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Abstract: The time harmonic electromagnetic obstacle scattering is con-
sidered. This thesis has a twofold purpose: both direct and inverse problems
are studied keeping in mind their practical applications. Natural questions
that arise are those of domain truncation and data reduction.

When solving direct problems using computers it is customary to truncate the
space into a bounded computational domain and then require an absorbing
boundary condition at the exterior boundary. One approach is to surround
the domain by a non-reflecting layer of imaginary material. The so called
Perfectly Matched Layer (PML) is here regarded as complex stretching of
the metric tensor. A rigorous theory in a quite general setting is developed.
The existence and uniqueness of a solution to the truncated boundary value
problem is proved.

Another goal is to show that an inverse problem has a unique solution pro-
vided that the measurements have been dome in an arbitrarily small open
neighbourhood lying on a surface outside the obstacle.
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1 Introduction

The problem of finding a solution to a differential equation given certain
boundary values is called a direct problem. On the contrary, if one knows the
solution and the differential equation except the coefficient functions one has
encountered an inverse problem.

In practice, direct problems arise when a known source like a mobile phone
has been located in a known material distribution like a city and one has to
compute the field caused by that source. One could, of course, measure the
field. Unfortunately, measurements are usually difficult to carry out, time
consuming and expensive.

Maybe the most famous inverse problems are those of geophysical explo-
ration, mechanical engineering and medical imaging: one has to find out,
e.g., whether there are remarkable ore deposits hiding under the surface of
the Earth, fatal cracks in the body of an aircraft or tumours inside a human
head. The sounding is done by transmitters that generate fields and receivers
that measure the fields. Hence, one knows a set of source terms and the cor-
responding solutions of an appropriate wave equation and tries to compute
the coefficients representing the material.

This work treats the electromagnetic scattering caused by an obstacle. The
goal is to reduce wide or unbounded measurement areas and computational
domains to small or bounded ones so as to make the measurements and
computations possible. It is proven that inversion yields unique material
parameters even if the measurements have been carried out on a tiny piece
of a surface exterior to the scatterer. On the other hand, it is shown that
the solution of a whole space direct scattering problem can be approximated
quite accurately by the solution of a corresponding bounded boundary value
problem truncated to a neighbourhood of the scatterer. Complex stretch-
ing of the metric tensor outside the computational domain is employed to
attenuate reflections due to the boundary.

1.1 Structure of the Thesis

The bunch consists of three articles and this introductory part.

Paper A concentrates on inverse problems. Two uniqueness theorems are
proven. The fields are generated by tangential dipoles and tangential compo-
nents are measured. It is shown that if we know every tangential source-field
pair on an open piece of a surface exterior to the scatterer then we know the
distributions of electric permittivity, conductivity and magnetic permeability
inside the scatterer. The second result is similar except that the data consists
of the admittance map restricted to an open set of a plane.

Paper B deals with the whole space direct problem on a real manifold of an
arbitrary dimension. The aim is, however, at domain truncation using the



perfectly matched layer (PML) technique. In the article a rigorous generaliza-
tion of the PML concept is developed. It is also shown that electromagnetic
fields in this quite general PML can be mastered by tools that resemble the
conventional machinery of electromagnetics. Changing the metric outside the
scatterer is proven to have no effect on the solvability and the uniqueness of
a solution of a scattering problem. This result is finally applied in Euclidean
spaces.

Paper C returns to a three dimensional space — although without further
loss of generality — and makes a close study of the domain truncation by
a generalized PML. In everyday life, field calculations are carried out in a
bounded computational domain that surrounds the scatterer. So as to pre-
vent spurious reflections the computational domain is surrounded by a so
called absorbing layer or PML. One can think that it is constructed by com-
plex stretching of the metric tensor. Requiring, e.g., the perfectly conducting
boundary condition at the exterior boundary of the absorbing layer one ob-
tains a truncated boundary value problem. The main result states that the
truncated problem has a unique solution and it converges exponentially to
the whole space solution in the computational domain as the absorbing layer
gets thicker. Throughout paper C a coordinate invariant representation is
used.

In Section 2 of the introduction there are brief overviews of direct and in-
verse problems associated with electromagnetic obstacle scattering. Section
3 reviews the perfectly matched layer and describes the differential geomet-
ric approach. A few examples of other absorbing boundary conditions are
given. Section 4 concentrates on inverse scattering laying emphasis on the
uniqueness questions. The scalar Schrédinger equation is worked in as an
example. Some previous results are reviewed.

