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1 Introduction

The aim of the present work is to study the regularity properties of the solution to the
hyperbolic problem

F(u) = /|ADu|2 dzridzs — 2/ f - udzidzy = min!, (1.1)

where w is a polygonal plane domain, A = (a;;) is a real constant matrix such that A is
non-singular, D is a differential operator defined by

o
z— 0

D = <311 5 >’
O 3:[2

and finally f = (fi, f2) and u = (ug,us) are vector fields on w, with f € (Ly(w))? given and
u to be found such that u, Du € (Ls(w))?. As boundary conditions for u we assume the
(essential) conditions u; = 0 when n; # 0 throughout dw, i = 1,2, where n = (n,n») is
the normal to dw. We are interested in the regularity properties of u when f is (sufficiently)
smooth.

The work is motivated by certain problems of linear elasticity theory. More specifically,
problem of the form (1.1) arises in the asymptotic membrane theory of thin hyperbolic
shells. In this application, u is the tangential displacement vector field of the shell mid-
surface expressed in characteristic coordinates, see the Appendix where the connection is
shown in case of a simplified (shallow) shell geometry. In more general shell geometries,
the membrane theory leads to problem (1.1) with |ADul| replaced by |ADu + Bu|, where
matrices A and B are variable, so what we consider here is the localized, frozen-coefficient
version of the actual shell problem. For more information on the related shell theory, the
reader is referred to [1, 3, 4] and the further references therein.

As concluded already in [1], the regularity properties of u at a corner P of w are rather
different, depending on whether (a) at least one of the characteristic lines through P
intersects @ in the vicinity of P, or (b) the characteristic lines through P only touch @ at
P in small neighbourhoods of P. In case (a) there occur at most simple jump discontinuties
in the derivatives of u across the characteristic line(s) through P, whereas in case (b) the
behavior of u is more complicated: An algebraic singularity appears at P in this case. In
this work we focus on case (b) which was left as an open problem in [1].

As will be shown, the algebraic singularity at a corner of type (b) can be resolved by ap-
plying Mellin transform techniques to a specific system of integral equations that underlies
the Euler equations of (1.1) near the corner. A simplified scalar model of this integral
equation was studied in [2]. Here we extend this analysis to obtain the regularity theory
for problem (1.1), a result of its own interest (as that of [2]), and an essential step towards
understanding the underlying shell problem.

Instead of considering a general polygonal domain, we make here a further simplification
assuming that the domain is actually a triangle with vertices at (0,0), (a,1) and (b,1)
where b > a > 0 (Figure 1). Since the characteristic lines are coordinate lines in our
model problem, the corner at (0,0) is of the mentioned type (b), while the other two
corners are of type (a). In the assumed geometric setting, when f in (1.1) is smooth
on @, then u(xy,xs) is uniformly smooth on w, except when (z1,z2) — (0,0) or when
(z1,22) crosses a line S along which a local irregularity generated by the corner at (a,1)
may propagate. The line S is a continuous broken line that passes through (a,1) and
undergoes infinitely many reflections while approaching the corner at (0,0), see Figure
1, where the line segment after k reflections is denoted by Si. At any point of S, the
derivatives of uy,us of sufficiently high order have simple jump discontinuities.
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FIGURE 1. Geometry of the problem.

In our analysis we will assume that for some m > 1, f € [C™(@)]? in (1.1). We will then
first show that the solution u satisfies uja, € [C™(Ay)]? for every triangular subdomain
Ay, generated by the line S (see Figure 1), and that uja,ua,,, € [C*(Ar UAgs1)]? where
¢ = min{k, m} (see Theorem 3.1 ahead). Secondly, we show that the partial derivatives
of u; of order < m grow at most algebraically when (z1,z2) — (0,0). Finally, we resolve
the singularity at the origin in more detail, showing in particular that the leading terms
in the singular expansion of u; are of the form

) zial, alt! if ¢ {1,2,..,m},
27 n(z;), z;x] In(z;), a:;7+1 In(z;) otherwise,

where —n < 0 is the smallest real root of the function
1
9(z) = (b—a)*(z — 1)® — 4abk> sinh2(§ In(b/a)(z — 1)), (1.2)

where further k € [0,1) is a parameter related to matrix A by

2

k2= 2 (al a):(ATA)l. (1.3)

aras’ a o

Here the case k = 0 (AT A diagonal) is a degenerate case where no singularity arises at
the origin.

The plan of the paper is as follows. In Section 2 we introduce the basic notation to
be used, prove the solvability of (1.1), and introduce the Mellin transform to be needed
in Section 4. In Section 3 we mainly apply the Banach fixed point theorem to get the
abovementioned regularity prioperties of u away from the origin. In Section 4 we obtain
the singular resolution of u at the origin using the Mellin transform. The roots of g(z)
that are needed in the singular resolution are located in Section 5.

