))) and
apply the method of sums to the new equation.

In the last section we consider the equation Du(t, x)+b(t, x)Dyu(t, x) =
f(t, z), which involves two operators that do not commute. By imposing some
rather severe restrictions on the function b, we obtain existence, uniqueness
and maximal regularity of solutions to this equation.

4.1 Holder spaces, interpolation and fractional
derivatives

This section is devoted to the differential operator D (see Definition 4.2) and
its fractional powers D in Cy,o([0,T]; X). in particular, we investigate the
relationship between the interpolation spaces Dpe(f, 00) and Holder spaces.

We start by defining the Holder spaces C*([0,7]; E), the little Holder
spaces h*([0,T]; F), and their subspaces C§,([0,T]; F) and h§_,,([0,7]; E).
We then show that the differential operator D in Cyo([0,T]; F) is positive
and densely defined, and that if « ¢ Nand o < n € N, then C§., ([0, T]; E) =
Do (a/n,00) and h§_,,([0,7]; E) = Dpr(a/n), where Dpn (6, 00) and Dp(0)
are real interpolation spaces between Cy,0([0,7]; E) and C{,([0,T]; E).

In the last subsection we define fractional derivatives, and show that the
fractional differential operator of order o € (0, 1) in Cys0([0, T]; E) is, in fact,
D®. Hence, we may apply general results on fractional powers to fractional
derivatives.
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4.1.1 Spaces of Hélder and little Holder continuous
functions

Let © be a set and let E be a normed vector space. By B(Q; F) we denote
the vector space of all bounded functions f : 2 — FE. We can define a
norm on B(; E) by

| f ||B(Q;E) i=sup || f(2) ]|, -
1eQ

We shall also use || f ||, to denote this norm when it is clear from the context
what Q and F are. If F is a complex Banach space, then so is B(Q; E).

From now on we let I = [a,b] C R be a bounded and closed interval
and E a complex Banach space. Then C(I; E) is the space consisting of
all continuous functions f : I — FE, where continuity at the end points a
and b means right and left continuity respectively. For t € I, we define the
derivative of f at t by

F() = Tim (7 4+ B) — F(1),

whenever the limit exists in F, in which case f is said to be differentiable at
t.

If f'(t) exists for any ¢ € I, then the derivative f'(t) of f defines a
function f': I — E. We define the spaces C"(I; F) of n times continuously
differentiable functions by

C/(I E) :=C(I; )
CYI;E) :={f €C(I;E) | f'(t) exists for all t € [ and f' € C(I; E)}
C'I;E):={feC(L;B)| feCc"(I,E)} (n=2,3,...).

—
wn

Then C"(I; E), provided with the norm || f|lonir = ing || f@ [, i
a complex Banach space for any integer n. We also define C*(I; F) :=
N2, C"(I; E). One can show that C*(I; E) is dense in C"(I; E) for n =
0,1,...

Let 0 < o < 1 and let I be a closed and bounded interval as above. The
Hélder space C*(I; E) is defined by

(I E) = {f € C(I; B) | [ 1, < oo}

where [ ], is given by

[f1o=[fleaqrpy = sup 7(s) = 71¢) ”E.

s,tel |3 - t|a
s#t

We also put

[ lla =11 flleaimy = 1| Flloo + [ f]a-
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Then [ ], is a seminorm and || ||, is a norm on C*(I; E).
We can also define C*([; E) for arbitrary o > 0 in the following way: If
0<a<1andneN, we put

C'(I;E) == {f e CL;E) | [ f™ lea(r,my < 00}

and

|| f ||C”+°‘(];E) = || f ||C”(I;E) + H f(TL) HC“(];E) .
The little Holder spaces h*(I; E) are defined by

1f(8) = /(s) II}

h(I; E) :={f €C*; E)| lim su
asy= (g certs) iy e LE0S
t,s€

(I E) = {f € C"(I;E) | f™ € h*(I; E)}.

for0 < a<landn=1,2,... As a norm in h*(I; E) we take the norm of
CM(; E).

Let us now introduce spaces of Hdélder continuous and spaces of little
Holder continuous functions f : I — E with initial value zero.

DEFINITION 4.1. Assume that n € N, a € [0,1) and I = [0,T], where
T > 0. We then set

Cots (I E) = {f € C™(LLE) | £(0) = £/(0) = ... = f*)(0) = 0},
Coso(I; E) := C(?»—)O(I; E),

and, if a € (0,1),

hoto(I E) = {f € """ (I, E) | £(0) = f/(0) =...= f™(0) = 0}.

Obviously, the spaces Cyt5(I; E) and h{’5(I; E) are closed subspaces of
the spaces C"t*(I; E) and h"*%(I; E), respectively.

We also set C32,(1: E) := ()~ Ctyo(I; E) . One can show that Cg,((I; E)
is dense in CJ,((I; F) forn =0,1,....

When £ =R or F = C, we omit R’ and ‘;C from the notation, and
simply write C(I), Coso(I), C§o(I), etc.

Corollary 4.5 below states that if 0 < @ < 6§ < 1 and n is a nonnegative
integer, then h3"%(I; F) is the closure of C34(I; E) in C40(I; E). With the
same assumptions on «, 6 and n it can also be shown that h"**(I; E) is the
closure of C"*Y(I; E) in C*(I; E) (see [9]).

It is a well-known fact that the Holder spaces and the little Holder
spaces are complex Banach spaces. Since the spaces CJ5([0,7]; E) and
hgt8([0,T]; E) are closed subspaces of the corresponding Hélder spaces and
little Holder spaces, respectively, they are complex Banach spaces, a result
that we also obtain in Corollary 4.6.
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4.1.2 The differential operator D in Cy ,((/; E)

We have already defined the concept of derivative for functions in C([0, 7] ; E).
Let us now define the linear operator that produces the derivative of a
function in Cy0([0,7]; E), provided that this derivative also belongs to
Coso([0,T]; E).

DEFINITION 4.2. Let I = [0,7], where T > 0. We define the differential
operator D in Cy0(/; E) as follows:

D(D) := Cy(1; E)
Df:=f  (feD(D))
We immediately see that the norm of C}_,,(I; E) is the graph norm asso-

ciated with D.
Let us state and prove some simple, but fundamental, properties of D.

PROPOSITION 4.3. Let D be the differential operator in Co0([0,T]; E) de-
fined above. Then D is densely defined and positive with spectral angle /2.
Moreover, p(D) = C, and

(@) (D)) = [ (e dr

for any f € Coso([0,T]; E), any t € [0,T], and any A € C.

Proof. We have noted above that C§°,,(/; E) is dense in Cy([; E), so that
D is densely defined.

Next, we show that p(D) = C. In fact, if f € Coyo([; F) and g €
Coo(I; E), then (A + D)g = f if and only if AeMg(t) + eMg'(t) = e M f(t)
for all ¢t € [0,7]. But, since the left hand member is the derivative of
eMg(t), and g(0)=0 by assumption, the Fundamental Theorem of Calcu-
lus (see Subsection A.1.6) shows that the last equality holds precisely when

eMg(t) = f e f(7) dr, i.e., if and only if
g(t) = / e N f(ydr (0<t<T).
0

Moreover, if ¢ is defined in this manner, then it is continuously differentiable,
and ¢(0) = ¢’(0) =0, i.e. g € C}_o(I; E), so that A € p(— D) and (4.1) holds
for any f € Coyo([; E'). From the last equality we obtain

t
[0+0) sl [e e Mo oney

0

and hence

H ()\+D fHoo < |||1§||)\| ( T|Re A| +1)’
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if Re A # 0. fRe A = 0, we get || (A + D) f ||, < T fll... Thus, (A\+D)~"
is bounded for any A € C.
We also deduce that

[ oo

—1
O

for all A € Xy, where 0 < ¢ < 7/2. It follows that the spectral angle wp of
D is at most 7/2.

To see that wp > /2, we consider f € Cyo(I; E) defined by f(t) = txo,
where 7y € E and ||z || = 1. Assume that A # 0. Then || f|| ., =7 and

(A+D)'HE) = /tTe’\(Tt) dr | mg = (%(etReA —-1)— %) T,

0
so that, for Re A < 0,

1
Al
Taking A\ = Re'®, where R > 0 and ¢ € (n/2,m) is fixed, we see that
| AM(A+ D)~ tends to co as R — oo. Consequently, ¢p < ¢ for any ¢ €

(r/2,7), so that wp > 7/2. The reverse inequality has already been proved.
U

[AA+D) | = (e TR =1) = T.

4.1.3 Interpolation of the spaces Cj15([0,7]; E)

Let I = [0,T], where T > 0. It is an immediate consequence of the defi-
nition of a Hélder space that if 0 < 8 < «, then C*(I; E) < C°(I; E) and
Co . (I;E) < CP  (I;E). We shall now show that the spaces C2*S(I; E)
and hgtS(I; E) are, in fact, interpolation spaces between CJ,(I; E) and
Coto(I; E) forn=0,1,...and 0 < a < 1.

PROPOSITION 4.4. Let T > 0, let n be a nonnegative integer, and let 0 <
a < 1. Then

(Coo(I; E), C30(1; E))ae = Co26([0,T]; E)
and
(Coo(I; E), Coto(I; E))a = b6 ([0,T]; E)

with equivalence of norms. In particular, Dp(a, 00) = C§,o(I; E) and Dp(a) =
h(]ar—>0 (I; E)

Proof. The second claim of the theorem is obtained from the first one by
choosing n = 0. By Proposition 2.17 it suffices to prove the first claim in
this special case. Thus we only have to establish the embeddings

Dp(a, 00) = Coyo(1; E)
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and

Coso(I; E) = Dp(a, 00)

together with the equality of the sets Dp(«) and hg ,,(I; E).
We have

(A +D)f) (1) = / ) f(s) ds,

and, since fot AerEDf(t)ds = (1 — e M) f(t), we infer that

(DIA+D)'f) () = f(t) — A/e*“—t)f(s) ds

t

M) + / AP D(f(t) - f(s)) ds,

0

and hence
(4.2)

t

M OA+D)T) O] < A% ([ f ()] +/A1+O‘6A(s‘t) 1f(#) = f(s) || ds.

0

Let us first assume that f € C{,,(I; E). Then
@) =N <[f1a [t —s
for all s,¢ € I. In particular, || f(¢) || = || f(t) — f(0) ||z < [ f],t% so that

A e @) ||, < e[ fl, < [fl,suptte™.

>0
For all A > 0 we also have

t t

)\O‘/)\e_’\(t_s) | f(t)— f(s)]| ds < [f]a/e_’\(t_s))\“(t — 5)*\ds

0 0

Since the last integral is finite, we conclude that

[f]DD(a,oo) < C[f]a7
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where ¢ = sup,. ot~ + [ 7%~ " dr. Therefore, C§,(I; E) < Dp(a, o).
To prove the converse embedding, we assume that f € Dp(a, 00), and

that s,¢ € I. Then, by the definition of the functional K (see p. 160), there

exist functions g € Cyyo([; E) and h € Coo(I; E) such that f = g+ h and

19 lleqrmy + 1t = sl A llerrymy < 2K ([t = 5[, f,Comso(L; E), Comso(I; E)).
We also have

1£@) = F) I < Ng@) [ +11g(s) | + || At) = hls) |
<2lg ||C(I;E) + |t — 5] [h]cl(l;E)
<2lg ||C(I;E) +2[t—sl||h ||C1(I;E) :

Combining these inequalities, we get

() = F(s) |

£ —s|®

(4.3) <4t — s K (|t — s|, f. Coso(I; E), Coo(I: E)),

and hence

[fleairmy < 4 liconotrimyet  (1:5))am -

™00

it follows that Dp(a, 00) = C§,(I; E) with equivalence of norms.
It remains to show that Dp(a) = h_,,(I; E). Assume, first, that f €
h§ o(I; E). We take an arbitrary ¢ > 0 and some § > 0 such that

o LT =IO _

|t—s| <6 |t - 5|a o
t,sel

The inequality (4.2) is still valid. For 0 < ¢ < ¢, taking s = 0, we get
Xee M| F(2) ]| < e (M)¥e M, which implies that

MM F()] < 6su10)7ae_T (0<t<do,A>0).
T>

Ift > 9, we have

Me M| f) ] < [f],sup ¥ " (A>0).
T>A0

Consequently,

A H e F@ ] Hoo <esupt®e " +[f], sup 7% "
>0 T>A0

for any A > 0. Choosing A big enough we can force the second term of the
right hand side to be less than . Since this can be done for any ¢ > 0, it
follows that A || e || f(&) ||| — 0 as A — oc.
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Let us now look at the second term in the right hand member of (4.2).
We have

t

/ NN || £(1) — f(s) | d

0
At

:/)\O‘e‘THf(t) — ft—7/N) | dr

= 5/)\‘1(7/)\)“67 dr+[f], / AT /N T dr

0 min{AJ,\t}

o0 o0

< 6/70‘67 dr + [f]a/To‘eT dr.

0 A6
The last inequality yields

t o

/AH%—W—S) 1F@) = f(s) | ds || < 5/7%—7 dr+ [f]a/Tae_T dr.
0 0o 0 /A

Choosing A > 0 that is big enough, we can force the last term of the right
hand side of this inequality to be less than ¢. It follows that

t

lim A — oc / AN || 1) — f(s) || ds|| =0,

0 o

which means that f € Dp(a). Thus, we have shown that h§ ,(I; E) C
DD(Oé).

To prove the reverse inclusion, we assume that f € Dp(a). Then for any
€ > 0 there is some § > 0 such that 0 < 7 < ¢ implies that

7 *K(1, f,Cos0(I; E),Coso(I; E)) < /4.

Hence, by (4.3),
A0~ 5]

sup - <
—ai<s |t — 8]
t,sel
Consequently,
t) —
i sup 1FO =1 _
640 |t—s|<8 |t - S|
t,sel
so that f € h§_,,(I; E). This shows that Dp(a) C hf,(I; E), and the proof
is complete. O
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We recall that Dp, () is the closure in Dp|,(a,o0) of D(D|,), and
thus of any of the spaces Dp|,(#,p), where n = 0,1,... and 1 > 0 > .

Hence, the above theorem yields the following characterisation of the spaces
ho 6 ([0, T]: E).

COROLLARY 4.5. Let 0 < a < 6 < 1 and let n be a nonnegative integer.
Then hit(I; E) is the closure of C2X0(I; F) in CI19(I; F).

Since the spaces CJ5([0,T]; E) and h{3([0,T]; E) are interpolation
spaces between complex Banach spaces, Proposition 4.4 also provides a proof
of the following well-known result.

COROLLARY 4.6. Let T > 0, let 0 < a < 1, and let n be a nonnegative
integer. Then the spaces Cj15([0,T]; E) and hgt3([0,T]; E) are complex
Banach spaces.

For the sake of completeness, we also include the following generalisation
of Proposition 4.4.

THEOREM 4.7. If T >0, 0<a < f3,0<0<1and (1 —-0)a+0p ¢ N,
then

(4.4) (C0([0,T1; E), Coo (10, T]; E))goo = C559* 2 ([0, 7] ; ).

