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1 Introduction

The differential algebraic equations (DAEs) are well known to be important
in many contexts in engineering sciences, for example multibody dynamics,
robotics and electric circuits. Their numerical solution has been extensively
studied, beginning from |Gea71]. Some surveys are [BCP89, HW91, Mir92,
AP9S].

Several concepts of inder have been developed to describe the structure
of a DAE. The philosophy behind indeces is: “the higher the index, the more
difficult to solve numerically”. Usually the words ’higher index’ refer to the
probably most popular concept of an index: the differential index. Recent
surveys of different indeces are [CG95a, Sei99).

On the other hand, the concept of an involutive form (or involutivity)
of a system has several definitions which are more or less equivalent. Some
relations between different definitions of involutiveness are studied in [Man96,
Sei99]. In the formal theory of PDEs the involutivity of a system is a key
concept. The philosophy behind involutiveness is: “all relevant information
is explicitly visible”. Now involutivity is defined in a geometrical way and a
natural question arises: is there an algebraic, equivalent concept?

The purpose of this paper is to investigate more closely the (algebraic)
structure of the DAE in the case where equations are multivariate polyno-
mials. The structure is revealed by an algorithm whose output, called a
complete form of the DAE, defines an algebraic counterpart for involutivity.

In case of a polynomial system it is known [Pom83, prop. 4.34] that invo-
lutivity implies the system to be a prime differential ideal (see remark 3.3).
However, it is not clear if the converse holds, that is, is a prime differential
system also involutive in the geometrical sense?

Therefore we cannot directly give an algebraic definition of involutivity of
a system. Instead, we will construct an algebraic counterpart of “an involutive
form” (and call it “complete form”) compatible with the geometric definition
presented in [TA0O|. It turns out that in this polynomial case we can loosen
our restrictions on f and give more detailed information on the structure of
f.

For example, the phenomenon “index depends on the solution” (see e.g.
[AP98]) is explained by ideal decomposition and becomes “index depends on
the prime ideal the solution is in” (see example 3.6). We will also look at
relations to other approaches in literature. In [TA00| relations to the formal
theory of partial differential equations were established.

The paper is organized as follows: in section 2 we review the approach
of [TA0O] and specialize to the case where f is a set of polynomials, and
see where the usual way of finding “an involutive form” of the system under
consideration needs revision because of our definition of solution. In section
3 we recall some necessary algebraic preliminaries and give the new definition
with an algorithm to compute it. In section 4 we briefly look at relations to
other approaches. Finally in section 5 are some conclusions and comments.



2 Background

2.1 Review of geometric approach to DAEs

We will briefly review (about the first half of) the article [TA00], to which
we refer for details and rigorous definitions. In that paper we considered
ordinary differential equations of the form

fl(tiyiy17y27"'7yq) :O
fz(tayayla?JQa---,yq) =0

(1)
fk(t7y7y17y27"-;yq) :O

where & > n, each f' is a smooth function, y is the n-vector of variables,
subscripts denote derivatives. Especially, note that we allow k£ > n which is
sometimes called an overdetermined equation. Also, geometrically there is no
distinction between ordinary differential equation and differential-algebraic
equation, for reasons explained in [TA00, remark 3.6].

The locus of (1) is interpreted as a subset of J,(R x R"), a ¢gth order
jet space over R x R™. Then, the relevant equations deduced from (1) by
differentiation and/or elimination, are those which define the locus as small
as possible. Now the system (1) is defined to be involutive (or an involutive
form) if it is a complete set of relevant equations. As a trivial example,

consider
1
yy—1 =0
; B (2)
y -7 =0

whose locus is {(t, 41,7, 1,y?) € Jo(RxR?)|¢,yt,v? € R}. But, from y>—7 =
0 follows y? = 0 which appended to (2) gives the locus {(¢,y',7,1,0) €
Jo(R x R?) |t,y' € R} which is clearly smaller, hence y? = 0 is a relevant
equation. Also, there are no other relevant equations. Hence an involutive
form of (2) is

y—1 =0
y'=7 =0 (3)
y? = 0.

In conventional DAE analysis (see e.g. [BCP89, HLR&9)), it is customary to
consider only first order equations

ft,y,y') =0.

This is because by introducing more variables one can transform a higher
order equation to a first order one. However, we find it more convenient to
consider equations in the form of (1), mainly for the following two reasons:

1. We want to keep n, the number of y-variables, as small as possible. In
our article [TA0O] it is shown that this reduces the cost of computation.



For, if we transformed (1) to a first order equation the number of y-
variables would be increased from n to ng, which increases the cost of
computation.

2. Tt is ‘common folklore’ that the highest derivatives decide the behaviour
of the system, hence it is unillustrative to "lose’ those highest derivatives
by lowering the order.

2.2  Solution of an (involutive) differential equation and
its numerical computation

This section is very brief since, in this paper, we are not focusing on the
numerical solution. We suppose that our equation f = 0 is involutive in the
geometrical sense of [TA00]. Conventionally, solution is defined as a function
¢: I —R"st. f(t,o(t),d'(t),...,¢9(t)) =0 Vt e I, an open subset of R.
However, we use a geometrical definition:

Denote M := f~'(0) C J,. On M we define a distribution

D, :=TM,NC,

where C, is the Cartan distribution at p € M and T'M,, is the tangent plane
at p. It is a well known fact from differential geometry that a one-dimensional
distribution has an integral manifold, which then is a smooth curve.

Definition 2.1. if D is one-dimensional, the integral manifold of D through
p € M is the solution of f =0 at p.