2 Preliminaries

We summarize in this Section the main notation to be used in the sequel. Let w be a
classical polygon and define the norms

2

ou
2 _ 2
ol = ol + |

, =12
La(w)




and the associated function spaces

W, = { closure of C*°(w) in norm || - ||W} ) 1=1,2,
W? = { closure of D(w) in norm || - ”W} , i1 =1,2, (2.1)
u = Wl X WQa

U = W

where D(w) = C§°(w) is the space of smooth functions with compact support on w. We
have

Theorem 2.1. Given £ = (f1,f2) € L2(w)?, Problem (1.1) admits a unique solution

ueuo.

Proof. By the Riesz representation theorem, and by the usual closure arguments, the
statement of the theorem is equivalent to asserting that for some constant ¢ > 0,

|AD U]l 1, = [[ulle > cllullz,w) Vu € Dw)*. (2.2)

To prove this inequality, let u € D(w)? be given and let @ = exp (—2x; — 2z2)u. Then

exp(—2x1 — 2x2) u3] + u- .

9
81132

N =

0
8—1-1[eXp(_2$1 — 2.’E2) U%] +

N | =

Du-u=
Since u vanishes on Ow, it follows that
/Du Cdrdzs > el .,
w

where L is chosen so that |z; + 23| < L for (21,22) € w. Using here finally the Cauchy-
Schwarz inequality and noting that || < exp(2L)|u| and |Av| > ¢g|v| for some ¢ > 0, we
conclude that

llulle > co l|Dullryw) > coe™ |l w),
so the assertion follows. O

In what follows we assume that w is the specific triangular domain of Figure 1, i.e.,
w= {(1‘1,3’,‘2) e R’ | aze <1 <bxe, 0< 23 <1, 0<a< b} (2.3)

and that in (1.1)
fe C"@)?*, m>1. (2.4)

Further, let us define
U(x1) min{z1/a, 1},
W1 ((EQ) = (b — a)acg, (25)
WQ(.I‘l) = U(l‘l) —l‘l/b,

so that Wi (xz2) and Wa(z1) are, respectively, the width and height of w at a given position.
In what follows, we shall also use the abbreviations

1

Lf = f(s1,22) dsy, Ly f(xy) = I f (b, x2), (2.6)

ars
T2

IQf = f(a?l,SQ) dSQ, Igf(wl) = IQf((El,U(.’El)). (27)

Il/b



For later use we also define the following domains and spaces (see Figure 1);
I+1 l j+1 j
s (R ) (85 9)).

Wi = w—UZlA

a0 = {pecionsect s8],

s
secn[og]i=18). 0<n<k}.
cio.] = {oecloect 57 6],

aitt

qﬁecn[o,T],j:["T*J, ogngk},

C;fl (@) = {u € C(@) | uja, € C*(A)),
U|w; Gcn(wj)v J:2L%Ja OS’I’LSk},
Chw = {uelC@)|una, €CHAy),

u,, € C"(w;), j=2|22]+1, 0<n <k},

where 7 € {0,1,2,...} and |z] is the biggest integer n such that n < z.
To characterize the edge behaviour of the elements of U, assume that ¢ € C°°(w) and
apply the Green formula to obtain

a 1
/(ba:Q — 1) 8—51 dridzs = (b— a)/ zod(azs, o) dry
w 0
0
—/w ((bgc2 — )¢ a—i —¢2> dardzs.
This implies that

1
W , 2 d < 2
/0 1(z2)@(azy, v2)” dza < C||¢||W1

for some positive constant ¢. By this reasoning, we see that the trace operator

v (C®@)2 - ls) = LY (8w) x LY ™ (8w),

(¢1,02) = (n1d1]0ws N2d2|0w) 29)

is bounded, where n= (n;,n2) is the unit outward normal on the boundary dw and L
stands for the weighted Lo—space supplied with the norm f + [|gf|1.(a.). We conclude
that the bounded trace operator v can be extended onto U and thus the minimizer u of
Equation (1.1) satisfies

yu=0 (2.10)

in the described distributional sense.
In the analysis of Section 3 below we proceed from the Euler equations of (1.1),

—DATADu =T,
rewritten as the first order system
Du = My,
{ “Dv = £, (2.11)
where
o T 1 _ aq Q
M:=(A"A)" = < o a > (2.12)



and v = (v1,v2) is defined by the upper equation (2.11). Accordingly, v € U, and by
(2.9) we may define the trace rectrictions

$1(z2) = wi(aza,x2) € LY (0,1), (2.13)
do(z1) = va(x1,21/b) € LY"2(0,0).
The analysis of Section 4 is based on the Mellin transform
MfG) = [ o) do = Fo) (2.14)
0

which is known to have the following properties (see e.g. [5]).