Proof. Let us omit ([0,7]; E') from the notation. Theorem 2.18 shows that
Cé o € Jim(Coso,Clyg) N Kiyn(Coso, Cilyg) for integers k and n, with 1 <
k<n.

If m and n are integers with m < a < m +1 < n, then C§,, =
(Cm o, COM ) aemco and hGo = (CI,o, Cofo Jam- Using the Reiteration The-
orem, we infer that

C&—)O = (C(]i—)(]a C(?Ho)a/n,om
and
h(?»—)(] = (COHO:CSHO)G/H7

for any non-integer o and any integer n with 0 < a < n. Thus, if n is an
integer and 0 < o < 3 < n, then g, € Jo/n(Coso,Coryo) N Ko /n(Coso: Coo)s
and Ch o € J5/n(Cos0, Cllo) N K /n(Coso, Cyg)- Tt follows that if 0 < 6 < 1,
then

(C(?Hoa C(?»—)O)G,OO = (CO»—>0a C(T]l._m) (=0)a+65 .
which equals €\ if (1 — 6)a + 68 ¢ N. Analogously

(C(?Hoa C(?HO)G = (CU'—>0a C(T]l._m) (1-60)a+63 -

which equals A0 if (1 — 0)a + 68 ¢ N, 0
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REMARK 4.8. A similar result holds for interpolation between Holder spaces.
In fact, if 0 < a < 3,0< @ <1and a+60(8—a) ¢ N, then

(4.5) (C*(I; E),CP(I; E))g00 = COTPE=9)(I; )
and
(4.6) (C*(I; E),C*(I; E))g = h*H00P-N(T; ).

Also note that if &+ 0(f — «) € N, then, for example,
(CH(I; E),C(I; B))po0 G COHO=N(IL B),

the interpolation space to the left of the inclusion being a so called Zygmund
class.

Since we will not make use of these results, the proofs are omitted. A
proof of formula (4.5) that makes frequent use of the Reiteration Theorem
can be found in [9], pp. 5-8, 28-32.

4.1.4 Fractional derivatives

For a > 0 we define g, € L'(Ry) by

(4.7) Gult) = ﬁt“‘l.

If fe L'([0,T]) and 0 < « < 1, then the convolution

t

(48) (g1-0 % (1) = / G1—alt — 5)(5) ds.

0

exists for a.e. ¢t € [0,T]. If f € C([0,T]; E) is continuous, then g; , * f
exists for all ¢t € [0,T]. We define the fractional derivative (D*f)(t) of f €
Co0([0,T7; E) by

(19 (D" PO = oo x N, 150,

if 0 <t < T, as the right hand derivative

o i (G1a* f)(h)
(4.10) (D2F)(0) += lim ===

at t = 0, and as the left hand derivative

o (@ )T+ R) = (g0 x S)(T)
(@1 (D) = lim .

at t =T, whenever the respective limit exists.
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One motivation for this definition of (D®f)(¢) is that if we formally cal-
culate the Laplace transform of 5 (gi_q * f)(t), we obtain

1 1

S+ 8- 51+aF(S): S—aF(s),

where F' is the Laplace transform of f, whereas the Laplace transform of
Df =f"is s+ LF(s).
If u is defined on a rectangle @ = [0,7] x [0,£] and takes values in a

complex Banach space E, then the fractional partial derivatives of u can be
defined by

(4.12) (Dfu)(t,z) := (Du(t, x))(?)
(4.13) (DSu)(t, z) := (Du(t,z))(z)

whenever these fractional derivatives exist.
Let us now show that the fractional differential operator in Co.([0,7]; E),
whose value at f is the function D®f(t), is actually the operator D“.

THEOREM 4.9. Let [ = [0,T], where T > 0, let D be the differential operator
in Coso(I; E) defined above, let n be a nonnegative integer, and let 0 < a < 1.
Then D is densely defined and positive with spectral angle ar /2, and we have

(4.14) D(D"**) ={f € Cio(I E) | g1-a x [ € Coy(I; B)}
and
(4.15) D*f=D*D"f (f € D(D™%)).

Moreover, for any o> 0 and any 0 € (0,1) such that af ¢ N we have
Do (6, 00) = Co2o(1; E)

and
Dos (6) = 2,1 E).

Proof. By Proposition 4.3 and Theorem 2.21, D® is densely defined and pos-
itive, and wpe < am/2. That wpe is exactly anr/2 is not difficult to show (see
[5]), but we do not need this result, and therefore omit the proof.

We have also shown that

t

(D)) = [ fmdr (0<t<T)

0

113



for any A € C and any f € Co.o(I; E). Hence, by (2.49) and Fubini’s
Theorem (Theorem A.16),

[e%e) t
(Do fy(p) = e / 501 / e=5t=) £(7) dr dis

Vs
0 0
t 00

= s1n7ra/ /sales(tT) ds | f(r)dr

Vs

0 0

t

— [galt = )50V dr = (910 D0,
0
where we have used the fact that

sin T 1

m  T(l(l-a)

It follows that
(4.16) D([D*) =D(DD*") = {f € Coso(I; E) | g1—a * f € Coyo(I; E)},
and that

D*f=DD*'f=D"f

for f € D(D®). This proves (4.14) when n = 0.
If n > 0 we get D"** = D*D", and (4.14) follows from the case n = 0.
The formulas for Dpe(,00) and Dpe(f) follow from Theorem 2.21 (g)
and Theorem 4.7. O

4.1.5 Holder and little Holder continuous functions on a rectangle

We now introduce Holder spaces and little Holder spaces on a rectangle, and
prove some simple results for these spaces.

DEFINITION 4.10. Let 0 < p,v < 1, let E be a Banach space, let @) :=
0, 7] x [0,¢], and let 9,Q = {(t,z) € Q@ |t = 0 or x = 0}, where 7,& > 0.
We introduce the spaces C**(Q; E) and Cy, ,,(Q; E) of Holder continuous
functions f : () — FE by setting

CH(Q; E) :=A{f € C(Q; E) | [ f leww (i) < o0}
Congro(@; B) :={f € C"(Q; B) | f(t,z) = 0 for all (t,z) € B},

where the seminorm [ Jou. (.5 and the norm || [lcu(g;) on these spaces are
defined by are defined by

| f(t,2) = f(s,9) ||le
[f] 12214 N :: Sup 14 b
@) T e [t—sF 4|z —y]
(t,x)#(5,y)

| fllerr@smy = Il fllew@ir) + [f lews :m)-
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We also define the spaces h*"(Q; E) and hg{;’é of little Holder continuous
functions f: Q — E by

| f(t,2) = f(s,9) e
MWP(Q; E) :={f e C"(Q; F)| lim sup =0
( ):=A ( )| 810 ocita)—(sapi<s |t — S[F A+ |z —y]¥ J
(t.x),(s,9)€Q

hgéIZQHO(Q; E) = {f c hM7V(Q; E') || f(t,l‘) = 0 for all (t, LE) S aOQ}

The last two spaces are also provided with the seminorm [ ]¢,. . ;) and the
norm || |lcur (k)

When E = Ror F = C, we usually omit the ‘; R’ or ‘; C’ from the notation
and simply write C(Q), C**(Q) etc.

LEMMA 4.11. Let E be a complex Banach space and let Q := [0, 7] x [0,£],
where 7,6 > 0. To any function f : Q — C we can define a function

f=1(f):10,€] = ([0,7] = C) by f(x) = f(t x) for x € [0,£]. This defines
a bijection i from the set of functions f : Q@ — E to the set of functions
f that map t € [0,7] to f(t) : [0,£] — E. When f = i(f), the following
assertions are hold:

(a) The mapping I defines an isometric isomorphism between

C(Q; E) and C([0,7];C([0,¢]; E))

and between

Cay@0(Q; E) and Cos0([0, 75 Coso([0,€] 5 E))

(b) For 0 < p,v <1, the mapping i defines an isomorphism between
CH(Q; E) and C*([0,7]; B([0,¢]: £)) N B([0, 7] ¢*([0,¢]; E))
and between
Choamso(@s E) and Cy,o([0,7]5 B([0,&]; E)) N B([0, 7] ; Cp0([0, €] 5 E)).
Moreover,

I fllesv@smy < N Fllevomssoesey + 1| F s o) < 211 f llews@sm)-

(c)For 0 < p,v < 1, the mapping I defines an isomorphism between
h¥(Q; E). and h*([0, 7] B([0,&]; E)) N B([0, 7]; h*([0,&]; E))
and between

hosorso(@; E) and hi,o([0,7]; B([0,£]: E)) N B([0, 7] ; ho,o([0, €] 5 E)).
(d) The spaces C**(Q; E),Cho.,0(Q; E), W (Q; E), and higo, ,o(Q; E) are

Banach spaces.
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Proof. The bijectivity of 7 is trivial.
Now let f =i(f), where f: Q — E.
(a) Assume first that f € C(Q; E). Then

[f () (@) = f(s) ()] = |f(t,2) = f(s,9)].
Since f is uniformly continuous on the bounded square in question, for any
e > 0 there is some § > 0, such that | f(¢)(z) — f(y)(s)| <  for any two pairs
(t,x), (s,y) € [0,&] x [0, T] with |z —y| < ¢ and |t — s] < §. Thus, taking
t = s, we see that f(t) is (uniformly) continuous from [0,&] to £. If we take
x =y, we also see that || f(t) — f(5) |lco.c:z) < € as soon as |t —s| < &, which
implies that f is continuous.
We also have

£t ) = f(s,9)| < [F()(2) = FOW) + 1 FD) (W) — F9)W)].
If f € C([0,£];C([0, 7] ; F)) we deduce the continuity of f from this. Tt follows
that the restriction of 7 to C(Q; F) is bijective. Obviously

I f lleq@:ey = sup sup || f(£)(2) |le = || f [|50.71:8(0.0:E)):
t€[0,7] z€[0,£]

so that it is an isometric isomorphism.

Clearly f maps 9yQ to {0} iff and only if f(0)(z) = f(¢)(0) for all (¢, z) €

0.
(b) We bear in mind the previous equation. We also have
|| f(t,f,E) — f(S,'y) ||
[flenvigmy = su
@B emeq [t slt |z —y]”
(tx)#(s.y)
e wp MED-T@D e 1) - T
T mewee [t sz =yl g emee 1= sf ]z —yl”
(tx)#(s,y) (tx)#(s,y)
1/ (t) = f(5) I so.g:e :
< ~L P o sup [F(0)]es o
t,st€7£0,7'] |t S| te[U,T]

[f]ca[of B([0.6]:E +||[f()]cv[0§ || B(j0,71:)-
It follows that
I f llewrorixioesmy < I fllesqorisoesey + ILf o (o.c:m)-
On the other hand
| f(t) = f(s) l|so.e:m)

1/ llen qomisaorsmy = sup — + sup || F(1) [lsqo.6:m)
t,st€¢[0,7'] |t 5| t€[0,7]
s

f(t,2) — f(t,y)|

= sup sup i + sup sup || f(¢,2) || g
t,s€[0,7] €[0,¢] |t - S| t€[0,7] z€[0,£]
t#s
[f(t,z) = f(s:9)l
< sup + sup || f(t,2) || &
worcea [t = 8"+l —yl”  iepn
(t,2)#(s,y) z€[0,€]

= || f llewr(o.mx[0.71:5)5
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and

1/ (t)(2) = F()(y)

e ;
o + 1| £(t) leqo,e:E)

|| f”B([O,T};Cu([o,g];E)) = sup sup

te[0,7] | =.wel0,€] |.ZE o
z#y
t,x) — f(t
= sup sup || f( ) ) f(yay) ||E 4 sup || f(t,l‘) ||E
t€[0,7] z.y€[0,¢] |z —y] t€[0,7]

£t ) = fs,9) lle

< sup 7— + sup || f(t,7)[|e
warepee |t ="+ |z =yl t€10,7]
(t,x)#(s,y) z€[0,¢]

= || f lleww(o.nx[0.71:E)5

so that the equivalence of the norms asserted in (b) is proved. From this the
other statements of part (b) follow.
(c) Assume that f € h*¥(Q; E). Then

fec((0,7];B([0,€]; E)) N B([0,7];¢*([0,£]; E)),

and ,
by D =) e
810 ocita)—(sayi<s |t — S|P+ |z —yl¥
(t,x),(s,9)€Q
From this we see that
F(4)(z) — F(t
b s 0@ = FOO s _
410 0<|z—y|<é |l‘ - y|y
x,y€[0,7]

ie. f(z) € h*([0,€]; E) for any t € [0,7]. Hence, f € B([0,7]; h*([0,£]; E)).
We also deduce that

Lf (@) (@) = f(s)(@) ||

lim sup =0,
00 ocpi—si<s |t — s|m

t,SE[U,T],CEG[O,ﬂ

le., ~ ~
t) — )

lm  sup 1£() = f(s) lleqo.gimy _ 0.
010 ocii—s|<s |t — s|©

t,5€[0,7],t€[0,¢]

so that f € h*([0,7];C([0,£]; E)). Thus, we have shown that if f € h**(Q; E)
then f € h*([0,7]; B([0,£]; £)) N B([0, 7]; h*([0,£]; E)).

To prove the reverse implication, we first note that if 4 < g/ < 1 and
v < vV <1, then h*([0, 7]; B([0,&]; E)) N B([0, 7] ; h*([0,&] ; E)) is included in
the closure of

¢ ([0,7]; B([0,£]; E)) N B([0,7]:¢”((0,£]; E))

C([0,7]; B([0,&]5 E) N B([0, 7] ;C7([0,€] 5 E)).
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foa) = [ [ oult)nl) (e e
( f(t,z), if (t,2) € Q,
f(0,2), if (t,z) € (—o0,0) x [0,&],

A f(r,x), if (t,z) € (1,00) x [0,&],

f(t,x) =14 f(t,0), if (t,x) €[0,7] x (—00,0), :
f(t,8), if (t.x) €[0,7] x (£, 00),
£(0,0), if (t,z) € (—00,0) X (—00,0),

[ f(7,8), if (t,2) € (1,00) x (§,0)

N~

pu(t) = 2p(L); p € C*(R); suppp C (—1,1) and | p|z1 ) = 1. It can also
be seen that h*¥(Q; E) contains the closure of C***'(Q; E) in C**(Q; E).
In fact, if {f,}°0, C C**"(Q; E) and limy || fu — f llcuw(@im), Where f €
CH'(Q; F), then for any ¢ > 0, we can first choose n so big that || f, —
[ llewr(@:py < €/3. Then we choose ¢’ > 0 so small that

Fo T
sup || fn( 75E) fn(say)VHE < 6/3
o<i(tr)—sanl<s |t — S[F 4|z — 1y

(tz),(s,9)€Q

for any 0 with 0 < § < ¢’. For such d we thus have

” o

0@ = F60 s _
o<i(tr)—(sayi<s L= S[F 4|z —y]¥
(t,x),(s,9)€EQ

We conclude that

i s D =)l _
010 oi(ta)-ani<s |t — S|* + [z —yl”
(t,m),(s,y)€Q
and the first claim of part (c) has been established. The second claim is an
immediate consequence of the first one.