If a solution function ¢ exists, the curve (¢, ¢(t), ¢'(1), ..., D (t)) (which
is also known as the lift of ¢ to J,) is a geometrical solution. The converse
does not hold in general, as the simple examples in [TA00, §2| show. Hence
this geometrical solution is more general than conventional one.

In [TAOO] an algorithm is described to solve f = 0 numerically. The
algorithm is a nonlinear (low order) Runge-Kutta method: traditional Runge-
Kutta equipped with certain orthogonal projections in the jet space to the
locus f = 0. In [TA01] the theory of this method is extended to fourth order.

Remark 2.1. This Runge-Kutta with projections is not the same as the “pro-
jected Runge-Kutta” mentioned in [AP98] and [HW91]. Also, the concept of
“solution manifold” is different: in [TA00] it refers to a subset of the jet space
J,(€) where £ is the (,y)—space, while in most DAE literature it refers to
a subset of £.

2.3 The polynomial case

The DAE we are considering in this paper is as in (1) but now each f* is
a multivariate polynomial. We will continue to use a shorthand notation
f =0 for (1). It is well known that in this case the system is interpreted as
a differential ideal (see remark 3.3) generated by f!,..., f*.



We shall describe the Cartan-Kuranishi algorithm. First, a notation:

yﬁq = (tayayla .. '7yq)

Step 1, prolongation. (differentiation)
Since y = y(t) and y; = y)(t) for all j, we have £ = 0. On the other

dt
hand,
df ~
It = B(yéq)yqﬂ + f(yfq) (4)
where
9 ) 9
a_y,}fl o2 o @fl
B = : , (5)
9 ) )
a_y,}fk o2 fk .. @f’“
% 1 a%lfl aigﬂfl 3y;271f1 yl
~ 1
f=1: : (6)
T T

Step 2, projection. (elimination)
Supposing ker(B7) is constant, find a basis for it, denote it by {v', ..., v"}.
That is, each v/ is a map

'Uj:(tayayla"'ayq)i_)Rk (7)

Step 3, test surjectivity.
For j € {1,..., v} multiply % from left by v7:

- df
0= 2L
Ut )
=0/ Byg + 00 f (8)
=i f =

and check which ones, if any, of these v equations u’/ = 0 are algebraically
independent of the £ equations f = 0.
Step 4.

If there were no new equations to step 3, we are done. Otherwise, append
the new equations after f and repeat from step 1 with this new f. (end of
CK algorithm)

In terminology of the geometric theory of PDEs, step 1 is 'prolongation’
(from J, to J,41), step 2 is 'projection’ (from J, 41 to .J;). In steps 3 and 4, the
surjectivity of the projection J, 1 — J; is checked: surjectivity is equivalent
with no new equations. In the words of differential algebra, the differential
ideal generated by f is the same as the one generated by f, u',..., u”. The
set of equations achieved as an output of this algorithm is called an involutive
form of f. However, later we shall reconsider this.



Steps 1 to 4 is known as the Cartan-Kuranishi algorithm (CK for short),
or actually a special case of it: the original algorithm is more complicated and
designed for partial differential equations. See for example [RLWO01, Pom94,
Man96| for more information about CK or other equivalent versions called
e.g. Ritt-Kolchin or Janet-Spencer.

Ezample 2.1. This is example 2.3.1 in [TA00, §2.3]. Now n =¢ =k =1 and
f =3+ y*+ (y1)* — 1), so V(f) is the unit ball in J; = R®. Now in CK
algorithm we have

B=y, f=t+yun (9)

and when y; # 0, ker(B”) is trivial, hence f is in involutive form. If we
continue the algorithm in the case y; = 0 we get an extra equation f = 0
which then becomes ¢t = 0. But this leads to a conflict:

f =0 sy’ —1) =0 . Yy
yn =0 = Y1 =0 = ¥y =20 (10)
F =0 ¢ —0 1 =0

hence the “equator” y; = 0 is forbidden as far as CK algorithm is considered.
However, we know from [TA00, §2.3| that also the “equator” y; = 0 is suitable
for our definition of solution. So, we have to reconsider the concept of an
involutive form.

Remark 2.2. In other words, in the example above, y; is not in the differential
ideal generated by f, because f = 0 and y; = 0 led to a conflict. An
immediate conclusion to be drawn from this is that, when constructing an
algebraic counterpart for our geometrical approach from [TA00], we cannot
use differential ideals! This is the motivation of the present paper.

3 The new definition

We recall the necessary definitions and results from commutative algebra.
Proofs and further information can be found in any textbook on abstract
algebra, we recommend [CLO92| and [Eis96]. Let F be a field and R a
(nontrivial, that is, 0 # 1) polynomial ring in m variables over F:

R:f[ylay%"'aym]

3.1 Algebraic preliminaries: rings, ideals, varieties

An ideal of R is a subset I C R satisfying (i) 0 € I, (ii) if f,g € I, then
f+gel(ii)if f €l and h € R, then hf € I. Note that I = R if and
only if 1 € I. An ideal generated by fi,...,fs € R is the smallest ideal
containing fi,..., fs. It is denoted by

<f17"':fs>



and every element = € (f1,..., fs) can be represented by
x=> hif; withh; € RVi.
i=1

Note that the h; are non-unique. Every ring has at least two ideals: (0) and
(1). We shall call both of these trivial. An ideal [ is

e mazimal if there is no non-trivial ideal containing it, i.e. if J is an ideal
such that I C J C R and I # J, then J =TR.

e prime if whenever f, g € R and fg € I, then either f € [ or g € I.
e radical if f € R and f™ € I for any integer m > 1 implies that f € I.
These properties fulfill:
maximal = prime = radical (11)

Theorem 3.1. For any ideal I, we can define in a natural way the quotient
ring R /I which inherits its ring structure from R. Properties: R/I

e is a field if and only if I is maximal
e has no zero divisors if and only if I is prime
e has no nilpotent elements if and only if I is radical.