Lemma 2.1. (i) M : L}~ 1/2(0,00) — La{z € C | R(2) = A} isometrically, where
L3(0,00), A € R, is the weighted Ly—space supplied with the norm f — ||z f]|1,(0,00)-

(i) Let f € Lj (R), and let the numbers A and X be given by

M sup{r | f(z) = O(z™™) as = — 0+},
Ao = sup{m | f(z) = Oz~ ™) as z — oo}.

If Ay > Ay, then the Mellin transform integral (2.2) converges uniformly for Ay < R(z) <
Ao and defines an analytic function there.

(i5i) For any compact subinterval I of (A1, A2), the function
K(f,1,y) = sup|f(z +iy)|
zel

is continuous with respect to y and satisfies

lim K(f,I,y)=0.

y—+oo

(iv) For Ay < X < A2, the inversion formula

1 s i
f@) = o . f(2) dz = M~ f(x)

is valid. O

3 Regularity of u away from the origin

The aim of this Section is to give some basic continuity results and growth estimates for
u and its partial derivates under assumptions (2.3) and (2.4). Here the analysis is mainly
based on the Banach fixed point principle. The regularity result below can be improved
by deriving a full singular resolution of (u1,us) at the origin. This is done separately in
Chapter 4 by applying the Mellin transform techniques.

Theorem 3.1. r¥~1""u e Ok (W) x Cly(@) for any k =0,1,...,m and v € [0,7)N[0,1],
where r = (27 +x2)'/? and —n < 0 is the smallest real root of g as defined by (1.2)-(1.3).

Proof. In what follows, i,j € {1,2},i # j. Applying this notation, the lower equation
(2.11) can be rewritten as (see (2.6), (2.7) and (2.13))

V; = (f)l(l‘]) + I; f;. (31)
Next, applying similarly the upper equation (2.11) together with (2.10) and (2.12), we get

u; = I; (aivi + Oé’l}j) .



Substituting then (3.1) into this equation, we find that
u; = a;Widi + alig; — I (aili fi + alj f;) - (3.2)

Imposing next the boundary conditions u(bxa,zs) = us(x1,U(z1)) = 0 above, we get

«

¢i(zj) + WL% (z5) = gi(z;), (3.3)
where thus 1
gi(zj) = WL (ailifi + ol f;) (z;)- (3.4)

In the following analysis we apply repeatedly the following inclusion, easily proven by
Taylor expansions:

£ CF([0,1] x [0,1) = ((y) ==y ! /Oyf(x,y) dx € C*[0,1], k> 0. (3.5)

Accordingly, and since obviously g;(0) = 0, we see that
3 hg € CMO,1), a7'g2 € {g € C[0,b] |g € C*[0,al, g € CMab]}  (3.6)

for k =0,1,...,m. Next, set (see 1.3)

K ole) = o7 5T (- Teo)) 20), (5.7
and o
Gi(z)) = gi(x;) - mzigj(l'j), (3.8)
so that by (3.3),
x; " pila;) — Ki (2;7¢:) (z5) = 27" Gi(z;). (3.9)
Tt first follows from (3.5), (3.6) and (3.8), that
z,'G, € C0,1], z,'G, € C[0,D). (3.10)

Accordingly, and by (3.7) and (3.9), the results above hold with G; replaced by ¢; provided
that k = 0. In general, the remaining analysis is quite trivial in the case k = 0. Therefore
we assume next and always in the sequel that x > 0. Obviously the norms of K{ and K¥
in C[0, 1] and C]0, b], respectively, are given by

1B =

K2 < bt — qrtl )2 _ 4abk?sinh’® (v +1)In (2) /2)
(ab)» \(b—a)(v+1)) (b—a)®(v+1)2

Hence, K} is a contraction whenever (see (1.2))

g(v+2) = (b—a)*(v +1)* — 4abk? sinh? ((u +1)In (g) /2) > 0.

In Chapter 5 we show that this inequality holds on the interval

_ 2z¢ — In(b/a)

where z¢ > In(b/a)/2 is the only positive real root of

Vab k
b—a

In(b/a) sinh(z).