(d) All the spaces are isomorphic to spaces of the form X; N X, with
norms of the form || ||x,nx, == ||x, +1 I/x,, where the Banach spaces X,
and X, are continuously embedded in C([0,7];C([0,&]; E)). Hence, Cauchy
sequences in X; N X, converge to the same function in X; and in X5, and
thus also in X N Xs. O

4.2 An equation with resolvent commuting
operators

Let a and 8 be positive numbers with o, < 1, a4+ f < 2 and let E be
a complex Banach space. In this section we prove some maximal regularity
results for the equation

(4.17) Du(t, z) + DPu(t,z) = f(t,z)
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in the space X := Cy,00(Q; E), consisting of those continuous functions
u: () — E defined on the rectangle @ := [0, 7] x [0, ¢] for which u(t,z) =0
for all (t,z) € 00Q := {(t,z) € Q| t =0V = 0}, where 7,£ > 0. In order to
be able to apply the method of sums to this problem, we transform equation
(4.17) into an equation

(4.18) D%+ DY o = f

in X := Co0([0,7];Y), where Y := Co,0([0, €] ; E). Here the lower indices of
D denote the spaces of functions in which the differential operators have there
domains. Thus, D% is fractional differentiation of functions in Coo([0, 7]:Y"),

whereas Df/ o means fractional differentiation in Co, (Y E).
Regarding Dg ou we note that

(4.19) (DY o) (z) = Dy-(a(x))

if i(x) € D(DY). We will presently show that the mapping u DY ou defines
a positive operator Df/ oin X with dense domain and spectral angle wys . =
Y

pm /2. Our aim is therefore to apply Lemma 3.10 and Theorems 3.14 and 3.18
to this equation (with A = D% and B = Df, o) in order to show that it has

at most one solution %, and that, for f in interpolation spaces of the form
DD;((H, oo) and Doé(av o0), it has, indeed, a unique solution. Moreover, we
obtain maximal regularity for these spaces.

4.2.1 Properties of the operator Ao

Using the following theorem, we can show that Dg o inherits properties such
as "closedness" and "positiveness" from Dg.

THEOREM 4.12. Let A be a closed linear operator in a complexr Banach
space Y. Define the operator Ao by

D(Ao) :=C([0,7];D(A))
(Aowu)(t) := A(u(t)) u € C([0,7]; D(A)),t € [0, 7]

where D(A) is provided with the graph norm. Then Ao is a well-defined
closed linear operator in C([0,7];Y"), and the following statements hold:

(a) If A is densely defined, then so is Ao.

(b) p(—Ao) = p(—A), and for all A € p(—A) and all v € D(Ao) we have

(A + Ao)flu =(\+ A)*1 ou

and

IO+ A | ooy = MO+ A 4y,

(c) Ao is nonnegative iff A is nonnegative, and in that case

Pa0 =45 Nao=Na; Mao=My; M, = M.
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(d) Ao is positive iff A is positive.
(e) If A is positive and Re z # 0, then

(Ao)* = A%o.
(f) If A is nonnegative, then
(4.20) Dao(0,00) =C([0,7];Y) N B([0, 7] ; DA(6, 0))
and
(4.21) Dao(0) = C([0,7]; Da(0))

for all 0 € (0,1), with equivalence of the respective norms.
The above statements remain true if all spaces of the form C(]0,7]; E)
involved are replaced by Co0([0,7]; E).

Proof. Tt is quite obvious that Ao is a linear operator in the set of functions
from [0,7] to Y. The definitions of Ao and the graph norm |[[@||p 4 =
lully + || Aowully guarantee that if w € D(Ao), then both u and A o u
are continuous functions from [0, 7] to Y. In particular, this implies that
Ao : C([0,7];D(A)) — C(]0,7];Y)

Let A be closed, and let {u,} -, be a sequence in C(]0,7];D(A)) such
that u, — u in that space and Aow, — v in C([0,7];Y) as n — oc. Then
un(t) — u(t) and Afu,(t)] — v(t) for all ¢ € [0, 7]. Since A is closed, we must
have u(t) € D(A) and v(t) = Afu(¢)] for all ¢ € [0, 7], or, equivalently, v =
Aowu. Since u,v € C([0,7];Y), it follows that u € D(Ao) = C([0,7];D(A))
and v = Aow, i.e, Ao is closed.

(a) The set subspace of polynomial functions from [0, 7] into Y is dense
in C([0,7];Y). For any such polynomial function, there are constants {¢;}._,

in Y such that .
p(t) = Ztkck.
k=0

Since D(A) is dense in X, for any € > 0 one can choose ag, ay, ..., a, € D(A)
so that || ¢y — ay ||y <e/(n+1)7%. Hence, || pn — Y pey axt® |leqo, vy < €. It
follows that the set of polynomial functions from [0, 7] into D(A) is dense in
C([0,7];Y). These polynomials belong to D(Ao) = C([0, 7];:D(A)).

(b) Let A € C, and assume that the linear operator A+ A in Y is one-to—
one and onto, so that (A + A)™' : ¥ — Y exists. Define a linear operator
B by putting D(B) = C([0,7]; E) and Bu= (A+ A) ' ou: [0,7] — D(A)
for all u € D(P). Then

[BOA+ Ao)u](t) = (A + A) T (A + A)[u(t)] = ult)

for all u € D(Ao) and all t € [0, 7]. Hence, B(A+Ao)u = u for all u € D(Ao).
This implies that A + Ao is one-to—one and B is a left inverse. Assume
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now that A\ € p(—A). Then (A+ A)~' and AN+ A)"' =T - AN+ A)~!
belong to £(Y). Hence, Bu= (A + A)tou € C([0,7];Y) and A o (Bu) =
AN+ A)tou e C([0,7];Y). Consequently, Bu € C([0,7]; D(A)) and

[(A+ Ao)Bu(t) = (A + A) (A + A)u(t)] = u(t)
for all uw € C([0,7];Y), showing that A\ + Ao is onto. Thus,
(4.22) A+ Ado) tlu=(A+A4)"

for all u € C([0,7];Y). We also have

| (A + Ao)™ UHC[OT ):tSEp [ A+ A) " [u(®)] ||
< sup ([ O+ A [ 100y
te[0,7]

_ -1
- H )‘ + A HE(Y) || U ||C([0,T];Y)
for each u € D(Ao), so that (A + Ao) ! is bounded and

| (A + Ao) y <+ 4)

- Hc c([0,7];Y - Hc(y)

Consequently, A € p(—Ao).

Assume now that A + Ao is injective from D(Ao) = C([0,7];Y) into
C([0,7];Y). If (A +A)ug = (A+A)vg, where ug, vy € Y, we put u(t) = tug and
v(t) = tvy for any t € [0, 7]. Then both u and v belong to Co0([0, 7] ; D(A)),
and we get

[(A+ Ao)ul(t) = (A + A)[u(?)]
= A+ A)o()]

t(A+ A)ug
[(A + Ao)v](2)

for all t € [0, 7] Hence, u = v, so that ug = vy and A + A is one-to—one.

If A+ Ao is also onto and vy € Y, then there is a u € D(Ao) such that
(A+ Ao)u = v, where v(t) = (t/7)vo for all t € [0, 7]. Hence, (A + A)[u(r)] =
Vg, s0 that A\ + A is onto.

By the above, B is a left inverse to A + Ao. Since the latter operator
maps D(Ao) onto C([0,7];Y), it follows that (A + Ao) tv = (A + A)~!
for all v € C([0,7];Y). Moreover, if A\ € p(—Ao), then for any uy € YV we
consider u € Cy0([0,7];D(A)) defined by u(t) = (t/7)uo. It follows that

| X+ A) g || = || (A + Ao)~Hu(n)] ||
< || (A + Ao)” UHC[OT Y)
<H )\—|—AO 1H£ (0,7);Y ||u||C[OT Y)

= [| (A +40) Hg cqoyy N0 lls
and hence (A + A)~! is bounded with

PO+ gy < O+ A0)

([0,7;Y)) *
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Consequently, A € p(—A). Summarising what has been proved so far yields
(b).

(c) and (d) are immediate consequences of (b).

(e) Assume first that Rez < 0. Then D(A*) = Y. Let u € D(A*) =
C([0,7];Y), and let t € [0, 7]. Then

(Ao (1) =58 [0+ )7 d b [ute)
=58 [0 A ey
— 5 [V A0 )
=57 8 [0+ 49) 1 dA} ()

= {(Ao)%u} (2).
If Rez > 0, we choose n € N with n > Rez. Then
(A% ou)(t) = A"A* "[u(t)] = A" (A" "[u(?)])
= A"([(Ao)""u](t)) = [(Ao)" (Ao)*"u](t)
= [(Ao)*u](?)

for any t € [0, 7], and any u € D(A?), so that A*o = (Ao)”.
(f) We have

s [ 40 49) 010, = 50 530 940 0) 0
>0 r>0 ¢e€[0,7]
= sup supHraA r+ A~ Hy,
tel0,7] >0
so that
(4.23) [u ]DAO (0,00) — Sup [u(t )]DA(e,oo)
t€[0,7]
for u € C([0,7];Y). For such u we also have sup [l u(t) ||y = ||y <
te[0,7] Y

oo. Hence, (4.20) holds. In addition, we see that

sup || u(t) [Ip, 9,00y < [l %llp 0,00y < 2 5P [[u(t) llp,(g,00)
te[0,7] te[0,7]

which establishes the equivalence of the norms.
Next, let u € C([0,7]; D4(6)). We intend to show that

lim Sup HraAo (r 4+ Ao)u 0.

Ol -
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By formula (4.20) and the assumption on wu, it is clear that u € D, (6, c0).
Hence, putting f,(t) = 7% || A(r + A) *(u(?)) ||y, we see that

Fr@®) < Tulp,, .00

for all > 0 and t € [0,7]. By assumption, we also have lim,_,, f,(t) = 0
for any t € [0, 7]. Moreover,
4500+ o0l =24+ o
< HTGA r+ A) Hu(t) }HY
< sup H rPA(r + A)~ 1{u (s)} HY —u(s) ]DA(H’OO),

Iy ]

B (8 = Jo()] < [ult) = () I,y 0,000

for all > 0 and all ¢,s € [0,7]. Hence, the f, are uniformly continuous.
Let us put o, = || f» ||c 0> and assume that {r;};2, C (0,00) is such
that «,, — « as k — oo. Then for any k there is some t; € [0, 7] with

= fr.(tx). There is some convergent subsequence {sj}]: = {tkj}]:o
of {tk}?;l, with limit s € [0,7]. Put rp; = ¢;, j = 1,2,.... We have
fo; (5 )) (fq;(8) = f4;(55)) + fr;(s;), which tends to « as j — oo, since
| fri(5) = fr, (55)| < [u(s)—u(s;) 14(6.00) tends to 0 by the uniform continuity
of the f,, and f,,(s;) = a,, tends to a as j — oo. Consequently, o = 0. It
follows from this argument that lim, ,,, «, = 0, so that u € D4,(6). Thus,
C([0,7]; Da(0)) C Dao(h).

To prove the reverse inclusion, let u € Dgo(). Then

u € Dao(0,00) = C([0,7];Y) N B([0,7]; Da(B, o))

and

lim HTHAO (r+ Ao)~ =0.

T—00

Thus, for all ¢ € [0, 7] we have u(t) € D4(0,00) and

“Hc ([0,7];Y)

lim || r?A(r + A) ™" (u(

T—00

HY =0,

so that u € B([0,7];D4(0)). We know that limg_,; || u(t) — u(s) || = 0 for all
t € [0,7], since u € C([0,7];Y). In order to show that u € C([0,7];Da(0)),
we should therefore show that limy ., [u(t) — u(s)]p, gy = 0. For this
purpose, take t, s € [0, 7]. We have

[0(t) = 1(5) o, ) = 007" | A+ )7 (u(2) = u(s))|

)
and

o AG 27 ue) ~ ) | € 20| A0 4+ 40) M-
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By assumption, the expression on the right hand side tends to 0 as r — oc.
Hence, given an arbitrary ¢ > 0, we can find R > 0 such that

70 H Alr + A) M u(t) — u(s)) H <e

for all 7 > R and all ¢, 5 € [0, 7]. We also have || A(r + A) "' [,y < 14+ Na
for all 7 > 0, since A is nonnegative. Consequently,

[ A(r + A) 7 u(t) —u(s)) || < R(1+ Na) [Ju(t) —u(s) |
for 0 < r < R and t,s € [0, 7]. Hence, there is some § > 0 such that
]| Alr + 4 {u®) = u(s)} | <

provided that 0 < r < R, |t — s| < ¢ and ¢, s € [0,7]. Consequently, for all
such ¢ and s we have

[u(®) —u(s)]p, 0,00 = §1>113 r? [ A(r + A) 7 (u(t) — u(s)) || < e

Thus, D4.(#,00) C C([0,7];Da(h,00). Since the converse inclusion was al-
ready proved, (4.21) holds.

Finally, consider the restriction of Ao to Cy([0,7];D(A)). But in case
u € Coyo([0,7]; D(A)), we see that (A ou)(0) = A(u(0)) = A0 = 0, so that
the range of this restriction is a subset of Co,o(Z;Y). It is easy to check that
the above proof remains true if C([0,7]; E) and C(I; D(A)) are replaced by
Coso([0,7]; E) and Cos0([0, 7] ; D(A)), respectively. O

4.2.2 Solving the equation in Cy ([0, 7];Co0([0,&]; E))

As a step on the way to a solution of
Du(t,x) + DPu(t,z) = f(t,2)
in some subspace of Cy,00(Q; E), we now consider solutions to

a+D%ou=f

(4.24) D 5

@
X

in X = Cory0([0,7];Coms0([0,€]; E)). We assume that 0 < o, § < 1, and that
we do not have a = = 1.

By Theorems 4.9 and 4.12, the operators D and Df, o are densely defined
and positive with spectral angles Wpf o = am/2 and Wpi, = Wps = pr /2,

respectively. It follows that

wpa —I—ngo = #ﬂ'<ﬂ'
when o + 3 < 2. By Lemma 4.15 (c) below, the operators D% and Dg o are

resolvent commuting. We conclude that the operators A = D% and B = Dg o
in X = Co0([0,7]; Coso([0, €] ; E)) satisfy the hypotheses of Theorem 3.10.

124



In combination with Proposition 4.4, the above mentioned theorems also
show that

(4.25) Doy (6, 00) = C5,([0, 71 Conso ([0, €] : )
and
(4.26) Dy , (6, 00) = Coso([0, 71: B([0,€]5 E)) N B(10, 7] Co0(10, €] 5 B))

for 6 € (0,1). Let us summarise these results as a lemma.

LEMMA 4.13. Let E be a complex Banach space and let 0 < a, < 1. Define
X andY as above. Then D% and Df, o are positive and resolvent commuting
operators with wps = ar/2 and Wpt o = pm /2. Moreover, if 0 € (0,1), then
(4.25) and (4.26) hold.

Thus, Theorem 3.10 readily implies that if f € X, then (4.24) has at
most one solution.