2 Electromagnetic Obstacle Scattering

The real space contains billions of stars and galaxies not to speak about the
interstellar dust. However, it usually is sufficient to forget the galaxies and
model obstacle scattering by considering a bounded body in an empty or
homogeneous space. A theoretical experiment could be organized as follows:
figure a closed surface surrounding the scatterer, or alternatively, the surface
of a half space containing the obstacle. Then, move a transmitter along
the surface and, corresponding to each location of the transmitter make a
boundary measurement, i.e., measure the scattered field at a sufficiently dense
array of points on the surface. The direct problem is: compute the scattered
field at every point outside the boundary. A boundary measurement gives one
boundary condition. To fix the solution uniquely we need another boundary
condition at the infinity; it is called the radiation condition. The inverse
problem is: what are the distributions of the material parameters inside the
body. Before starting to make the inversion by a computer one has to know



whether the model has a unique solution.

2.1 Maxwell’s Equations

The time-harmonic Mazwell’s equations represented in the classic vector for-
malism are

V x E@) —iwp()f() = M), 1)
V x H(z) +iwy(@)E@x) = Ja). (2)

The electromagnetic field (E(z), H(z)) consists of the electric field E(z) and
the magnetic field H(z). The source terms M (z) and J(z) are the magnetic
source and the electric source, respectively. All of these four vector fields
are functions R* — C? or rather distributions. The scalar valued coeffi-
cients are the magnetic permeability u(x) > 0 and the complex permittivity
v(z) € C. The latter is an artificial quantity composed of the electric permit-
tivity (x) > 0 and the electric conductivity o(z) > 0 according to the formula
v(z) = e(x) + io(z)/w. Every quantity except the imaginary unit i and the
angular frequency w > 0 is a function of € R3. In paper B Maxwell’s equa-
tions are generalized to n-dimensional manifolds using differential geometric
formalism.

2.2 Direct Problems

Assume that there are constants €y > 0 and o > 0 such that the scatterer

Wy = supp(p — po) Usupp(y — o)

is a compact subset of R3. It is also called the obstacle or the inhomogeneity.
Let 2 C R? be an open bounded domain with a smooth boundary. Suppose
that W, , C €2. The whole space scattering problem is to find E and H in
R? \ Q such that

VxE—iwpH = 0 in R\ Q,
VxH+iwyE = 0 in R*\Q,
ﬁXE|BQ = T
2 x E(z) —nH(z)] < Cr 2 as r — oo.

(
(
(
(

Here 7i is the exterior unit normal of 0}, f: 0Q — C? is a given function,
r:=|z|, & := z/r and C is a constant independent of z € R?. The coefficient
n = (u/e)'/? is called the wave impedance. The Silver-Miiller radiation
condition (6) guarantees that (3)-(6) has a unique solution (E, H) (see [15]).

The whole space problem cannot be solved using a computer since R3\Q is not
bounded. For example, the element method would require an infinite number



of elements but a computer has only a finite storage capacity. Therefore, and
since the field far away from the scatterer is usually not interesting, engineers
truncate the space into a bounded domain D that contains  and try to solve
the truncated scattering problem in D \ €. Unfortunately, unless we know
both 7 x E and 7 x H at 0D we cannot be sure of the uniqueness of the
solution provided that o = 0 in D\ Q (see [15]). A really intricate problem
is that the boundary of D reflects the waves back towards 2 and this way
spoils the solution, that is to say, the solution does not anymore resemble
that of the whole space problem. To prevent reflections various absorbing
boundary conditions (ABC) have been introduced in the literature (see [10]
or [44]).

2.3 Inverse Problems

It frequently happens that an inverse problem has many solutions. More-
over, although a unique solution exists it, typically, is unstable with respect
to measurement errors. This ill-posedness is often due to nonlinearity: the
coefficients of even a linear partial differential equation depend nonlinearly
from the solution. Before tackling an inverse problem in practice one has to
choose an adequate model and, at the same time, check whether the corre-
sponding direct problem has a unique solution. After that he should assure
himself of the existence and uniqueness of the solution to the inverse problem
within the model. The existence question is, in certain sense, solved by per-
forming the measurement but the difference between the model and reality
should be noted. Paper A concentrates on the uniqueness of electromagnetic
inversion.