Tr=



Accordingly, K7 is a contraction if v € [0,77) and we conclude by the Banach fixed point
theorem and by (3.10), that

zy gy € CF[0,1), a7 e, € CF[0, 0] (3.11)

holds with k = 0 for any v € [0,7) N[0, 1]. Actually (3.11) holds for any k = 0, ..., m, which
can be proved by the induction principle. Indeed, assume (3.11) with k<n—1<m — 1.
Applying the recursive differentiation in (3.3) (with i = 1), we have

ar(b = a) (z201)™ (22)+ « (b” =1 (o) —anqﬁg"—”(m)) _

a1 (b — a) (2291)™ (22)

for any z2 € (0,1). The equation above, (3.6) and the induction assumption imply (3.11)
for ¢; with k¥ < n. Hence, ¢, is a C™-function for x5 > a/b and so it follows from (3.3),
(3.5) and (3.6), that ¢» is another C™-function on (a,b). To see what happens on the
interval (0, a), we can differentiate again in (3.3)(with ¢ = 2) to find that

@l (@162)™ @)+ a (a7l Viae) — b (b)) =

= (21 g9) ™ (1),

The equation above, (3.6) and the induction assumption complite the proof of (3.11) with
k < m. Accordingly, (3.11) holds for any k£ = 0,...,m which together with (3.2) finally
implies the assertion. O

4 Singular Resolution of (u,us) at the Origin

In this Section, where the analysis is mainly based on the Mellin transform, we are going
to improve the results of Theorem 3.1. To this end, we see that since f € C™(@)?, we have
the Taylor expansions (see (3.4))

m
gi(z;) = Zcisz + O(ac;-”H) as x; = 0+, (4.1)
k=1

where ¢;;, depends on a, b, M and on the derivatives of f;, fo of order <k —1 at the
origin. Let us define

. ey Ak if p¢{1,2,...,m},
¢;'(z5) = ki . ; _ (4.2)
19k<m Aikxj + Binz] In(z;)  otherwise,
where for any k = 1,...,m,
_ (b—a)%(k+1)%C; _ (n+1) sinh(X,)Ciy
A = 9(k+2) - Biy = 2(sin1}71(Xn)—X,, cosh(X,))? (4.3)

a(karl—akJrl)c]‘k _ n+1 b
Xy = 5n(3).

Cik = cik— @i (b—a)(ab)FC=D (k+1)

In Lemma 5.1 we prove that n & {1,2,...,m} implies g(k + 2) # 0, so, A;; above is well
defined under this assumption. Further, if F'(X) = sinh(X) — X cosh(X), then F(0) =0
and F'(X) = =X sinh(X) < 0 for any X > 0. Hence, F(X) < 0 for any X > 0 and thus
also Bjy is well defined. Based on these definitions we now find that (recall (3.3))

a m
for 21 € [0,a] and 22 € [0,1]. Hence, setting
oF =i — oF, g7 = @7 (vj) + #@C,)L(ﬁbf)(l‘j)a (4.5)
iVVilTj



it first follows from (3.6), (4.1), (4.4) and (4.5) that
z, "G € CF[0,1], @™ R gY € {g € C[0,0] |g € C*[0,a], g € C¥[a,b]}  (4.6)
for any k = 0, ...,m. Then, proceeding as in the proof of (3.11), we see that
zy ey € CFl0,1), a7 tRe5 € Ch0, 0] (4.7)
holds for any £ =0,...,m and v € [0,1) N[0, m + 1]. Accordingly and by (3.2) and (4.2),
n>m—1=ue€Cj@) x Cp@). (4.8)

Therefore we assume in the sequel that n <m — 1.

To get a singular expansion of ¢ at the origin, let § be a smooth cut-off function defined on
[0, 00) such that §(x) = 1 near the origin and 8(z) = 0 for > 0 = min{a*/b* a**+1 /b*},
k = |m/2]|. Multiplying then the right side equation (4.5) by 6(z;), we get

o) =t [ an = Gl (19
prlo) + //:w) dry = &), (4.10)
where
i = O(z;)¢7 and (4.11)
6 = ot - oo [0 - b)) o

aa z1/a
T p—_ L — / (6(a1) — 8(z2))5 (22) dry.