Let us now turn to the existence part. If f € Dpa (pt/ v, 00), where we
assume 0 < p < «, then, by Theorems 3.14 and 3.18, there is a unique
solution @ to the equation D% @ + Df/ ot = f, such that

(4.27) D% @, DY ofi € Dpe (1/a, 00).

Analogously, if @ € Dps (v/f3,00), where 0 < v < 3, then there is a unique
Y
solution @ to (4.24), such that

(4.28) D%, Dy oii € Dy, (1/f, 00).
By (4.25) and (4.26),
Dpe (p1/cr, 00) N DDﬁYO(V/ﬁ, o0)
= Cos0([0, 7]5 Coso ([0, €] 5 E)) M Corso([0, 7] 5 Coso ([0, €] 5 E))

NB([0,7]; C50([0,€]; E))
= C(I)L)O([Ov'r] QCOHO([Oaﬂ ; E)) n B([O, T] QCSHO([O: 6] ; E))

Hence, if

f~ € X#,V = Cpy0([0, 7] 5 Cosa ([0, €] 5 E)) N B([0, 7] 5 Co0 ([0, €] E)),
then (4.24) has a unique solution X, ,,, such that
(4.29) D% @, Dy oii € X, .

Since D ¢ @ and Df/ o are positive, Theorem 3.18 also implies that there is a
constant M that does not depend on f such that

(4.30) lalls,, +1ID% alls,, +1Dyoals,, < M| flx,,
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In particular, if f € Dpq (,u/oz)ﬂDDL; ,(v/p), then, again by Theorems 3.14
and 3.18, there is a unique solution @ to the equation D% 4 + Dg ou = f,
such that D% @ and DY ot belong to Dpa (1/a) N Dy J(v/p). But

Dog, (/) N Do (/)
= hoo ([0, 7] Boso ([0, €15 E)) N B((0, 7] g0 (10, €15 B)),
so that we have
(4.31) D@, Dy- ot € hfyo([0,7]; Borso ([0, €15 E))NB([0, 7] bty ([0, €] E)).
Summarising these observations, we obtain the following lemma.

LEMMA 4.14. Let E be a complex Banach space, let 7,& > 0, and assume
that 0 < p<a<1,0<v<pf<1, and o+ B < 2. Then for any f € X =
Co0([0, 7] 5 Cos0([0, €] 5 E)) the equation (4.24) in X has at most one strict
solution. If f € Cb_o([0,7];Cosso([0,€]; E)) N B([0,7];Clo([0,&]; E)) then
the equation has a unique solution @, and (4.29) as well as the estimate (4.30)
holds for this solution. In particular, if f € hi ([0, 7];Coso([0,&]; E)) N
B([0,7]; hi_o([0,&]; E)), then (4.31) holds.

4.2.3 Carrying over the results to Cy,g0(Q; E)

In order to carry over these results on the equation D4 + Dg ou = f to the
original evolution equation Du(t, z)+DPu(t,z) = f(t,z) we use Lemma 4.11
together with the following lemma, the proof of which is postponed.

LEMMA 4.15. Let Y = Co0([0,&]; E) and X = Coy0([0,7];Y), where 7,& >
0. Foru: @Q — C, where Q := [0,7] x [0,&], let @ denote the function
a: [0,&] — ([0,7] — C) such that u(t)(x) = u(t,z). Assume that 0 <
a, 8 < 1. Then the following statements hold.

(a) We have

D(Dx) = {u]u, Dyu € Capqo(Q; E)}
and
D(D%) = {u | u, g1-a *u, Di(g1-a *u) € Copgso(Q; E)}
for 0 < a < 1. Moreover, if i € D(D%), then
(0%7) = D

for0<a<1.
(b) D(DY o) = {ii | u, DPu € Cy,050(Q; E)}, and if i € D(DY. o), then

Df, o = Dgu.

(c) D% and DY o are (resolvent) commuting operators in X .
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We assume that u, f : Q — C and @, f : [0,¢] — ([0,7] — C)
are functions such that @(¢)(z) = u(t,z) and f(t)(x) = f(t,z). Then by
Lemma 4.11 (a) f € C(Q; E) if and only if f € C([0,7];C(]0,£]; E)) and
analogously for v and 4. By Lemma 4.15, u is therefore a solution to the
equation D8u+ DPu = f in Cyyg0(Q; E) if and only if @ is a solution to the
equation DG4 + Df/ oti= f in Cos0([0, 7] ; Cos0([0,&]; E)). Consequently, by
Lemma 4.14, also the former equation has at most one solution.

If f € ChHo(@; E), then by Lemmas 4.14 and 4.15 we get a unique
solution u € C5, ,(Q; E) to the equation Dftu 4+ Diu = f in Cayso(Q; E),
and for this solution we have

(4.32) Dju, Dju € Cht, o(Q; E)
and
(4.33) | w ez + | Diulleqqimy + || Diu llewqizy < M| f s,

where M is a constant that does not depend on f.
In particular, if f € hiy's, ,o(Q; E), then

Dju, Diu € hiy, ,o(Q; B).
We have now proved the final theorem of this section.

THEOREM 4.16. Let E be a complex Banach space, let Q@ = [0,7] x [0, &],
where 7,6 > 0, and assume that 0 < p < o« < 1,0 < v < g <1, and
a+p < 2. If f € Coposo(Q;E), then the fractional partial differential
equation

Dfu+ Dy = f

in Coos0(Q; E) = {u € C(Q; E) | u(t,x) = 0 for all (t,z) € 0Q} has at
most one solution, where 9@ := {(t,x) € Q |t =0V x = 0}. The equation
possesses mazimal regularity with respect to the spaces Cy', o and hiy'o, -
More precisely, if f € CSSZQHO(Q; E), then it has a unique solution u. This
solution satisfies Dfu, DSu € C4, o(Q; E), as well as the estimate (4.33).
Moreover, if f € hiyo.,0(Q; E), then also Dju, Dby e Ry oes0(@; E).

We close this section with a proof of Lemma 4.15.

Proof of Lemma 4.15. (a) First we consider the case @ = 1. Assume that
u,uy € C(Q; E). We have

t+h
1

it + h)(x) — (t) (x) Bk / (ue(s, ) — wy(t, 2)) ds

— u(t)(2)

E
t+h

1
<5 /||ut(s,a:) = et 7) | ds.
t
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Since u; : Q — Y is uniformly continuous, for any € > 0 it is possible to
find § > 0 such that || us(s,y) — w(t,z) ||y < & whenever |s —¢| < ¢ and
ly — x| < §. In particular, if |h| < 6, we have || ui(s,z) — u(t,z) ||y < €
provided that (¢,z), (t + h,x) € Q and s lies between ¢ and ¢ + h. It follows
that

u(t + hi)l —a(t) )
) C([Off];E)~
— sup u(t+ h) (x})b —a(t)(x) (@)
z€[0,¢] E
<e.

This implies that 4’ = u;. Hence, we can apply part (b) of Lemma 4.11, with
u; and @' instead of u and 4, to conclude that @' € C([0,7];C([0,&]; E)). Ifu
and u; vanish on 9yQ, then a(¢)(0) = @(0)(z) = 0 and u;(¢)(0) = u;(0)(x) = 0
for all (t,z) € Q.

For the reverse implication, assume that @, @' € C([0,7];C([0,&]; E)). We
have

as h — 0 for any (t,z) € . This shows that u,(t,z) = @ (t)(x). Using
part (b) of Lemma 4.11, this time in the right—to—left direction, we obtain
u' € C([0,€] x [0,¢]; B). If a(t)(0) = u(0)(x) = 0 and u,(t)(0) = uy(0)(z) = 0
for all (t,z) € @, then u and u,; vanish on 9yQ.

Now assume that 0 < a < 1. If u, D{* € Cs,0(Q; E), then a, g1_o*u(t, x) €
CH(Q; E). Hence,

u(t + h,z) — u(t, x)

. —7(t)(x)

‘—>O

91_a *u € Cayoso([0,7]3]0,€]; E))

and

~——

~— /_/a
Dgi_o*u = Dygi_q*u

by the above. But ¢1_o * 4 = g1_q * @, so that we get

e~

—

D% Digia*xt=Dig1_o*u

Diu

by the above.
Conversely, if @, g1_o %, D(g1-a*0) € Coy0([0,7]; Cos0([0,€&]; E)), then,
again by the previous case u, g1 * 4, Di(g1-0) € Coy0—0([0,7];[0,¢]: E)),

and D;g;_o *xu = D% 4.

128



(b) Assume, first, that 5 = 1. Let u, u, € C([0,7]x[0,¢]; E). Then a,u, €
Coso([0, 7] ,COHO([O,f], E))) by Lemma 4.11 (a). By definition u,(t)(z) =
uz(t,z) = u(t)'(x), and we infer that

u e D(DY O) — COHO([OaT] ;C&r—)ﬂ([oag] ; E))),

and that Dy ot = u,.
For the reverse inclusion, assume that

u € D(DY O) - COHO([()?T] ;C(}HU([ng] ) E)))

We have u,(t)(z) = uy(t,z) = u(t)'(xz) by definition. Consequently, we
deduce a,u; € Coso([0, 7] ;Cos0([0,&]; E))), which yields u,u, € C([0,&] x
[0,¢]; E) by Lemma 4.11 (a).

We proceed to the case 0 < 3 < 1. Let @& € D(D? o). This means that
is continuous from [0, 7] to

D(Dy) = {u € Cono([0.7]: E) | g1-5 % u € Cgy0([0, 7] E)}

(provided with the graph norm). Thus, @(t) € D(D§ ) for all ¢ € [0, 7], and
the functions @ and DY od from [0,7] to Y = C([0,€]; E) are continuous.
Consequently, u € Cyyg0(@; E) by Lemma 4.11 (a). By the definition of
Dg o, we have

(D7 0@) (1)(x) = DY (a(t))(x)

= D(g1-p * u(t))(x) = D(g1p * u(t,x))(x)
= Dlu(t, z).

for all (¢, ) Q. Hence, Lemma 4.11 (a) can be applied with f = D’y
and f = DY oi, so that, since DY oit € C([0,7];Y) and D? oa(t)(0) =
DY 0(0)(z) = 0, we have Dﬁu € C;)OQHU([O 7] x [0,7]; E).

We now assume that u, Dfu € Ca,qs0(Q; E) and prove that @ € D(DY. o).
By Lemma 4.11 (a), we have @ € Co0([0,7];Y"), where Y = Cy0([0,&]; E).
Therefore, it suffices to show that u(t) € D(Dy) for all ¢ € [0, 7], and that
the mapping DY o4 is continuous from [0, £] to C([0, £]; E). We already noted
that u(t) € Cos0([0,€]; E). We have

Diu(t,z) = D(gi—g * u(t, z)) () = D(g1-p * a(t))(z) = D’ (a(t))(x).

Thus, Lemma 4.11 (a) can be applied to D?u and © = DP(a(t)), and we
have © € C([0,7];Co-0([0,&]; E)). This implies that o(t) € Co0([0,£]; E),
ie. gi_p*a(t) € CH[0,£]; E) for all t € [0,7], so that, since D?(a(t))(0) =
DPu(t,0) = 0, we get a(t) € D(DY) and DY o @ = DF(a(t)) = o, which is
continuous. Thus, D% o@ € C([0, 7] ; Coso ([0, £]; E)).

(c) In view of Theorem 2.21 (e), Proposition 1.10 and the fact that Dy
and Dy o are positive, it suffices to show that D}(l and (Dyo)™' = Dy'o
commute. Thus, let u € Cy,050(Q; E). By (4.1), Theorem 4.12 (a) and the
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fact that the mapping f — f(x) from Cy([0,&]; E) into E is bounded for
any x € [0,£], we get

and

(Dy o) (t)(z) = / ult,y) dy

0

for all (t,z) € Q. It follows that

t [ =z T

©OsDyen)@)(t) = [ | [u(s.v)dy| ds
0o Lo i
[t 7

:/ /u(s,y) ds} dy
0o Lo i
= (Dy oDy a)(t)(x)

for all (t,z) € @, which completes the proof. O

REMARK 4.17. Lemma 4.15 (c) and Proposition 1.10 imply that Dg and
Dy o commute. Therefore, if u, u;, uz € Caygs0(Q; X), then, by Lemma 4.15,
Uy and uy, exist, Uy, Uy € Coyomo(Q; X), and uyy = Uuy.

4.3 An equation with non—commuting operators

In this section we prove some results regarding the existence and maximal
regularity of solutions u to the equation

(4.34) D{u+bDyu=f (0<a<l),

again in the space Cy,g0(Q; E), where Q = [0, 7] x [0,¢]. Here f: Q — E
and the coefficient b : () — C are given functions. The restrictions that we
impose on b will be specified below. At all events b will be assumed to be
continuous and nonzero everywhere on Q).

As in the previous section, we transform the original equation (4.34) into
an equation in X := Co-0([0,€];Cos0([0, 7] ; E)). We have defined D% in X
so that

D% u(t)(x) = Diu(t, x)

whenever v € D(D}) = {u € Coyo([0,7]5Y) | g1—a ¥ u € Cio([0,7]:Y)},
where Y = Cy([0,£]; E). We have also defined the operator Dy o in X so

that
Dy o a(t)(z) = D[a(t)|(z) = us(t, z)
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whenever @ € D(Dy o) = Cos0([0, 7] ; Coro ([0, €] 5 E)).

Since we assume that b belongs to C(Q), we know that b belongs to
C([0,€]:¢([0,7])). To any such function b € X we may associate a linear
operator in X, also written b by abuse of notation, by putting

(ba)(t)(x) = b(t)(x) a(t)(z)

for all @ € X and all (t,2) € Q. Obviously D(b) = X. Moreover, b is
bounded, and

(4.35) 101lcczy = 10 llece)-

Therefore, we replace Dfu and b D,u by D% @ and b DY o1, respectively, and
consider the equation

(4.36) D% i +b Dyoii= f
in X. Since we assume b(t, z) to be nonzero for all (¢,z) € @, b has a bounded
inverse @, where a = 1/b. It follows that the equation can also be written

(4.37) a D% @ + Dy oit = af.

In the previous section we showed that the operators Dgf( and Dy o are
resolvent commuting, positive and densely defined with spectral angles ar /2
and /2, respectively. It is quite evident, however, that the operators Dgﬁ(
and b Dy o are not, in general, resolvent commuting. Hence, we cannot apply
the results on sums of resolvent commuting operators as in the previous
section. Instead, our objective will be to apply the theory by Da Prato and
Grisvard on the sum of two operators with non—commuting resolvents that
was presented in Section 3.4.

4.3.1 Solving the equation in Cy ([0, 7]; Co0([0,&]; E))

The operator bDy o is of the form C'B, where B = Dy o is positive with
spectral angle wpe = 7/2. Assuming that

[1—alleq) <1/Mp,(¢1)

for some ¢ with wp < w; := m—¢1, Lemma 2.26 shows that BD@ o is positive
with spectral angle w; Dy o < WI- If we also have wps, +wy <7, then we shall
see that Theorem 3.42 may be applied to the operators A = D;E(, B =Dyo
and C' = b. Under similar conditions the same theorem may also be applied
with A = Dy o, B = D% and C = a. The following lemma ensures that

we can satisfy the hypotheses of that theorem with a suitable choice of the
function b € C(Q).