A convenient rule of thumb is “the bigger the ideal is, the simpler it
is” (with the exception of the trivial 0 ideal). For every ideal I there is a
corresponding unique radical ideal of I, denoted by /T, which is defined by

VI:={feR: fm™ el forsome integer m > 1}.

A wariety corresponding to I is “the set of common zeros of elements of I”,
that is, a subset of F™:

V(I) ::{(yla---7ym)€fm|f(y1a---7ym):0 erl}

It I={f,...,[fs) we will also use notation V(I) = V(f1,..., fs).

Now VT D I so according to our rule of thumb above, operating with
“y/7 means “make the ideal simpler such that its locus is unchanged”. For
any variety V', there is the radical ideal corresponding to V:

IV)y:={feR|flar,...,a,) =0 V(ay,...,a,) €V}

Definition 3.1. A set A is quasialgebraic (q.a. for short) if there exist
varieties V and W such that A = V — W where minus denotes the set-
theoretic exclusion.

Any variety V is quasialgebraic: V =V — V(1), since V(1) = @.



Theorem 3.2. Let I,.J be ideals and V, W varieties. Some properties of
v .V and Z:

e VINJ=VINVJ

e V(INJ)=V{I)UV(J)

¢ ZVUW)=Z(V)NI(W)

e if V(I) is nonempty, then Z(V(I)) = V1
An important tool for us is

Theorem 3.3. Suppose [ is a radical ideal in R. Then I can be written as
a finite intersection of prime ideals:

I=Ln---NI,

Moreover, this decomposition is unique (up to the arrangement of I;’s, of
course).

For any ideal I, the prime components of v/T are called the associated
primes of I. Note that this decomposition depends also on F, which can be
seen for example in that the polynomial (z? — 2)(2% + 1) factorizes over Q,
R or C to 2, 3 or 4 factors, respectively.

Remark 3.1. This decomposition can be done algorithmically, but is compu-
tationally quite costly and will be the dominating part of our algorithm for
finding (and defining) the complete form.

Theorem 3.4. Every ideal I of R is finitely generated, that is, there exists
a finite collection of elements fi,..., fs € I such that I = (f,..., fs) (the s
depends on T).

Examples:

1. take R = Cly] and I = (f) where f(y) = (y—a1) (y—a2)®*>--- (y—a, )
with e; positive integers and all a; € C distinct. Now /T = (frea) where
frea(y) = (y —a1) - - - (y — a,). Prime decomposition:

VIi=({y—a)n({y—a)n---N{y—a)

2. take R = R[z,y,2| and I = (zz, yz). Now V(I) = {the plane z =
0} U {the line x = y = 0} in R®. Prime decomposition:

VI=T={z)0(z,y)

which has a clear geometrical interpretation: V(z) = {the plane z = 0}
and V(z,y) = {the line x = y = 0}.



Suppose A is an n X k matrix, with n <k, over R. Its Fitting ideals I; are

I,(A) =0 (12)
I;(A) = \/{(n—j) -sized minors of A), Vj=0,....n—1 (13)
I(A) = R (14)

Clearly I; C ;41 and
F"=YV(I_4)D---D2V(;) DVUjz1) D DV(,) =9 (15)

Also, V(I;) = { points where rank of A < n — j}. Especially, V(I) = @ <
A(z) is of full rank V z € F™.

Let I = (f1,...,fs) and f € R. The membership problem is to decide
whether f € I. Now there is a natural generalization of the elementary
euclidean algorithm, called “the division algorithm” in [CLO92, ch. 2|, which
computes for the ordered set { f1,..., fs} (unique) elements r € R and h; € R
such that f = hy fi+---+hg fs+r. Clearly if r = 0 then f € I. Unfortunately,
the converse is not true in general. The r above is the remainder of f with
respect to the ordered set {f1,..., fs}. In general, r (and h;) depends on the
order in which the f; are given as input to the division algorithm. That is,
the remainder w.r.t. {f1, fa, f3} might be different than the remainder w.r.t.
{fs, f1, f3}. The tool to overcome these difficulties is a grobner basis, which
will be introduced next.

Suppose given an ordering (see e.g. [CLO92, ch. 2|) for R. If f € R,
the leading term of f is the term of f which is highest with respect to the
ordering. Let I be a nonzero ideal. The leading terms of I, denoted LT(I),
is the collection of leading terms of elements of I. A grébner basis for I is a
generating set {fi,..., fs} such that

I = <f1,...,f3>
(LT(1) = (LT(f1), ..., LT(f,)).

Remark 3.2. This is a bit abuse of language, since in usual mathematical
terminology a “basis” means an independent generating set. However, it is
common with ideals to call any generating set a basis. See also remark 3.4.

The reason we need grobner bases is that they solve the membership
problem:

Theorem 3.5. With notations as above, the remainder of f w.r.t. a grobner
basis of I is zero if and only if f € I. Moreover, the remainder does not
depend on the order the f;’s are presented.

Remark 3.3. On differential algebra: a differential ring is a ring with a dis-
tinquished linear mapping § with property

d(ab) = (da)b + adb.

10



Also, differential ideal, prime differential ideal, radical differential ideal are
defined as usual, with the additional requirement that they are closed w.r.t.
0, that is 01 C 1.

Theorem 3.3 has its counterpart in differential algebra: a radical differen-
tial ideal has a unique decomposition by prime differential ideals. However,
in this paper we will not use differential algebra although we mention it in
few occasions. See [Pom83, Kol73| for an introduction to differential algebra,
or [Rit50, Kap57| if you want a more readable introduction to our case.