Based on the definition of § and on (2.8), (4.6) and (4.7), we have

Lemma 4.1. Functions ¢; and & have compact support on [0,00) and
:cj—”"'kgoi € C*0, o0), acj_m_l"'kfi € C*[0,00), k=0,1,2,....m,

foranyv €[0,nm). O

Note by Lemmas 2.1 and 4.1, that the corresponding Mellin transforms ¢; are analytic
when R(z) > —n and & are analytic when R(z) > —m — 1. Applying now the Mellin
transform to (4.9) and (4.10), it follows easily from the Fubini theorem that

a(ab)lfz(bzfl _ azfl) ~

L g o B
. aab H'-ah .
L sy A
or equivalently
—a)2(z —1)2F .

where g is defined by (1.2) and

be
o= & - L/ & (1) daq,

ai(b—a)zy

aab o1/a
B o= - —2% dzs.
5 & aalb— a)mn /ml/b &1 (x2) das

10



Note that obviously (Fi, F3) satisfies the same promerties as (&;1,&2) in Lemma 4.1 and
thus Fj are analytic when R(z) > —m — 1. Accordingly, so are p; in (4.12) and so all the
poles of ¢; in this region are the roots of g. These are carefully analyzed in Theorem 5.1
where we show that in addition to the simple roots at z = —n and at z = n + 2, there
exists a double root at z = 1 and a numerable set of nonreal simple roots

—zf, -z, 42, 42, ko= 1,2,3,..

—2, -z, 2 +2, 2z 42, ko= 0,1,2,...

where —ozki = §R(—zki) < —p < 0 for any k and —a,f — —oc as k — oo. Hence, by

Lemmas 2.1 and 4.1, the inversion formula

1 s
wi(zj) = / z;°¢i(2) dz, 1=1,2, (4.13)
R(z)=2

2mi
is valid if 79 > —7. Assume now that 2 € (—n,0) so that there are no roots of g(z) with
R(z) = 2. The asymptotic expansion for ¢; will be derived by pushing the integration

line to the left. To this end, let I' = I'1T'2,I'3sT"y be the closed positively oriented curve
where

I'' = {z=m+iz ||z < M},
I's = {Z:$1+iM|’y1<CE1<’YQ},
I's = {z=9y+izs | |22 < M},
Iy, = {Zzl‘l—iM|’}/1<.T1<’}/2},

where further v, € (—m — 1, —m — 1/2) is such that v; # R(—2{) for any k and M > 0
is such that the set
{z1m <R(2) <, 1S(2)] > M}

contains no roots of g (see Theorem 5.1 (iv)). In Fig. 2 the curve T' for m = 2 and the
leading roots of g are plotted in the example case

_(2 1 _ _ 2
A—<1 2), a=1, b=¢e", (4.14)
where k = 0.8, —np ~ —0.577 and the remaining roots lie in the set R(z) < —1.669.
r
o
T 47
O
o
T 27
o
—2 -1
I I ®
=1
O_
%o -+ =27
(@]
_Zfr
O
—Z1 + —Ar
o
_Z;'

FIGURE 2. Roots of g and the curve I' for m = 2
in the example case (4.14).

11



By the Residy theorem

1 / _.mi(2) pi(=n) pi(—2p) =

— [ z? dz = 27 + 2R E AR/ RSO 4.15
2mi Jp 7 g(2) g'(=n) "’ ~ (4.15)
T<—ay <—7n

Applying Lemma 2.1 (iii) and noting that p; = (b — a)2(z — 1)2Fj, we conclude that

1
lim —/ P g0 o (4.16)
M—oo 2mi Jp, 7 g(2)
Further, by Lemma 2.1 (i),
1 —. ()

R; := — lim

— dz € L*"~ 1/2(0, oc). 417
M—oo 2mi Jp, 7 g(2) Z€ (0,00) (417)

Collecting finally the results (4.13)-(4.17), we get the expansion

(— (—2F) L=+

i = p:( ) z] + 2R > ij" +Ri, RieL*" '2(0,00). (4.18)
g'(=n) Y 9'(=z)

T<—0a,; <—1n

Clearly above R; are continuos functions since ¢; are. Further, noting that the exponent

terms above satisfy the homogeneous equations (4.9) and (4.10), we conclude that actually

be
(e75) (b - a)mle (1'2) + « RQ(.T,‘l) dl‘l = a (b - a)ﬂfzfl (1'2),
z1/a
as(b—a)x1 Ra(z1) + aab vi(z2) dze = a2(b—a)x1&(21),
xl/b

(k+1)

so that by differentating both equations k£ + 1 times and solving then R, , we get

(&) *D) —¢; (bf+1R§k) (biz;) — af ' R (aﬂj)) — (k+ DR ()

Zj

RO+ — . (4.19)

where

«o aab
S = =a, by=b =p! by=a"l.
C1 1(b a)7 Co 2(b a)a ay a, 1 , a2 5 U2 a

Accordingly, R; is a C"™-function away from the origin. To analyse what happens near the
origin, it first follows from Lemma 4.1, (4.18) and (4.19), that