LEMMA 4.18. Let 0 < p<a <1,0<v < <1, and let b € C*V(Q),
where p < (' <1, and v < V' < 1. Assume that b(t,z) # 0 on Q, and set
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a=1/b. Then for any ¢1 < (1 — a/2)7 and any ¢o < (1 — B/2)7 there are
constants Ky, Ky > 0 such that

(4.38) || [b5 (= +D%) ™ allew , wymy < Ki(|z71 7% |z| 71 0mv0me)
Y

for all z with |arg z| < ¢, and

(4.39) | [a;(z+D¥ o)_l]BHL(DD%(#/a)) O o P e S L)

for all z with |arg z| < ¢,.
Proof. Recall that

Dy ,(v/5) = X 0 B([0,7]:€7([0,€]; B))
and

DD?Z’ (M/a) = Cg»—)O([Oa 7—] ; CO»—)O([Oa 5] ; E))

with equivalence of the respective norms (cf. Lemma 4.11). We have

t
- b(t
{[bs;(z+ DX)’I]EMl}(t)(x) = /ez(ts) (76((5’,:;)) — 1) u(s, z) ds.
0
Let us set
v:=Rez
10l := 1| bllecq)
| @ [0 == [l |leqo,mc0.6:m))
[b]ﬂl’yl = [b]C“I’DI(Q)
(@], = [a)enqomeqosmy)
and
[a], == 1 Ta@®) ]ev o .g.m) lleqom)
Then
LULI, la(t, z)||b(t, z) — b(s, 2)| < || allo[b],, |t — s
— = |a X xXr) — S, T a || oo P |U— ST,
b(S,.ﬁU) 3 3 ’ = w v
so that

I[85 (2 4+ D)™ 10 [|eqo.re(o.g:m))
t

< ||a||oo[b]u,y,||u||oo/e—7(t—s)(t_S)uf »
0

= [lalloclb]pll wllocy "
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We also have

(4.40)
(e 1) e = (g =) o

b(t,x) — b(s,x b(t,z) b
= M) )~ s + (e~ 1) s
where
b(t’xb)(;al:))(s’x) (u(s, ) —u(s,y)) . < (lallsc[t],y[u],lt - s — yl”
and
bt,x) _ b(ty) _ b(t2)b(s,y) — b(s, 2)b(t,y)
b(s,z)  b(s,y) b(s, z)b(s,y)

(b(t, {L“) - b(S, x))b(s, y) + b(57 SE) (b(S, y) - b(t: y))
b(s, z)b(s, y)

_ (b(t, x) = b(t, y)b(s,y) +b(t, y)(b(s, y) — b(s, z))
b(s, z)b(s, y)

The last two equalities give

b(t,ZE) b(ta y) !
- < 2[[bJooll @5[ &, o It — 5]

b(s;x)  b(s,y)

and

b(t,x)  b(t,y) y
- <21 bllooll @ 12,101, il — ]

b(s,x)  b(s,y)

whence

b(t,fl?) o b(tiy) all? — 3 w(1—v/nu'’) 7 —yl?
s = S < bl 8L b = O —
Using (4.40), we therefore deduce

1{[b5 (= +Dg) laak(®)(@) — {[b5 (= + Dg) ' 1ba}()(y) Il

t

<ol [ (llalualbl Lulfe - 5P
0

+ 2] bllooll @ lZ[0] 00l e [lso]t = s|u'<1—u/u'>) s,
It follows that there is a constant k; such that

{65 (= +Dx) Maallo,, e
< (T O (Ll + [a],)
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and consequently

I105(z+Dx) e, wisy
Y
< Iy T | T O,

Since v = Re z > |z|sin ¢y, this takes care of the case a = 1.
If 0 < @ < 1, then, using formula (2.51), we get

{163 2+ D%) 1 a} () («)
_ sinma /r“(r“ + 26N 4 2e7 )T by (r + A) 7 ] a(t) (z) dr

™

0

for all z with |arg 2| < ¢pa = (1 — @/2)7. Using the above estimates, we
hence obtain

I{[b; (= +D%) ' aa}(t) (LRROD
< ko (I OO (oo + [u], )

for some constant k, This proves (4.38).
The proof of (4.39) is perfectly analogous, since

b(t, x)

b(t, y) - 1) U(t, y) dy,

{la;(z+Dg) ' Jba}(t)(x) = /Ie_z@_y) (

for all z with |arg z| < 7/2, and

_sin Wﬁ

{[d;(z+D€o)’1]5a}( rP 4 2e™Y (1P 4 e )

[G;(r+D2)~ o ]b(t)(z)dr.

for all z with |arg z| < Ppe o = (1-—p5/2)r. O

With the aid of Lemmas 4.18 and 2.26 we may now apply Theorem 3.42
with A = D%, B =Dy o and C = b to the equation
Aii+ D% i + bDy ot = f

provided that |[1 — alcq) < 1/Mp, (¢1) for some ¢ with wp, . = 7/2 <
w =1 —¢ < (1 —a/2)1 = ¢D§z' In that case there is some )y > 0
such that the equation under consideration has a unique solution @ for any
f € Dp, o(v,00) = XNC([0,7];:€*([0,€]; E)) and any X > \,. Moreover, we
have

(441) D?( ﬂ, DY olu € DDY O(l/, OO)
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Let us also consider the equation
AU +aD% 0 + Dy ot = g.

If we assume that there is a ¢, with wpa = ar/2 < wy =T — ¢y < )2 =
¢py o such that || 1 —bllcg) < 1/Mpa (¢2), then this equation has a unique
solution ¢ for any g € Dpa (u/a) = Cyo([0,7]:Cos0([0,€]: E)) and any
A > Aj, where 0 < p < «, and Jj is a nonnegative constant.

If we take g(t,z) = e *a(t,x)f(t,x), we obtain a solution ©. Then d,
where u(t, z) = e’ v(t, z) solves the equation a D% @ + Dy ot = af, i.e.

D% @+ bDy ot = f.
We also have
(4.42) D% @, Dy ot € Dpa (p/ ),
For this solution @& € D(Dy o) to the equation
D% @+ bDy ot = f.
we let w be the solution to
A + D% @ + b Dy ot = A,
where A > A\g. Then, by what has been said above,
D% @, Dy ow € Dp, (v, 00).
Subtracting the last two equations, get
At — ) + D% (it — @) + bDy o(ii — ) = f.

If f e Dpe (11/ e, 00) NDp,, o(v, 00), it follows that both D} @ and D% (4 — w)
belong to Dp,, o(v, 00), so that D @ also belongs to this interpolation space.

In the same fashion we see that Dy ou belongs to Dp, o(v,00). Recalling
(4.42), we hence get

(4.43) D% @, Dy ot € Dps (/) N Dp, o(v, 00).

Summing up what has been proved so far, we arrive at the following
lemma.

LEMMA 4.19. Let 0 < p < a < 1,0 < v < 1, and let b € C*"(Q)

and b(t,x) # 0 for all (t,z) € Q = [0,7] X [0,&], where p < p' < 1, v <

V' <1 andT,§>0. Assume, in addition, that |1 —al|cq) < 1/Mp, (¢1)and

[ 1=blle(@) < 1/Mpa (¢2) where am/2 < ¢1, m—dy < w/2. Then the equation
D% i+ bDy ol = f

has a unique solution @ for any [ in

XM,V = CgHO([O’ T] ;COHO([O’ 6] ; E)) N COHO([OaT] ;C(IJJ»—>0([07§] 3 E))

Moreover,

D% @, Dy ol € X,
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4.3.2 Carrying over the results to X = Cy,00(Q; E)

Imitating the procedure used in the unperturbed case, we can show that if
b, a,, u and v are as in the previous lemma, then the equation

Diu+bDyu = f

has a unique solution u € Cayo0(Q; E) for any f € Cy',,o(Q; F), and the
solution as well as Dfu and D,u belong to Cyp, ,o(Q; E). We thus obtain
the final result of this section.

THEOREM 4.20. Let 0 < p < a<1,0<wv < 1. Assume that b € C*"'(Q)
and b(t,x) # 0 for all (t,z) € Q = [0,7] x [0,&], where p < p' < 1, v <
V' <1 andT,§> 0. Assume, in addition, that |1 —a||cq) < 1/Mbp, (¢1)and
11 ="0lleqq) < 1/Mpg(¢2) where am/2 < ¢, m — ¢po < m/2. Then for any
f€Csl,0(Q; E) the equation

Diu+bDyu = f
has a unique solution u, and we have

Diu, Dyu € Cy7 L 0(Q: E).
REMARK 4.21. If b € CH V' (Q), we can define b € C*¥(Q) by putting
b(t,xz) = b(t, box) /by, where by = |b(0,0)| and @ = [0, 7] x [0,&/bo]. Clearly,
if u solves the equation

(4.44) D%u+bDyu = f

in C&)Q»—)O(Q; E), then v(t, z) = u(t, boxt) solves the equation D+ bD?u = 0
in Cy,gs0(Q; E) and vice versa.

If we developed a technique to accommodate nonzero boundary values at
t = 0 and z = 0 we would thus be able to state the theorem for any rectangle
Q = [0,7] x [0,&] and any b € C**¥'(Q) with b(t,z) # 0 for all (t,z) € Q. A
result of this kind has been presented in [4].
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A Vector—valued calculus

In the first section of this appendix we give short introduction to Bochner in-
tegrals of vector—valued functions defined on Lebesgue measurable subsets of
R. In the second we prove some results from vector—valued complex analysis,
the final goal being the Residue Theorem together with some observations
on residues at poles. The material is mainly based on [2].

A.1 Bochner integrals
A.1.1 Measurable functions

Let X be a complex Banach space, and let {2 C R be Lebesgue measurable.
Analogously to the scalar-valued case, a function : 2 — X is a simple

function if
n
f= Z XQ; i
i=1

where n € N, {z;}!_, C X is a sequence of vectors, and is {€;},_, a sequence
of pairwise disjoint Lebesgue measurable sets €); C € with finite Lebesgue
measure m(€2;) >0 fori=1,2,...,n.

If the sets §2; can be chosen to be intervals, then f is a step function.

A function f : Q@ — X is strongly measurable if there is a sequence
{gn} >, of simple functions g, : @ — X such that f(¢) = lim,,_, g,(t) for
almost all ¢ € ). From now on we omit the word tstronglyt and simply say
that f is measurable when f is strongly measurable.

We note that if X = C, the above definition of a measurable function
agrees with the usual one. It is also obvious that if f : @ — X is the
pointwise limit (a.e.) of a sequence of measurable functions f, : Q@ — X,
then f is measurable.

If X and X; (i =1,2,...,m) are Banach spaces, the functions f; : Q —
X; are measurable, and k£ : X; x Xy x ... x X,, — X is continuous, then

kE(fi, fa,..., fm) is measurable. In fact, if ¢" : Q — X, are sequences of
simple functions with lim,,_,o. ¢g"'(t) = fi(¢) for a.e. tandi =1,2,...,m, then
k(gt, 9%, ...,g9m) :  — X is a sequence of simple functions that converges

pointwise to k(fi, fa, ..., fm) a.e. in . In particular, if f,¢g : Q@ — X and
h : @ — C are measurable, then so are || f ||, f + g and hf.

We say that a function f: Q — X is almost separably valued if there is
a nullset Qg C Q (i.e. Qg has zero measure) such that f(Q\ ) is separable.
A function f : Q — X is weakly measurable if (f(z),¢) : @ — C is
measurable for all ¢ € X*. Thus, a measurable function f : Q@ — X is
weakly measurable. In fact, using these concepts, we can state an equivalent
characterisation of measurability for vector valued functions.

LEMMA A.1 (Pettis). A function f: Q — X is measurable if and only
if it is weakly measurable and almost separably valued.
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As a consequence of this lemma we note that if X is separable, then
f: ©Q — X is measurable if and only if it is weakly measurable.

A.1.2 Bochner integrability

If f:Q — X is a simple function with f = Y7 | z;xq,, we define the
integral of f over {2 by

(A1) [ rtyde =S (@,

where 1 is the Lebesgue measure on 2. It is a simple exercise to show that
this definition is independent of the particular representation of f as a simple
function.5

If f: Q — X is a simple function, then || f|| : Q@ — R" is a simple
function, and it is an immediate consequence of the above definition that

(A2) /?mw g/wmnm

A function f : Q — X is called Bochner integrable if there exist simple
functions g, : 2 — X such that

(A.3) lim g, (t) = f(t)

n—o0

for a.e. t € €, and

(A4 lim [ 1176 = 9a(0) || dt = 0.

In that case one easily checks that the sequence of integrals fQ gn(t) dt is a
Cauchy sequence in X, so that one can define

(A.5) / f()dt = lim [ g,(t)dt.

Q

This definition is unambiguous, since if {h,} -, is another sequence of simple
functions with properties (A.3) and (A.4), then

[t~ [ o /mn nm+/w* (0]

Q Q
6Starting from any representation f =>r xeziof f,asin the definition of a simple
function, we can take the union of those €2; for which the z; are equal (i = 1,2,...,n). In

this manner we obtain a representation f = > | xo,z;, where (i) m(;) # 0; (ii) z; # 0;
(iii) 2;NQ; = 0; and (iv) 2; # x; fori,j =1,2,...,n and i # j. For such a representation
one has R(f) \ {0} = {z1,22,...,2,} and Q; = f~(x;) for i = 1,2,...,n, which implies
that this representation of f is unique except for the order of the terms xq, ;. It is clear
that the construction of this new representation of f does not change the value of the left
hand member of (A.1).

138



and the integrals on the right hand side vanish as n — oo.
Let us also define f; f(t) dt by setting

b f f(t) if a<hb,
/f(t)dt: _ f ft)dt if b<a,
where a,b € RU{—00, 00} and the combinationsa = b = —occ and a = b = 0o

are excluded.

One easily shows that [, f(t)dt € span{f(t) |t € Q}, the closure of the
linear span of the set {f(¢) |t € Q}

As in the scalar valued case, the mapping f +— fQ t) dt is linear from
the set L'(Q; X) of Bochner integrable functions into X. 7

It is obvious from the definition of Bochner integrability, that if f is
Bochner integrable, then f, and hence also || f ||, is measurable. Moreover,
the inequality

Jrs@la< [lao1ds (176001 d

shows that || f || is integrable, or, in other words, f is absolutely integrable.
In fact, we have the following theorem.

THEOREM A.2 (Bochner). A function f:Q — X is Bochner integrable
if and only if f is measurable and || f|| is integrable. Moreover, if f is

Bochner integrable, then
[roal < [
Q Q

Proof. We have proved that if f is Bochner integrable, then it is measurable
and || £ is integrable. Therefore, let us assume that f is measurable, and
that || f || is integrable. Let {g,} -, be a sequence such that g, — f pointwise
on 2\ Qy as n — 0o, where m(Qg) = 0. Let us define

(1) :{ ga(t) if flgnll <20 F1,

0 otherwise.