3.2 Algebraic preliminaries: modules

Recall that a module is defined like a vector space except that the set of
scalars is only a ring, not necessarily a field. Note that an ideal of R is an
example of an R—module. Hence the concept of a module is a generalization
of both vector spaces and ideals.

Remark 3.4. For modules, a basis is defined like for vector spaces: a gener-
ating, independent (over R) set. Unfortunately, this does not coincide with
the definition of a basis of an ideal, see remark 3.2.

Note that while all vector spaces have a basis (by the axiom of choice),
a module usually has no basis at all. For example, a non-principal ideal has
never a basis (as a module!): if I = (a, b, ¢, ..., d), then the set {a,b,c, ..., d}
is dependent over R: namely, b-a+ (—a)-b+0-c+---+0-d=0.

When a module has a basis, it is called free. All free modules are iso-
morphic to R® (the direct sum) with some s. When s is a finite integer, a
module isomorphic to R* is called a finite free module. If ¢ : A — B is a
homomorphism of modules, then ker(y), im(p), coker(y) define R—modules
in a natural way. Also, ker(y) is a submodule of A and im(y) is a submodule
of B.

As an example of a module without a basis, consider the matrix A : R? —
R with A = [a,b,c] (not all zero) and set M := ker(A). It can be shown
that M is generated by the vectors u := [~b,a,0]", v := [¢,0,—a]" and
w := [0, —c,b]”, and any two of these are not enough to span M. However,
these are linearly dependent: cu + bv 4+ aw = 0. Note that, if R was a field
and a # 0, then a would be invertible and w € span{u,v}. But in the ring
case, a nonzero element is not invertible in general.

A consequence of the nonexistence of a basis of a module is that we
cannot define dimension of a module as in the vector space case. To define
the dimension, we need to recall the following concept: a sequence of modules
M; and homomorphisms ¢; : M; — M;

CEN VAN VAN ST (16)

AN .
4 i—1

such that im ¢; = ker ¢; | Vi, is called ezact.
All modules we will consider are either submodules of R*, s € N or of
the form R*/M where M is submodule of R®. Let M be a module. Then a

11



presentation of M is a matrix A over R such that the sequence

R — 2, RE s M — 0 (17)
is exact, i.e. cokerA ~ M. On the other hand, given a k x n—matrix A, it

defines a module by the sequence (17). The presentation can be extended to
an exact sequence of finite free modules:

¢n ¢n—1

0 s F, y Fl_q NP ot M sy 0 (18)

~

which is called a (finite free) resolution of length n. Now we can define the
dimension: dim(M) = min{n € N| there exists a resolution of length n}.

For example, if M := R/I where I is an ideal I = (f',... f"), it is
presented by the column vector [f!,...,f"] and dim(M) = 1. Any free
module is of dimension zero, since

1

d
> R* > 0

is exact. In particular, any vector space, considered as a module, is of di-
mension zero.

0 —— Fy:=R*

3.3 An algorithm

Now F:=Qand R := F[t, y, y1, - .., yg) with y = (y',...,y"). That is, if I
is an ideal then V(I) C F"™*1 The formal derivative is the unique linear
mapping 0 : R — R[y,+1] such that

6(ab) = (da)b+ add
o) = yiy Vie{l,...,n} Vje{0,....q}

6(r) = 1" (the usual derivative w.r.t. ¢), if r independent of y’s

This coincides with the usual derivative in /R when jet coordinates are in-
terpreted as derivatives: y! <+ (y')¥) and, of course, y is a smooth enough
function of . The word “formal” refers to the fact that we are not concerned
whether or not y is a (smooth) function of ¢.

The algorithm is presented in tables 1 and 2. Reasoning and comments
for the algorithm PRIMESYS are presented in the remarks of this section.
We have used Singular [GPS01] (we used version 1.3.8, actually) in our test
runs.

Note that, by theorem 3.4, each ¥; is presented by a finite set of genera-
tors.

Assumption. We assume that, in step 2 of PRIMESYS, all of the V; and
A’ are quasialgebraic. The set A need not be such. Note that if A is q.a.,
then Vj’s are also.

Remark 3.5. In step 2, the sets Vj are, in principle, point sets chosen accord-
ing to rank(B). Note that V; NV, = @ for j # ¢ and

A= U V. (27)

j=1

12



INPUT: a polynomial differential equation, that is, a finite subset f C R.
OUTPUT: a finite collection of pairs of ideal bases (A;, B;) such that
I8 ={V(A1) = V(B1), ..., V(Ay) — V(Bn)}
Step 1: Set J§ .= @.
Step 2: make the prime decomposition for f:
lezl Nn...N Er-
Step 3: For 1 =1 to r do 3§ := JFU PRIMESYS(X,)
od

Table 1: Algorithm ANYSYS for arbitrary polynomial system

Remark 3.6. In step 2: the construction of A (or A’) is in general case not
immediate. This might cause a problem considering arbitrary polynomial
systems: for example, suppose that A is a variety: A = V(I) for some ideal
I, whose generators are found by inspecting B and f Now if we fail to
find all of the generators of I, say that we generate an ideal J ; I, then
V(J) 2 V(I) and using V(J) as A would make JF too big.

We expect the techniques introduced in [Sit92] to be helpful here. How-
ever, this aspect is beyond the scope of this paper and will be postponed to
future work. In the examples of this paper we have been able to construct A
and A’

Remark 3.7. step 3: A’ is defined to get the “vertical tangents” within, see
below example 3.1. Now f(z) ¢ im(B(z)) could be due to an inconsistent
evaluation point z. But, if the set A’ is small enough compared to V(f),
it probably is due to “vertical tangents” and is worth accepting. Hence we
choose as the criteria of accepting A’ the dimension condition in step 3. It
might be possible to consider also other choices for the criteria.