27 "R € L2mml/AkEn 1) ¢ L2RFrImTY(0,1), K =0,1,2, ..., m.
Hence, this regularity result together with the Sobolev imbedding theorem implies
z;"R; € C*7M0,1], k=0,..,m, k+n<m+1.
Then, applying this (with k = m, n =1) and (4.19), we get
Ri € C™0,00), RM(0)=0, k=0,1,...m— 1. (4.20)

Collecting finally the results from (3.2), Theorem 3.1, (4.2), (4.5), (4.18) and (4.20), we
can summarize the main results of the paper in the following regularity result for (u1, us)-

Theorem 4.1. Assume (2.3) and (2.4). Then there are coefficients

Ai, Bi, CZ', Di, EZ', Fz ER and A?]:H szl:ﬂ Clik Ec

12



such that
ug — At - B; iz —C; z"‘H Dzt ln(zz) Eix;x”l ln( i) — Fiz?H In(z;)
_ (Z_m+1§_%<_n [Aj; Sy BErat 4 kg jk “]) € Cn (@),
i) €{1,2}, i #J,
where —n and — zk are those roots of g defined by (1.2)-(1.3), whose real part lie in interval

[-m + 1,0), —aif = R(—2), and where further D; = E; = F; = 0 if n ¢ {1,2,....,m}.
O

5 Roots of g(z)

This final technical section is motivated by Theorem 4.1. For notational convenience we
write in what follows (z,y) instead of (z1,z2).

Theorem 5.1. Assume that a, b and k are real numbers such that b > a > 0 and
0<k<1.
(i) Then the roots of g(z) = (b— a)?(z — 1)> — 4abk?sinh? ((z — 1) In(b/a)/2) are

In(b/a) — 2z

_ = X777 = 1 2
’7 m@ja) "
. In(b/a) — 2z . 2y
Lt = _at— = ko _ k t+2 k=1,2.3,...
K %= T 0 ey TP S
-zZ7 = —of +iBf, zZF+2, k=1,2,3,...,
_ _ .. In(b/a) -2z, . 2y _
— = — — = — 2, k=0,1,2,...
2, ay, Zﬂk ln(b/a) Zln(b/a)’ 2L + 2, 07 5 4y )
—Zy = _041;*'1'3;7 Z, +2, k=0,1,2,...,

where xo is the only positive real root of x = Rsinh(z), yki are the unique roots of
9+(y) = y F Rsin(y) cosh < y? — R2sin’(y) cot(y)> (5.1)

on the intervals (2k7r, (2k + 1/2)7r), k=1,2,3,... and
((2k: + D, 2k + 3/2)7r), k=0,1,2,..., respectively, and

z} = cosh™! <L> , x, =cosh™’ <—y7k> , (5.2)
Rsin(y;}) Rsin(y;, )
where finally
bk
R= \I{C? In(b/a) € (0, k).

(ii) 0 <n < 2KIn[sx~' (2K +1)] where K = 2[In(b/a)]~". Moreover ak n and ak — 00
as k — oo.

(i51) All the roots have multiplicity 1 except z = 1 which is a double root.

(iv) For any v1, v2 €R, 1 < 72, there exists M = M(v1,72) such that the set

{e+iy | <z<mp, ly>M}

contains no roots.
Proof. Writing w = (z — 1) In(b/a)/2, g(z) = 0 is equivalent to w?> = R?sinh?(w), which
further may be split into two equations;
w = Rsinh(w), (5.3)
w = —Rsinh(w). (5.4)

13



Let us first search for the roots for (5.3), writing w = = + iy, so that

{x = Rsinh(z) cos(y),

y = Rcosh(z)sin(y). (5.5)

The solution to (5.5) occur in the groups of four; (z,y), (z, —y), (—z,y) and (—z,—y),
so we may assume in the sequel that z > 0, y > 0. If y = 0, (5.5) is equivalent to
z = Rsinh(z), which clearly holds if z = 0, but also has one extra root zo > 0 since

0<R< k<1, (5.6)

as follows from
R _ Vi)
Kk t—1
When z = 0, we find no other solutions than y = 0, so we may assume next that 2 > 0
and y > 0. Then by (5.5) and (5.6),

b
<1, t=->1.
a

T Y

- Rsinh(z) >0, sinly) = R cosh(z) >0,

cos(y)

and thus
y € (2km, (2k +1/2)7) for some k€ N'={0,1,2,...}. (5.7)

By the lower equation (5.5), we have

= cosh ™! (ngl(y)> , (5.8)

and when this is substituted to the upper equation (5.5), we obtain g4 (y) =0 (see (5.1)).
Let us show next that there is a unique root of g4 on each interval (5.7) except on the
first one (k = 0). Indeed, if y € (0,7/2), we have cos(y) < sin(y)/y, and thus

9+(y) _ Y _ Reos Y 1/2(:05
siny) ~ sm@p) O h<<sm2<y> r) (y)>

9 1/2 .
v () )
> sin(y) R h((siHQ(y) R) Y >

= R((1-p*)"/*—cosh(p)) =R Y _ asp™,
n=2

where
9 1/2 .
p = < - y2 - R2> Sin(y) € (0,1) and
sin®(y) Y
(1-3-5---(2n—-1))" =1
as, = > 0 for any n > 2.
(2n)!