Assume that the inhomogeneity lies in €). An electromagnetic inverse scat-

tering problem can be formulated as follows:

IP1 For each magnetic dipole ¢ at 0€) tangential to 92 measure the tan-
gential component (77 x E,7 x H) at 0 of the electromagnetic field
generated by the dipole. Determine ¢, 4 and o in ).

Another formulation is:

[P2 Determine ¢, ;1 and o in €2 provided that the admittance map
Y 7 X By 7 X H|yg
is known.

If the obstacle is huge like the Earth it is not possible to arrange a measure-
ment that surrounds the whole scatterer. For this reason, one is obliged to
restrict the measurements to a local area and mathematician’s job is to find
out whether the material parameters can, even in principle, be derived from
this reduced data.



3 Battle against Reflections

When computing waves in truncated domains artificial boundaries that have
no physical counterparts give rise to extraneous reflections. In order to mod-
erate these false corrugations it is necessary to impose absorbing boundary
conditions at the nonphysical boundary. The requirement of a perfectly ab-
sorbing boundary leads to nonlocal pseudodifferential operators (see [18])
that need extravagant use of resources in practical computations. Hence
they have to be approximated by local operators. Unfortunately, the latter
ones only yield more or less highly — not perfectly — absorbing boundaries.

It is useful to have a closer look at one of the local approximations. The
presentation follows that of [10]. Fourier analysis shows that an arbitrary
solution to the scalar wave equation

1
Au — —28tU: 0
C

in R? can be composed of plane waves
u(z,t) = Ae~iWi-ka),

Hence, a plane wave is the basic object to construct an ABC for. The above
u propagates to the direction k/|k| at the velocity ¢ := w/|k|. Suppose k; < 0
and consider the scattering of u from a wall at z; = 0. From |k| = w/c it
follows that

The partial derivatives of u are

aju = ikju, ] = 1, 2, 3, (7)
du = —iwu, (8)
and particularly
iwdu + wkiu = 0. 9)
When the wave is close to normal incidence
2 2 2
C” 19 2y _ ky + k3

From the Taylor approximation /1 —( &~ 1 — %( one obtains the so called
parazial approximation

w 1, .,

In accordance with (9) then

. w? Lo 9
iwoiu — —u + EC(kQ + k3)u ~ 0. (10)
c



On substituting (7)—(8) into (10), one has
L L ojo | o2
c
Thus one of the famous Engquist-Majda ABC’s (see [18]|) has been derived:

=0.

x1=0

(alat o Lo+ a§)> "

It should be noted that for normally incident plane waves the wall is perfectly
absorbing.

Since k; = we™! cosf one can write (9) in the form

1
du — iwe lu = 0.
cos
Determination of «,, and 3,,, m =1,..., M, such that

Q,y, sin® 6
~1+
Z 1—ﬁmsm 0

cos 9
leads to Lindman ABC’s. They can be adjusted to absorb waves at oblique
incidence quite efficiently (see [10] for details).

Bayliss-Turkel ABC assumes that the wave has the form

u(r,0,6.1) = fo —r0.9)

in spherical coordinates. This is a general expansion of radiating solutions
u to the wave equation. Bayliss and Turkel (see [3]) define recursively a
sequence (B,,) of differential operators such that B,u = O(1/r?*™+1). A
family of boundary conditions B,,u = 0 results.

A curiosity among domain truncation methods that deserves to be mentioned
is the measured equation of invariance (MEI) by Mei et al. in 1994 (see [34]).
This method permits the finite difference mesh to be terminated very close to
the physical boundary that may be concave. In [26] Lassas et al. introduce
a similar double surface radiation condition (DSRC) method which “can be
viewed as a justification and theoretical background for the MEI method”.
Such a double surface near-field radiation condition is also encountered in
[29] and in paper C.

As the above discussion may reveal absorbing boundary conditions are rather
complicated to implement particularly in general geometries and for an ar-
bitrary incidence. Fortunately, this is not the case with PML.
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3.1 An Introductory Example

Consider the scattering of a one dimensional scalar wave
V(z,t) = v(z)e

from a wall at z = 0:

o' (x) + k*o(x) = 0, x>0, (11)
v(0) = . (12)

The general solution to (11) is v(z) = v_(z) + v, (z) where v_(z) := B_e %
and vy (z) := B, e* propagate to the left and to the right, respectively. As-
sume that the transmitted signal v_ is known and, based on the measurement
(12), one has to compute the scattered wave v, in the vicinity of the wall.
The analytical solution is obviously v, (z) = uel*® with uy := vy — v_(0).
Nevertheless, to illustrate how PML works it is quite elucidating to have a
detailed look at the one dimensional case.