Remark 3.8. In steps 3 and 4, appending A’ or Vi, respectively, means
appending a q.a. representation of it. Note also that V_; consists of points
where the rank of BT is maximal. Now A’ or V_; might be empty (the latter
is empty if A C V(I)) which produces an empty component to J§F. This
is of course harmless but it would be nicer to avoid such irritating sets in
advance by, for example, setting step 4: if A ¢ V(I;), then IJF :=IFUV_ ;.
Likewise one could add to step 3 the condition “if A’ # & and...”.

Remark 3.9. step 5: the construction of A; and B;’s is a side product of step
2. In step 8: it might be difficult to check the condition V},,; # @.

Remark 3.10. In step 6, B and f are redefined but actually just updated
because generators of A; include f, because (f) is prime and because of the
definition of A;. Also, there is no need to construct corresponding sets A, A’
because we already, by the definition of A;, are limited to case A. Also, if B
for f was k x n, then this new B (for A;) is k x n with k > k.

Remark 3.11. step 6: Aj, and Bj,, are a closer look to B, in the sense
that V(A;,) = V(A4,) N V(I;,—1) and V(Bj,) = V(B,) U V(). Note that
Ajg == A] and Bj'n == B]



INPUT:
OUTPUT:

Step 1:
Step 2:

Step 3:
Step 4:
Step 5:

Step 6:

Step 7:

Step 8:
Step 9:

Step 10:

Step 11:

Step 12:

a finite subset f C R such that (f) is prime.
a finite collection of pairs of ideal bases (A;, B;) such that
IF={V(A) = V(By), ..., V(Ax) — V(By)}

J§:=9, Byg+ f:=406f and I; := I;(B"), the Fitting ideals of B”.

A= {z e P f(z) ¢ im B(2)} 0 V() (19)
A = {z€ Frt f(2) € im B(2)} nV(f) (20)
‘/j = AN (V(I])—V(IJ+1)), ]:—1,,n—1 (2].)

Case A': if dim(V(Ip) N A") < dim(V(f)) then J3F :=3F U A’
JF:=35uUV,

Study A: set A := @.

For j=0ton—1do

if V; # @, choose bases A; and B, for the corresponding (radical) ideals
of the nonempty V;’s, that is, V; = V(A4,) — V(B;).

Update B and f such that Byg,1+ fi= I(A;).

For m =0 ton do

I, = I,(B") (update the Fittings) (22)
Ajm = A, U {generators of I, 1} (23)
Bjm = Bj N Im (24)

make the prime decomposition for Aj,;:
Ajm =i Ajm(] N Ajml N---N Aj,m,njm (25)

and let

for i = 0 to np, do, if Vj,; # @, (steps 9 to 11)

Reduce each entry of B with respect to Aj,,; and then compute generators
{vl,...,v"} for the module ker(BT).

for k=1to v do

let u* := 3. v fi where v* is the i" component of v*. If uF ¢ Aj,.;
then Aj'rm = A]mz U Uk.

od (end of k-loop)

if in the previous step all u* € A, then append (V(A;mi), V(Bjm)) to
J§

else A :=AU{(j,m,i)}

od od od (end of i-loop) (end of m-loop) (end of j-loop)

while A # @ do

pick a (j,m,i) € A

ANi=A- {(]7 m., Z)}

3§ = 3FU ANYSYS(Ajmi)

od

Table 2: Algorithm PRIMESYS for prime polynomial system



Remark 3.12. In step 7, we need prime ideals for two things: 1) to avoid zero
divisors in step 9, and 2) to make V(A;,,;) irreducible.

Remark 3.13. In steps 2 and 9: the idea is to mimic the idea “study separately
each set where rank of ker B is constant” but this is not exactly so, because
BT (and B) is a mapping of modules and one can not even define its rank as
in the case of a mapping between vector spaces. Indeed as noted in section
3.2, one can not define a dimension for modules as for vector spaces.

We consider this as a suitable way to overcome the “constant rank” as-
sumptions which are a severe limitation in most other DAE approaches, see
section 4.1.

Remark 3.14. Step 10: construct the (possibly) new generators for ideals; i.e.
if we have a new generator u*, it means we found a hidden equation u* = 0
for this component. In step 11, all u* € Aj,,; means no new generators.

Proof. Proof of termination of PRIMESYS: the only place that needs
to be checked is the recursive loop in step 12. But there, if the algorithm is
needed for A;,,;, it means that A;,,, 2 Ajm D A; D f where A, is from (23),
A;j is from Step 5 and f from Step 1. Hence we have a strictly ascending
chain of ideals. Now R is a ndtherian ring and the process terminates in
finitely many steps. O

Definition 3.2. Given equation f = 0 with f as in (1) such that each
f' € R, the set JF constructed in the algorithm ANYSYS of table 1 is called
the complete form of f.

As a point set, it is of the form
N
3= J0; - wy) (28)
7=1

where each V; and W; are varieties, the latter possibly empty and the former
irreducible. Each variety V is presented by a finite generating set of Z(V/).
Now, the numerical solution of (1) will be done to each component sepa-
rately. Here one can use the methods described in [TA00, TAO1]. Especially,
an initial point is consistent if and only if it belongs to some V; — W.
The theory of existence and uniqueness of solutions immediately reduces
to the theory of [TA0O].