This and (5.6) imply that g4 (y) > 0 for any y € (0, 7).
Assume next (5.7) with k > 1. Since

limy*ﬂkﬂ#» g+(y) = —00, k= 112731"'1 (5 9)
limyﬁ(% +1/2)ﬂ-, g+(y) = (2]{? =+ 1/2)7T_R > 0, k' = 1,2,3,...,
g+ has at least one zero on each interval considered. To guarantee the uniqueness, write

ysin(y) cos(y) + R?sin(y) — y?
sin? (5)V;

Y = 4/y2 — R2sin®(y) cot(y) >0, Ys =

14



Then
g’ (y) =1 — Rcos(y) (cosh(Y7) + Y2 sinh(Y7)),

so that
Y2 < =1 = ¢’ (y) > Rcos(y) (1 + sinh(Y;) — cosh(Y7)) > 0, (5.10)

and so it suffices for us to prove that Y3 < —1. But this is equivalent to

y® —sin(y) cos(y) y — R?sin’(y) > sin(y) cos(y)1/y> — R?sin*(y),

where y > y/y2 — R2sin’(y), so we are done provided
y* — 2sin(y) cos(y) y — R?*sin*(y) > 0 &

y > sin(y) <cos(y) + \/cos2 (y) + R2? sin? (y)) .

However, by (5.6) the right side above is less than 2 for any y, and thus
y>2=Y < 1. (5.11)

It now follows from (5.9), (5.10) and (5.11), that g has the unique root y;" on each interval
(2km, (2k + 1/2)m), k=1,2,... Further, by (5.8) the first equation (5.2) holds.
To find the roots for (5.4), rewrite this as

{m = —Rsinh(z)cos(y),

y = —Recosh(z)sin(y), w=2z+1y. (5.12)

Again by symmetry, we may consider only the set where z > 0, y > 0, and since the only
root on the coordinate axes is (z,y) = (0,0), we may further assume that z > 0, y > 0.
Then it follows from (5.6) and (5.12), that both sin(y) and cos(y) are negative, so we
must have

y € ((2k+ ), (2k +3/2)7) for some ke N'={0,1,2,...}. (5.13)

>From the lower equation (5.12), we have

= cosh™" (—Rsii(y)> , (5.14)

and if this is substituted to the upper equation (5.12), we obtain g_(y) = 0 (see (5.1)).
Using the same notation as above, we have for any k eN that

lim _(y) = —o0, lim (y) =2k + 3/ — R > 0. 5.15
yﬁ(2k+1)ﬂ'+g 2 yﬁ(2k+3/2)ﬁ,g () =( /2)m ( )

Further, ¢’ (y) = 1+ Rcos(y) (cosh(Y7) + Y2 sinh(Y7)), so that also this time
Yo < —1=4" (y) > 0. (5.16)

By (5.11), (5.15) and (5.16), g— has the unique root y, on each interval (5.13) and by
(5.14), also the second equation (5.2) holds.
Since the roots of g are

{z _In(b/a) + 2w
~ In(b/a)

we are done with the proof of (7).

| we C, w? = R? sinh2(w)} ,

(13) Write n = Kwo where wy is the largest real root of

h(w) = Rsinh(w + K1) — (w+ K~1Y).
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Then since

and since for w > 0,

h(w) > kK te¥ —w— K1
>2+K Dw-Ink'QK+ 1] +1] —w— K™!
>(1+K Y[w-2mh"2K +1)],
it follows that 0 < wg < 2In[k (2K + 1)], so n is bounded as asserted. Further, by the

upper equations in (5.5), (5.12), xki > z for any k, and by (5.2), a:ki — o0 as k — 00, so
assertion (i4) is proved.