The scattered wave u := v, satisfies
u"(z) + K*u(x) = 0, x>0, (13)
u(0) = wuy. (14)
The aim is to determine u from (13)—(14) in a computational domain |0, |,
xg > 0. So as to make sure of the uniqueness of the solution another boundary

value u(R) = upg has to be fixed, say, at R € ]zg,o00[. For the sake of
simplicity assume that

w(R) = 0. (15)
A general solution to (13) is
u(z) = A e A, ek (16)

The conditions (14) and (15) yield ug = A_(1—e 2*7). If kR ¢ 77 it follows

Ug
1 — ¢ 2ikR’

A =0 (17)

A= 1 _ o2ikR"

If kR € 7Z one has e*f = ¢7*E =£ (). The boundary conditions imply that
ug = 0. Hence there are three possible cases:

1° If kR ¢ 77 there exists a unique solution to (13)-(15) given by (16)-
(17);

2° If kR € 7Z and ug # 0 then (13)—(15) has no solution;

3° If kR € nZ and uy = 0 then (13)—(15) has infinitely many solutions
(16) given by A_ = —A,.

11



Since k = 2727 and w = 27T~ where )\ is the wavelength and T is the
period of the oscillation the phase velocity ¢ has the expression ¢ = AT ! =
wk™! and thus & = wc™!. The relation kR = 7n € 7Z is equivalent to
w=cntR ', n € Z. These are the resonance (angular) frequencies.

The problem is that 2° and 3° are possible due to the truncation at R and if
ug # 0 in 1° the nonvanishing amplitude A _ of the wave component reflected
by the artificial boundary at R spoils the solution.

The real analytic function u(z) in (16)* can be uniquely continued to a com-
plex analytic function

u(z) = A_e % A, e*?

onto the closed half plane C' = {z € C| Rez > 0}. As such u(z) is the
general solution to the Helmholtz equation

u"(2) + k*u(z) = 0

in the open half plane C* = {z € C | Rez > 0}. Here u"(2) is the second
complex derivative of the analytic function u(z). Let R =a+ib e Ct, b > 0.
Consider the boundary value problem

u"(2) + k*u(z) = 0, ze€CH, (18)
u(0) = wug, (19)
u(R) = 0. (20)

Since kR ¢ 7Z there exists a unique solution

u(z) = A e k74 AL etz

A . Ug . Ug
- 1 672jk}~{ o 1 — e—2ikag2kd’
A . Ug . Ug
+ = 1 — e2ikR T 1 — e2ikap—2kb’
Note that
lim Ay =ug, lim A_ =0.
b— o0 b— o0

It is obvious that instead of solving (13)—(15) one should rather search for
the solution to (18)—(20) for sufficiently large Im R > 0. The latter problem
always is uniquely solvable and the solution restricted to |0, z¢[ tends to the
“physical” scattering solution exponentially along with b = Im R since

A_
u:e’%b—>0 as b— oo.
|Ay]

This is the great idea of PML.

*The formula is actually analogous to the Stratton-Chu formula (see [15]).

12



In practice, PML is constructed using a smooth stretching function
[0,00] > C, 2+ 2 =ux+sa(z).

Here s € C", Ims > 0, and a : [0,00[— [0,00] is an increasing smooth
function such that

al(g,se) = 0; mh_)rgo a(z) = oo.

The stretching induces a complex valued metric g := (dz/dz)? to the real
manifold ]0,o0c[. The one dimensional Laplacian d?/dz? is, in accordance
with the chain rule, at least formally equivalent to the covariant Laplace
operator

< 1 d 1d de d (dz d d?
A=—— \/§ o) T G2\ 929 ] T 79
Vgdx g dx dzdx \dz dx dz
Instead of the original boundary value problem one solves the following PML
boundary value problem:

Au(x) + k*u(z) = 0, x€]0,R]
u(0) = g,
u(R) = 0.

Restricted to |0, zo[ the covariant Laplacian equals the ordinary Laplacian
which in this one dimensional case is the second derivative. As the thickness
R — z(y of the perfectly matched layer increases the solution tends to the
desired scattering solution exponentially in the computational domain |0, 2|
provided that a'(z) > C for some positive constant C' as = tends to oo.