3.4 Examples
Ezample 3.1. The sphere (example 2.1) revisited: in step 2

A = {{tyy) P +y*+ () —1=0, y #0}, {(0,£1,0)} }29)
A= {ty,0) |y =0, t4+yp #0, 43"+ )>—1=0} (30)
Iy = (y), L=A(1)
Vo = VE 492+ () —1) — V()
= {(ty,y) 1P+ 9"+ (1) =1=0} = {(t,y,5) [y =0} (31)
Vo = {(0,£1,0)}. (32)
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Step 3: dim(A’) = 1 < dim(sphere) hence JF := JF U A’. Here A’ =
V(yr, 24y2—1)=V(yy, t). Step 4: IF := IFUV_,. At this point we note that
(as a point set) IF = V(f)—{(0,£1,0)}. Now one could immediately see that
the remaining components (namely V) are zero dimensional and therefore
cannot have a 1-dimensional distribution. Hence they could be discarded
right now and we are done. But let us see anyway how the algorithm works
in this simple example: Step 5: Ag = {f, y* — 1}, By = {1}, as can be seen
from above. Updated B and f:

() (i) w

Ay = Aoz{fa?f—l}

step 6:

Ap = AcU{n}
By = {yl}
B(]l — {1}

decompositions give: Agyg = Aggo N Agor and Ag; = Agio N Ag11 where

Awo = {y+1, £+ (1)}
Aow = {y—1, £+ + (y )2}
{y+1,¢ 1}
Am = {y—1Lt u}
step 8: now Voo = Voo = {(0,—1,0)} and Vo1 = Vo1r = {(0,1,0)}. Step
9 (for Vgig): ker(BT) is generated by (9) and u! := 2yy, € Agio hence

JIT := IF U Voio. Step 9 for V11 works likewise and J§ := JF U Vp11. Hence
we are done and the output is

F=1{v

)%
{
{

Here the set A’ brings in the formerly forbidden’ equator of the sphere.

N
o
fury
o

t2+y + () = 1) = V()
t* —1) = V(1),
0,-1,0)} — &,
0,1,0} — o}

(
(( (34
:

Remark 3.15. A surprising side effect is that we found the two singularity
points {(0,£1,0)}, cf. [TA00].

Ezample 3.2. This is example 4 in the help file “overview of rifsimp package”
of Maple. Here n =1, k = ¢ = 3, and we denote y instead of y'.

vY+y+1 = 0 (35)
Yo — 3y1 =0 (36)
ys—2y1 = 0 (37)

16



The system is prime.

0 _ [3n+wn
B=10 f=1 -3y +ys (38)
1 —2y2
A'=2, Vi =A=V(f, 3>y +y1, —3y2 +¥y3), Vo = & and a grobner basis
of Z(A) is {y3, v, y1,y> + y + 1} in agreement of rifsimp (more precisely, in

our notation: IF = {V(y3,y2,v1,¥> +y + 1), @)}. Especially, one can see
that the solution y is constant.

Remark 3.16. In the previous example, we can also see that the problem
can be projected from .J3 to Jy, since y3, 1o, 91 are clearly consequences from
the generator y® + y + 1 which says that y is constant. However, we do not
consider this aspect in this paper.

Ezample 3.3. This is example 1 in the rifsimp package of Maple. Here n = 1,
k=2 q=3.

t)? (2)? =2ty e ys +ty° (ys)? —yye + (1) = 0 (39)

1y +yys +297 ()" — dyye (11)* +2(y)" = 0 (40)

decomposition gives 3 components:

Y1 = (5 generators) (41)
(y2)* = y1 3

Yo = Y1Y2 —YUYs (42)
W) —yys

Y3 = (y,1) (43)

Now X, is already complete, and X3 gives: (y, y1) = (v, y1, ¥2) = (Y, Y1, Y2, Y3)
and the last form is complete. We note that as in remark 3.16, the last form
is clearly equivalent with y = 0 but we do not consider (methods to find)
such reductions in this paper.

With f := 3 we get:

y
—2tyy1ys + 2tyys
B = —2ty(y1)2 + 2ty%y, (44)
=2ty (11)y2 — 2ty*(y2)” + 4ty°y1 Y3
2ty(y1)® — 6ty*y1ys + 4tyPys + tyys

A: now if y = 0 then B = 0, hence for A is needed also f=0and ANV(y) =
V(y, f, f) = V(1) = @ so we can suppose y # 0. One can also show that the
other elements of B do not vanish in V(f), hence

A = V() ~ (45)
A = V(f,y) = V(f) (46)
Vo o= A-1, (47)
Vo = An{y)=V(f,y) (48)
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so we can choose Ag = {f,y}, Bo = {1}. Now (f,y) 2 (f) hence dim(A’) <
dimV(f) and A’ is accepted. For Ay we get

0 B U
B=10 = 2tyays + (y2)? (49)
0 6(y1)*ys — s

hence A(]O = AO = A01 and are primes, BO(] = 0, B(]l = {]_} %00 = J,
Voo # 9, step 9: new generators are f from (49), and now it turns out that
V(Agoo, f) = @. Hence the algorithm (for ;) stops and we get that J§ for
Y1 is A'UV_; which can be shown to simplify to V(f). Hence V(X;) contains
‘vertical tangents’ but it is accepted as a whole.

Ezample 3.4. An ODE. Let’s look at the situation

ftym) =y —g(t,y) =0 withn=Ek (50)
which is what most people mean by “a (non—constr~ained) ordinary differential
equation”. Step 2 gives B = identity matrix, f = —%g — ((%g)g. Now

ker(B7T) is trivial, hence step 9 gives only the zero vector. In step 10 we have
u! := 0 which certainly belongs to (f), hence we are done and (50) already
is a complete form.