Obviously h, is a simple function, || h,(t)| < 2| f(t)|| for n = 1,2,...
and t € Q, and h, — f on Q\ Q. Hence, ||h,(t) — f(¢)]|| < 3| f] and
| hn(t) — f(£) || = 0 as n — oo for t € Q\ Qy. Consequently, the scalar form
of the Dominated Convergence Theorem shows that

lim/||h 0| dt = o.
n—oo

"For the notation L'(£2; X), see Subsection A.1.9.
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It follows that f is Bochner integrable, and

/ F(t)dt = lim [ hy(t)dt.
Q n—oo Q

Moreover, we have

o] -se] e
lim h,, dt = dt,
< lim [l ae= [ ) 50)1 a

where we have applied, again, the Dominated Convergence Theorem for
scalar—valued integrals and the fact that || [, ha(t)dt| < [, | ha(t) ] dt
(since each h, is a simple functions). O

A.1.3 The Dominated Convergence Theorem

One of the most important results of integration theory is the Dominated
Convergence Theorem. In the vector-valued case it can be stated as follows.

THEOREM A.3. Let f, : Q@ — X be Bochner integrable functions (n =
1,2,..0). If limy, o fn(t) = f(t) for a.e. t € Q, and if there is an integrable
function g : Q@ — R with || fo(t) || < g(t) a.e. for all n, then f is Bochner

integrable, and
/ f(t)dt = lim fn()
n—oo

Moreover,

lim/||fn 0| dt = o.

n—oo

Proof. Since, under the assumptions of the theorem, f is the pointwise limit
(a.e.) of a sequence of measurable functions, it is measurable. Then so are the
functions f,—f (n=1,2,...),and || f, — f||. Obviously || f, — f || < 2g a.e.,
so that we can apply the familiar scalar—valued version of the Dominated
Convergence Theorem to || f,, — f||. Hence,

hm/||fn t) |l dt = 0.

But

s{(fn(t) — f(t))dt H < s{ Il fu(t) — f(t) || dt, and we deduce that

/f - Jim, | o

n—oo
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Let us also mention the following easy corollary to the Dominated Con-
vergence Theorem.

COROLLARY A.4. Let f: (a,00) — X be measurable, where a € R, and
assume that limp_, s faTH f(@) ||x dt is finite. Then f is Bochner integrable,

and .
/f(t)dtz%i_r)n /f(t)dt

Proof. By assumption the functions x(,,7)f are Bochner integrable over the
interval (a,00). Moreover, the monotone convergence theorem for scalar—
valued functions shows that

ﬂu mw—hm/mm~ mw—hm/w )l di < oo,

so that f is also Bochner integrable. Since || x(ar)(t)f(t) HX < | f(t) |y for
all t € (a,00), the corollary follows by an easy application of the Dominated
Convergence Theorem. O

A.1.4 The action of closed linear operators on Bochner integrals

If f =37, 2z;xo is a simple function mapping  into a Banach space
X, and if L : X — Y is a linear mapping of X into another Banach
space Y, then Lf is obviously a simple function mapping €2 into Y, and we
have L [, f(t)dt = [, Lf(t)dt. The following two theorems give sufficient
conditions on L for this formula to hold for functions f that are not simple.

THEOREM A.5. Let L : X — Y be a bounded linear operator that maps a
Banach space X into another Banach space Y. Assume that f : Q — X is
Bochner integrable. Then Lo f:Q — Y is Bochner integrable and

L/f(t) dt:/L(f(t))dt.

Proof. Let {g,}.-, be a sequence of simple functions from €2 into X, with

lim g,(t) = f(t)

n—oo

X for a.e. t € Q and limy, o0 [, || gn(t) — f(t)|| dt = 0. Then Lo g, is a
simple function for n = 1,2, ..., and lim,_,o Lg,(t) = Lf(t) in X for a.e.
t € Q2. We also have

J 1210 = L) - de <121 [ 150 = 9u(0) 11
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and the integral on the right hand side vanishes as n — co. Hence, Lo f is
Bochner integrable and

/Lf(t)dt: lim [ Lg,(t)dt=1L lim/gn dt —L/f

n—r00 n—r00
Q Q Q
Here we have used the fact that [, Lg(t) dt = L [, g(t) dt for simple functions
¢, which is an immediate consequence of the deﬁnltlon of the Bochner integral
of a simple function. O

THEOREM A.6. Let A be a closed linear operator from a Banach space X
into a Banach space Y, and let f : Q — X be Bochner integrable. Assume
that f(t) € D(A) for every t € Q, and that Ao f : Q — Y is Bochner
integrable. Then [, f(t)dt € D(A), and

A/f(t) dt:/A(f(t))dt

Proof. Let us define the function ¢ : 2 — A C X X Y by the equality
g(t) == (f(t), A(f(t))) for any t € Q. If we provide X x Y with a norm
defined by || (z,y) || = ||z |lx + | v]ly, then X x Y becomes a Banach space.
Asboth f: Q — X and Ao f: Q — Y are measurable, it is clear that
g is measurable. Moreover, [, || g(t) | dt = [,(I| f(t) |x + | A(f () |ly) dt is
finite, so that g is Bochner integrable.

Since the operator A is closed, it is a closed linear subspace of X x Y.
It follows that [, g(t) dt € span {(f(t), A(f(t))) |t € Q} C A. Let m : X x
Y — X and 7y : X XY — Y be the projections of X x Y on X and
Y, respectively. These projections are bounded linear operators, and, by the
previous theorem, we have

o s [0
w [ o)a / (/1)) dt.

</ (1) dt, QA(f(t))dt) :/Qg(t) dte A

It follows that [, f(t) dt € D(A) and A [, f(t) dt = [, A(f(t)) dt. O

Hence,

The proof of the following useful lemma illustrates how many results for

vector-valued integrals can be obtained by a simple application of Theo-
rem A.5 and the Hahn-Banach theorem (Theorem A.8).

LEMMA A.7. Ifh: Q — C is absolutely integrable and x € X, then f(t) =
h(t )x deﬁnes a Bochner integrable mapping of 0 into X, and fﬂ t)xdt =

(Jo h2) di) .
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Proof. Tt is clear that f, defined as in the lemma, is measurable. By assump-
tion, || f || = ||z || |h| is integrable. Hence, f is Bochner integrable.
Now take ¢ € X*. Then

< / F(t) dt, ¢) = / (F(8). ) di

- /(x, Vh(t) dt

Q

.y, /h(t)dt 5, 8).

Q

Since these equalities hold for any ¢ € X*, the Hahn-Banach theorem, stated
below, implies that [, f(¢) dt = (f h(t) dt) . O
Q

THEOREM A.8 (Hahn-Banach). Let X be a normed vector space. If .,y €
X and (x,d) = (y, ¢) for any ¢ € X*, then x = y.

Another way of putting the statement of the Hahn-Banach theorem is to
say that the dual of a normed space X separates points on X. A proof of
this result can be found in e.g. [12|. (There X is only assumed to be a locally
convez vector space). The Hahn-Banach theorem will prove very useful in
the sequel.

A.1.5 Change of variables

In this subsection we investigate how the familiar change—of—variables for-
mula for Lebesgue integrals can be carried over to our present vector-valued
setting.

THEOREM A.9. Let T : Q' — Q be a differentiable bijection with continu-

ous inverse, where Q' C R is open and 2 C R is open and bounded. Assume
that f : Q — X is Bochner integrable. Then T'(foT) is Bochner integrable,
and

/ f(t)dt = / T'(s)| F(T(s)) ds.

Proof. Let T : Q' — Q and f: Q@ — X be as in the theorem. Then the
function || f || : 2 — R* is integrable over €2, and we have®

[1s1d= [ i) b

Hence, |T'| (f o T) is Bochner integrable over €2'.
8See e.g. [11], pp. 185-187.
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Let us choose an arbitrary ¢ € X*. Then®

([ ) £@)ds.é) = [ 176 (). ) ds

= [0 0rdt=( [ 1)t 6)

Q Q

Hence, by the Hahn-Banach theorem, the statement of the theorem is true.
O

REMARK A.10. By the method used in the proof of Corollary A.4, one can
easily show that the above theorem remains true when €’ is an interval, and
() is an interval that is possibly unbounded.

A.1.6 The Fundamental Theorem of Calculus

Let f: 2 — X. An integral function of f is a function F':  — X such
that F' = f. The following lemma shows that integral functions on intervals
differ by a constant.

LEMMA A.11. Let I C R be an interval. If f : I — X 1is differentiable
and f' =0, then f is constant.

Proof. Take ¢ € X*. Then (f(£),8)' = (f'(t),#) = 0, so that (f(£), ) is
constant. Consequently, f is constant by the Hahn-Banach theorem (Theo-
rem A.8). O

We now prove that a function that a continuous function on a closed
interval always has an integral function.

THEOREM A.12. Let f: (a,b) — X be Bochner integrable and continuous
att € (a,b) (a,b € Rya <b). Then the function F : (a,b) — X defined by
F(s) = [ f(r)dr is differentiable at t, and S'(t) = f(t).

Proof. Take an arbitrary e > 0. If h € R\ {0} is so small that ¢t + h € (a, b)
and || f(s) — f(t) || < e for |s —t| < h, then

t+h
1

|praen —ro) - 0] = | § [ - s

t

< %/t+hWﬂ$—f®HdS

t

<e.

9For the second equality, see the previous reference.
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REMARK A.13. If f: (a,b] — X is Bochner integrable and left contin-
uous at b, we can put f(¢t) = f(b) for ¢t > b. Then f : (a,00) — X is
Bochner integrable and continuous at b, so that F' is left differentiable with
left derivative f(b) at b. In the same manner one shows that if f : [a,b) — X
is Bochner integrable and right continuous at a, then F'is right differentiable
at with right derivative f(a) at a.

Let us finally state and prove the vector—valued counterpart to the clas-
sical result on the correspondence between integration and differentiation.

THEOREM A.14 (The Fundamental Theorem of Calculus). Let f :
[a, b] be continuous, and let F be an integral function of f, i.e. F' = f. Then

[ r0yat=ro) - Fa

Proof. Take ¢ € X*. Then (F(t), ¢)' = (F'(t), ) = (f(1), p), so that

b

< / £(t) dt, 6) = / (F(8). &) dt

a

= (F(b),9) = (F(a), ¢) = (F(b) — F(a),9),

by the familiar scalar version of the Fundamental Theorem of Calculus. Ap-
plying the Hahn-Banach theorem, we arrive at the statement of the theo-
rem. 0

A.1.7 Integration by parts

Let A : [a,b] — C and f : [a,b] — X be continuous functions, and
assume that A = A’ and f = F'. Then {AF} = AF + Af is continuous,
so that, by the Fundamental Theorem of Calculus, A(b)F(b) — A(a)F(a) =
fab At)F(t) dt + fj A(t) f(t) dt. Consequently, we have the following theorem.

THEOREM A.15. Let a < b, and assume that A\ : [a,b] — C and f :
[a,b] — X are continuous functions with integral functions A and F, re-
spectively. Then

and
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A.1.8 Fubini’s Theorem

It should be perfectly clear how the concepts of measurability and Bochner
integrability can be generalised to functions f : © — X, where (Q, u) is
some general measure space. In particular, we can consider measure spaces
(1 x Q9,m), where Q1,0 C R are Lebesgue measurable and m is the
Lebesgue measure. We have the following vector-valued version of Fubini’s
Theorem.

THEOREM A.16. Let Q1,25 C R be Lebesque measurable, set £ := 21 X )y,
and assume that f : Q — X is Bochner integrable (with respect to the
Lebesgue measure). Then the integrals

//f(s,t)dtds,//f(s,t)dsdt

Q1 2 Qs O
exist and are equal to the double integral [, f(s,t)d(s,t).

The proof of this theorem is omitted. Note that f is Bochner integrable
if and only if it is measurable and one of the integrals [, || f(s, ) || d(s,t),
[ [ f(s,t)]| dtds and [ [ ]| f(s,t)]|| dsdt is finite, in which case they are

Q1 Qs Qs O
all finite and equal.

A.1.9 [P-spaces of vector—valued functions

Analogously to the scalar—valued case one defines the spaces L?(Q; X) for 1 <
p < oo by setting LP(Q; X) = {f : Q — X | f is measurable and || f || €

L2}, and [ f |l oiaux) = I llx o gqys B0

1 v = var) |
o) = ( [ses t) (v € [1,00)
17 o = esssup{| 70 1 14 € 2.

In particular, we note that L!(Q; X) is the precisely the collection of Bochner
integrable functions f: 2 — X.

Hoélder’s inequality for scalar—valued functions shows that if f € LP(I)
and g € LY(I; X), where 1 < p,q < oc, and % + % =1, then fg € L'(I; X)
and

(A.6) | fg ||L1(I;X) <|f ||Lp(1) g ||Lq(I;X) :

The spaces LP(€); X) are, in fact, Banach spaces for 1 < p < oc.
For 0 <a<b<o0,1<p< oo, and a Banach space X, we also define
the spaces L?((a,b); X) by

LP((a,b); X) :={f: (a,b) — X | f is measurable and
/1]

L2((ap):x) < OOF;
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where

b
| — (fllf pdt) if 1<p<oo
(ab);X) )

ft)|lx if p=oc

esS SUD,<i<p || /(1)
In particular, we set L?(a,b) := LP((a,b);C).
A.1.10 Convolutions
If he L'(R) and f € L'(R; X), then |h|, || f || € L'(R), so that the convolu-

tion

(] 11 £ Dt /|ht—8|||f)||ds

of |h| and || f || exists for a.e. t € R. Hence, h(t — s) f(s) is integrable over R
with respect to s for a.e. t € R, and we define the convolution A * f by

(h* f)(t) = /h(t —s)f(s)ds (a.e. t € R).

R

For intervals I C R, h € L'(I), and f € L'(I; X) we define h x f = (xrh) *
(xrf) on I. In particular, if h € L*((0,7)) and f € L'((0,7);X) for some
T € Ry, then

(h*f)(t):/h(t—s)f(s)ds (ace. £ € (0,7)).

A.1.11 Young’s theorem

THEOREM A.17 (Young’s theorem). Let let f € LP(R) and g € LP(R; X),
where X is a Banach space and 1 < p,q < co. Let %4—% =1+ % Then fxg
belongs to L™ (I; X), and

1 f+g ||LT(R;X) <|f ||LP(R) g HLG(R;X) :

Proof. (Outline) The measurability of f *x g : R — X follows by Pettis’s
theorem and the measurability of f * h for all h € L(R) obtained in the
scalar-valued version of the theorem. Young’s inequality for scalar-valued
functions then gives

1 * g llzray < WL gl Nl
< vl 9 1 oqsx)-

Note that, in case p, ¢, r # oo, the second (scalar—valued) estimate is obtained
by first applying the generalised Holder inequality to

(fxh)(t /f t—sds—/f
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with p; = %, D2 = = q, and p3 = r, which gives

(F * YO < | £ I | 11527 /|f P|(t — 5)[7 ds,

and then integrating over R with respect to ¢, using Fubini’s theorem. O

The last estimate of the following corollary to Young’s theorem is exten-
sively used in Chapter 3.