3.2 Perfectly Matched Layer as an Absorbing Boundary
Condition

Let Q, B and D be sufficiently regular bounded open domains in R? such
that the scatterer is included in Q and Q ¢ D € D C B. In what follows
D\ Q stands for the computational domain and B\ D is the absorbing layer.
If the radiation condition (6) is replaced by

i x E|yy =0

the solution of the boundary value problem in Section 2.2 will be contami-
nated by spurious reflections due to the artificial boundary 0B. In order to
prevent the contamination one could define some mathematical conditions
that correspond to a kind of sponge absorbing material filling up the zone
B\ D. The perfectly matched layer technique offers means for that purpose.
It should be emphasized that PML can be used in connection with various
wave phenomena — not just with electromagnetic waves.
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The whole story began in 1994 when Bérenger introduced PML for Cartesian
coordinates and planar interfaces in the article [4]. He was computing elec-
tromagnetic waves using the finite-difference time-domain (FDTD) method.
Later in the same year Katz et al. (see [22]|) constructed a three dimensional
PML for FDTD. Still in 1994, Chew and Weedon (see [11]) observed that in
the Fourier domain PML can be derived by complex coordinate stretching.
During 1996-1997 PML was generalized to cylindrical and spherical coor-
dinates by several authors and in 1998 to a general orthogonal curvilinear
coordinate system by Teixeira and Chew (see [50]). Finally, in 1999 Teixeira
and Chew gave a unified differential geometric description of PML by means
of differential forms (see [51]). The absorbing layer is constructed by chang-
ing the metric tensor. In the so called Mazwellian formulation Maxwell’s
equations are preserved everywhere: only the constitutive relations change
along with the Hodge-* operators.

The above referenced articles concentrate on the construction of absorbing
layers in different geometries. There still remained the questions of existence
and uniqueness of the solutions to the adequate boundary value problems
in the presence of the absorbing material. Moreover, the convergence and
stability of solutions had to be considered. Inspired by the work of Collino
and Monk (see [14]) Lassas and Somersalo gave in 1998 an answer for the
scalar Helmholtz equation in a two dimensional cylindrical geometry (see
[27]). Soon they continued with a pioneering work [29] handling the case of
a general convex geometry in an arbitrary dimension. Although dealing with
Maxwell’s equations in three dimensions paper C is the next milestone on
this road to a complezified scattering theory as the scenario is named in the
introduction of [29].

In Section 3.1 the absorbing layer is constructed using coordinate stretching
in one dimension. The method is readily generalized to three dimensions
when D is a strictly convex domain with a smooth boundary. For x € R*\ D
let p(x) € @D be the unique point such that the distance between x and 0D

equals
h(z) := |z — p(x)| > 0.

Then z has a unique representation
z = p(x) + h(z)n(z)

where n(x) := (x — p(z))/|x — p(x)] is the exterior unit normal vector of 9D
at p(z). For x € 0D define p(z) = z and h(x) = 0. Let 7 : R — R be an
increasing smooth function such that 7'|]_0070} = 0. For each

s€@++::{z€(C|Re220, Imz > 0}

define
F,:R - C, F,(z)=x+sa(z),
where

. {0, z €D,
a: R =R, a(x)_{T(h(x))n(x) z € R\ D.

14



The mapping F is called the stretching function and it is analytic with
respect to s. Note that Fy(z) = z if 2 € D or s = 0. As in the one
dimensional case the stretching 7 := F;(z) induces a complex valued pseudo-
Riemannian metric

3 ~ ~

or™ ox™ ,

g;i :Z%%: jal:172:37
m=1

to R®. This process can be regarded as complex stretching of the metric ten-
sor. At first sight it may seem unbelievable that the curvature of the stretched
manifold vanishes. Indeed, the components of the Riemannian curvature ten-
sor are analytic functions with respect to the stretching parameter s. Since
they vanish for s € [0, 00[ they have to vanish for all s € c.

In accordance with the Stratton-Chu representation (see [15]) the electro-
magnetic field (E(x), H(zx)) is a real analytic function of z € R*. Following
the argument in [29] one is able to show that the field can be analytically
continued to a unique field (E(z), H(z)) that is defined in an open neigh-
bourhood of the manifold F,(R?*) \ Q and in which the complex Maxwell’s
equations

V. x E(2) — iwpoH(z) =

V. x H(z) +iwegE(z) =

=TT}

b

—

are satisfied. The “pullback” of (E(z), H(z)) with respect to the stretch-
ing function obeys certain covariant Maxwell’s equations in the pseudo-
Riemannian manifold (R?, (g;;)). Written in the language of differential forms
the covariant equations have the appearance of the ordinary Maxwell’s equa-
tions: the change is hiding in the Hodge-* operator.