Ezample 3.5. In [BCP89, p. 34] is described a semiexplicit DAE:

.ZEll —Fl(fl?l,xg,t) =0 (51)
Fy(x1, 79,1) =0

and it has been said that this is index one if and only if %FQ is nonsingular.

Let us see how this looks like in our algorithm: first, we suppose that F}, F}
are polynomials and f is prime. Then,

2] 2]
= 5B I 0
B = ox o} — ’ 52
(%FQ %15) (0 0) (52)
~ —0F; —0F];
— = 53

B is constant, hence the fittings are trivial and do not affect, and step 10
gives the new generators 0 F5, hence the new f is

f
[ o

Now again, to proceed as in [BCP89|, we have to suppose that the ideal
(f,8Fy) is prime. Then, B is

I 0
0 0 (55)
%FQ 322 F2
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now ker(B”) is trivial if and only if %FQ is nonsingular.

We conclude that the definition of the index in [BCP89| does not take
into account the prime structure. The following example shows a side effect
of this.

Ezxample 3.6. This is example 9.2 in [AP9S]:

yi—y =0 (56)
y(1—y*) =0 (57)
vy +yi(1—y?) -t =0 (58)

First, decomposition gives:

<f> = <y2a yB_yia f3>m<y2_]-7 y3_y%a f3> (59)
after running the algorithm, we have

jg - (V(yfa yi)) - 1: y27 y3 - y%: t— y%)’@)

(60)
UVt =y + 1Ly =y v =1 t—y', v)), 2).

Here one can see an explanation for the effect of the initial value (of a solu-
tion) on the index as noted in [AP98|: any consistent initial point must belong
to one (and only one, in this case) of the varieties V(y?, y3—1, v*, v*—vy}, t —
y)or V(y2, —yi+1, y3—vyl, y>—1, t—y', y?). In the former case, y*> = 0 and
we are solving the system y? = 0,97 = 1,9? = 0,y = y{,t = yi which origi-
nally came from the component (y?, y*—yi, yly*+3>(1—y?)—t) in (59). This
component is in notation of [AP98] yo = 0,y3 = ¥}, y192 + y3(1 — y2) —t = 0.
In the latter case, y> = 1 and we are solving the system y? = 0,y =
Ly = yl,y? = 1,t = y',y?> = 0 which originally came from the compo-
nent (y? — 1, y* — 4, y'y? + v*(1 — y?) — t) in (59). This component is in
notation of [AP98| yo = 1,43 = ¥}, y192 + y3(1 — y2) — t = 0. So the expla-
nation for the dependence of the index on the initial value is that the index
depends on the (prime) component! Any consistent initial value belongs to
a variety of some prime component.

Example 3.7. A “triangular” example. An equation of the form Ag = 0
where A is m X m upper triangular matrix with nonzero diagonal and ¢ is
an m—vector, both A and ¢ with elements from R and the element A,,, a
nonzero constant, is equivalent with g = 0. Although this seems trivial, this
kind of equation is considered in examples in [KM98] and also in [CG95b]| as
examples of the difficulties with defining indeces. It also shows that in (most
of) the conventional definitions of indeces, the index depends on the chosen
representation of the equations. Hence it is not intrinsic.

4 Relations to other approaches

In this section we compare our method to others in literature. For that, we
assume that ¢ = 1 in (1). Due to vast amount of articles on DAEs it is clear
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that we cannot do an exhaustive survey but we have chosen few papers that,
in our opinion, represent quite well the conventional approaches.

Let us first note a recent paper [PS| which includes few pages of compar-
ison in the same spirit as ours, although they have not considered the paper
[KM98| which contains a generalization to nonlinear case.

4.1 Relations considering numerical solving

In this section we consider the point of view of numerics. In [KM96| the
strangeness index is defined for certain linear DAEs and the definition is
generalized to nonlinear case in [KM98|. In these articles the system is not
assumed to be a polynomial, and they present an algorithm for transforming
the system into a so called strangeness free from, but we claim that their
approach is of limited applicability. The strangeness index is not always
defined: indeed there are strong requirements (hypothesis 3.2 in [KM98]) for
the rank of B, where B refers to our notation in PRIMESYS step 1, to be
constant which means that (20) reduces to A = V; for some j. Also, A’ is
not considered at all.

The algorithm for converting into strangeness free form requires finding
suitable coordinates in intermediate steps of the algorithm. Although in
many systems in practical applications this can be done “by inspection”, this
is generally not constructive. Also checking the rank conditions is a non-
trivial problem for which they do not present a constructive solution.

In the approach of Campbell et al., e.g. [CHYZ98, CG95b, BCP89|, the
derivative array is formed. This is essentially prolongation without projection
(compare to CK algorithm in section 2.3). Prolongation is continued j times,
where p is defined to be the global index of the system, until ¢ is uniquely
determined by (t,y). This definition is also extended to a local version:
index of the system along a solution, see [AP98, p. 236]. Here one could
also interprete the projection step of the CK algorithm as a procedure which
automatically picks up the relevant equations from a derivative array.

Campbell et al use the following assumptions (here G is the derivative
array):

(A1) sufficient smoothness of G
(A2) consistency of G = 0 as an algebraic equation

(A3) J = [a%lG . %G] is 1-full and has constant rank
(Ad) J:= [aa_yGa%lG . %G] has full rank everywhere

In our case, assumption A1l becomes trivial and A2 is implicitly assumed in
“if V; # @, then...”. But A3 and A4 are quite different compared to ours.
Indeed we have no assumptions for constant rank or full rank, on the contrary
we decompose the system by Fitting ideals, see remark 3.13.