COROLLARY A.18. Let X be a Banach space, let I = (0,00) or I = (1,00),
and assume that t=° f(t) 6 LP(I) and tg(t) € Lq(I X), where § € R and
1 < p.g < oo. Let h(s) == [, f( stdt/tand +——1+— Then

#'h(t) € Li(I; X), and

| £°h(t)

U HLQ(IX < Ht_af ”iag(t)

HLP L HL‘j(I;X'
In case p=1 and r = q, we have t°h(t) € LY(I; X), and

(A7) | £h(2) |

o S FO ] (@)

Proof. First note that

/f 1/)g(1) diJt.

Assume that I = (0,00). Let us define fi(t) = f( ) and ¢(t) =
g(e"). Then t°f(t) € L2(I) iff e™fi(et) € LP(R), t'g(t) € Li(I;X) iff
g (et) € LULX), 1£°f @) ey = e fi(e) I, 1790 lraax) =
|| €1 (L) || 2o (7., and

e’ h(e’) = /ea(s_t)fl(s —t)eP gy (t) dt

R
= e fi(t) x e gy (2).

Hence, we only have to apply Young’s theorem to the functions e f; (et) and
g, (€b) to deduce that e’*h(ef) € L"(R; X), and

le™h(e®) [l @y < €™ fi(®) @l € g1(2) o)

from which the first statement of the corollary follows.
To handle the case I = (1,00), we define f, € LP(0,00) and gy €

go(t) =01if 0 < ¢t < 1. We also define hy € L((0,0c); X) by

d [
/fo )go(st)— Z/f gost
1
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If s > 1, then go(st) = g(st) for all ¢t > 1, so that h C h;. Hence, t=%h(t) €
L((1,00); X) and

”i_eh@‘ Lr((1,00); X < H tehﬂ
< I = folt ) ” 90 (t) £, L9((0,00);X)
= | 0 f(t) P(1,00) I t'90(t) 7 (1,00):X) °

A.1.12 Operator—valued integrals

As a special case of vector—valued integrals we can consider integrals of the
form B = [, A(t) dt, where A: Q@ — L(X,Y) is Bochner integrable, Y is a
Banach space and X is a normed vector space. Then B € L(X,Y).

THEOREM A.19. Let A : Q — L(X,Y) be Bochner integrable, where
Q C R is Lebesgue measurable, X is a normed vector space, and Y . Assume
that © € X. Then A(-)x :  — Y Bochner integrable, and

/A@mﬁ: /A@m ..

Q Q

Proof. As the mapping B — Bz of B € L(X,Y) to Bx € Y is continuous
and A: Q — L(X,Y) is measurable, A(-)z : Q@ — Y is measurable. Also
| A@)z |ly < [ A®) [|zxy) |2l so that A(-)z is Bochner integrable since
A is.

Let {A,},2, be a sequence of simple functions 4, : Q@ — L(X,Y), such
that A, (t) — A(t) for a.e. t € Q as n — oo, and

/A@ﬁ:hn A (1) dt

n—00
Q Q

in £(X,Y).
Since the A,, are simple functions, so are the A,(-)z, and

/&ﬁﬂtmz/&ﬁﬂﬁ

Hence,
lim [ A,(t)xdt = lim /An (t)dt p x
n—o0 n—0o0
Q Q
- /A@ﬂ .,
Q
so that [, A(t)zdt = { [, A(t)dt} . O
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A.2 Complex integration
A.2.1 Curve integrals

Let v be a path in C, i.e. a piecewise continuously differentiable function
from a closed bounded interval I = [a,b] C R into C. If f is a function that
maps a subset of C into a Banach space X, and if f is continuous on the
range of v, then the function 7' f o~ : I — X is Bochner integrable, and we
can define the integral of f over v by

(A.8) /}uwmz/}wwwwMt

The value of this integral does not depend on the particular parameter rep-
resentation of the path of integration . In fact, if v is a path as above, and
if T is a continuously differentiable bijection of an interval J = [«, 5] onto
I = [a,b] such that T'(a) = a and T(8) = b, then v o T is a path with the
same range as 7, and, by Theorem A.9,

B b
[ 1@dz= [ vawrosema= [ o= [ e

yoT

since T is strictly increasing, so that |T'| = 7" on J.
It is also clear that

o) | [r@e] < [ivasaoia= (1) e,

A.2.2 Integration over unbounded paths

Let us consider a function v : I — C, where I C R is an interval. Let
us further assume that the restriction of v to any bounded closed interval
[a,b] C I is a path. We then define

(A.10) /}@mﬁz/vmﬂwmw

provided that +'(f o) is absolutely integrable over I. The reason for this
definition is that in the main text we consider integrals

o

[1@a= [voroma,

—00

where |y(t)] = oo as t — +o0.
Note that in this context it would suffice to extend the original defini-
tion of a path to curves 7 defined on intervals of one of the forms [a, c0),
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(—o0, b] and (—o0, 00) (whose restrictions to closed bounded subintervals are
paths in the original sense), where a,b € R since all other types of intervals
can be bijectively mapped onto one of these by means of some continuously
differentiable "change of variables function".

A.2.3 The action of closed linear operators on curve integrals

Theorems A.5 and A.6 have the following obvious corollaries that are fre-
quently used in the main text.

COROLLARY A.20. Let L : X — Y be a bounded linear operator that
maps a Banach space X into another Banach space Y. Let v be a path in
C (bounded or unbounded), and assume that f : R(y) — X is continuous.
Then if v is a (bounded) path, we have

g/ﬂ@mz/iuu»@.

If v is unbounded, the same statement holds, provided that fw f(2) dz exists.

COROLLARY A.21. Let A be a closed linear operator from a Banach space X
into a Banach space Y, let f be a function from C into X, and let v be a path
in C (bounded or unbounded). Assume that R(y) C D(f), f(R(v)) C D(A),
and that f and Ao f map R(vy) continuously into X andY respectively. Then
if v is a (bounded) path, we have [, f(z)dz € D(A), and

A/ﬂ@M:/AU@Mz

If v is an unbounded path, then the same conclusion holds, provided that
f7 f(2)dz and fyA(f(z)) dz exist (at least as improper curve integrals).

A.2.4 Holomorphic functions

Let € be an open subset of C and let X be a Banach space as above. A
function f : ) — X is called analytic, if it has a derivative

f'(z) = lim
heC\{0}

fz+h) - f(2)
h

at every point z € (). It is clear that any analytic function f : Q@ — X
is continuous. It is also weakly analytic, i.e. (f(z),¢) is analytic for any
¢ € X*. Moreover (with abuse of notation) (f(z2),®) = (f'(z2), ¢).
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A.2.5 Power series

Let X be a Banach space and let {z,} -, be a sequence in X. We can
then consider the sequence {sy}%_, of partial sums sy = SV z,,. If these
partial sums form a convergent sequence with limit s in X, we say that
Y one oy is a convergent series and denote s by Y > x,. Otherwise the
series Y °  x, is called divergent. The series is absolutely convergent if
> o ll@n ]| is convergent in R. In that case Y -, x, is convergent in X,
since

N N N M
lsx =sarll=1{ > auf < D Maall=D Nl = Izl
n=M+1 n=M+1 n=0 n=0
for 0 < M < N, and X is complete.
One observes that if Y x,, is convergent, then ||z, || = || sy — sn—1 ]| —

0 as N — oo. In particular, the sequence {z,} ~, is bounded in X.
If {a,} 2, is a sequence in a Banach space X and z, € C, we can consider

the power series
o0

Z(z — 29)" ap,
n=0
for any z € C. It can be regarded as a function defined on the set of
all z € C such that the series is convergent, and we can define s(z) =
> (2 — zp)"ay, for such z. By definition, this series converges absolutely if
> o lz = 20|" || an || converges.
Let Y ,(z — 29)"a, be a power series in X, and define

(A.11) R :=liminf1//] an ||,
n—00

the radius of convergence of > (z — z)" || a, ||. Then we know that the
series >~ (z — zp)"a, converges absolutely for all z with |z — 20| < R.

Assume, now, that z; € C and s(z;) is convergent. Then there is a
number M > 0 such that || (21 — 20)"a, || < M for n = 0,1,... Hence,
| (z = 20)"an || < M (]z— 2| /|z—20|)". It follows that Y (2 — zo)"an
converges absolutely for all z with |z — 29| < |21 — 20|, and we have proved
the following lemma.

LEMMA A.22. Let z; € C be such that the power series Y - (21 — 20)"an
converges. Theny o2 (z—zy)"a, converges absolutely for all z with |z — zo| <
|2’1 — Zo|.

Using this lemma, we see that if |2y — 29| > R, then > "_ (21 — 20)"ay,

must diverge, for otherwise there would exist z with |z — zy| > R, such that
Yo _o(z = z)"a, converges absolutely, which is impossible. We have thus
proved the following theorem.

THEOREM A.23. Let X be a Banach space, let {a,} -, C X and define R
by (A.11). Then the power series Y - (z — z0)"a, converges absolutely if
|z — 20| < R and diverges if |z — zg| > R, where R = liminf, ,,1/{/]| a, ||
18 the radius of convergence of the series.
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We shall now prove that (the sum of) a power series is an analytic function
within its radius of convergence. To simplify notation, we restrict ourselves
to power series about the origin, i.e. power series of the form Y > 2"a,.
Substituting w — wy for z in such a series we obtain the general case.

First we note that if the series s(z) = > -2 2"a, is differentiated termwise,
we obtain a new power series s1(2) = Y oo n2"la, = oo (0 + 1)2"an11
with radius of convergence

liminf1/3/(n+ 1) | appr || = lim 1//n + 1liminf 1/ /] ane || = R,
n—o0 n—o0 n—oQ

where R is the radius of convergence of s. Hence, the termwise differenti-
ated series s; converges within R. Repeating this procedure, we see that s can
be k times termwise differentiated for any £ within its radius of convergence
R.

We also need to show that s; is the derivative of s. Thus, let |2] < R and
let Az # 0 be so small that |z + Az| < Ry for some Ry < R. We have

(A.12) G AAZi —s) _ s1(z) = Az Z Z (Z) 2"k (Az)a,.

n=2 k=2

The inequality (}) < (5) (7 3), which holds for k& = 2,3,...,n, yields the

following estimate for the terms of the series in (A.12)

H(@”*@@“%zS(@(g%ﬁ:QVW*mﬁ”>wm

n(n—1 n—
:%|2+Az| 2|l an .

Hence, the series is absolutely convergent, and

s(z+ Az) — s(2) |Az| & 2
_ < _
A, s1(2) || < 5 HEQ n(n—1)z+ Az]"" || a, ||
Az] & ne
<A - DR 0
n=2

This implies that the difference quotient (s(z+Az)—s(z))/Az tends to s1(2)
as Az — 0. Thus, we have proved that a power series can be differentiated
termwise within its radius of convergence.

THEOREM A.24. Let X be a complex Banach space, and let

o0

s(z) = Z(z — 20)"an

n=0
be a power series in X with radius of convergence R. Then s is analytic in
the disc B(zp, R) :={z € C| |z — 20| < R} with derivative given by

o0

§'(z) = Zn(z —20)" a,.

n=1
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A.2.6 Cauchy’s integral formula and Cauchy’s integral theorem

If I' is a closed simple curve that is positively oriented about z € Q C C,
where I is contained in €2, and if f : 2 — X is analytic, then, Cauchy’s
integral formula in combination with Theorem A.5 yields

<f(z0)’¢>_ij[mdz:(i M

211 Z— 2 2t | 2z — 2z
r r

dt, 9).

Consequently, by the Hahn-Banach theorem (A.8), we have the vector—valued
version of Cauchy’s integral formula

(A.13) Flz) = ij[ 1@

2mi |z — 2z
r

In particular, if g : Q@ — X defined by g(z) = (z — 20) f(2) if z € Q\ {20},
and g(z9) = lim (2 — 20) f(2) is analytic, then we have
Z—20

(A.14) Imi Res f(2) = ]{ (1) di
Iy

where

(A19) Res £(2) = Jim (=~ 2)/(2)

is the residue of f at z;. This special case of the general Residue Theorem!°
covers the case where f has at most a simple pole at z; and is analytic
elsewhere. In particular, if f is also analytic at zy, it follows that g(z) =
(#—20) f(20) = 0, and hence §. f(z) dz = 0. Changing the orientation of the
curve does not change this formula. Thus, we have proved the vector—valued
version of Cauchy’s integral theorem.

THEOREM A.25. Let f: Q — X be analytic, and let I be a closed simple

curve in ). Then
]{f(z) dz = 0.
T

A.2.7 Taylor series and Laurent series

Let D C Cbethe annulus {z € C|r < |z — 2| < R}, where 0 <r < R < 0.
Assume that f is an analytic mapping of D into X and let I' be a simple
curve in D that encircles {z € C| |z — 29| < 7} in the positive sense. Let us
imitate the Laurent series representation of scalar valued analytic functions
on D, putting

(A.16) Cp = ! j[(Adz (n€Z)

C 27 Jr (2 — )t
10See Subsection A.2.10.

154



and considering the series

oo

(A.17) s(z)= Y (z—20)"c.

n=—0o0

First we note that if I is another simple curve that is positively oriented
around the disc {z € C| |z — 29| < r} and lies within the annulus, then

R S/ NI U G (E B
Cn_QWijé(z—zo)”“d) 27m']£, (z—zo)”“d (n€Z).

To see this, we take an arbitrary ¢ € X* and obtain

<2Lm]€ ( _f(j)))nﬂ dz,¢) = QLM]{ (Z<f_(2z)0,)<£>ﬂ dz
1 (f(2), 9)
= —,]{I ( dz

27i z — zp)"*!
1 f(2)

2mi Jpo (2 — zo) !

dz, ¢).

The Hahn-Banach theorem then yields the result that we wished to prove.
Now let I' be a circle with centre at z; and radius R;, where r < Ry < R.
Hence, for n € Z, we have

leall < aRy™

where o = 2= §. || f(2) || d|z| Consequently,

liminf1/3/||c_, || > lim 1/R,{/aR, = 1/R;.
n—oo n—oo

It follows that Y (2 — z9) "c_, converges absolutely if 1/ |z — 29| < 1/Ry,
i.e. if |z — 29| > Ry. Since this is true for any R; € (r, R), we conclude that
the series converges absolutely for all z with |z — zo| > 7.

We also have

liminf1/3/| ¢, || > lim Ry {/R;/a = R;.
n—o0 n—o0

As this holds for any R; € (r,R), we see that the radius of convergence
of the series Y ° (2 — 20)"c, is at least R. Therefore, we infer that the
Laurent series s(z) = > -~ (z— 29)"¢, converges absolutely in the annulus
{z€eC|r<|z— 2| < R}

Now, take an arbitrary ¢ € X* and z with r < |z — 29| < R. Then

() = 3 gt ar § D00

e 2mi z — z)"t1
1 z
= Z%z—z (ﬁ%daqﬁ)
= Z (z — 20)"Cp, @).