Papers B and C together with [29] reveal that by properly adjusting the
stretching function one can efficiently eliminate the reflections caused by the
truncation at dB. In other words, the solution of the covariant boundary
value problem tends to the physical scattering solution exponentially along
with the increasing thickness of the absorbing layer.

3.3 Differential Geometric Approach

Material or computational boundaries usually consist of curved surfaces also
called two dimensional manifolds. If one has to compute, e.g., the magnetic
flux across such a surface he should be able to integrate over a manifold.
What kind of entities can be integrated over manifolds? The answer is:
differential forms. There is a plethora of reasons why use differential forms
instead of vectors in electromagnetic theory (see [25], [51], [53], [54]). One
important aspect is the purely topological nature of Maxwell’s equations.

In the differential topological context Maxwell’s equations are written as

dE = iwB,

15



dH = —iwD.

Since the exterior derivative d is independent of any coordinate system or
a metric so are these equations. The field intensities £ and H are 1-forms
whereas the magnetic flur density B and the electric flux density D are 2-
forms' (see [37] for definitions of differential forms). The metric appears in
the constitutive relations

B = :U/O*Ha
D = eyxE,

as Hodge-* operator that maps 1-forms to 2-forms or, more generally, p-forms
to (n—p)-forms n being the dimension of the manifold. Hence the coordinate
invariant Maxwell’s equations are

dE = iwpg* H,
dH = —iweqx F,

both in the free space and in PML.

In the late 1980s Bossavit gave a detailed description of how the so called
Whitney elements can be used in electromagnetic field computations by the
finite element method (FEM). These elements of degrees 0-3 can be regarded
as discretized differential forms. They conform to the electromagnetic bound-
ary conditions: field or flux continuities and discontinuities across material
boundaries are easy to model. In a finite element mesh consisting of tetra-
hedra elements of degree p are associated with p-simplices. In addition to
nodal values, degrees of freedom can be circulations along edges, fluxes across
facets or volume integrals over tetrahedra. In [6] Bossavit considers electro-
magnetic obstacle scattering. As he says FEM works well with complicated
geometries near the scatterer contrary to boundary-integral methods that
are excellent tools for far-field computations but require smooth and simple
surfaces. Recently Jarvenpéd in his thesis [21] has implemented Whitney el-
ements in a generally shaped PML. He solves numerically a two dimensional
electromagnetic scattering problem but the work also contains a discussion
how the solver can be extended to three dimensional domains.

As the metric within the absorbing layer is complex valued it is necessary to
study real manifolds with complexified tangent and cotangent bundles. This
complexification gives more symmetry. As it was seen in Section 3.2 the
curvature tensor will vanish also for several manifolds that originally have a
nonvanishing curvature. One consequence of the flatness is that it is possible

tThe reader should be careful about the notations: it is obvious from the context
whether B and D mean forms or domains.
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to employ global orthonormal frames and express the fundamental solutions
of Maxwell’s equations, i.e., dipoles in such frames. Forced by necessity,
one drawback has to be accepted: in general the manifold does not contain
geodesics. An alternative way to express the state of affairs is that geodesics
usually go outside the manifold. This is better understood if the manifold
is embedded in some C" as in connection with the stretching function. The
lack of geodesics makes large chunks of the standard Riemannian geometry
useless.

4 Inversion and Data Reduction

A standard reference in papers dealing with electromagnetic inversion is
Calderén’s work [8] published in 1980. Instead of time varying electromag-
netic fields he considered stationary electric currents that are governed by
the conductivity equation

V- (oVu) =0.

It describes the potential u in the absence of sinks and sources of current in a
bounded domain €2 with a smooth boundary. According to Ohm’s law oVu
represents the current flux. If one knows the currents and voltages at the
boundary 0f2, Calderén asked, is it possible to determine the conductivity
o(x) at every point z € Q7 To be precise, define the so called voltage-to-
current map, or Dirichlet-to-Neumann map, A, by

ou
Ao‘f = <U%>

where u € H'(Q) solves the Dirichlet problem

0N

V- (oVu) = 0 in Q,
ulgg = f € H*09),

and 77 is the exterior unit normal of 0€2. Calder6n’s problem was whether o is
uniquely determined by A, and, if the answer is affirmative, whether one can
calculate o in terms of A,. The uniqueness was shown in 1980’s by several
authors. In 1988 Nachman published a reconstruction method for dimensions
n > 3 (see [35]) and in 1996 for the remaining dimension n = 2 (see [36]).
Siltanen tested Nachman’s method in two dimensions both theoretically and
numerically in his thesis [45] in 1999.