As noted in [CHYZ98, p. 78|, checking the 1-fullness in a neighborhood
is generally not constructive. Although, as noted there, one can compute the
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“symbolic rank” by computer algebra programs and then compare to it the
“numerical rank” at a point, the problem remains: how can one determine
the symbolic rank to be constant? Therefore their approach has the same
problem as that in [KM98|.

The approach of Rabier and Rheinboldt [RR91, RR94]| is geometrical
and closely related to that of Reich’s [Rei91]. The main ideas are similar
as in the papers we have considered in this section. Their definitions are
more intrinsic, due to their geometrical nature without referring to equations.
However, two main problems remain: first, to actually handle the system,
even if the definitions are geometrical, one needs to handle equations after
all. Second, they are forced to use similar constant rank conditions as in the
papers considered earlier in this section. More precisely, they assume that
the “interstage” manifolds in their definition are of constant dimension.

We also note that in [RLWO01] is proven that the approach of Rabier and
Rheinboldt is equivalent to a version of the geometrical theory of PDEs.

4.2 Relations to computer algebra approaches

There has been developed in the last decade several computer algebra ap-
proaches, that is methods based on symbolic manipulation of the equations,
to DAEs. In this section we consider relations of those to our method. Al-
though the algorithm in this paper is also a computer algebra approach, our
aim is to get a form which is suitable for numerical integration. We also
remind the reader that [TA00] is a lengthy exposition of what “suitable” in
this case means.

Now almost all of these symbolic approaches consider the case of partial
differential equations and are viewing DAEs as only a special case. Like
Kolchin puts it [Kol73, p. xiiil:

...there is no special distinction made between ordinary and partial
differential equations. The governing philosophy is that 1 is merely a
special case of m, a case neither requiring nor greatly benefitting from
special treatment.

However, we do feel that the ordinary (DAE) case does deserve a special
attention. We also like to recall that we do not make difference between
“DAE"s and “ODE"s, cf. |[TA00, remark 3.6].

The symbolic approaches, see e.g. [Hub97, RLW01] and references therein,
are mostly based on differential algebra (see remark 3.3): the system defines
a differential ideal. However, we saw in a very simple example (remark 2.2)
that we cannot base our method on differential ideals.

Another property of (the implementations of) these approaches is that
they assume each equation to be solvable for its highest derivative term. This
causes some 'pivoting’ problems, that is, if there is an equation whose highest
derivative term is multiplied by a nonconstant term ¢, then the system splits
to two cases: whether ¢ = 0 or ¢ # 0. This has some resemblance to our
approach but it is not the same.
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Also, changing the ranking might lead to a different splitting of cases.
That is, their case splitting depends on the chosen ranking. It is not clear
what is the geometrical interpretation of different case splittings.

Note that some of these approaches are implemented in Maple, for exam-
ple packages rifsimp, diffgrob2 or diffalg.

We note that there seems to be a desire to have algorithms which avoid
prime decomposition, due to its computational cost. See for example [Hub00|
and references therein. We admit that it is an advantage to avoid the prime
decomposition(s) but here is the same problem as in the splitting mentioned
above: the choice of ranking decides what the separants and initials are, and
it is not clear what choice, if any, is (geometrically) a “right one”. However,
it is an interesting question to pose also to our method: with what could the
prime decompositions be replaced to reduce the computational cost?

Finally we mention the concept of an algebraic index defined in Pritchard
and Sit [PS]. They have done a nice survey on DAE approaches but it is not
clear how the algebraic index is related to others. On the other hand, they
concentrate on quasilinear first order systems (¢ = 1 and linear with respect
to y1). They demonstrate how a system can be converted to a quasilinear
one by adding more variables. It is not clear how such transformation would
affect in case of approaches considered in the previous section. Moreover, as
discussed in section 2.1 we like to avoid such transformations.

5 Conclusions

We have presented a method which continues our earlier work [TA00, TAO1]
and is between numerical and symbolic computations: we use symbolic com-
putation to achieve a form, here called complete form, suitable to numeri-
cal computation. There are already methods aiming at same goal, but we
demonstrate some problems they have.

As noted in [TA00]|, the conventional approaches to DAEs lack the fun-
damental property of involutivity, and this lack causes for example the well
known problems of drift-off and finding consistent initial values for the sys-
tem. One could think of the involutivity (or involutive form), as precon-
ditioning the system: find all hidden equations. Now our complete form
is aimed to be a kind of algebraic counterpart to involutivity, in the more
general case where the system has components.

We assume that the system under consideration is a multivariate poly-
nomial. This assumption is not very restrictive, since most applications in
literature either are polynomials or can be converted to polynomials. On the
other hand, this assumption makes it possible to define the complete form in
such a way that we can, in particular, avoid the constant rank assumptions
in conventional approaches. We claim that the constant rank assumptions
are the main problem in those approaches.

Our tools come from commutative algebra and the computationally most
costly operation is prime decomposition. We note that the decomposition
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depends on the chosen ground field, but we have restricted the ground field
to be Q.

Still comparing to literature, one could also think our method of “finding
the complete form” as some kind of index reduction technique, but we take
into account all equations instead of “choosing n eqns”, what is done in index-
reductions.

Finally, we have noted about constructivity: it seems to us that most
"algorithmic’ approaches to numerics of DAEs include some steps which are,
in general, nonconstructive. These are discussed in section 4.1. On the other
hand, in section 4.2 we note that those working in symbolic algebra seem
to have completely constructive algorithms but they are not concerned with
numerical solution; i.e. what properties should the chosen form of the system
have to be suitable to numerical computations? Also our algorithm has, at
this level of implementation, a gap in constructivity, see remark 3.6. The
next immediate task to do is to fill that gap with techniques mentioned in
the remark.
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