155



We use the Hahn-Banach theorem, again, to conclude that

Moreover the representation of f as a Laurent series is unique. This is seen
as follows: Let us assume that

oo

Z l(z—z)c:ii(z—z)"c'
27 o) T 27 0/ Tn

n=—oo n=—oc

for all z with 7 < |z — 29| < R, so that

o0

1
n:z_:oo 2mi (z - ZO) dn - O’

where d, = ¢, — ¢,,. Take ¢ € X*. Then

o o

> oo 20 ) = (3 (e~ ), 6) = 0,

n=—oo n=—oo

and the corresponding result for complex—valued Laurent series shows that
(dn, @) = 0 for all n € Z. Since this holds for all ¢ € X*, we conclude that
cn — ¢, =d, =0 for all n € Z.

In case f is analytic in the whole of D, Cauchy’s integral theorem shows
that ¢, vanishes for all negative n, and the Laurent series reduces to a
power series at zy. Differentiating this series n times at 2y, shows that
cn = f™(2)/n!, so that

n! f(z
f(n)(zo):%]{#dz (n=0,1,...)
r
which is the generalised Cauchy integral formula. Thus, a function f that
is analytic in the open disc {z € C | |z — 29| < R} can be represented as a
Taylor series within that disk.
We now sum up the results proved in this subsection.

THEOREM A.26. Let [ be an analytic function on the annulus {z € C|r <
|z — 2| < R}. Then f has a unique representation as a Laurent series

= Y s

in{zeC|r<|z— 2| < R}, where

_ 1 f(z)
Cn-%%mdz

r
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for any closed simple curve that encircles the disc {z € C| |z — 2| <1} in
the positive sense. In particular, if f is analytic in {z € C| |z — 20| < R},
then ¢, =0 forn = —1,—2,..., and the Laurent series reduces to a Taylor
series, and we have ¢, = f™(z)/n! and the generalised Cauchy integral

formula

(5 = f(2) _

f"(20) = 27m'j[(z—zg)”+1 dz (n=0,1,...).
r

A.2.8 The identity theorem

THEOREM A.27. Let f and g be analytic mappings of 2 C C into a Banach
space X. Assume that f(z) = g(z) for all z € Qy C Q, and that Qy has a
point of accumulation in Q. Then f(x) = g(x) for all x € Q.

Proof. Take an arbitrary phi € X*. Then ¢o f and ¢og are analytic mappings
of  into C, that coincide on €. Consequently, ¢(f(z)) = ¢(g(z)) for all
z € Q and all ¢ € X*. The Hahn-Banach theorem therefore implies that
f(z) = g(z) for all z € Q. O

A.2.9 Liouville’s theorem

Assume that f : 2 — X is analytic in a domain that contains the disc
{z € C| |z =20 < r} for some r > 0. Then, by the generalised Cauchy
integral formula applied to f with I’ being the circle |z — 2| run through in
the positive sense,

n!M
| £ (20)] < ——,
r
where M = max{|| f(2)]|| | |z — 20| = r}. Hence, if f : C — X is an entire

function, i.e. if f is analytic everywhere, and if f is also bounded, then

n!M
/’r-’I'L

| £ (20)] <

b

holds for any r > 0, where M = sup{|| f(2)|| | z € C}. Consequently,
f™(2) = 0, so that the Taylor series of f reduces to f(z)."!

THEOREM A.28 (Liouville’s theorem). Assume that f : C — X is a
bounded entire function. Then f is constant.

COROLLARY A.29. Let f be analytic in a punctured neighbourhood of zq €
C, and bounded at zy. Then f is analytic in an neighbourhood of 2.

Proof. By Theorem A.26, f(2) = >.°° (2 — 29)"¢, in some annulus {z €

n=-—oo

C |0 < |z—2| < R}. The series Y >° w"c_, then converges for any

110Of course we could equally well have applied Liouville’s theorem for complex—valued
functions to obtain this result: If f : C — X is bounded and entire, then so is {f(z), ¢) :
C — C for any ¢ € X*, so that (f(z), ¢) is constant. Since this holds for any ¢ € X*, it
follows by the Hahn-Banach theorem that f is constant.
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w (since it must have infinite radius of convergence as > - (2 — 20) "c_p,
converges for arbitrarily small z — z). It follows that g(w) = >~ jw"c_,
defines an entire function g : C — X. By assumption > (z—20)"¢, is
bounded at z;. Hence, ¢ is bounded at infinity. Being an entire function, it is
therefore bounded everywhere. By Liouville’s theorem, g must be constant,
ie. g(w) = ¢ for any w € C. Consequently, f can be represented by the
Taylor series f(z) = Y " (2 — 2z)"c, in {z € C| |z — 2| < R}, and the

power series is analytic. O

A.2.10 The Residue Theorem

One of the important consequences of the Laurent series representation of an
analytic function f in an annulus {z € C |7 < |z — 29| < R} is that we have

(A.19) ff(z) dz = 2mic_y
T
In particular, if 2 is an isolated singularity of f, we define
Resf(Z) = C-1,
2=z

where ¢_; is as above. Imitating the procedure used in the scalar case, we
get the following version of the residue theorem.

THEOREM A.30. Let X be a Banach space, let 2 C C be a simply connected
domain, let v be a closed simple curve in 7y, and assume that f:  — X
has N singular points zi, za, ..., 2zn that all lie within v, which is positively
oriented around these points. Then

2=z

?{f(z) dz = 27m'ZRes f(2)

Proof. (Outline) The proof is based on the fact that there are IV closed simple
curves i, Y2, ..., VYN

f F(=)dz = mﬁ; j[ 7(2) dz,

z; is inside v;, and z; is outside 7; for 4, j =1,2,..., N, i # j (see Figure 7).
U
A.2.11 Calculating residues at poles

Let f: Q — X, where (2 C C is an open set. Then f is said to have a
pole of order n € N at z, if there is a function h mapping dome disc {z €
C| |z — 20| < R} analytically into X, and such that f(2) = h(z)/(z — z)"
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Figure 7: Curves used in the proof of the Residue Theorem

in {z € C|0 < |z—2| < R} and h(z) # 0. Then f is analytic in
{z€ C|0<|z— 2| < R}, and

f(Z) = Z (Z - Zo)kcna
k=—n
where f(z) = Y. (2 — 2)*cp_y is the Taylor series of h, and c_,, = h(0) # 0.
k=0

Thus, if f has a removable singularity, or has a pole of order at most n at
2 = Zzg, then ¢, = 0 for £k < —n, where the ¢, are the coefficients of the
Laurent series of f. Conversely, it is clear that if the Laurent series of f has
the above form, then either f has a removable singularity or has a pole of
order k < n at z. Hence, if we put h(z) = >, (2 — 20)*Ck—pn, we get

o0

(n—1) _ (n—1)! __\k—n+1
h (2) = Z 7(/9 _n+1)!(2 20) Ck—1
k=n—1
so that h(®=D(z) = (n — 1)!c_;, and consequently
1 . d” n
E:ezif(z) = (n _ 1)| ZILIEIO dzn [(Z - ZO) f(Z)]

By Corollary A.29, the condition that f(z) = h(z) = h(z)/(z — z)",
where h is analytic in some disc {z € C| |z — 29| < R} and can be replaced
by the condition that f is analytic and h(z) = (2 — 2¢)" f(2) is bounded in
{z € C|0< |z— 2| < R}. Thus, we have the following theorem.

THEOREM A.31. Let us assume that f : Q — X is analytic in some
annulus {z € C| 0 < |z — 20| < R} C Q. Then f has a removable singularity
or a pole of order k < n at zy if and only if (z — 29)" f(2) is bounded at z,
in which case
1 .dr
Res f(z) = lim [(z = 20)" f(2)]-

2=2q (77, — 1)‘ 2—20 dzm
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B Interpolation spaces

In this appendix we introduce some basic notions and state some basic results
from the theory of interpolation spaces. The material is included for reference
only, and no proofs are given; More systematic introductions to interpolation
spaces can be found in [9] and in [3].

B.1 Intermediate spaces and interpolation spaces

Let X and Y be normed spaces such that ¥ — X, i.e. Y is continuously
embedded in X by the identity mapping. We then say that a normed space
Z is an intermediate space between Y and X if Y — 7 — X.

DEFINITION B.1. Let X and Y — X be complex Banach spaces and Let
Z be an intermediate space between Y and X. Then Z is said to be an
interpolation space between Y and X if any bounded linear operator 7" on
X whose restriction T'|y to Y is a bounded mapping on Y is also a bounded
linear mapping on Z, where each space is considered with its own norm.

REMARK B.2. The concept of interpolation space can be introduced in a
more general setting. Two normed vector spaces X and Y are said to be
compatible if there is a Hausdorff space Z with both X and Y as subspaces.
An interpolation space between X and Y is then a subspace of Z that is
intermediate between X NY and X +Y ={x+y |z € X Ay € Y} (see [3],
pp. 24-28)

B.2 Real interpolation spaces

Let X and Y be complex Banach spaces such that Y < X. We define the
function K by

(B.1) K(2X,V) = inf (Lol +t]yl)
(z,y)eEX XY

for any ¢t > 0 and any z € X. For later use we also define .J by
(B.2) J(t 2, X, Y) = max(|| =l ot [y ):

for all t > 0 and all z € Y. We note that these definitions make K and .J
into norms on X and Y respectively for any fixed ¢ > 0. In the sequel we
shall use the shorter notation K (t,z) and J(t,z) whenever it is clear from
the context what the spaces X and Y are.

Recall that for 0 < a < b < o0, and 1 < p < oo, we have defined (see
p. 146) the spaces L?((a,b)) by

LE((a,b)) :== {f : (a,b) — C| f is measurable and | f ;s < o0},

where )

b P
vy = (Nr0B)" it 1<pcoo

/1

esssUp, | f(t)|x if p=o00
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DEFINITION B.3. Assume that X and Y are complex Banach spaces with
Vo X. If0<f<land1<p<ooorfe{0,1}and p=oc, we set

(B3) || 4y ||(X,Y)9,p = H tieK(t .ZE) ”LZ:(UJ ’
and define
(B.4) (X,Y)op = {z € X | ||2]/(xy),, <0}

If 0 < 6 <1, we also define

(B.5) (X,Y)p:={r e X| yfolt*aK(t, z) =0}

One can show that the sets (X, Yy, and (X, Y'), are interpolation spaces,
called real interpolation spaces'?, between X and Y. This method of intro-
ducing the real interpolation spaces is called the K-method. (There are also
other methods, eg. the trace method and the J-method). All real interpola-
tion spaces between X and Y are complex Banach spaces (see |9], p. 18).

It is obvious from the definition of K (¢, 2, X,Y") that if the norms || ||
and || ||y are replaced by equivalent ones || ||’y and || ||y, respectively, then
there are constants ¢; and ¢y such that if K;(¢, z, X,Y") is the K that results,
then

Kt 2, X,Y) < Ki(t,2,X,Y) < K(t, 2, X,Y)

for all z € X and all ¢ > 0. This, in turn, makes the interpolation spaces
obtained with the different pairs of norms in X and Y equal with equivalent
norms.

The following lemma compares the real interpolation spaces between two
fixed complex Banach spaces X and Y — X to each other.

LEMMA B.4. Let X be a complex Banach space and let Y — X. If 0 <
01 <0y, <1andl <p,q<oc, whereq=o00 if 1 =0 and p =00 if O =1,
then

(B.6) V= (X,Y)g, = (X,)Y)g s = X
If1<pi<py<oxcand (< <1, then

(B.7) Y = (X,Y)gp, = (X.Y)pp, = (X, Y)g = (X,Y)g o0 — X.

Moreover, if On < 0 < 1, then (X,Y), is the closure of (X, Y )y, in (X, Y )00,
and (X,Y)y is included in the closure of Y in X.

The proof is not difficult, and can be found in e.g. 9], pp. 16-18. As a
special case we note that (X,Y)g . = X with equivalence of norms.
REMARK B.5. If X and Y are complex Banach spaces, then || ||(X’Y)€p
is often defined by || = ||(ij)9’p = ||t K(t, x) HL{'(O,oo)'
that this defines a norm on (X, YY)y, that is equivalent to the one introduced
above.

It is easy to show

12The word ‘real’ refers to the fact that real interpolation spaces are obtained by means
of techniques of real analysis.
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B.3 The Reiteration Theorem

One of the most useful results in the theory of interpolation spaces is the
so called Reiteration Theorem. This theorem implies that, if we take two
real interpolation spaces Z; and Z; between X and Y, then, under certain
conditions, forming a real interpolation space between Z; and Z, results in
a new real interpolation space between X and Y. In order to be able to
state the theorem in a somewhat more general form, we first make some
definitions.

Let Z be an intermediate space between Y and X and fix § € [0,1].
Then Z is said to belong to the class Jy(X,Y") if there is a constant ¢ > 0
such that ||z ]|, < et %J(t,x) for any ¢ > 0 and any z € Y. Analogously
we define Z to belong to the class Ky(X,Y) if there is a constant ¢ > 0
ct 'K (t,z) < ||z ||, for any t > 0 and any z € Z. When the spaces X and Y’
are clear from the context, we shall use the abbreviated notation Jy and K,
respectively. We immediately conclude that Z belongs to K, if and only if
Y = Z = (X,Y ) One can also show, that if 0 < § < 1, then Z belongs
to Jp if and only if (X,Y )y, — Z — X. Hence, if 0 < § < 1, we have Z €
Jy N Ky precisely when (X,Y)g; — Z — (X,Y)p 0. In view of Lemma B.4,
both (X,Y)s, and (X,Y)y belong to Jy N Ky if (0,p) € (0,1) x [1,00] and
6 € (0,1) respectively. In addition X € KoN J and Y € J; N K, which is
an immediate consequence of the definition of C7(6) and K, for 6 = 0, 1.

We can now state the Reiteration Theorem

THEOREM B.6. Let 0 < 0 < 6y <1 and0 <6 < 1. Putn=(1—6)6,+60,.
Then the following statements hold for all p € [0, oc].

(i) If Z; € Ky, (i=1,2), then
(Z1, Z3)0p = (X, Y)pp and (Z1, Z2)g — (X, Y),
(i) If Z; € Jy, (i=1,2), then
(X,Y)yp = (21, Z2)op and (X,Y), = (Z1, Z2)g
(i1i) If Z; € Ky, N Jy, (i=1,2), then
(X, Y)np = (21, Z2)op and (X,Y )y = (Z1, Z2)o
with equivalence of norms.

We see that the third assertion of the theorem is an immediate conse-
quence of the first two. For a proof of the theorem, see [3], pp. 50-51.
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COROLLARY B.7. Let 0 < 60,0,,0, <1 and 1 < p,q1,q2 < oc. Then

01,913 (X, Y)92,Q2)9,p = (X, Y)(1—0)01+902,p
00> (X Y)0s.00)00 = (XoY)(1-0)0, 4005,
01000 (X, Y )0, )00 = (X, Y ) (126)0, 4602 p
015 (X7 Y)92)9,p = (X7 Y)(1*9)91+992,p
01,413 Y)G,p = (Xa Y)(1—9)91+0,p

015 Y)H,p = (X, Y)(1—6)61+0

)Hz,qz)'?,p = (Xv Y)992,p

)62)0p = (X, Y ) 9o, p-

SECACEOEON

S T s T s s

= =

==
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