4.1 Inversion of the Scalar Schrodinger Equation

To understand the philosophy of inverse problems consider, for simplicity,
the scalar Schrodinger equation

AY(z) +q(z)p(z) =0
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with zero energy in R". It is very closely related to the conductivity equation.
This presentation follows the lectures on inversion theory given by Prof.
Erkki Somersalo at Helsinki University of Technology in the spring 1999.
Let 2 C R” be a bounded open domain with a smooth boundary 92 such
that R* \ Q is connected. Assume that ¢ € Co(Q), that is to say, ¢ is a
continuous compactly supported function in €. For every f € H'/2(9Q) the
boundary value problem

Ap+qp = 0 in Q
T = [,

is known to have a unique weak solution ¢ € H*(Q):
Vi € Hy () : /(wb Vo +qpp)dr = 0.
Q

The trace map 7 : H'(Q) — HY?(0Q) is surjective and it has at least one
right inverse R : HY/2(0Q) — H'(Q), TR = idyi/2(50). The Dirichlet-to-
Neumann map

Ay s HY2(0Q) — H 12(0Q)
is the unique map with the property that

Vg € Hl/Q(aﬂ) <A f,g>= /(V’gb -VRg + qpRg) dz.
Q

On the left hand side H~/2(09) is regarded as the dual of H'/2(99Q).

Suppose there are two continuous potentials ¢; and ¢ with compact supports
in Q. If A, = A,, is it guaranteed that ¢ = ¢.7 The answer turns out to
be affirmative in dimensions n > 3. Up to our knowledge the case n = 2 is
open.

Assume that n > 3 and A,, = Ag,. From the symmetry of the Dirichlet-to-
Neumann map with respect to the duality < -, > it follows that

/((h — @)ugusdr =0
Q

for all weak solutions u; € H'(Q) to (A —¢;)u; =0, j = 1,2. Let £ € R
Choose complex vectors (; € C*, j = 1,2, such that

G-¢G = 0,
G+C = &
1G] > max(||gi]]oos |g2]oc) + 1.

Using the Banach fixed point theorem it can be proved that there exists a
solution u; € H*(Q) to (A — ¢j)u; = 0 of the form

B C
u; = el (1 +w§j)7 ||ij||L2 < m
= J
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Particularly,
0 = [ (0(0) = @)1 + g (@) (1 + g, ) da

N /Q(ql () — q2(2))e® dz + R,

Rerer = /Q(ql (x) = q2(2)) e (we, () + we, () + we, (w)we, () da.

The Cauchy-Schwarz inequality implies, if the Lebesgue measure of € is
denoted by |9,

Real < [ 0() = 0] (0] + lwe )]+ lug (0w (2)]) da
< lar = aalloo (19212 (i 12 + [y [122) + i 22 s 22 ).

It follows from the equation ¢; - (; = 0 that |Im ;| = |Re(;|. Hence

1 1 C
Reve| < llgn — 00091/2< + >+ }%0
Revel < llar = g [ i Im¢|  [Im ¢y [Im G [|Im G|

as |C1], |¢2] = 0. Thus the Fourier transform

Flg — q2)(§) = /(%(«T) — qa(2))e** da

Q
of g1 — g2 vanishes for all £ € R". The conclusion is that ¢; = ¢o.

The same kind of argument could be used in connection with electromagnetic
inverse problems since the fundamental solutions to Maxwell’s free space
equations can be composed of the fundamental solutions to the Helmholtz
equation. Unfortunately, whatever the choice of the exponentially growing
solutions corresponding to u;, j = 1,2, is the counterpart of the residual
term R, ¢, will not tend to zero as the lengths |(;| of the adequate complex
wave vectors (; tend to infinity. After some modifications in the proof the
exponential solutions still yield the desired result (see [38] for details).

In [38] and again in [39] Ola et al. proved that IP2 in Section 2.3 has a
unique solution if R® \ Q is connected and some technical assumptions are
satisfied. The article [39] by Ola and Somersalo also contains a proof to the
uniqueness of the solution of IP1. These results hold except for a discrete set
of magnetic resonance frequences w that occur when o = 0.