(791) Since the only common root of

hi(w) = Rsinh(w) —w and hs(w) = Rsinh(w) + w

is w = 0, it obviously suffices to show that all the roots of hi(w) = 0 and ha(w) = 0 are
simple. But

hi(w) = 0= w = cosh *(1/R) + i2kn, ke 2,

so that the only common root of h; and h} could be w = cosh *(1/R). However,
hq (cosh_l(l/R)) =0 is equivalent to

(1—p*)/? —cosh(p) =0, p=+1-R2€(0,1),

where the first equation above is false for any p € (0,1) as we proved earlier by expanding
the left side into Taylor series.
On the other hand,

hy(w) =0= w =cosh™ (1/R) +i(2k + V)7, ke Z,
and since ho(w) # 0 for all such w, the roots (x,y) # (0,0) are simple as asserted.
(iv) For given v; < 72, set

n a .’Ei
KZ{kEZI l(blfl()Tia)QkE[%,w]}-

By (ii), K is a finite set. Further, set

2 cosh(N)

_ + _
N =maxdaid,  M=—075

By (5.5) and (5.12),
Y& < Rceosh(zf) < cosh(N), k€ K,

which further implies that

23/,:‘L
In(b/a)

< M for any k€ K.

This completes the proof. [
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A Membrane theory of a shallow hyperbolic
shell

In the membrane theory of a thin shell, the forces due to bending deformations are consid-
ered negligible. Assuming that the shell consists of homogeneous isotropic material with
Poisson ratio v (0 < v < 1/2), the deformation energy of the shell may be expressed as [3]

F(u,v,w) = /Q[V(ﬂll + B22)” + (1 = v)(B1 + 2675 + 832)] dady
-2 / (g1u + gov + gsw) dzdy, (A1)
Q

where (Q is the midsurface of the shell, u, v are the tangential and w the normal component
of the displacement field that represents the deformation of the midsurface under the loads
9i, and B;; are the membrane strains arising from the change of metric in the deformation.
The membrane strains relate to the displacements u, v, w via consitutive laws that depend
on the geometry of 2 and on the coordinates x,y chosen. Assuming here shallow shell
theory with approximate principal curvature coordinates as x,y, we have the relations

ou w ov  w 1/0u Ov
= — + — = _— 4+ — = (—+ — A2
Bi1 3m+R1’ B22 8y+R2’ B2 2(8y+3m)’ (A.2)
where R7', Ry! are the localized (constant) principal curvatures [3].
Denoting
1 ( 1 n 1 n 2v )1/2 R R
—_ = —_— —_— _ Cl = — Co = —
R \RR "R "RR,/) ° ' R’ 7 Ry
and rearranging (A.1)—(A.2) as
ou Oov,2 1 Oou  0Ov\2
_ _ 4,2 i ) (1 _ i e
F(u,v,w)—/ﬂ{(l V)<028$ Clay) —|—2(1 V)(8y+8z) }da:dy
ou Ov1?
+ /Q [R*Lw + (e + I/CQ)a_m + (ver + CQ)a_y] dxdy
~2 [ (g guv + gyw) dody, (4.3
Q

we may eliminate w from the Euler equations of the energy principle F'(u,v,w) = min!,
thus obtaining the reduced energy principle

F(u,v) = /Q{(l —,/2)<02§—z —018—2)2 + 1(1 _V)((;_Z + Z—Z)Q}da:dy

-2 / (g1u + g2v) dzdy = min!, (A4)
Q

where 5 5
~ g3 ~ g3
g1 =01+ (c1 +ve) 9’ B2=9t (ver + ¢2) 9y
Assume now that ¢1ea < 0, so that the shell is hyperbolic. Then passing in (A.4) to the

characteristic coordinates
1 _ _
a1 = —(|eo| " Px 4 || T?y), @y =

V2

and transforming the displacements accordingly as

(le2| ™22 — |1 |71 /%y),

Nis

w= e |2 (w4 us), v =ea| VP (ur — us),
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we find that F(u,v) = F(u1,us) = F(u), where

ou Oou
:/ (1—v?) |c102|1/2(ax1 axz)
8u1 8uQ 2

+ (1= v)|ereg Y2 (8—561 - 3—@) —2f - u} dzidxs, (A.5)

where now w is the transformed domain and f = (f1, f2) is given by
fr=lel™ P + el ™5, fo=lel ™0 — el .
We observe that (A.5) is of the form (1.1) with A = (a;;) defined by
a1 = ajp = 2(1 — V2)1/2|0102|1/4

—a21 =axn = (1- 1/2)1/2|0102|1/4-

The parameter £? in (1.3) is then given by

o2 (2(1 +v)|crea] — 1)
2(1 4+ v)|erea| + 1

We see that 0 < k? < 1 when 0 < |cica] < (2 + 2v)7 !, and 0 < k% < 1/4 when
(2+2v)7! <|erea| € (2—2v)7! (the maximal value of |c1cs|). The degenerate case k = 0
is obtained when |R;/Rs| =1+ 2v £ 2vv + V2.
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