4.2 Uniqueness of the Inversion after Data Reduction

The Dirichlet-to-Neumann map is formally an integral operator with an ap-
propriate kernel say Kx(z,y), z,y € 0. Assume that U is a non-empty
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open subset of 9. One can ask whether the restriction K,/ is sufficient
to uniquely determine the material parameters in Q. In [28] Lassas et al.
studied the question when €2 is replaced by the lower half-space

R:i = {(.ﬁEl,LEQ,fBg) € R3 | T3 < O}

Consider the Schrodinger equation (A + ¢(x))y(x) = 0 with Im ¢(z) > 0 and
supp(q — qo) C W C R® for a known constant ¢ € C and a fixed compact
W. The kernel K, turns out to be

where the Dirichlet Green’s function G? is the solution to a certain Lippmann-
Schwinger equation (see |28] for details) such that the boundary condition

G"(z,y)] 0

x3=0 =
is satisfied. Lassas et al. proved, using explicitly the exponentially grow-
ing solutions as in Section 4.1, that the inhomogeneity ¢ — ¢ is uniquely
determined by K|

In electromagnetics the Dirichlet-to-Neumann map is replaced by the admit-
tance map

Y 7 X Elyg > it x Hly,

or its inverse the impedance map
Z i x H|yo = 7 X Elyq.

Formally they are integral operators with kernels Ky and K. Let the scat-
terer W, be a subset of a fixed compact set W C Q := R®. It is also
required that in €2 the functions ¢, ¢ and ¢ are bounded from above by pos-
itive numbers, ¢ and p are bounded from below by positive numbers and o
is non-negative. Analogously to the result of Lassas et al. Paper A shows
that the restrictions Ky |, and Kz, uniquely determine the material
functions e, p and ¢ in W. The proof is based on plane symmetric Green’s
functions. They are constructed using the same kind of image principle as
in [28]. The exponentially growing solutions are hiding in the proof of the
second main theorem in [39]. It solves the uniqueness of IP1.

Paper A also proves a local version of the above mentioned uniqueness the-
orem. Assume that for each magnetic dipole ¥ located at U and tangential
to O the tangential component (77 x E, 7 x H) at U of the electromagnetic
field generated by the dipole is measured. The local theorem states that such
a measurement is sufficient to uniquely determine the material functions &,
i and o in W. This uniqueness follows from the global theorem by analytic
continuation and reciprocity.
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5 Conclusion

The work considers the scattering of a time-harmonic electromagnetic wave
from a bounded obstacle in a free space but the methods and results are
also applicable for other wave phenomena and, mutatis mutandis, in time
domain. The purpose of this study is twofold. On one hand, it is shown
that an inverse problem is uniquely solvable from local surface data. On the
other hand, the direct problem can be solved up to an arbitrary precision in
a bounded computational domain. The aim is at better understanding of the
principles that certain extensively used computational methods are based on.
This know-how is a prerequisite for further development of the algorithms.
Nevertheless, the approach is quite theoretical and abstract.

An earlier result stating that the electromagnetic material parameters are
uniquely determined by a global surface measurement is improved by proving
that a local measurement on a tiny piece of the surface is sufficient to guar-
antee the uniqueness. The theorem is important, for instance, in geophysics
since global measurements surrounding the whole Earth are impossible.

To work reliably integral equations reguire smooth and simple boundaries.
In connection with complicated geometries one has to use the finite element
or finite difference methods in the vicinity of the scatterer. Hence the un-
bounded exterior domain has to be modelled by a bounded domain on the
exterior boundary of which one has to impose some absorbing boundary con-
dition to prevent spurious reflections. This work contains a thorough study of
the perfectly matched layer (PML) boundary condition. The absorbing layer
is constructed by complex stretching of the metric tensor. If the field quanti-
ties are represented by differential forms Maxwell’s equations preserve their
original form and the conventional electromagnetic tools like the Stratton-
Chu representation formula can be used also in the stretched geometry. The
main result states that in the presence of PML the truncated boundary value
problem has a unique solution for all frequencies and the solution tends to the
physical scattering solution exponentially as the thickness of the absorbing
layer increases. Our presentation is coordinate invariant, hence applicable in
arbitrary geometries. The authors hope that the tools and methods used in
this treatise turn out to be useful when developing better PML’s.

Finally, we emphasize that the perfectly matched layer was only a starting
point of our work. The studies go far beyond towards a general complexified
scattering theory.
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